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ABSTRACT

This paper fills a gap in the theory of multipoint iteration func-
tion exemplified by the question: how does the secant method converge
to a8 multiple zero. A general theory of the linear convergence of multi-
point iterations is developed, and it is shown that two broad classes of
iterative methods fit this theory. The results of nuﬁerical investiga-
tions based on the theory suggest that Muller's method applied to a mul-

tiple zero will inevitably produce complex iterates.




1. Introduction

Let © be a complex valued function of a complex variable that is
analytic in some region about the origin and has a zero of multiplicity

p at the origin. The secant method for approximating a zero of § starts

(0) (M

with two initial approximations § and and generates further ap-

proximations by means of the formula

g(1+1) - e, g(i~1))’

where

€,6(5,) - £,0(5))
°G1 &) T FEy T8 E)

)

It is known that if p = 1 and g(o and g(]) are sufficiently near the origin,

then the sequence <§(l)> converges to zero with order %(T+NG-) ;‘1.62. When

0 is a real function of a real variable and p > 1, it is obvious from geo-

metric considerations that the secant method must converge to zero provided

(0)

only that g and g(l) are sufficiently small and lie on the same side of

the origin. However, no analysis of the rate of convergence seems to have
appeared in the literature.
Another popular iteration, Muller's method, generates approximate zeros

by means of the formula

(41) | (D) (i=1)  ((1-2)

g (€ g g )s

where o(§,, &,, 53) is defined to be the zero lying nearest €, of the quadratic

polynomial that interpolates § at gl, §2, and §3. When p is 1 or 2 and 5(0), §(1)
(i)

and g(z) are sufficiently small, the sequence <€ '~ ’'> is known to converge
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to zero with order about 1.8 or 1.2, When p »» 2, geometric intuition is insuf-
ficient to guarantee the convergence of the method, although numerical ex-
periments will readily convince one that the iteration converges linearly
and that the convergence ratio is complex,

The object of this paper is to investigate the convergence of multi-

point iterations of the form

(1.1) §<i+7) - (P@(i)’ g(1-1)’___’E(i-:~t+1))

to a multiple zero of 6. The investigation is divided into two parts. In
Section 2 we shall determine conditions under which the sequence of iterates
generated by (1.1) can converge linearly to zero and exhibit an equation
whose roots are potential convergence ratios. In Section 3 we shall apply
this theory to two broad classes of iteration functions, those generated by
linear interpolation, of which the secant method and Muller's method are
exanmples, and those generated by inverse linear interpolation. Although an
iteration such as Muller's method depends on both the function 6 and the
choice of an interpolating basis (in this case 1, £, and gz), it turns out
that the possible convergence ratios depend only on the multiplicity p of
the zero of 6 and the fact that linear interpolation on a nice set of func-
tions is used to generate ¢. This is analogous to, but slightly weaker than
the well known fact that under rather general conditions a multipoint itera-
tion of the form (1.1) converges to a simple zero of 8 with an order that
depends only on the number of points used by the iteration (e.g., see 47,
The theory developed in Section 2 is closely related to techniques
used by Kibo Lee Kim {2] and the author in a numerical investigation of the

convergence of a variant of the Rayleigh quotient iteration.




Throughout this paper we shall use Householder's notational conven-
tions [1]. In addition C" will denote complex n space. We shall use the

max vector norm defined by
I xll = max(le,|: 1= 1,2,000m)

and the subordipate matrix row sum norm defined by

s i=1,2,...,n0})

JAll = maxt 2 |og )

j=1

The symbol |||, will denote the norm defined by

n
i=T

Since we shall be concerned with sequences of numbers whose terms decrease
. . . . . n
in absolute value, it {s convenient to introduce the notation (3 for the

set

Co=xel™o<|g] <|g,l <...<|g | %

2. The General Theory

n
Let w: C" = €. 1In this section we shall be concerned with determining

when a zequence ég(l)ﬁ generated by (1,1} converges linearly to zero. By

linear convergence we mean

(i+1})

where

]n| <1,




ym

Our approach will be to write ¢ in the form
tP=CPT+¢'2:

where m] is a twice differentiable homogeneous function (w](ax) = uw1(x)) and @y
is small compared with Pye It will then turn out that the behavior of the
sequence <E(i)> will be essentially determined by the behavior of the func-
tion Pq

In order to motivate the rather complicated Theorem 2,1, let us first

. . n .
consider the case where ¢b= 0. With any vector x € C™ associate the vector

y, €C -1 Gefined by

e
1l

= (B /8 5 B /E e /B

If we set

(1) (i-1) (i-n+1). T

X.=(§ E PRI ) s

then (2.1) will be satisfied if and only if

n-1 n-2 T
(2.2) limy = (w , n sesesh) = Y,
i i
Now it follows from the homogeneity of P4 that Yy =g1(yx ), where
/ i-+1 i
’nl‘l T]'I’ ’“2""’““_1’ ]
T M
= ’ — ’n_] -
(2.3) 84 : n-1 @ .
ﬂn-1 T]n-2

Since g; is continuous, equation {(2.2) implies that

g1(yn) =V,




which is satisfied only by vectors of the form.yn = (nn-1, HF-Z,...,n}T,

where » satisfies the equation

(2.4) A e, WL

Moreover if the spectral radius of the Jacobian of gy at ¥, is less than
unity (p[g{(yﬂ}] < 1}, then the iteraticn in+] = g{yxi) will converge to
¥, provided only that Yy : is suificiently close to Y,

If Py becomes smali g;st encugh with x, then the behavior of the homo-

genecus function P determines the behavior of the general function

¢ = 9 +‘:P?_'

Theorem 2.1, Let ¢ = 9 + 5, where P is a homogeneous, twice dif-

ferentiable function on en and Wy : C.n -+ . satisfies

(2.5) |0, (x}] < k[ g > 1.

Let g{l), X5 ¥y and g be defined as above, Let » be a root of (2.4}

satisfying

|n] < 1,
and let ¥, = (n s M ,...,n)T. Then if
olgy(y, )1 <1,

there is a neighborhood W cC Cn at the origin and a neighborhood ncl n-1

about yn such that whenever x

] € MM and Y € 7 the sequence <l§(l}> con-
n-1
verges linearly to zero with ratio u.




Proof. Let Yi T Y, - Then
i

Yie1 = B + 80y = 8(y))

where
g, {y, ) = Egifii—— e = qb(xi) e
2 ¥y (1-nt2) *1 Goentl) (i) 1"
L 3 N
n-
Moreover to say that 45(1)} converges linearly to zero with ratio » is

. . i),
equivalent to saying that {§( )k converges to zero and {yi} converges to Y,

It is this latter proposition that we shall actually prove.

Because p[g'(yn)] << 1, we can find a constant p < 1, a norm

|

a neighborhood %= {y ¢ C 2. ”yn-pr < w} such that if y € 7 then

[p , and

)=y, Il, < oll-y,]

pi

Shrinking n o1t necessary, we can also find constants »_and ny with

0 < u_= |u| = "y < 1 such that for all y € /i

i
= H .

" s | My s | +

Now if x € (2“ and Ve € 7?, then ”x“ = |§n| and

-1
g, |®

lew -y, ll, = el I, + Tl lle 1,

q-1
lEﬁl___.”e |
HZ 1

< pm o+

p.

n-1 . ,
Hence if we take /7] to be the neighborhood in C of all % satisfying
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then it follows that whenever Xy € M and Y4 € ﬁ% we have g(yi) € 77. Moreover,

X401 Em and

-

(i-n+2)| € lg(i-n+1)
+

g

Let X ¢ M and Yo € ﬂ Then from the foregoing X5 ¢ M and

0
Ys ell for i = nm, ntl,... . If we set §0 = |§( )] and €y = |bn_1—y%”p

and define
(2.6) Skt T Sy
and

-1

2
where g = “e1“p/u_, then
k

(2,8) €] < g
and
(2,9 a1 7 llp = -

The solution of the system (2.6) and (2,7) is easily seen to be

_ K
S T 450
and k(q-1)_ k
(2,10) - Ko 4t P
' TP % T 9% T g L

Thus <§k} and <¢ > converge to zero, which, in view of (2.8) and (2.9),

k

establishes the theorem,




The nonhomogeneous perturbation has a curious effect on the behavicr
of the sequence <**>. As the theorem shows the **v gtill converge

linearly with ratio K, and the rate at which the ratio H is attained will be

(k)
bounded by the rate at which the sequence <e > apprcaches zero. Now in

(2.10) p may be taken as near plg'(y")] as we like. Moreover as y.” ap-

proaches v, the constant H, c¢an be taken near K. 1If * = p, which will
be true in most applications, the will approach zero ag K *'"* ~ In
the homogeneous case, of course, approaches zero as p . Otherwise put,

in both the homogenecus and nonhomogeneous caseg the 5% converge linearly,

but this behavior may be exhibited more glowly in the nonhomogenecus case.

3. Interpolatory Methods

In thig sgection we shall consider the behavior of two broad classes
of iterative methods for finding a zerc of an analytic functicon ¢ and show
that the bkehavior of these methods at multiple zeros is described by the
theory of Section 2.

The first method is the method of direct linear interpeolation, which
includes the secant method and Muller's methed. We shall assume that 8 has
a zero of multiplicity p at the origin. Let e e’ 7T frrttorrt phat

are analvtic in some neighborhoocd of the origin. Let the components of

T
X = , B2x"*»5 ) " approximate zerog of 9. Determine congtants

Y,,» V_.»>---=Y,, °7 *"*" *** fynction

gatigfies

TRVV TSy



Thus Ux is the linear combination of ¢I, ¢2,...,¢n that interpolates § at
§1, §2,...,§n. Let w{x) be the zero of o, that lies nearest E]. Then
pi{x) is the new approximate zerc of 9. The process is iterated as usual
by repeating it with the vector (wi(x}, §1, §2,...,§n_]}T.
0f course the interpolating functiom Ty need not exist, nor need it
have a zero. However, we shall show that, under mild restriction on the #i’
for sufficiently small = ¢ cn the function Ty is a small perturbation of

the polynomial interpolant Ty of & at §1, gz,...,gn and consequently that

lving nearest g

wix) is a slight perturbation of the zero ¢1{x) of o, £y-

1

To establish this fact we shall need some additional notation.

For any x Ei{in'let yx,be defined as in Section 2 and let

_ -1
z = € Ix.
Given any scalar g let
. n-1
w[}' = diag(1, Gy »omoff )
and
n-1.T
wn-'=wq-e= {], [+ PRIy S ) .

Given any vector x let

D, = diag(E,, §yrenrf)

and let Vx be the Vandermonde matrix

n-1
g-l res g-l T
1 E. ... 0
V = L .2 02 L
x L - -]
n-1
l E L I g
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IT 8 i5 8 function let

Be,x = diag{e(E1). 9(%2),---16(511})

and let
do.x = Dg.x® = (BED, 8(Ey),0nn 0607

if Q], ¢2,...,in areg functions, let Uﬁ x'be the generalized vandermonde
]

maALrix

Note that the vector e, of coefficients of I o if it exists, must satisfy

VvV, e d .
bx x B,x
Moreover if € 9 iz the vector of cpefficients of a polynomial S then

- gl
91 () = ¥, ey

We are mow in a position to prove the results announced above.

Theorem 3.1. Let 6 and ¢1, ¢2,...,¢n be analytic ac the origin and let

8(g) = §p+... have a zero of multiplicity p =z n at the origin. Let

m 2
. (E) = Z o EJ-] and let the matrix
1 . 1]
i=1
SR B P
{(3.1) : .
#n1 *77 “m

be nomsingular. Let Ty and @(x) be defined as above, Let T 1 denote the
polynomial of degree n-1 interpolating gp at §1, 52,...,§n and let ¢1(x}

be the zero of S lying nearest g}. Then P, is a homogenecus function.
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Further let X € (:n be such that w](xo) is a simple zero of o, Then

-I-

there is a neighborhood mecCh at the origin and 7l c en-l of Yo = ¥

*0

such that whenever x € ﬂn and Yy € 77 the interpolating function Oy exists

and has a unique simple zero @(x) that satisfies

o) - 90| = 8k,

for some constant B.

Proof. By the nonsingularity of the matrix (3.1) we may assume that

i-

)@=t @,

where the functions m, are analytic about the origin., We may also write §

in the form

p+1

8(g) = €P + ¢ p(E),

where p is analytic about the origin., Then if I, exists, its coefficients

must satisfy

= n = P p+1
Vw,x c. (Vx + Dx Vﬂ,x)cx Dx e + Dx dp,x

The first step in the proof is to determine conditions under which

v =V +Dv is nonsingular,
¥,x X X ThX

Let 7?] be a neighborhood of Yo such that

-1
v=sup [V
vEm  Cx

is finite. Let 7%1 = {x ¢ en-l, IIx]] <1} and 1let

v =sup |V |
xem M, X

Now
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-1 n n -1 -1
= 1 = G ¥ D
iz, k|l Il || =, Ve

<o
=
I

Il asagclbel™, (%00 v 0]
X X

Hence if x & ???'1 and Yx e ??1’ then

-1
ol = vlk|

IIv,

It follows from standard theorems on matrix inverses {e.g. see [4, Ch, 4])

that if

My = TN ix e Ci wlkll <1/2)

and x € 3?2 with Yo € ??I then ¥ is nonsingular and

¥,x
-1 -1

v¢,x = (L+E) vV,
where

kel <1
and

_ -1 .1

(3.2) E = -V ' D vﬂ’x(l +E ).

Thus if x E}??z and Yy € )?],then T, exists and its coefficient vector

_ =1 p p+1 . . _
e, = vt,x(]}x e + Dx dp,x) can be written in the form C. = S + C 0 where
c = "J-1 pf e
xi X x
and
-1 -1 +1
cp=E V. D e+ (I+E)V Di d

i { = + + where
Moreover Gx can be written in the form o, T, T2 Ux3’




1%~

%1 (Q)

R
T2 €)= “g Cy2

]

£
[t

"

and

[

Gyq (O g“if g T (D)

1

Pl (©1e s @0 = (MD)seee,™ (D).

p

Note that o is simply the polynomial that interpelates E° at

1
E]: 52""’§n' For any o f 0 we have

e wl wl of oo T -1, PP
U(&x)‘l(dc’) wﬂg Um{ D{# e (WC ‘.\Tu} (Ux wcr) (o D)e

a of v v;' D§ e = oo (0.

This implies that the zeros of oy are homogeneous functions of x.

By hypothesis there is 4 simple zero wl(xD} of Ty 1 lying nearest the
1]

0" dince € depend= continuously on x and the zeros

of Ux1 depend contimeously an 1’ we can find a neighborhood ?? Cf??1 of

first compoment of =x=

Yo such that whenever Vo € ?f there 1Is a unique simple zero w](x} of Ty
lying nearest 51. Maoreover we can choose ?? so that there are positive

constants € and yu such that

¥y En and I[: - {p](zx)| =2 g = |0‘z T(E‘)! = LL‘\.': - qp](m':x)l.
X
It follows char if Ya € 77, we have
le - @] =kl e= [¢/lkll - oz s e
o, 1 &/ k[Pt 2 wlc/Ik]] - w (= )

3.2 X ‘ S
©-2) KiIPlo 3] 2wkl [e - o G0l

s> o @) 2 ulklP e - 0 0.

5

)
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The rest of the proof consists in applying Rouché's theorem to show
that there is a zero of o, near the zearo ¢](x) of T This requires a
lower bound on the values of Ty? which has already been given in (3.3),
We alsc require upper bounds on the values of Ty and Oy which we now
determine,

To obtain 2 bound on cxz(g), note that from (3.2)

T -1 p_ p+l T -1 n
Yolil| Bx Yx Px = IRl v v, D,

Vo (T ED
x X

atagl([k[,..., v O 1.

Hence if x € ZWZ and yx € 7?

‘ 1 1
”w:l[JH"” P Vx ”1 = ”"’m”1||x|lp+ [wy(2)v]

' 2 +1
= 2wl L P
Let

i

p = sup [

xEﬂE

Then if x ¢ 272, Ve ¢ N and ICI £ wlhlL

L]

p+l T

P
x dp,x) + wg

- ] 1
lo_, (O] = IWE E, Vx1(Dx e +D Pt q |

Vx 0¥

(3.3) )
2 - = pt
£ [2yv (0 +p) + vp]””w”] 13/
The bound on ng(;) depends more closely on the range of values of (.

Let

A = suple,(z)
yX€n71 X
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Then

(3.5) v, €7 = o] sk

Let

- kol -
B

X

Then if x € 2%5, w < 2%, and |€| = w|k|, we have

lo @1 = ¢t @ @+ ey v. af e+ 2P

Pyx

- -n+1 -
(3.6) <okl 7@ [KIPTT0 + K
= 2 A kIPY O+ k5.

We are now ready toe compare O 5

seek a number T < &,% such that for all sufficiently small x £ ?ﬁ; with

with T2 + Oy Specifically we shall

Yq e x:' we hava
(3.7) It - 9] = v k[l = lo (O = lo ] + |o 4],

Now if |¢ - w](x)| = Tx|h“, then from (3.5) |gf = (k+¢x)|h“ < 2x|kj| . Hence

:
lon @1 + o @3] < slliF",
where, from (3.4} and (3.6),
2 - - - -
8= 2y O+p) + wollly, Il + 2 me20) (14p),

But from (3.3)

o q1(C) = u'f,jb‘”p-




=-16-

Hence if we set

T o

and define

. = Bliklls

then for all x in

m =M, n {x: Blk|l < el

such that Yy € N the implication (3.7) holds. It follows from Rouché's
theorem that Oy has a single simple zero in the circle ]Q - m](x)l 4 5|h|F.
Denoting this zero by o(x), we see that o can be written in the form @, + Pys

where ¢, is homogeneous and

9,0 = BlkeIf

The importance of Theorem 3.1 when combined with Theorem 2,1 is that it
allows the reduction of a large class of methods to methods based on poly-
nomials., In particular the behavior of two point methods applied to a func-
tion with a zero of multiplicity p will be the same as the secant method ap-
plied to §P. Similarly the behavior of Muller's method applied to §p char-
acterizes the behavior of three point methods.

However, even these simplified iterations are difficult to analyze,
Consider, for example, the secant method applied to §p. The iteration func-
tion is b p

5152 - 5152
(P(E]: gz) =T
gf - €f
1 2
The possible convergence ratios are the solutions of the equation (2.4),

which takes the form
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K —ma— =

LML)

This equaticen can be written in the form

(3.8) (H-1) (K" + HP""> - 1) = 0.

The rooet K-1 of (3.8) 1is easily seen to be superfluousg; hence the possible

gonvergence ratios are the roots of the equation

(3.9) Y(H) & E* + H""* 1

Now yv{(0) = -1 and p») - 1. Since -yv{©O 1is& increasing for ¢ ~ 0,Y

has a simple zero A in the interval (0,1).

It remainsg to show that plg (y )] < 1 In this case

plg'{y )] - vram|.

To show that |V (H) | < 1 first note that

= C'~® ¢ £ 4.+ 1
C + CF e e ]

from which it is seen that is nonincreasing on (0,1). It follows that ty

is nonpesitive on (0,1). From the identity

and from the fact that " (H)

= H, it follows that

(P-DH''' P

1 _ KPUI " il _ ’}*}*

Since 1 - H * 1 - n'* > 0, the condition -1|r'0) < 1°" be expressed in the

form



-18-

-] - -
(-1 - o WP o L Pl + Py

or

-1 -
pnp (7 - ») < 1-#P = (1 - )1 + 0 + u2 oot nP ]}.

Thus the condition -§'{(un) < 1 is equivalent to the condition

pnp“] <1 4+ + nz +o. .t np-1

>

which is obviously true for » £ (0,1).

This shows that the secant method can converge linearly to a multiple
zero with a positive convergence ratio. However, this does not complete
the picture, for equation (3.9) may have other roots whose moduli are less
than unity, and these roots alse represent possible convergence ratios.

The complete analysis of the other roots of (3.9) is a difficult problem,
and the author has had to content himself with a numerical investigation of
the roots of {3.9) for values of p ranging from two to ten. The results
show that equation (3.9) can indeed have gther ropots with moduli less than
unity; however, for none of these roects is !¢'f less than unity, so that
they can be effectively dismissed as pessible convergence ratios. The re-

maining ratios, along with |w'| = p{g') are given below,

M Elg' )]
3.6180 0.3820
0,7549 1.3848
0.8192 0.3855
0.8567 0.3858
0.8813 0.3860
0.8987 0.,3861
0.9116 0.3861
0,926 0.3862
+.9296 {0.3862

[T = R . T ¥, B~ B U B VI f =

—
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We are not able to perform for Muller's method even the modest amount
of analysis that we were able to do for the secant method. Since m(ET, §2, §3)
is a zero of the quatratic interpolating §p at §1, §2, and §3, it must

satisfy the equation

1 g, @ A
dgec|1 g, € lo'(€, &, 8 +det| 1 8 € Jo(g,, &y &)
18 g L
(3.10)
S 5
et | €0 g, g% = 0.
SO

Thus the roots of (2.4) will be among the roots of the equation

2 2 4
%PH. H

After some simplification, including the removal of some extranecus roots

at 0 and 1, this equation becomes

(.11 LI L S T I L A
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The derivatives of p and hence the Jacobian of g can be obtained by differ-
entiating (3.10) implicitly with respect to §T, 52, and §3.

A numerical investigation of the solutions of (3.11) for values of P
ranging from three to ten revealed the following facts. For each value of
p, there is a pair of complex conjugat roots of (3.11) with moduli less than
unity for which p[g'] < 1. For even p, there is 2lso a negative root of
modulus less than unity with p[g'] < 1, However, this root does not repre-
sent a convergence ratio, since, for this value of %, the number H3 = m(nz,u,1)
is not the root of the interpolating quadratic that lies nearest nz. The

convergence ratios are given below,

p st | plg'in)]
3 0.7132 + 0.20071 0, 7409 0.4740

& 0,840 + 0.14641 0,8271 0.4717

5 0.8617 + 0,11471 0,8693 0.4709

6 0.8897 + 0.09421 0.8947 0.4705

7 0.5083 + 0.0798i 0.9118 0.4704

§ 0.9215 i_ﬂ.ﬂﬁgai 00,9241 0,.4702

9 0.9313 + 0.06121 02,9333 0.4702
10 0.9390 + 0,0548i .9406 0.4701

These results suggest that when Muller's method is applied to finding
a multiple zero it will produce complex values, & matter of practical
importance when the function and its zero are real.

The second class ¢f methods Lo be treated is the class of methods based
on inverse linear interpolation. As with the direct interpolatory metheds,
one starts with a fixed set of basis functions {¢1, ¢2,...,¢n}. Given the
vector x and the function values Bi = G(Ei) {(i=1,2,...,n) one determines

coefficients Yi1? Yu27°" " Yen so that the function
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¥ ¥

X n

= VeV Y Yo ¥y Feet Vg

satisfies

*x(ei) = Ei (L= 1,2,.,.,0)
The new approximate zero w(x) is given by
wix) = tx(ﬂ).
A& result analogous to Theorem 3.1 holds for ihiis :lass of methods,
Theorem 3,3, Let B(f) = gp + §p+1 p{€) be a function analytic in some neighbor-
hood of the origin, Let ¢, (g) = ; aijgj'l (i = 1,2,...,n < p) also be analytic

J=1
at the origin, and suppose that the matrix

is nonsingular, Let Yo & C_n"l. Then there i= a neighborhoeod mc Lt:nat
. . % Crn-T

the origin and a neighborhood < of Yo such that for all x ¢ %/

for which Yo GE?W , the function ©(x) is well defined. Moreover if ml(xj

denotes the value at zero of the polynemial of degree n interpolating the

values gl, §2,...,§n at the points g?, gg,...,gz, then . is & homogeneous

]

function of x that satisfies

o> - oy ol s Bl

for some constant A,
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The proof of Theerem 3.2 is somewhat simpler than the proof of Theorem
3.1, since it does not involve an application of Rouché's theorem. Other-
wise they are quite similar, and we shall not reproduce the proef of the
latter thegrem here.

The theorem, of course, permits the reducticon of the general class of
iterations applied to & general function to the_polynomial case, When n = 2,
the method of inverse polynomial interpelation is identiecal with the secant
method, which has already been treated.

| The aucthor has investigated the case n = 3, again for values of p rang-

ing from two to ten, In this case ¢(x) is given by the determinantal ex-

presszion
f":rgv S
det‘ E, & gi"
| P g2p
(3.12) 98, € 8 = (% %3 %

2
I 44 gﬁ\
P 2p

Consequently the possible convergence ratios are roots of the equation

f1 KZP K4;\\

det| n uP 2P| = n3det} 1 wP WP ;

which can be simplified to the equation




(3.13)

p-1 + Hp-z +

et ]
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The derivatives of ¢ can be obtained explicitly from (3.12)., For each p,

there 1s only one real root of {(3.13) for which p{(g'} < 1. These roots are

given below,

P ! olg' ()]
3| 0.7200 | 0.3825
4 0,.7906 (t.3859
5 1 0.8327 | 0.1876
6 | 0.8607 | 0,3887
7 | 0.8806 | 0.3893
8 0.8956 0.3898
9 | 0.9072 | 0.3902
10 10,9165 | 0.3905
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