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ABSTRACT 

This paper fills a gap in the theory of multipoint iteration func­

tion exemplified by the question: how does the secant method converge 

to a multiple zero. A general theory of the linear convergence of multi­

point iterations is developed, and it is shown that two broad classes of 

iterative methods fit this theory. The results of numerical investiga­

tions based on the theory suggest that Muller's method applied to a mul­

tiple zero will inevitably produce complex iterates. 



1. Introduction 

Let 9 be a complex valued function of a complex variable that is 

analytic in some region about the origin and has a zero of multiplicity 

p at the origin. The secant method for approximating a zero of 9 starts 

with two initial approximations % ^ and § ^ and generates further ap­

proximations by means of the formula 

where 

S ^ C V " 5 2
9 ( ? 1 ) 

It is known that if p « 1 and E; ( 0 ) and are sufficiently near the origin, 

then the sequence < ^ ( l ) > converges to zero with order jO+.fi') = 1.62. When 

Q is a real function of a real variable and p > 1, it is obvious from geo­

metric considerations that the secant method must converge to zero provided 

only that and are sufficiently small and lie on the same side of 

the origin. However, no analysis of the rate of convergence seems to have 

appeared in the literature. 

Another popular iteration, Muller's method, generates approximate zeros 

by means of the formula 

5 ( l + 1 > - cp(5 ( i ), § < i " 1 > , § ( i " 2 > ) , 

where coC^, ? 2 , § 3> is defined to be the zero lying nearest g of the quadratic 

polynomial that interpolates 8 at ^ ? 2, and g . When p is 1 or 2 and § ( 0 ) , % { 

and % ( 2 ) are sufficiently small, the sequence < ? ( i ) > is known to converge 



to zero with order about 1.8 or 1.2. When p > 2, geometric intuition is insuf­

ficient to guarantee the convergence of the method, although numerical ex­

periments will readily convince one that the iteration converges linearly 

and that the convergence ratio is complex. 

The object of this paper is to investigate the convergence of multi­

point iterations of the form 

to a multiple zero of 9. The investigation is divided into two parts. In 

Section 2 we shall determine conditions under which the sequence of iterates 

generated by (1.1) can converge linearly to zero and exhibit an equation 

whose roots are potential convergence ratios. In Section 3 we shall apply 

this theory to two broad classes of iteration functions, those generated by 

linear interpolation, of which the secant method and Muller's method are 

examples, and those generated by inverse linear interpolation. Although an 

iteration such as Muller's method depends on both the function 9 and the 

choice of an interpolating basis (in this case 1, and E, ), it turns out 

that the possible convergence ratios depend only on the multiplicity p of 

the zero of 9 and the fact that linear interpolation on a nice set of func­

tions is used to generate cp. This is analogous to, but slightly weaker than 

the well known fact that under rather general conditions a multipoint itera­

tion of the form (1.1) converges to a simple zero of 9 with an order that 

depends only on the number of points used by the iteration (e.g., see [4]). 

The theory developed in Section 2 is closely related to techniques 

used by Kiho Lee Kim [2] and the author in a numerical investigation of the 

convergence of a variant of the Rayleigh quotient iteration. 



Throughout this paper we shall use Householder's notational conven­

tions [1], In addition £ n will denote complex n space. We shall use the 

max vector norm defined by 

II x|| = m a x f U J : i » 1.2,....n} 

and the subordinate matrix row sum norm defined by 

n 
||AJ| = maxt 2 i = 1,2 n} 

j=l X J 

The symbol |j. ̂  will denote the norm defined by 

Since we shall be concerned with sequences of numbers whose terms decrease 

in absolute value, it is convenient to introduce the notation C ° for the 

set 

C n - [x € C n : 0 < | ^ | < | ? 2 | <.. . < | ? J } . 

2. The General Theory 

Let cp: C n - C . In this section we shall be concerned with determining 

when a sequence < g ( l ) > generated by (1.1) converges linearly to zero. By 

linear convergence we mean 

F(i+1> 

(2.1) u m * _ — 

where 
|H| < i. 



Our approach will be to write cp in the form 

cp = cp.j + cp2•> 

where a is a twice dif ferentiable homogeneous function (cp] (ox) = cKPjOO) a n d <P2 

is small compared with <p . It will then turn out that the behavior of the 

sequence < ^ ( l ) > will be essentially determined by the behavior of the func­

tion cpj. 

In order to motivate the rather complicated Theorem 2.1, let us first 

consider the case where qj^ 0. With any vector x € C " associate the vector 

y -'x € £
 n _ 1 defined by 

If we set 

« t - ( 5 ( 1 ) , 5 ( i - " I ( i - + , ) ) T , 

then (2.1) will be satisfied if and only if 

(2.2) lim y = (n , K ,...,H) = y 
l-»05 1 

X. ' H 1 

Now it follows from the homogeneity of cp, that y =g,(y ) , where 
1 xi+l 1 X i 

Tl1 \ 
(2.3) 

Since g ] is continuous, equation (2.2) implies that 
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u- u • • j i i- _ . _ , n-1 n-2 J which is satisfied only by vectors of the form y^ = (H , H ,.,.,H) , 

where H satisfies the equation 

(2.4) K = H Cp(H , K , .. . ,1 ) . 

Moreover if the spectral radius of the Jacobian of g ] at y^ is less than 

unity (p[g,'(y )] < 1), then the iteration y - g(y ) will converge to 
i+1 i 

y , provided only that y is sufficiently close to y . 
n x n _ 1 K 

If becomes small fast enough with x, then the behavior of the homo­

geneous function cp, determines the behavior of the general function 

cp ~ cp, + cp,. 

Theorem 2.1. Let cp = cp] + co2, where cp1 is a homogeneous, twice dif-

ferentiable function on C " and to,,: C " - C* satisfies 

(2.5) |<p2(x)j * ||x||q (q > 1). 

Let x., y t , and g ] be defined as above. Let K be a root of (2.4) 

satisfying 

|H| < i, 

and let y. = ( K 1 1 - 1 , n"" 2,... ,H) T . Then if 
ft 

Q ~ 1 there is a neighborhood c C " at the origin and a neighborhood # c C 

about y^ such that whenever x^ ^ £ 77? and y^ € ^2 the sequence con­

verges linearly to zero with ratio H. 



PROOF. LET y± = y . THEN 

I+1 = G L ( Y I > + S 2 ( Y L > S 8 ( Y I } 

WHERE 

g 2 ( Y X . * = -(I-N+2) E L =
 FF(I-N+L)„(I) el 

1 5 5 \ - 2 

IT < E ( I ) > MOREOVER TO SAY THAT < § > CONVERGES LINEARLY TO ZERO WITH RATIO K IS 
(I) 

EQUIVALENT TO SAYING THAT < § > CONVERGES TO ZERO AND <Y^> CONVERGES TO Y . 

IT IS THIS LATTER PROPOSITION THAT WE SHALL ACTUALLY PROVE. 

BECAUSE P[G (Y^)J < 1 , WE CAN FIND A CONSTANT P < 1, A NORM ||«|| , AND 
. . . . , f _ N — 1 11 11 1 AO 

A NEIGHBORHOOD /£ - [Y € C : HR -Y|| < TT J SUCH THAT IF Y £ fi THEN 
H P 

LB(Y)-Y KLL P * P||Y-YJ P. 

SHRINKING ?? IF NECESSARY, WE CAN ALSO FIND CONSTANTS K_AND * + WITH 

0 < KJL | H | ^ H + < 1 SUCH THAT FOR ALL Y € 71 

NOW IF X € C n A N D Y^ € 71, THEN ||X|| = |^ N| AND 

Q-1 

'N-2 
L|G(Y X)"Y HLL P * P ! L Y X - Y J L P

 + T T T f L | E A 

U L Q L 

< PRR + ||E || . 

HENCE IF WE TAKE YD TO BE THE NEIGHBORHOOD IN C 1 1 - 1 OF ALL X SATISFYING 



x 
(l-p)TT K 

Ci" 1 ^ : 
lle 

then it follows that whenever ^ € ftl and y € # we have g(y ±) € 77. Moreover, 

x
i + 1

 £ a n d 

U ( i - n + 2 ) | ^ l ^ ' ^ l . 

Let x , € #Z and y , 6 . Then from the foregoing x. e and n-1 n-1 l 

y. for i « n, n+1,... . If we set % Q = | § ( 0 ) | and e Q = Ib^.-,-yj p 

and define 

(2.6) ? k + 1 = K+lk 

and 

( 2 , 7 ) ek+l = p e k + CT?k + <*,q_1 

2 where CT - Jjejj /K_, then 

(2.8) U ( k ) | ^ ? k 

and 

The solution of the system (2.6) and (2.7) is easily seen to be 

a n d k(q-l) k 
k q-1 K + " P 

(2.10) e
k = P e o + a § 0 q^l * 

Thus <£ k> and <e k> converge to zero, which, in view of (2.8) and (2.9), 

establishes the theorem. 



The nonhomogeneous perturbation has a curious effect on the behavior 

of the sequence < * * > . As the theorem shows the m a y still converge 

linearly with ratio K, and the rate at which the ratio H is attained will be 
(k) 

bounded by the rate at which the sequence <e > approaches zero. Now in 

(2.10) p may be taken as near p[g'(y*)] as we like. Moreover as y.* ap­

proaches y*, the constant H+ can be taken near K. If * > p, which will 

be true in most applications, the will approach zero as K*' A A\ In 

the homogeneous case, of course, approaches zero as p . Otherwise put, 

in both the homogeneous and nonhomogeneous cases the 5 A converge linearly, 

but this behavior may be exhibited more slowly in the nonhomogeneous case. 

3 . Interpolatory Methods 

In this section we shall consider the behavior of two broad classes 

of iterative methods for finding a zero of an analytic function 9 and show 

that the behavior of these methods at multiple zeros is described by the 

theory of Section 2. 

The first method is the method of direct linear interpolation, which 

includes the secant method and Muller's method. We shall assume that 9 has 

a zero of multiplicity p at the origin. Let 9 • • 9 * n * e f u n c t i o n s that 

are analytic in some neighborhood of the origin. Let the components of 
T 

x = , 52>"*»5 n) be approximate zeros of 9. Determine constants 

Y x l» V x 2> >Y x n
 s o t h a t t h e function 

satisfies 



Thus cr is the linear combination of fi, +,,...,+ that interpolates 9 at 

%2''"'^n' L e t b e t h e Z C r ° ° f CTx t h a t l l e S n e a r e s t ? T 
cp(x) is the new approximate zero of 6. The process is iterated as usual 

by repeating it with the vector (cp(x), ^ , %^ 5 .j ) T . 

Of course the interpolating function crx need not exist, nor need it 

have a zero. However, we shall show that, under mild restriction on the 
n n 

for sufficiently small x £ *- the function crx is a small perturbation of 

the polynomial interpolant crx^ of 9 at ^ , ^2'"*'^n a n <* c o n s e c I u e n t l y that 

tp(x) is a slight perturbation of the zero tp̂  (x) of lying nearest 

To establish this fact we shall need some additional notation. 

For any x £ let y x be defined as in Section 2 and let 

z = |5 _ 1[x. 
x u n 1 

Given any scalar a let 

and 

Given any vector x let 

W = diag(l, ff,...,an_1) 

„ - ii - - /i " - K 1 

a ~ a ~~ * a''' ° *a 

D x • diag(5 1, l2 g ) 

and let V be the Vandermonde matrix x 

V = x 
i S 2 ... 5 2 



If 9 is a function let 

D, 

and let 

T 

3E,x = D I A G < E ( V ' E < 5 2 ) . . . . , E ( I N ) ) 

If ^ , * 2 , . . . , T N are functions, let V be the generalized Vandermonde 

matrix 

V. = (d, ,...,d ) . 

Note that the vector c of coefficients of a , if it exists, must satisfy 
X x * 3 

V x c x = D E , x -

Moreover if c . is the vector of coefficients of a polynomial a then xl r J xl' 

axl K±} " WQ C x T 

We are now in a position to prove the results announced above. 

Theorem 3.1. Let 9 and ^ , ^ ^ be analytic at the origin and let 

9(?) = ? P + . h a v e a zero of multiplicity p £ n at the origin. Let 

Q?..^" 1 and let the matrix 

a11 a l n 
(3.1) ' ' 

nl nn < 

be nonsingular. Let cr and tp(x) be defined as above. Let a . denote the 
x xl 

polynomial of degree n—1 interpolating C at 52'"**'^JI and let cp̂  (x) 

be the zero of o"̂ -| lying nearest -̂j • Then cp̂  is a homogeneous function 



Further let x Q € C " be such that cp] (x Q) is a simple zero of a x r Then 

there is a neighborhood W c C " at the origin and 71 c tn'i of yrt = y n-1 

such that whenever x € ffl and y 6 7? the interpolating function cr exists 
0 J--

and has a unique simple zero tp(x) that satisfies 

|tp(x) - cp,<x>I * eKxil2, 

for some constant g. 

Proof. By the nonsingularity of the matrix (3.1) we may assume that 

where the functions TT are analytic about the origin. We may also write 0 

in the form 

e<?) = i p + 5 P + 1 p(S), 

where p is analytic about the origin. Then if <T exists, its coefficients 

must satisfy 

V C x = ( V x + °x V n , x ) C x " °x e + D x + 1 dp,x 

The first step in the proof is to determine conditions under which 

V, = V + D nV is nonsingular. 
¥» x x x T T » X 

Let ^ b e a neighborhood of y Q such that 

V = sup ||V_1 || 

is finite. Let = fx € C " " 1 ; I he IJ £ 7fly = (x € C n _ 1 : ||x|] ^ 1} and let 

y = sup ||V | 
x€JB| 

Now 



= I H I D I M G D W R 1 . I W R 2 , . . . , ! ) ^ D ° . 
X X 

HENCE IF X € AND Y € THEN I X 1 

I K 1 DJI * VIHI • 

IT FOLLOWS FROM STANDARD THEOREMS ON MATRIX INVERSES (E.G. SEE [4, CH. 4 ] ) 

THAT IF 

7n2 - ? ? J N { X E C B : VYIWI < 1/2} 

AND X E 7ft~ WITH Y € 77- THEN V, IS NONSINGULAR AND / X 1 I[R,X 

V " 1 = (I + E ) V * 1 , 
T)F ,X X X 

WHERE 

L|EXLL < 1 

AND 

-1 D N 

X X T1,J 
(3.2) E = - V _ 1 D N V (I + E ) . 

X X X TT.X X 

THUS IF X <E#? 2 AND Y X 6 # L F T H E N A X EXISTS AND ITS COEFFICIENT VECTOR 

C X = V ^ X < D X E * D X + 1 D P C A N B E W R I T T E N I N T H E F O R M C
X
 = C

X I + C
X 2 » W H E R E 

E 
X 

AND 

C X 2 = E X VK D
X
 E + C 1 + E

X > vx D
x

+ 1 d
p x 

MOREOVER CAN BE WRITTEN IN THE FORM A X » A X L + A X 2 + CR X 3, WHERE 



T 
°xl ^ = W C °xl' 

T 
CTx2 ( ° = W C C x 2 ' 

and 
n 

CTx3 (& = C J V x i
 n i <G> 

= ^ [ d ^ C ) ] ^ , (d^CC) - (11,(0 T M £ ) ) T ) . 

Note that o , is simply the polynomial that interpolates ^ p at 

5 2
, , , , , ? n * F o r a n y 0 1 ^ 0 w e h a v e 

a, M ( O C ) « V - 1 d p
w e = (W? W )(V w ) _ 1 ( a P D P ) e 

^ W C V ^ °x e = ^ x l ^ * 

This implies that the zeros of a , are homogeneous functions of x. 
xl 

By hypothesis there is a simple zero cp (x ) of a , lying nearest the 
V 

first component of 3TG. Since c^, depends continuously on x and the zeros 

of depend continuously on c^^, we can find a neighborhood 71 *— 7} , of 

y^ such that whenever y^ 6 71 there is a unique simple zero cp, (x) of o~x-, 

lying nearest » Moreover we can choose '( so that there are positive 

constants c and u- such that 

y x € 71 and |C - ^ ( z x ) | * 6 =» |a z T CC> I s M-IC " ^ (£x> | . 
x 

It follows that if y x € fl, we have 

I c - ^ w l * I M « - l c / I M I - < V V l * « 

* k z ^c/lkll)! * y,|c/||x|| - C P 1 ( Z X ) | 

- I t ^ C O l s u-IMI p - 1lc - C P t W I -



The rest of the proof consists in applying Rouche"'s theorem to show 

that there is a zero of CR X near the zero cp] (x) of a . This requires a 

1OW6TT bound on the vfl LUGS Of -j ̂  whxch h3 s A 1 IR©fldy b GG n ^ l VG n in (3»3 ) » 

31 so irscjuirG uppGir bounds on the V3lUGS of ^x3' wh i-ch WG now 

dG t 6 L'LHI nG * 

To obtain a bound on cr -(C). note that from (3.2) 
x2 ^ 

w T M I, E V _ 1 D P = ||xJi P + 1w T [V " 1 D° V ( I + E ) ID Hx X X X " " U) Z Z TT,X X II n X X ' 

diag[(|jx|| n" 1,... )1)V; 1 D P ]. 
z z 
X X 

Hence if x € #7- and y G 7? 
2 •'x 

Let 

Then if x 

- 2 ^ ^ 1 1 , 1 ^ 1 1 ^ . 

P = sup ||d || 

€ # 2 , y x € Tl and j c| * <B||X||, 

k x 2 ( 0 | - |wj E X V ^ C D j e + D x
+ 1 d p > x ) + wj ^ D f 1 d ^ J 

(3.3) 

* [2Y\j2(1 + p) + vplllw^ll, IhH 1^ 1. 

The bound on a 3<Q depends more closely on the range of values of C. 
Let 

X = supjto.tz )| 
y x€7i x 



T H E N 

(3.5) Y X - I ^ O O L * \M\ 

L E T 

TT = S U P ||D (5) || . 

T H E N I F X £ UJ S2\, A N D |c| £ U)||X||, W G H A V E 

k x 3 ( C ) | = I C ^ V C ) ] 1 ^ + Ex> V
x ^ D x e + D x + l d p , x > l 

(3.6) <unM\U * (2) I W r ^ V O + ||x|| p) 

- N,i iD+1 
2 W | W P + 1 o + |M| P " ) , 

WE A R E NOW R E A D Y TO C O M P A R E CT , W I T H CTX2 + CTX3. S P E C I F I C A L L Y WE S H A L L 

A N U M B E R T 
J 

Y € # WE H A V E 

S E E K A N U M B E R T x < E , X S U C H T H A T F O R A L L S U F F I C I E N T L Y S M A L L x € W I T H 

x 

(3.7) |c - cp, (x) I - TX||X|| * | a x l ( C ) | > | a x 2 ( C ) | + k x 3 < C > l -

NOW I F |C - q>,(x)| = TX||X||, T H E N F R O M (3.5) | C | £ (X+Rx)||xJ| * 2X|(x|| . H E N C E 

| a x 2 ( C ) | + | a x 3 ( C ) | < S H X I R 1 , 

W H E R E , F R O M (3.4) A N D ( 3 . 6 ) , 

6 = [ 2 Y v 2 0 + p ) +vp]|k 2 xlli + 2 m-(2X) n(l+p). 

B U T F R O M (3.3) 

CT X 1(C> * M-TJ|X|P. 



Hence if we set 

e - -

and define 

t
x = e||x||, 

then for all x in 

% = m 2 n [x: B||x)|< e,X} 

such that y x 6 71 the implication (3.7) holds. It follows from Rouche*'s 

theorem that o"x has a single simple zero in the circle J C - cp, (x) | £ . 

Denoting this zero by cp(x), we see that cp can be written in the form cp, + cp2, 

where cp, is homogeneous and 

|cp2(x)| £ FJLJXLL 2. 

The importance of Theorem 3.1 when combined with Theorem 2.1 is that it 

allows the reduction of a large class of methods to methods based on poly­

nomials. In particular the behavior of two point methods applied to a func­

tion with a zero of multiplicity p will be the same as the secant method ap-

11. ^ t S A.niL ̂1 TO 1 t5 ̂ VL̂ ^̂  \̂  1.̂ Îk" ̂3 F 1 1 T S uî ^ Tl̂ ĵ̂ i 1̂ P |5 L ̂ ^ ^ t l ^ ^ TC 

acterizes the behavior of three point methods. 

However, even these simplified iterations are difficult to analyze. 

Consider, for example, the secant method applied to Z9. The iteration func­

tion is 

( p a \ — ^ ' 
5 2) ~ — — — • 

If - %l 
The possible convergence ratios are the solutions of the equation (2.4), 

which takes the form 



P-1 -
K = ~ = \|t(M.) 

H P - 1 

This equation can be written in the form 

(3.8) (H-1)(KP + HP" 1 - 1) = 0. 

The root K-1 of (3.8) is easily seen to be superfluous; hence the possible 

convergence ratios are the roots of the equation 

(3.9) Y(H) S K P + H P " 1 - 1 = 0 . 

Now y(0) = -1 and y(1) - 1. Since -y(C) is increasing for C * 0,Y 

has a simple zero K in the interval (0,1). 

It remains to show that p[g f (y ) ] < 1 • In this case 

p[g'(y )] - U'(H)|. 

To show that | V ( H ) | < 1 first note that 

) = C P ~ 2 + f" 3 +...+ i 

C p + C p +• • •+ i 

from which it is seen that is nonincreasing on (0,1). It follows that ty1 

is nonpositive on (0,1) . From the identity 

m u ) . - ± ' 

and from the fact that *(H) = H, it follows that 

= (P-DH P 1 1 _ 
P II 1 II I p ft 

Since 1 - HP 1 - n 1* > 0, the condition -i|r'0) < 1 c a a be expressed in the 

form 



( P - 1 ) K P - 1 - p n P + H 2 1*" 1 < (1 - H p _ 1 ) ( 1 + H P ) 

= 1 _ H ? " 1
 H P + K

2 P _ 1 

or 

p w P _ 1 ( l - H) < 1-n P = (1 - K)0 + H + K 2 +...+ K P - 1 ) . 

Thus the condition (H) < 1 is equivalent to the condition 

PH* 5" 1 < 1 + H + K 2 +. . .+ H P _ 1 , 

which is obviously true for K £ ( 0 , 1 ) . 

This shows that the secant method can converge linearly to a multiple 

zero with a positive convergence ratio. However, this does not complete 

the picture, for equation ( 3 . 9 ) may have other roots whose moduli are less 

than unity, and these roots also represent possible convergence ratios. 

The complete analysis of the other roots of ( 3 . 9 ) is a difficult problem, 

and the author has had to content himself with a numerical investigation of 

the roots of ( 3 . 9 ) for values of p ranging from two to ten. The results 

show that equation ( 3 . 9 ) can indeed have other roots with moduli less than 

unity; however, for none of these roots is |V| less than unity, so that 

they can be effectively dismissed as possible convergence ratios. The re­

maining ratios, along with |*'| = p(g') are given below. 

n K P F B ' O O l 
2 0 . 6 1 8 0 0 . 3 8 2 0 

3 0 . 7 5 4 9 0 . 3 8 4 8 

4 0 . 8 1 9 2 0 . 3 8 5 5 

5 0 . 8 5 6 7 0 . 3 8 5 8 

6 0 . 8 8 1 3 0 . 3 8 6 0 

7 0 . 8 9 8 7 0 . 3 8 6 1 

8 0 . 9 1 1 6 0 . 3 8 6 1 

9 0 . 9 2 1 6 0 . 3 8 6 2 

1 0 0 . 9 2 9 6 0 . 3 8 6 2 
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We are not able to perform for Muller's method even the modest amount 

of analysis that we were able to do for the secant method. Since o C ^ , ? 2, 

is a zero of the quatratic interpolating £ P at , ? 2, and ^ t it must 

satisfy the equation 

det 

l 3 

1 

lP
2 \w2(lv l2, 5 3) + det 

^3 

1 

1 5 k s r l2> ?3) 

(3.10) 

0 . 

Thus the roots of (2.4) will be among the roots of the equation 

det 

(\ 1 1 

1 H H P 

2 2D 
\l H H ' 

H 6 + det 

1 1 1 

1 H P ^ K 3 

2p 4 
1 K K 

+det 

/I 1 l\ 
P 2^ 

K H H 
2p 2 4 

n H K 

0 . 

After some simplification, including the removal of some extraneous roots 

at 0 and 1, this equation becomes 

(3.11) 2 P-1 , 2p-2 2p-3 p p-1 p-2 
. + H R + H * — H " K - K + 1 = 0 . 



The derivatives of cp and hence the Jacobian of g can be obtained by differ­

entiating (3.10) implicitly with respect to $ 1 , % 2 , and 5 . 

A numerical investigation of the solutions of (3.11) for values of p 

ranging from three to ten revealed the following facts. For each value of 

p, there is a pair of complex conjugat roots of (3.11) with moduli less than 

unity for which p[g'] < 1. For even p, there is also a negative root of 

modulus less than unity with p[g'] < 1. However, this root does not repre­

sent a convergence ratio, since, for this value of K, the number K = CD(H 2,K,1) 
2 

is not the root of the interpolating quadratic that lies nearest H . The 

convergence ratios are given below. 

p H 1 H | 
3 0.7132 + 0.20071 0.7409 0.4740 
4 0.8140 ± 0.1464i 0.8271 0.4717 
5 0.8617 + 0.1147i 0.8693 0.4709 
6 0.8897 + 0.09421 0.8947 0.4705 
7 0.9083 + 0.07981 0.9118 0.4704 
8 0.9215 + 0.06931 0.9241 0.4702 
9 0.9313 + 0.06121 0.9333 0.4702 

10 0.9390 + 0.05481 0.9406 0.4701 

These results suggest that when Muller's method is applied to finding 

a multiple zero it will produce complex values, a matter of practical 

importance when the function and its zero are real. 

The second class of methods to be treated is the class of methods based 

on inverse linear interpolation. As with the direct interpolator methods, 

one starts with a fixed set of basis functions , ^ , . . . } . Given the 

vector x and the function values 6. » B(%±) (i « 1,2 n) one determines 

coefficients v x 1 , Y x 2 " " » V x n
 s o t h a t t h e function 
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*x = V l * l + Vx2+2 + ' * * + Vxn*: n 
satisfies 

W = ? i ( i = 1 ) 2 
» * • • » n) 

The new approximate zero cp(x) is given by 

cp(x) = + x(0). 

A result analogous to Theorem 3.1 holds for this class of methods. 

Theorem 3.3. Let 9(?) - ? P + ? P + 1 p ( 0 be a function analytic in some neighbor­

hood of the origin. Let ty.(V = £ a.-g3 (i » 1,2,... ,n =: p) also be analytic 

at the origin, and suppose that the matrix 

is nonsingular. Let y Q € C . Then there is a neighborhood Wcr t n at 

the origin and a neighborhood ?? c C "" 1 of y Q such that for all x £ 71 

for which y x € 7f( , the function <»(x) is well defined. Moreover if $ (x) 

denotes the value at zero of the polynomial of degree n interpolating the 

values » ^2 " * * *'^n a ^ the points 5^ ' * * * » a then CQ, is a homogeneous 

function of x that satisfies 

||«>(x) - cp.,(x)[j £ Pj)x||p+1 

for some constant B. 
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The proof of Theorem 3.2 is somewhat simpler than the proof of Theorem 

3.1, since it does not involve an application of Rouche''s theorem. Other­

wise they are quite similar, and we shall not reproduce the proof of the 

latter theorem here. 

The theorem, of course, permits the reduction of the general class of 

iterations applied to a general function to the polynomial case. When n = 2, 

the method of inverse polynomial interpolation is identical with the secant 

method, which has already been treated. 

The author has investigated the case n - 3, again for values of p rang­

ing from two to ten. In this case cp(x) is given by the determinants ex­

pression 

Consequently the possible convergence ratios are roots of the equation 

(3.12) 

det H 

which can be simplified to the equation 
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(3.13) H U P _ 1 + vV~2 + . . . + D ( H 2 P _ 1 + H 2 P _ 1 +...+ 1) = (j' P" 2 + x P ~ 3 +... + 1) 
2p-2 + 2p-3 + + 

The derivatives of cp can be obtained explicitly from (3.12). For each p, 

there is only one real root of (3.13) for which p(g') < 1. These roots are 

given below. 

p H o l V O O l 
3 0.7200 0.3825 
4 0.7906 0.3859 
5 0.8327 0.3876 
6 0.8607 0.3887 
7 0.8806 0.3893 
8 0.8956 0.3898 
9 0.9072 0.3902 
10 0.9165 0.3905 
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