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ABSTRACT

A generalization of the notion of a set of directioms conjugate to
a matrix is shown to lead to a variety of finitely terminating iteratioms
for selving systems of linear equatioms, The errors in the iterates are
characterized in terms of projectors constructable from the conjugate
directions., The natural relatioms of the algorithms to well known matrix
decompositions are pointed out, Some of the algorithms can be used to

solve linear least squares problems,



1l. Introducticn

The purpose of this paper 1s to describe a general class of algorithms

for solving the equation
(1.1) Ax = b,

where A is a nonsingular matrix of order n and x and b are n-vectors. The
algporithms improve an approximate solution X by stepping aleng a set of
10 Ygaeeeslly in such a way that the n-th vector so
produced ia the solution of (1.1). We shall show that with a suirable

"conjugate" directions u

definition of conjugacy many well known methods, and some less well known
ones, can be derived as special cases of our general algorithm.

The prototype for the class of conjugate direction algorithms was
described by Fox, Huskey, and Wilkinson [1]. They take A to be Hermitian

and define the linearly independent vectors u,, u,,...,u_ to be A-conjugate
1 n

2
if

i#jﬁ?ugAuj=0.

Equivalently 1f U = (ul,uz,...,un), then u u are A-conjugate

1? uz,"',

if UHAU is diagonal (and of course nonsingular). Starting with x., a

0’
solution x of (1.1) may be constructed by the following algorithm

L) For k= 1,2,...,n

1) rk—l =bh - Axk-l

(1.2) 2) u o= ol L /uu
: k- YKkFr-1 Y5
DT e T

ey




It should be noted that the division in statement 1.2 of (1.2) can always
be carried out, since u;iAuk is the k-th diagonal entry of UTAU, which is
diagonal and nonsingular.

The above algorithm would be useless without a method for generating
conjugate directions. Fox, Huskey, and Wilkinson show how a set of con-
jugate directions can be constructed recursively as linear combinations
of the unit vectors €158y 5058 . At each step the conjugation algorithm
requires no more work than the solution of a triangular system, and the
algorithm as a whole is therefore not an unreascnable method for solving
linear systems.

The same algorithm was rediscovered, aparently independently, by
Hestenes and Stiefel [3]. They showed that the conjugation algorithm
could be regarded as a variant of Gaussian elimination on the matrix A,
Moreover, they pointed out that the set of directions generated by the
conjugate gradient algorithm is A-conjugate, thus exhibiting the method of
conjugate gradients as a special conjugate direction algorithm.

In 1955 Householder [4] described a class of iterations which he called
orthogonalization methods. Like the original method of conjugate directions,
an orthogonaization method steps along a set of specially generated directions
until after a finite number of steps, a solution is reached. However, A need
not be Hermitian and the directions are not A-conjugate. The algorithm that
generates the directions again involves only the solution of triangular systems.
An important feature of the method is that is can be used to solve linear
least squares problems (cf. the comments at the end of §2 below).

All of these algorithms are closely related to standard factorizations

and reductions of matrices. As was mentioned above, Hestenes and Stiefel




have polnted out the relation between their conjugation algorithm and Gaussian
elimination, so that the method can be regarded as connected with the LU
factorization of A into the product of a lower and an upper triangular

matrix. Householder has related a special cage of his method to the QR
factorization of & into the product of & unitary matrix and an upper tri-
angular matrix, Finally the method of conjugate gradients can be regarded

as a variant of the Lanczos biorthogonalization algorithm [6] {for the

exact connection see [5, p. 132] or §3.5 below).

Thia paper is divided inte two parts, In £2 the netion of an A-
conjugate pair is introduced and a terminating iteration for solving the
system (1.1) is deseribed. 4 theory of conjugate projectors is developed
and used te characterize the errors in the successive approximate solutions,
Section 3 is devoted to the descriptien of a general conjugation algorithm
and irs congequences. In particular it is shown that different choices
of the parameters in the algorithm lead te various methods, some well koewn,
for solving linesr systems, and that these methods are closely related to
well known matrix factorizations,

Ideally the paper should end with a section detailing the authoer’s
extensive numerical experience with these algorithms. But the number of
conjugate direction algorichms 18 quite literally infinite, and the cholce
of any single algorithm will probably be indicated by its suitabilicy for
the problem at hand, It is hoped that this paper will encourage independent

workers to experiment with specific algorithms in varicus applications.




Another gap in the paper is the absence of a discussion of the application
of conjugate direction methods to the sclution of nonlinear equations of the

form
f(x) =0

where f: [‘n -+ Cn. This may be done by identifying the value f(xk) with the
regidual Ty and the derivative Fx with the matrix -A. In some of the con-
jugate direction schemes all that is required of A is that one be able to
evaluate Ap for any vector p. In solving nonlinear equations this value

may be approximated by

f(x + ap) - £(x)
o

for some suitable value of o, which circumvents the need of calculating
Fx explicitly. We shall not persue this line here; however, those who do
may find the theory of §2 useful in constructing local convergence proofs.

Throughout the paper we shall use Householder's notational conventiouns.

n

In addition Q:n will denote complex n space, and [:mx the set of mxn

matrices., The column space of A will be denoted by H(A) and the null

k L1k Lk k|
space by N(A). Given any matrix A, the matrices A, A", A=, and A
will denote the submatrices consisting of respectively the first k rows,

the first k columns, the last k rows, and the last k columns of A, Thus

A‘k is the leading principal submatrix of A of order k.




2. Conjugacy

The proof that the vector x  generated by (1.2) is a solution of (1.1)
consists of verifying inductively that the k-th residual r, 1is orthogonal

to ul’u2""’uk' Since U is nonsingular, rn must be the null vector;

i.e. b -Ax =0,
1
The point to be noted is that the vectors U sUpsera,l  SEEVE two
purposes: first they provide directions along which the approximate
solutionsg x, are to be altered, and second they delineate the subspaces
in which the residuals r, are forced to lie. The essential part of our

generalization of the notion of conjugacy is to provide a second set of

vectors to serve the second purpose,

Definition 2.1. Let A, U, V & q:lﬂqlbe nonsingular. Then (U,V)

is an A-conjugate pair if

L = viay

is lower triangular,

The generalized algorithm for solving (1.1) 1% a slight variant of

(1.2).

Algorithm 2.2. Let A, U, V & d: mxan be nonsingular with U =

(ul,uz,...,un) and V = (vl,vz,...,vn) forming an A~conjugate pair.

Let b, X, ¢ C ".

1) For k = 1,2,...,n
) r =h - Ax

H H
2 by = VT g ey

k-1 T MU




Again it should be noted that the algorithm can always be carried to
completion; for the denominator v Au” in statement 1.2 is the k-th diagonal
of the lower triangular matrix L and must be nonzero since L is non-
singular. The last vector x" produced by the algorithm is the solution

of (1.1).

Theorem 2.3, In Algorithm 2.2

This theorem can be proved in three ways, each of which has advantages.

The simplest way is to show inductively that r”™ is orthogonal to

AA LA

TLoT2 0k ko ek " i"pH " that r” = 0.

A second procf may be had by regarding A as a linear transformation
of (£ into C. If the domain of A is equiped with the basis formed
from the c¢olumns of U and the range with the basgis formed from the columns
of V , then the matrix representing the transformation A is the lower
triangular matrix L. Moreover, in this coordinate system, Algorithm 2.2

becomes nothing more than the usual recursive algorithm for solving

The third proof follows from a detailed investigation of the errors

in the x*, which we now give., Let

G, ~X ™ X =
k k
Then
k - LKk_ltukl'k



Now

Hence
o = (- Ple

where

ukvEA
(2.1) Pk = 4 ?

Vi
and generally
(2.2) e = (I - Pk)(I - Pk_l)...(I - Pl)eo.

Thus the problem of characterizing ey becomes one of characterizing the
matrix (I - Pk) (I - Pk_l)cru(I - Pl).
It is easily verified that

i.e., Pk is a projector. In fact from (2.1) it is seen that Pk is the
rank one projector onto the space spamnned by uy along the orthogonal
complement of the space spanned by AHvk. Moreover, by the A-conjugacy

of U and V, we have
i<k =» vHA =0
i
It follows that

(2.3) i<k=o PiPk = 0.




It turns out that the property (2.3} is sufficient to enable us to describe
I - Pk}(I - Pk_l)...(I - Pl} regardless of the dimensicnality of the

projectors Pi' Thus we make the following definiticn.

Definition 2.4. Let P_,P

15Fgsves be a sequence of projectors. Then

Pl’Pz"" are conjugate projectors if

i<k = PiPk =0,
The following lemma is an immediate comsequence of Definition 2.4.

Lemma 2,.5. Let P_,F be conjugate projectors. Then

1zt

(2.4) i<k P(I-P)(I-PF )...(I-2)=0.

i( k-1

Frocf. By conjugacy, we have for i < j,

(2.5} Pi(I - Pj] = Pi - Pin = B3

and since Pi is a projector,

2-— -— =
{(2.6) Pi(I - Pi) = Pi - Pi = Pi Pi 0.

Together (2.5) and (2.6) imply (2.4).

Theorem 2.6. Let P,,F be conjugate projectors. Then

125520

(T -2 )T =P _)...(I~Ep)
- k k

where P, is the projector onto & K (Pi) along (1 77(Pi}.
i=1 i=1




Froof. The thecrem is triwvial for k = 1. Assume its truth for
Pl"PE""’?k—l and let Qk = (I - Pk) {1 - Pk_l)...(I - Pl). Now from Lemms

2.5 it follows that

and hence that E!k = Qi; i,e. {wlk is a projector.

The column space of ak is given by
n (Q) = Ix : Q¥ = %},
Let Elkx = x, Then by Lemma 2.5

Px=P Qx=0, (i=1,2,,..,k).

i ik
k k
Hencex e N N (?;}. On the other hand if x ¢ N N (P}, then it is
i=1 i=}

. . : - k
easily verified Qx = Qx. This shows that JR(Q) = N 71 ().
5=1

Since the sequence Pi,Pg_l,... ,P? is conjugate it follows that

- 3 n
ﬁ (Q:) =n 7N {P:). But 1 ?'z {PE) is the orthogonal complement of
i=1 i=1

k
2 R (Pi). Now any projector P is the projector onto ﬂ(P) along the
i=1

orthogeonal complement of R(PT). Hence Qk is the projector omto

k

k - N
n N (Pi) along Z R (Pi}. The complementary projector Po=1-0Q
i=1 i=1

k k
is therefore the projector onte E R (Pi} aleng N n {Pi).
i=1 i=1
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We must still justify the use of the direct sum in the characterization

of R (Pk)° By the induction hypothesis, it ia sufficient to show that

‘R_(Pk) N ﬂ(Pk__l) ={0}. Now from the conjugacy conditions it follows

that Qk—lpk =P or P ;P =0. Hence if ka =x (x ¢ ﬁ (Pk)) and

i;k-lx =x {x¢ ﬂ.(f’k_l)) then

X = Pk_lx = Pk_lka = 0,

Returning to the characterization (2,2) of & We obtain the following

result as a consequence of Theorem 2.6.

Theorem 2.7, In Algorithm 2.2, the errors e, = x - x, are given by

k
e = (L - Pk)eﬂ’

where Pk is the projector onto R (Ul'k) along R(Un_kl) {or equivently

along the orthogonal complement of F [ (AHV\k)).

Proof. It followz immediately from theorem 2.6 and the form of the
projectars Pi that I:k is the projector onto 7{ (U“{) along the orthogonal
complement of (AHV‘k). By the conjugacy of (U,V), the orthogonal com-
plement of R (AHV\k) is R(Un_kl), which eatablishes the theorem,

Since E'n = T, it follows that e, = 0, which proves Theorem 2.3.

The projector Pk can be represented as follows, Let W=U ". Then

it is easy to verify that




n

and

n-k|_n-k

I -P =1 W

k

Since the residual vector Ty is simply Aek, we have
r, = (I - AP A D)r
k Ik a*

The matrix I - APkAfl iz a projector. In fact, we have the fellowing

easy corollary of Theorem 2.7,

Corellary 2.8, The residualg in Algorithm 2,2 are given by
Tk T U For

where Q  is the projector onto the orthogonal complement of vl along

L5Y

the orthogonal complement of (AUl

We conclude this gection with two extensions of the notion of cenjugacy.

The linear least squares problem. Let A e Q; mxn, Ve ¢- mxn,

and Ue C nxn, where m > n, Then (U,V) will be said to be A-conjugate

n
if VHAU is nonsingular and lower triangular. If b & C ™ and Xy € T .

then Algorithm 2.2 may be applied to yield a sequence of vectors
KysXgpeearX . The theory developed above applies to the errors and
residuals associated with these vectors, In particular, by Cerollary 2.8
the associated residual vector r lies in the orthogonal complement of

R (v). 1If V is chosen so that 7? (v) = 7E(A), then r lies in the
orthogonal complement of the column space of A, which is sufficient

(see, e.g., [5, p. 8]) for X to be a solution of the linear least squares

problem of minimizing ||b - Ax||, where ||:|| denotes the usual Fuclidean

norm,




Block comjugacy., Let A, U, V & (: nn be nonsingular, and let

U and V be partitioned in the forms

U= (Uy,0,,..0,0),
Vo= (VVp,aV ),

where

nxn,

Ui’ vi € G 1p (1 = 1:2:---:1-)'

Then (U,V) is block A-conjugate if

. . H
i< i = ViAUj 0.

Given block A-conjugate U and V, an algorithm along the lines of

Algorithm 2.2 may be given as follows.

1) | For k = 1,2,...,r

S T ]
_ ean yolgH
2 m = AL ViFea

LD T e U

As was done above, it can be shown that

e, = (I-PJe ., (k=12,...,1),

where Pk ig the projector

_ H. .-1H
P, = U, (VAU) 1va.
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In fact Pl’PZ""’

theory applies. In particular e is the projection of e onto

Pr is a sequence of conjugate projectors, and the abowve
R [(U,,...,00]) along R (U ;,...,U 3]

3. CLonjugation.

Alporithm 2.2 is of no practical value for solving the equation
Ax = b, unless an A-conjugate palr (U,V) can be found. In this sectiom
we shall describe an algorithm for conjugating a set of linearly independent
vectors with respect to another set of vectors. By warying the choice
of the vectors to be conjugated and using the results in Algorithm 2.2,
one may cbtain various finitely terminating iterations for solving linear
equations. Moreover, the conjugate pairs so cbtained are related to
standard matrix decompositions.

The idea of the conjugation technigue is simple. Given nonsingular
matrices V, A, and P, we attempt to determine w as a linear combination
of PysPaseessPy in such a way that U and V are A-ceonjugate. We shall call

this process the A-conjugation of P with respect to V.

To determine when conjugation can be carried out, note that the
process is equivalent to finding an upper triangular matrix, which we shall

denote by S_l, such that U = PS_l. The A-conjugacy of (U,V) requires that

H

L = viau = viaps~t

be lower triamgular. In other words ?HﬂP = LS must be factorizable into

the produce of a lower triangular matrix and an upper triangular matrix
H

(VAP has an "LU factorization"). Since V, A, and P are nonsingular, the

matrix 5 is uniquely determined up to the scaling of its rows (see [5, §1.4),

BUIT LB2ARY
EARMESIE-RELEN WEIVERSITY
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which implies that U is uniquely determined up to the scaling of its columms.

We summarize these results in the following theoren.

Theorem 3.1. Let ¥V, A, and P bhe nonsingular., Then a necessary and
sufficient condition that P can be A-conjugated with respect to ¥V is that
vHAP have an LU facterization. In this case the conjugate vectors so
obtained are unique up to scaling.

A reasonably efficient conjugation algorithm may be derived as follows.

From the equatiomn

it follows that

k-1
{3.1) P = U1 sk_+ O3 ?

where

=( )T
sk_ le,czk,...,ck_l,k N

Now the conjugacy of U and V regquire that

P N RIS S [

yay
be lower triangular and that

(Vlk—l)HAuk - 0.
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Hence upcon multiplying (3.1) by ({(v' *"}A&, we cbtain

(3.2) * s.=(V ) ap.

Thus may be determined by solving the lower triangular system. The

A

vector u” may be determined from (3.1), where 0 is chosen to give

u” gome predetermined scaling.

Algorithm 3.2, Let V, A, P e C' be nonsingular, and let

V AP have an LU factorization. The following algorithm A-conjugates P
with respect to V, returning the conjugated vectors as the columns of

T= {u®u”...,u™)

1) For kK = 1,2,...,n

0f course when k 1, statement 1.1 is skipped and u® is determined

EN

as a scalar multiple of p

An important feature of the conjugation technique is that the vectors

-~ -~

k "k+ 1tk wetpror et e iw ' determine ut, %, oo ,u®. This means that
the choice of v can be defered until after u” has been computed, and thus can
be made to depend on u”,U2»ese y*

We ghall now consider some of the algorithms that may be cobtained by
varying V and P in the conjugation algorithm. Each choice leads to a well-
known matrix decomposition and it is convenient to list the chioces by the

decompositions they determine.
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1. LU decompostion of A. There are two choices of ¥ and P that lead

to the LU decompositicn of A into the product of a lower triangular matrix
and an upper triangular matrix. The first chodce is P = ¥ = I, In this

case U = IS“l is upper triangular, and

1s lower triangular. Hence
A =15

1s the required decomposition. In this case the conjugation algorithm is
related to various methods for the triangular factorizatiom of a matrix.

The second choice is P = I and ¥V = U. Again U is upper triamgular and
a = (stL)s

is the required decomposition. When & is Hermitian, L = UHAU is also
Hermitian, and hence diagonal. This is the usual conjugate direction
algorithm, whose comnection with the LU factorization of A has already

been pointed out by Hestenes and Stiefel [3].

2. LU decomposition of AHA. For this method take P = I and V = A,

Since VHAP = AHA is positive definite and always has an LU decowmpositicn,
the conjugating algorithm can always be carried out for this choice of P
and U. The matrix U = S_l is upper triangular, and from the conjugacy

conditions

A = Ls,

which exhibits an LU factorization of AHA.
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3. Orthogonalization metheds and the QR decomposition, This eclass

of methods has been treated in detail by Householder [4], Take P arbitrary

and V = All, Since PH&HAP is positive definite, it can be written in the

form

piatlap = sfs

where § ig upper triangular [5, §1.4]. Hence with U = Ps_l, VHAP has an

L} decomposition and the conjugation algorithm can be carried out. Moreover
1 = g BpiaEaps™t o yHallay = VHV,

so that the columns of V are orthonormal. In addition 7?{V) = 7f.(A),

and the algorithm can be used to solve least squares problems, as was pointed

out in the §2.

If P = I, then
A = VS,

which exhibits the QR factorization of A into the product of a umitary
matrix and an upper triangular matrix., If the conjugation algorithm is
augmented to include the explicit calculation of ¥, then it becomes

essentially the modified Gram-Schmidt method.

4. Reduction by simlarity transformations to Hessenberg form. The

columns of P are taken to be the vectors in the Krylov sequence defined by

(3.3) p. = AT @=1,2,...,0) .
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Necesgary and gufficient conditiong that P be nonsgingular are that the
Jordan form of A contalns precisely one block for each distinct elgenvalue
of &4 (A ig nonderogatory) and that in the coordinate system assgociated with
the Jordan form of A the vector p” has nonzero components in the principal
vectors of maximal height.

Now from {3.3),

and since the p" form a basgis for n-space

*Pn+l - 7"1"1°" "2Pp. " ey - p'n
for some constants fit2r k% 1 tnw “eH°"" that
(3.4) AP = PC ,

where C is the companion matrix

0 0 ... 0 ¥_ \

1 0 ... 0 Yo

If V is chosen arbitarily and P is conjugated with respect to V. then

the resulting U ig equal to PS ' where S is upper triangular. From (3.4)
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v lay = ses7t = H,
and since C is upper Hessenberg and S 1s upper triangular, H is alsoc upper

Hessenberg.

5. Biconjugation and reduction to tridiggonal form. Let the

Hessenberg conjugaticn of P just described be carried out with respect

to any matrix Q. Then
QHAU =1

and if we define V¥ = QL*H, then
Vau = 1,

Thus not only is (U,V} A-conjugate, but (V,U) is AB—conjugate.

How if Q is generated by a Krylov sequence on AH,

i -

qQ-= {qlsﬂgls- --:(Aﬁjn-lql),

then

K = v 1aty

is upper Hessenberg. But

1

H = U tan —ly-1yH

vHany o la) ot vy

|
S
El
"
"
it

Thus H = KH is both upper and lower Hessenberg, and hence H is tridiagomsl.
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In principle it is possible to apply the conjugating algorithm directly
to F and Q to yield the biconjugate pair (U,V), However the fact that U"lAU

and VHAVAH are tridiagonal implies that the columns of U and V each satisfy
three term recurrences, and the coefficlents. of these recurrences may be
calculated by using the biconjugacy relation UHAH = I. GSpecificelly if the

first columns of the matrices on each side of the equality
{3.5) AU = UH
are calculaced, the result is

1= Mt Yot

. H 1 -
Since vlﬂu2 = 0 and leul =1,

_ H,2
Ny = VB 4y-

Thusa u, may be calculated in the form
Npp¥p = A%y = MYy
whetre n, # 0 is arbitrary. Generally, from (3.3)

A = M3 k-1 T ek T Mt ke

Hence
Merl kAL = A 7 M Yt T k-1, k5k-10

where M .4 ¥ 0 Is arbitrary and
\ ,
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¥

kk © VK™t Yk 0
_H 2

Me-1,% ~ Vk-1" Yk°

Similarly from the equation AHV = VHH, it follows that the columns of

V may be calculated by the recurrences

n = AH - TV
M12v2 MR
n v =A% o n v o+n v
Tk, k1 i+l kT Mk T Mk,k-1Vk-10
where nkk and "k,k+1 are defined as above and nk,k+1 is chosen so that

H
vk+1Auk+l = 1. The vectors u and v, can be generated simultaneously. At

no stage is it necessary to retain more than two of the wvectors U and two
of the vectors Vi s which suggests that the algorithm may find application
to large sparse linear systems.

When A is Hermitian and up =V =T, the above method, combined with
Algorithm 2.2, is essentially the method of conjugate gradients [3], with
some differences in scaling.

The general method is closely related to the Lanczos biorthogonalization
algorithm [6]. In fact since U-l = VHA, it follows that the tridiagonal
matrix H is the one that would be obtained by bilorthogonalizing the columns
of the matrices P and AHQ. It should be noted that algorithms of this type

tend to suffer from numerical instabilities. For a good discussion of the

practical use of the Hessenberg and biorthogonalization algorithms. see

[7, Ch, 6].
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6. Reduction to bidiagonal form, The decomposition treated here

seems not to originate with the conjugating algorithm. Rather it is based
on the fact that if vi is any vector of Euclidean length unity, then there
are unitary matrices U and V such that the first column of V is vy and the

matrix
L = VHAU

is lower bidiagional (lower triangular and upper Hessenberg). The matrices
U and V of course form an A-conjugate pair.

The columns of U and V may be generated successively by an algorithm
which may be derived in much the same way as the biconjungation algorithm.

From the equation
ut = Ay

it follows that

where A is chosen to make uy of length unity. Generally

i1
You =A% - % . u
kk"k kT k,k-1"k-1°
where orthanormality requires that

_ .k
(3'6) Ak’k_l = vauk_l,

and A, . is chosen so that u is of length unity:

kk




- 1| " i H
(3.7 Mo T UM VT A ke1Y%k-1 T WA ke

From the equation
AU = VL

it follows that

Mok, Kkt T A% T Mk
The orthonormality conditions for V give the same values for the A's as
(3.6) and (3.7). Again the reduction can proceed stepwise and only the
most recent vectors need be stored. Thils reduction was proposed by Golub
and Kahan [2].
If vy € R(A), then 1Q(V) = ?Q(A), and the algorithm can be used to

solve least squares problems.
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