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ABSTRACT 

A generalization of the notion of a set of directions conjugate to 

a matrix is shown to lead to a variety of finitely terminating iterations 

for solving systems of linear equations. The errors in the iterates are 

characterized in terms of projectors constructable from the conjugate 

directions. The natural relations of the algorithms to well known matrix 

decompositions are pointed out. Some of the algorithms can be used to 

solve linear least squares problems. 
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1. Introduction 

The purpose of this paper is to describe a general class of algorithms 

for solving the equation 

(1.1) Ax = b, 

where A is a nonsingular matrix of order n and x and b are n-vectors. The 

algorithms improve an approximate solution X q by stepping along a set of 

"conjugate" directions u ^ u 2 U q in such a way that the n-th vector so 

produced is the solution of (1.1). We shall show that with a suitable 

definition of conjugacy many well known methods, and some less well known 

ones, can be derived as special cases of our general algorithm. 

The prototype for the class of conjugate direction algorithms was 

described by Fox, Huskey, and Wilkinson [1]. They take A to be Hermitian 

and define the linearly independent vectors u., u_,...,u to be A-conjugate 
1 2 n J ° 

if 

1 t 1 =$> u^AUj = 0 . 

Equivalent^ if U = (u.. ,u„,.. . ,u ), then u. , u„,...,u are A-conjugate 
-i j 1' 2 n 1 2 n 

if U HAU is diagonal (and of course nonsingular). Starting with x Q, a 

solution x n of (1.1) may be constructed hy the following algorithm 

1) 

(1.2) 

For k = 1,2,....n 

1) r k_ x = b - Ax k 
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It should be noted that the division in statement 1.2 of (1.2) can always 

be carried out, since u^Ai^ Is the k-th diagonal entry of U TAU, which is 

diagonal and nonsingular. 

The above algorithm would be useless without a method for generating 

conjugate directions. Fox, Huskey, and Wilkinson show how a set of con­

jugate directions can be constructed recursively as linear combinations 

of the unit vectors ^-^^2 *''' , en' A t e a c h s t e p t h e c o n J u 8 a t i o n algorithm 

requires no more work than the solution of a triangular system, and the 

algorithm as a whole ia therefore not an unreasonable method for solving 

linear systems. 

The same algorithm was rediscovered, aparently independently, by 

Hestenes and Stiefel [3]. They showed that the conjugation algorithm 

could be regarded as a variant of Gaussian elimination on the matrix A. 

Moreover, they pointed out that the set of directions generated by the 

conjugate gradient algorithm is A-conjugate, thus exhibiting the method of 

conjugate gradients as a special conjugate direction algorithm. 

In 1955 Householder [4] described a class of iterations which he called 

orthogonalization methods. Like the original method of conjugate directions, 

an orthogonaization method steps along a set of specially generated directions 

until,after a finite number of steps, a solution is reached. However, A need 

not be Hermitian and the directions are not A-conjugate. The algorithm that 

generates the directions again involves only the solution of triangular systems. 

An important feature of the method is that is can be used to solve linear 

least squares problems (cf. the comments at the end of §2 below). 

All of these algorithms are closely related to standard factorizations 

and reductions of matrices. As was mentioned above, Hestenes and Stiefel 
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have pointed out the relation between their conjugation algorithm and Gaussian 

elimination, so that the method can be regarded as connected with the LU 

factorization of A into the product of a lower and an upper triangular 

matrix. Householder has related a special case of his method to the OR 

factorization of A into the product of a unitary matrix and an upper tri­

angular matrix. Finally the method of conjugate gradients can be regarded 

as a variant of the Lanczos biorthogonalization algorithm [6] (for the 

exact connection see [5, p. 139] or §3.5 below). 

This paper is divided into two parts. In §2 the notion of an A-

conjugate pair is introduced and a terminating iteration for solving the 

system (1.1) is described. A theory of conjugate projectors is developed 

and used to characterize the errors in the successive approximate solutions. 

Section 3 is devoted to the description of a general conjugation algorithm 

and its consequences. In particular it is shown that different choices 

of the parameters in the algorithm lead to various methods, some well known, 

for solving linear systems, and that these methods are closely related to 

well known matrix factorizations. 

Ideally the paper should end with a section detailing the author's 

extensive numerical experience with these algorithms. But the number of 

conjugate direction algorithms is quite literally infinite, and the choice 

of any single algorithm will probably be indicated by its suitability for 

the problem at hand. It is hoped that this paper will encourage independent 

workers to experiment with specific algorithms in various applications. 



Another gap in the paper is the absence of a discussion of the application 

of conjugate direction methods to the solution of nonlinear equations of the 

form 

f(x) = 0 

where f: £ n -c £ n . This may be done by identifying the value f (x^) with the 

residual rfc and the derivative F x with the matrix -A. In some of the con­

jugate direction schemes all that is required of A is that one be able to 

evaluate Ap for any vector p. In solving nonlinear equations this value 

may be approximated by 

f(x + ctp) - f (x) 
a 

for some suitable value of a, which circumvents the need of calculating 

F x explicitly. We shall not persue this line here; however, those who do 

may find the theory of §2 useful in constructing local convergence proofs. 

Throughout the paper we shall use Householder's notational conventions. 

In addition £ n will denote complex n space, and (£ m X n the set of m*n 

matrices. The column space of A will be denoted by %(A) and the null 

space by 71(A). Given any matrix A, the matrices A k, A , k , A-, and A k^ 

will denote the submatrices consisting of respectively the first k rows, 

the first k columns, the last k rows, and the last k columns of A. Thus 

A* k is the leading principal submatrix of A of order k. 



2. Conjugacy 

The proof that the vector X q generated by (1.2) is a solution of (1.1) 

consists of verifying inductively that the k-th residual rfc is orthogonal 

to u l tu 2,...,u, . Since U is nonsingular, r must be the null vector; 

i.e. b - Ax = 0 . n 
The point to be noted is that the vectors u n,u„ u serve two 

1 2 n 

purposes: first they provide directions along which the approximate 

solutions x^ are to be altered, and second they delineate the subspaces 

in which the residuals r^ are forced to lie. The essential part of our 

generalization of the notion of conjugacy is to provide a second set of 

vectors to serve the second purpose. 

Definition 2.1. Let A, U, V e C n * n be nonsingular. Then (U,V) 

is an A-conjugate pair if 

L = V HAU 

is lower triangular. 

The generalized algorithm for solving (1.1) is a slight variant of 

(1.2). 

Algorithm 2.2. Let A, U, V e C n * n be nonsingular with U = 

(u ru 2,...,u n) and V = ( v ^ , . .. ,v n) forming an A-conjugate pair. 

Let b, x- e C n . 

1) For k - 1,2,...,n 

1) r k_ x = b - Ax 

21 x k = x k - i + w 



Again it should be noted that the algorithm can always be carried to 

completion; for the denominator v*Au A in statement 1.2 is the k-th diagonal 

of the lower triangular matrix L and must be nonzero since L is non-

singular. The last vector produced by the algorithm is the solution 

of (1.1). 

Theorem 2.3. In Algorithm 2.2 

Ax = b. n 

This theorem can be proved in three ways, each of which has advantages, 

The simplest way is to show inductively that is orthogonal to 

V 1 , V 2 1 * * * , vk* w ^ c ^ i m p H e s that = 0. 

A second proof may be had by regarding A as a linear transformation 

of (£n into C". If the domain of A is equiped with the basis formed 

from the columns of U and the range with the basis formed from the columns 

of V , then the matrix representing the transformation A is the lower 

triangular matrix L. Moreover, in this coordinate system, Algorithm 2.2 

becomes nothing more than the usual recursive algorithm for solving 

Ly = V Hb . 

The third proof follows from a detailed investigation of the errors 

in the x*, which we now give. Let 

G-, ~ X ™" X1 • 
k k 

Then 

ek = X - ( Kk-l * U k U k ) 

ek-l - g 
V k A u k 



Now 

rk-i =
 AVr 

Hence 

e k =
 (I " VVl' 

where 

u, v, A 
(2.1) P. = - s - 5 - ' 

k H, 
V k A u k 

and generally 

(2.2) e k = (I - P )(I - P )...(I - P^ejj. 

Thus the problem of characterizing e f c becomes one of characterizing the 

matrix (I - Pfc) (I - P k l)...(I - P.). 

It is easily verified that 

2 
P k = P k ' 

i.e., P k is a projector. In fact from (2.1) it is seen that Pfc is the 

rank one projector onto the space spanned by along the orthogonal 

complement of the space spanned by A H v k > Moreover, by the A-conjugacy 

of U and V, we have 

i < k -=£> VJAÎ  = 0. 

It follows that 

(2.3) i < k •=> P P = 0. 
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It turns out that the property (2.3) is sufficient to enable us to describe 

(I - P k)(I - P ^ ) . . ^ - P ) regardless of the dimensionality of the 

projectors P . Thus we make the following definition. 

Definition 2.4. Let P^Pj,... be a sequence of projectors. Then 

P 1,P 2,... are conjugate projectors if 

i < k P.P. = 0 . ' I k 

The following lemma is an immediate consequence of Definition 2.4. 

Lemma 2.5. Let P ,P2,... be conjugate projectors. Then 

(2.4) i < k P (I - P )(I - Pk_1)...(I - ?±) = 0. 

Proof. By conjugacy, we have for i < j, 

(2.5) P ±(I - P ) - P ± - P ±P = P.; 

and since P is a projector, 

(2.6) P ±(I - P ±) = P ± - PJ = P ± - P x = 0. 

Together (2.5) and (2.6) imply (2.4). 

Theorem 2.6. Let P ,P ,... be conjugate projectors. Then 

(I - P k)(I - P ^ . - C I - P x) = I - P k, 
k k 

where P. is the projector onto $> (P.) along f\ U (P.). 
fc i=l 1 i=l 1 
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Proof. The theorem is trivial for k = 1. Assume its truth for 

P 1,P 2,...,P k_ 1 and let Q k = (I - P )(I - P )...(I - P^. Now from Lemma '1*2' k J 
2.5 it follows that 

i <_ k •=$>(!- P ±)Q = Q k, 

~2 

and hence that Q k = Q k; i.e. Qfc is a projector. 

The column space of Q k is given by 
7i (Q k) - {x : Q kx - x}. 

Let Q kx = x. Then by Lemma 2.5 

P.x - P.Qkx = 0, (i-l,2,...,k). 

k k 
Hence x e 0 71 )• On the other hand if x e A ft then it is 

i-1 1 i-1 1 

k 
easily verified Q x = Q x. This shows that 7l(%) = O ft (P.). 

i=l 

Since the sequence Pk» Pk_l'"'' , P1 i s c o n J u B a t e it follows that 

is the orthogonal complement of 
k i=l k i-1 k 

k 
I ft (P.). Now any projector P is the projector onto ft(P) along the 

1=1 

orthogonal complement of ft(PT). Hence Qfc is the projector onto 

k k . 
C\ 71 (P ) along I fi (P.). The complementary projector P. = I - Q, 
i=l 1 i=i 1 k k 

k k 
is therefore the projector onto £ ft (P.) along H fl (p •) • 

i-1
 1 i-1 1 
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We must still justify the use of the direct sum in the characterization 

of 1R (P k). By the induction hypothesis, it is sufficient to show that 

7*L(Pk) A 1 ^ 0 P k - l ) ={0). Now from the conjugacy conditions it follows 

that Q k - 1 P k - P k or = 0. Hence if Pfcx = x (x e ft (P^)) and 

V l X - X ( X £ ^ ( P k - l ) ) t h e n 

x = P k _ l X = Pk_-|_Pkx » 0. 

Returning to the characterization (2.2) of we obtain the following 

result as a consequence of Theorem 2.6. 

Theorem 2.7. In Algorithm 2.2, the errors efc = x - xfc are given by 

e k - <* " V V 

where P k is the projector onto ft (lAk) along 7?(U n _ kl) (or equivently 

along the orthogonal complement of ft(AVk)). 

Proof. It follows immediately from theorem 2.6 and the form of the 

projectors P that P k is the projector onto ft (u'k) along the orthogonal 

complement of ft (A*V^ k). By the conjugacy of (U,V), the orthogonal com­

plement of f{ (A*V^k) is ft(Un-kl), which establishes the theorem. 

Since P - I, it follows that e n = 0, which proves Theorem 2.3. 

The projector Pfc can be represented as follows. Let W - U" 1. Then 

it is easy to verify that 

p = u' k w k 

k 



and 

I 

Since the residual vector rfc is simply Ae^, we have 

r k - (I - AP kA - 1)r 0. 

The matrix I - AP kA is a projector. In fact, we have the following 

easy corollary of Theorem 2.7. 

Corollary 2.8. The residuals in Algorithm 2.2 are given by 

r k = ^k r 0 * 

where Q k is the projector onto the orthogonal complement of (V l k) along 

the orthogonal complement of (AU l k). 

We conclude this section with two extensions of the notion of conjugacy. 

The linear least squares problem. Let A e (L m > < n , V e t m X n , 

and U e C I * n . where m >_ n. Then (U,V) will be said to be A-conjugate 

then Algorithm 2.2 may be applied to yield a sequence of vectors 

x l tx 2,...,x n. The theory developed above applies to the errors and 

residuals associated with these vectors. In particular, by Corollary 2.8 

the associated residual vector r n lies in the orthogonal complement of 

fl (V). If V is chosen so that ft (V) = ft(A), then r n lies in the 

orthogonal complement of the column space of A, which is sufficient 

(see, e.g., [5, p. 8]) for x to be a solution of the linear least squares 
n 

problem of minimizing [|b - Axj |, where j | • j | denotes the usual Euclidean 

if V HAU is nonsingular and lower triangular. If b e C m and 
n 

xft e C 

norm. 
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Block conjugacy. Let A, U, V e C be nonsingular, and let 

U and V be partitioned in the forms 

U = (U ,u2>...,ur), 

V = (V.,V„,...,V ), 1 2 r 

where 

n x n . 
V V i e ^ 1 , (i = l,2,...,r) 

Then (U,V) is block A-conjugate if 

i < j = ^ V.AU. = 0. 
1 3 

Given block. A-conju.g3.t6 U &iid Vy 3n algorithm along th& lin©s of 

Algorithm 2*2 msy b© given 33 follows• 

i) 

k—1 

For k = l,2,...,r 

1) r f c - 1 - b - Axk_ 

2) m, - (V«AU k)-X rk-l 

L i i x k = v i + \ v 

As was done above, it can be shown that 

^ = (I - P k)e k_ 1, (k = 1,2,...,r), 

where P k is the projector 

\ " \ ( V k A U k 

http://conju.g3.t6


In fact P 1,P 2,...,P r is a sequence of conjugate projectors, and the above 

theory applies. In particular e k is the projection of e Q onto 

% [(U 1 }...,U k)] along fl [(U k + 1,...,U r)]. 

3. Conjugation. 

Algorithm 2.2 Is of no practical value for solving the equation 

Ax = b, unless an A-conjugate pair (U,V) can be found. In this section 

we shall describe an algorithm for conjugating a set of linearly independent 

vectors with respect to another set of vectors. By varying the choice 

of the vectors to be conjugated and using the results in Algorithm 2.2, 

one may obtain various finitely terminating iterations for solving linear 

equations. Moreover, the conjugate pairs so obtained are related to 

standard matrix decompositions. 

The idea of the conjugation technique is simple. Given nonsingular 

matrices V, A, and P, we attempt to determine ^ as a linear combination 

of p , p , . . . , p in such a way that U and V are A-conjugate. We shall call 

this process the A-conjugatlon of P with respect to V. 

To determine when conjugation can be carried out, note that the 

process is equivalent to finding an upper triangular matrix, which we shall 

denote by S _ 1 , such that U = P S - 1 . The A-conjugacy of (U,V) requires that 

L ~= V HAU = V W 1 

be lower triangular. In other words V HAP = LS must be factorizable into 

the produce of a lower triangular matrix and an upper triangular matrix 

(VHAP has an "LU factorization"). Since V, A, and P are nonsingular, the 

matrix S is uniquely determined up to the scaling of its rows (see [5, §1.4), 

H U T UfigAEY 
CARNEliE-KEUiN NKIYEftSIW 
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which implies that U is uniquely determined up to the scaling of its columns. 

We summarize these results in the following theorem. 

Theorem 3.1. Let V, A, and P be nonsingular. Then a necessary and 

sufficient condition that P can be A-conjugated with respect to V is that 

V HAP have an LU factorization. In this case the conjugate vectors so 

obtained are unique up to scaling. 

A reasonably efficient conjugation algorithm may be derived as follows. 

From the equation 

P = US, 

it follows that 

(3.1) 1k-l 
k + ° k k V 

where 

s k = ( ° l k ' a 2 k V l , k > ' 

Now the conjugacy of U and V require that 

Ik-ljH^lk-l = L|k-1 

be lower triangular and that 

(V 



Hence upon multiplying (3.1) by (v , k *")"A, we obtain 

(3.2) L 1 s v = ( V ) Ap. 

Thus may be determined by solving the lower triangular system. The 

vector u* may be determined from (3.1) , where * 0 is chosen to give 

u* some predetermined scaling. 

Algorithm 3.2. Let V, A, P e C n n be nonsingular, and let 

V AP have an LU factorization. The following algorithm A-conjugates P 

with respect to V, returning the conjugated vectors as the columns of 

U = ( u * u * ... ,u*) 

1) For k = 1,2,...,n 

1) s" = a 1*- ) - 1 ( V - k - y A p k 

2 ) Uk " Q k k ( p k - * k " \ * *kk * °-

3) Jk = (V , k) HAu' k. 

Of course when k = 1, statement 1.1 is skipped and u* is determined 

as a scalar multiple of p*. 

An important feature of the conjugation technique is that the vectors 

V k , V k + l ' * * - , Vn a r e n o t n e e c * e ( * t o determine u * , * , •.. ,u*. This means that 

the choice of v* can be defered until after u* has been computed, and thus can 

be made to depend on u A,U2»»»»,u*. 

We shall now consider some of the algorithms that may be obtained by 

varying V and P in the conjugation algorithm. Each choice leads to a well-

known matrix decomposition and it is convenient to list the chioces by the 

decompositions they determine. 



1. LU decompostion of A. There are two choices of V and P that lead 

to the LU decomposition of A into the product of a lower triangular matrix 

and an upper triangular matrix. The first choice is P = V = I. In this 

case U = I S - 1 is upper triangular, and 

L = V HAU = AU 

is lower triangular. Hence 

A = LS 

is the required decomposition. In this case the conjugation algorithm is 

related to various methods for the triangular factorization of a matrix. 

The second choice is P = I and V - U. Again U is upper triangular and 

A 

is the required decomposition. When A is Hermitian, L = U HAU is also 

Hermltian, and hence diagonal. This is the usual conjugate direction 

algorithm, whose connection with the LU factorization of A has already 

been pointed out by Hestenes and Stiefel [3]. 

2. LU decomposition of A^A. For this method take P = I and V = A. 

Since V HAP = A HA is positive definite and always has an LU decomposition, 

the conjugating algorithm can always be carried out for this choice of P 

and U. The matrix U = S _ 1 is upper triangular, and from the conjugacy 

conditions 

A A = LS, 

which exhibits an LU factorization of A HA. 
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3. Orthogonalization methods and the QR decomposition. This class 

of methods has been treated in detail by Householder [4]. Take P arbitrary 

and V = AU. Since P^A^AP is positive definite, it can be written in the 

form 

P HA HAP = S HS, 

where S is upper triangular [5, §1.4]. Hence with U = PS 1, V HAP has an 

LU decomposition and the conjugation algorithm can be carried out. Moreover 

I = S ^P A APS = U^A AU = V^V, 

so that the columns of V are orthonormal. In addition (V) = 7^ (A) , 

and the algorithm can be used to solve least squares problems, as was pointed 

out in the §2. 

If P = I, then 

A = VS, 

which exhibits the QR factorization of A into the product of a unitary 

matrix and an upper triangular matrix. If the conjugation algorithm is 

augmented to include the explicit calculation of V, then it becomes 

essentially the modified Gram-Schmidt method. 

4. Reduction by simlarity transformations to Hessenberg form. The 

columns of P are taken to be the vectors in the Krylov sequence defined by 

(3.3) P ± = A ^ p (i = 1,2 n) . 



APn + l = Y l p l + ' 2 P , Y n p n 

for some constants *±*2" ** '*n* * ° H o w s that 

(3.4) AP = PC 

where C is the companion matrix 

/ 0 0 ... 0 Yj_ \ 

1 0 ... 0 Yo 

0 1 0 y. 
C = 

\ 0 0 ... 1 

If V is chosen arbitarily and P is conjugated with respect to V, then 

the resulting U is equal to P S - 1 where S is upper triangular. From (3.4) 

Necessary and sufficient conditions that P be nonsingular are that the 

Jordan form of A contains precisely one block for each distinct eigenvalue 

of A (A is nonderogatory) and that in the coordinate system associated with 

the Jordan form of A the vector p* has nonzero components in the principal 

vectors of maximal height. 

Now from (3.3) , 

pi + l = A p i (i = •••,*-!) , 

and since the p* form a basis for n-space 
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If XAU = SCS" 1 = H, 

and since C is upper Hessenberg and S is upper triangular, H is also upper 

Hessenberg. 

5 . Biconjugation and reduction to tridiagonal form. Let the 

Hessenberg conjugation of P just described be carried out with respect 

to any matrix Q. Then 

Q HAU = L 

and if we define V = QL~ H, then 

V HAU = I. 

Thus not only is (U,V) A-conjugate, but (V,U) is AH-conjugate. 

Now if Q is generated by a Krylov sequence on A H, Krylov 

Q = ( q ^ U?f~\). 

then 

K = V~ 1A HV 

is upper Hessenberg. But 

H = U^AU = (VHAU) (tfV) (U" W H ) 

= V HAV- H = K H. 

Thus H = K H is both upper and lower Hessenberg, and hence H is tridiagonal. 
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In principle it is possible to apply the conjugating algorithm directly 

to P and Q to yield the biconjugate pair (U,V). However the fact that U - 1AU 

and V HAV H are tridiagonal implies that the columns of U and V each satisfy 

three term recurrences, and the coefficients of these recurrences may be 

calculated by using the biconjugacy relation V**AU = I. Specifically if the 

first columns of the matrices on each side of the equality 

(3.5) AU = UH 

are calculated, the result is 

A u l = n l l U l +
 n 2 l V 

Since v^Au 2 = 0 and v̂ Au-ĵ  = 1, 

"ll =
 V1 AV 

Thus u 2 may be calculated in the form 

n 2 1 U 2 = A u l " n l l V 

where n 2 1 ^ 0 is arbitrary. Generally, from (3.5) 

Auk = V l , k V l + ^"k + \+l,k uk +r 

Hence 

nk+i,kuk+i = Auk " nkk "k+i ' V i , k V r 

where n k + 1 k + 0 is arbitrary and 
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=, „ H A 2 „ 

nkk k \ ' 

Vl.k = dis­
similarly from the equation pS = VH H, it follows that the columns of 

V may be calculated by the recurrences 

n 1 2 v 2 = k \ - n u v r 

\ ,k + l v k + l " * \ ~ V k

 + \ ,k-lVl> 

where nk k and nk k + 1 are defined as above and rik k + 1 is chosen so that 

v k + 1 A u f c + 1 = 1 . The vectors ^ and vfc can be generated simultaneously. At 

no stage is it necessary to retain more than two of the vectors and two 

of the vectors v k > which suggests that the algorithm may find application 

to large sparse linear systems. 

When A is Hermitian and u ^ v ^ r , the above method, combined with 

Algorithm 2.2, is essentially the method of conjugate gradients [3], with 

some differences in scaling. 

The general method is closely related to the Lanczos biorthogonalization 

algorithm [6]. In fact since U - 1 = V HA, it follows that the tridiagonal 

matrix H is the one that would be obtained by blorthogonalizing the columns 
H 

of the matrices P and A Q. It should be noted that algorithms of this type 

tend to suffer from numerical instabilities. For a good discussion of the 

practical use of the Hessenberg and biorthogonalization algorithms, see 

[7, Ch. 6]. 
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6. Reduction to bidlagonal form. The decomposition treated here 

seems not to originate with the conjugating algorithm. Rather it is based 

on the fact that if v± is any vector of Euclidean length unity, then there 

are unitary matrices U and V such that the first column of V is v 1 and the 

matrix 

is lower bidiagional (lower triangular and upper Hessenberg). The matrices 

U and V of course form an A-conjugate pair. 

The columns of U and V may be generated successively by an algorithm 

which may be derived in much the same way as the biconjungation algorithm. 

From the equation 

L = V AU 

UL = A^V 

it follows that 

1* 

where \.. is chosen to make U l of length unity. Generally 

Akk"k = A vk - Xk,k-lVl' 

where orthonormality requires that 

(3. 6) Xk,k-1 = vk A uk-l' 

and X k k is chosen so that is of length unity: 
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(3.7) A k k - ujYVk - \ > k _ 1 V k _ 1 = ujA U v k . 

From the equation 

AU - VL 

it follows that 

W , k v k + i 3 A u k - Akk vk-

The orthonormality conditions for V give the same values for the A's as 

(3.6) and (3.7). Again the reduction can proceed stepwise and only the 

most recent vectors need be stored. This reduction was proposed by Golub 

and Kahan [2]. 

If v x e U(A), then ft(V) * 7?(A), and the algorithm can be used to 
solve least squares problems. 
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