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ABSTRACT

The author of the Cigarette Smokers' Problem (S. Patil, MIT)
tried to show that the problem could not be solved using Dijkstra's
P- and V-operations without conditional statements. D. L. Parnas
(CMU) showed that Patil's proof was false by presenting a solution
using P- and V-operations, but no conditional statements., This
paper presents first a correctness proof of Parnas' solution. This
solution leads to an obvious generalization and in connection with it
the question of an optimal set of distinguishable codewords is ad-
dressed, Finally a more natural approach to the problem is discussed
and a solution for this variation is presented with its correctness

proof.



INTRODUCTION

The claim that the Cigarette Smokers' Problem has no solution using
P- and V-operations as defined by Dijkstra [1] without conditional state-
ments [2,3] is seriously challenged by the solution of the problem given
by D. L. Parnas [4]. It will be shown that the solution is indeed correct
and so the claim that no solution exists is not justified without adding
other restrictions.

The proof is facilitated by representing the processes and ingredi-
ents involved as indexed members of an appropriate set rather than naming
them explicitly., It turns out that this representation shows how the prob-
lem can be generalized quite naturally to more ingredients than just cig-
arette paper, tobacco and matches. Considerations about the supply of
the ingredients lead to a modification of the problem for which still a
solution can be found using Dijkstra's P- and V-operations without condi-

tional statements.

REPHRASING THE PROBLEM

Three cyclic processes, called suppliers (together called the agent
in Patil's paper [2]), make their moves in a not specified order. The
term "move" of a cyclic process means that it is going once through its

program, The programs of the suppliers are given and read:

process supplier(i) = ¢ i=20,1,2
begin sup: P(s);
V(ingr[ (i+1)%3]); V(ingr[(i+2)%3]);

goto sup
end




The symbol % represents the remainder function, Semaphore & serves
t¢ sequence the supplier moves (s-moves for short) anmd its initial value
is one, Semaphores ingr[0:2] represent the three ilangredients and the
V-operations on those signals represent the arrival of two of the three
ingredients., The initial value of the ingredient semaphores is zero.

The objective is to program three user processes, here called addicts
(smokers in Patil's paper), which are activated each on a different combina-
tion of two ingredients out of the three. In order to aveoid confusion,

the problem statement is quoted from Patil's paper:

"The smokers' problem is, then, to define some additional sema-
phores and processes, if necessary, and to introduce nécessary
P and V statements in these processes szo as to attain the neces-
sary cooperation among themselves required to ensure continued
smaking of cigarettes without reaching a deadlock. There is,
however, & restriction that the process which supplies the in-
gredients cannot be changed and that no conditional statements

may be used."

As pointed out correctly by Patil, the addict programs:

process addict(j) = c j=0,1,2
begin ad: P(ingr[(j+1)¥31);
P(ingr[ (i+2)931);
V(s);
goto ad
end

may cause a deadlock, for instance if ingredients 0 and 1 are supplied and
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addict{(0) passes P(ingr[1]) before addict(3) does, But the conclusion
that no solution without conditional statements would exist is refuted
by Parnas' solution [4], It is here presented in the form of three pushers

and three addicts,

0,1,2

| Ig]
.
[l

process pusher(j) =
begin pu: P(ingr[jl);
P(mutex) ;
t = t2tj; V(a[t]);

V(mutex) ;

goto pu

end

The critical section ensures that pushers will not operate on t simulta-

neously,

process addict(k) = c k= 3,5,6
begin ad: P(a[k]);
t := 0;
V(s);
goto ad

end

The initial values of semaphore mutex and semaphores afk] are one and

zero, respectively. The initial value of t is zero.

THE CORRECTNESS PROOF

To prove that this solution is deadlock free, it will be shown that
a move by a supplier (an s-move) is followed by two pusher moves (p-moves)
and one addict move (a-move) and this sequence enables exactly one sub-

sequent s-move,




From a paper on correctness preccocfs of synchronizing processes [5]

we borrow the result

m(gem) = MIN(p(gem), c+vi{gem))

which gays that the number of times [m(sem)] procesges moved on pasgged

an execution of P{sem) equals the minimum [MIN] cf the number of times

P{sem}) was executed [p(sem}], and the number of times V(sem) was executed
[v{gem)] incremented by a given initial coenstant [«]. The equation is an
invariant for P- and V-operations. It is wvalid if sem represents a sema-

phore, but also 1f sem represents a group of semaphores, 1n particular a

gemaphore array.

Applied to thig particular example, we have

m(g) = MIN{p(=), l+vi(sg)}
m(ingr) = MIN(p{ingr), wvi{ingr))
m{a) = MIN{p{(a), vi{a}}

where "a" represents the gsemaphore sget {all]l|i =* 3,5,6*} and “ingr® ™
{ingr[il |1 - 0,1,2}. Initially v{s) = v{ingr) » v(a) = 0. It 1s assumed
that none of the processes gtops deliberately, slnce 1t ghould be shown
that no process wlll be stopped unintentionally 1f all are eager tc move,

i.e., 1f the numbers p(s), pl(ingr) and p(a) are maximal.

Let a, represent the action of starting the system.

Lemma 1. Starting the system resgults 1in exactly one supplier move.

Proof. Given the initial condition v(s) = v{ingr) = v(a} = 0, the aystem

is =started by allowing all procesgses an attempt to move, thus



p(s) = p(ingr) = pla} = 3,

- m{s) = MIN{3,1) =1
mi{ingr) = MIN{3,0) = 0
m{a) = MIN{(3,0) = 0

Hence, exactly one supplier will move,
Let 8,0 Py and a, represent the ith s-move, p-move and a-movea,

respectively., The result of lemma t is then &, < 5, <.pT and a, < 5, < a

0 0 1 1’

where the symbol < represents ordering in time,
Lemma 2. Move s is caused by move a; {if any) for i = 1,2,...

Proof. Let i = 1; move s, is caused by action a, (lemma 1),

1
Let i > 1;

attempt to move 8, means pis) 2 i

before move ai-? vis) = i-2

= m(s) = MIN{p(s}, 1+v{(s)) = MIN(p{s), 1+i-2) = i-]
after move 2 4 vig) = 1i-1

and so, move a, causes move sS4 and a, < s,

1 1

Lemma 3. Move s, (if any) causes moves Pos g and Py s for i = 1,2,...

Proof. Attempts to moves Poi_ and p,; mean p(ingr) = 2i

i
before move Ss viingr) = 2(i-1)

~ m{ingr) = MIN(p(ingr), v(ingr)) = MIN(p{ingr}, 2(i-1)} = 2{(i-1)
after move 5; v{ingr) = 2i

- m{ingr) = HIN(p(ingr), 2i) = 21

and so, move s, causes moves , and ,
! i Poi-1 Poy

and 8; < Pyi.1s Ppy°




Lemma &, The second s-move is preceded by the first pair of p-moves and

the first a-move in that order.

Proof.
a) P is the first move to occur (lemma 1). It causes p] and P,

(lemma 3) - 8, < p],pz.

b) a, < s

1 (lemma 2)

2

}ory <o
1 3*F4

s, < 43P, (lemma 3)

Thus, if move a1 occurs, it is at most preceded by moves s

Py and Py~

¢) initial value of t = 0
move a, occurs when t = 24x+2%y
where x # v and %,y € {0,1,2}

This is iff p1,p2 < a1 {see programs),
d) move a1 causes move s, (lemma 2)
Conclusion: 5, < PysP, < a, < Sy

Note that the preoof is constructive; it shows not only that the moves could

not occur in any other order, but also that the moves will occur in that

order.

Let wi be the set of moves {ai_1,si,p21_],p21} for i = 1,2,... (where

a. represents getting the system started).

0
v, is partially ordered:

a < 8, < Py qsPyy (lemma 2,3)

i-1



Lemma 5. If WineeesWy {(k =2 2) are performed strictly in sequence, this

gequence causes move &k-

Proof.
a) move 5, (4 € £1,2,...,k1) is preceded by an a-move and so the

variable t = 0 (see program), when move 5, starts

b) sj < p2j-1’p2j < aj for j = 1,...,k=1 because of the strict
sequencing,

The sequence Sj < pzj_1,p2j causes v(a) := v(a)+l (see program
and lemma 4,¢).

- at move ak-] v(a) = k-1 = m(a), because v(a) started at zero

and was k-1 times jincremented.

¢) When move a is attempted, p(a) = k.

move a, can be performed iff MIN(p(a),v(a)) = k

|3

-+ move ak requires v{a) := k

(b) in conjunction with (c¢) impliez that move ak will occur then, when v(a)

is incremented by one after move a But, according to (a), v(a) is

k-1"

incremented by one after move 8 4 net until both moves Po -1 and Pox

have been completed (see also lemma 4,c).

Lemma 6. w, < a, and w, < w, for i = 1,2,... (wi and w are performed

i i i i+1 i+

strictly in sequence).

Proof.

a) It is sufficient to prove w, <= a, for 1 = 1,2,.,. because a,

i




b)

Theorem.

Proof,

“8=

iz the first meve of LA (see definition) and so relation

w, < a, i i < -
i i implies W <Wy

{inductian)

W, o 2, is true (lemma &)

Supposae LA < a, for L = 1,...,k-1.

It remains to be proved that this implies that W, < a is

also true.

The assumption implies v < Wy oo Vo i.e., IS ERRRTL is

performad strictly in sequence. But this sequence causes move

ak (lemma 5) and so wk <2 &k.

The correciness proof of Parnas' solution is now simple:

Parnas' solution teo the Cigarette Smokers’ Problem is deadlock

The proof of lemma & showed comstructively that suppliers, pushers
and addicts will move after starting the system in 8 sequence that allows

concurrency of pushers only and that can be described as

*
(8 < (p,p) < a)}

GENERALIZATIONS OF THE PROBLEM

The representation used in the preceding sections shows that it is not

very important that the total number of ingredients is fixed to three,

Problem and sclution can easily be generalized to n suppliers (n = 2),



each producing a different set of n-1 ingredients:

process supplier(i) = c i=20,1,2,...,n-1
begin integer £;
sup: P(s);
for £ := 0 until i-1, i41 until n-1 do V(ingr[£]);
goto sup
end

Note that the use of the artificial for statement does not really violate
the restriction that no conditional statements may be used. Variable 2
is a local, not operated upon by any other process than supplier(i).

The notation describes that supplier(i) performs a V-operation on all
ingredient semaphores but ingr{i]. Thus, the sequence of V-operations
does not depend on any external operation and the for statement could be
replaced by the fixed sequence of V-operations.

As before, the initial values of semaphores s and ingr[0:n-1] are one
and zero, respectively, The generalized problem is to write programs for
a set of n addicts that should be activated each on the occurrence of a
different subset of n-1 ingredients as produced by the suppliers. Parnas'
solution can be generalized very easily to solve this problem: the pro-
grams of pushers and addicts stay exactly the same! The indices of the

pushers are j = 0,,,,,n-1 and of the addicts:
k | k=2t(m+1) -1 - 2%i, i = 0,...,n-1}

i.e., the binary representation of k is a number of n bits with a zero
in position 1i.
Another generalization is not to fix the number of ingredients pro-

duced by the suppliers at n-1, but let them supply one of the (:) different
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subsets of q ingredients 0 < q < n. There are now (2} suppliers, again,
n pushers, and {:} addices.

This version can still be generalized without changing.the programs
of pushers &nd addicts. Let us call the set of ingredient semaphore
indices, on which a supplier performs a V-operation, a codeword and the
set of all codewords the code. The last generalization can then be
characterized as a codeset of n signals with & fixed codeword length of q
signals (0 < q < n}.

A further generalization would be not to fix the codeword length q:
instead, the suppliers transmit codewords cof various length with the
restriction that none of the codewords is a proper subset of any of the
others. This restriction is necessary teo avoid ambiguity, for, if one
supplier, for imstance, transmits codeword (a,b,c) and another one codeword
{a,b), an addict waiting for codeword {(a,b) could smatch this one away
from the addict waiting for codeword {a,b,c}.

It can be shown, however, that the last generalization viz., to allow
variable codeword length, is not very useful, To leave a particular
signal (ingredient)} out of a codeword should make a difference: let 4,B,...

be the codewords produced by the suppliers; ingredient a £ A distinguishes

codeword A properly from codeword B if a E B, but 4 - {a} © B, Since
B C A creates an ambiguity, there is also a b € B such that b £ 4,

Codeword A is distinguishable from all other codewords if A is not

empty and all its elements {ingredients, signals) distinguish A properly
from all other codewords. For convenience we will say that codeword 4 is
distinguishable in case the code consists of one signal only and A is that

signal.
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It seems as if the last generalization, to allow variable codeword
length, increases the number of distinguishable codewords in 2 code of n
signals. But the theorem below states that this is not true and so the

word length might as well be fixed.

Theorem. The maximum number of distinguishable codewords in a code of n

signals is (2), whers g = ENTIER(nfE}, nzl.

Proof. A codewerd A4 can be represented by its characteristic function
x on the ordered set of n signals: suppose the code set = {u,v,w,x,y,z}

and codeword A = {u,y), then x{&) = (100010},

Let T be the codeset. If T consists of signal a only, there is only
one distinguishable set, viz. & = {a} and x{A) = (1}, 1f T = {a,b], there
are two distinguishable sets (see definition), viz. & = {al and B = ey
and so x(A) = (7 0) and %{(B) = (0 1). Hence, the statement is true for
n=1 and =2, Let n > 2 and let & be & distinguishable codeword and
a € A a {distinguishing) signal. Signal & distinguishes codeword & from
a codeword B, i.e.,, there is a codeword B and a signal b £ B such that
a fB, bfaand A - {a} € B. The codeset I' can be ordered such that
signals a and b are the first two elements: T = [a,b,...}. Hence,

x(4) = (1 0...) and x(B) = (0 1...}.

In order to obtain the maximum oumber of codewords the remainder of
codeword A must distinguish A from all other codewords whose characteristic
function also begins with 1 0, i,e.,, from all other codewords that also
contain signal a but not signal b, Let T be the codeset derived from T

by deleting signals & and b. The remainder of codeword A must be a
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distinguishable codeword in code T% with n* = n-2,

If n*

1 then A* = T = {c} and x(A) = (1 0 1).

If n*

2 then x(A%*) = (1 0) after ordering T* properly and so
x(A) = (101 0),

If n* = 2 then x(A*) = (1 0...) after ordering I™ and so x(A) = (1 010 ,..).
The remainder of A* can be broken down and this process ends (because n is
finite number) when the reduction comes to a codeset of only one or two
signals.

The consequance iz that the characteristie funetion of a codeword has
the same number of ones as zerog if n is even, and one more one than zeros
if n i2 odd, But the number of codewords with that property equals (:)

where q = n/2 if n is even and ¢ = (n+1)/2 if n is odd, 1In the latter

n

q
It isa interesting to note that, due to (:) = (2_1) for odd n and

case (2) = { _]) asz is well known and so the statement follows,

q= (n+1)/2, it 15 not necessary to fix the codeword length at (n+1)/2:
the same number of distinguishable codewords is obtained with q = (n-1)/2.
In case n=3, for instance, and T'= {a,b,c} there are at most three dis-

tinguishable codewords A, B and C apnd either

#(A) = (1 0D 0), x(B) = (D1 0), %(C) (¢ 0 1)

or x(AY = (01 1), x(B)y = (1 0 1), x(C)

(110

But a mixture of these codewords does not comstitute a distinguishable set,
This theorem has found an application in the ALGOL 60 Compiler for

the PDP-10, The problem was to code nine types in a field preferably

smaller than nine bits, but in such a manner that the type information

can be extracted by means of one test instruction. The PDP-10 allows a
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selective tegt for all zeros (unfortunately not a test for all ones).
2 nine bit field is certainly wide encugh to code the types by means of
exactly one 1 in a particular field. The test can then be either a non-
zero test on a particular bit or an all zero test on the remaining bits.
But the theorem above says that a codeset of 5 signals with a codeword
length of two or three will suffice, 1.e., a 5-bit field and all patterns
with exactly three ones gives a set of 10 distinguishable codewords. To
play it safe, we reserved a 6-bit type field and coded the types as pat-
terns with three ones and three zeros. This allows for a set of (%) 20
types. We added three new types later on bringing the total number to 12
and g0 we were very happy after all with the earlier decision to reserve
a 6-bit type field.

The programg need hardly to be changed to implement the m - (%) sup-
pliers, n pushers and m addicts, where n is the number of ingredients
and g the number of ingredients on which a supplier performg a V-operatiocn.
Each supplier program hags a sequence of g V-operaticns that distinguishes
it from all other suppliers. The function of the pushers is essentially
to agsemble a codeword, 1.e., the characteristic function of the sequence
of V-operations performed by a supplier. The indices of the addicts are

the numbers whose binary representation is one of the codewords.

There are only minor changes in the correctness proof. In lemma 3:
move s, causes mOVES;Pill?q¥i£%£_ryq4iﬂ*:>E§q3*“i lemmz 4 should read:

the gecond sgs-move is preceded by the first g p-moves and the first a-move
in that order. The changes are straightforward and so a repetition of

the complete proof is omitted.

mi  UilARY
CARNEMIE-KUIH MHVERSITY
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VARIATION ON PROBLEM AND SOLUTION

Going back to the original problem statement, we quote from Patil:

"eee..0On the table in front of them, two of the three ingredients

will be placed, and......"

and further on:

"e...To inform the smokers about the ingredients which are placed

on the table, three semaphores a, b and ¢ representing tobacco,
paper and match, respectively are provided. On placing an in-
gredient on the table, the corresponding semaphore is incremented

by performing a V-operation."

There is nothing in the problem statement that suggests or requires that
the two ingredients should be placed on the table by one process. But
Patil's agent and the suppliers discussed in the preceding sections do
exactly that. It seems, however, more natural to assume that the in-
gredients are provided more or less independently of each other. 1In

terms of the last generalization: it is more natural to assume n (instead
of m) suppliers, who each signal one ingredient., Suppliers should cooperate
to the extent that providing an ingredient should be stopped after a set
of q until the addicts are ready to accept another set. Also, such a set
should not contain more than one ingredient from any one of the suppliers.
The problem is then to program the suppliers, the addicts, each reacting
on a different set of q ingredients, and additional processes, if needed,

together forming a deadlock free system,
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It seems that phrasing the problem this way is far off from Patil's
original problem statement, especially because he requires from any solu-
tion thet it does not need to alter his agent. But taking a closer look,
it appears that the only essential thing about the agent that should not
be allowed to be changed is that an ingredient is provided by means of a
V-operation on the corresponding semaphore, If this restriction is re-
moved, too, then a trivial solution would exist, in which a V-operation
by a supplier is replaced by an addition of 2tj to the variable t of
Parnas' splution, and take over in this way all the work of the pushers.
Soc, the sting of the problem is still there, since an ingredient is pro-
vided by means of a V-operation.

Let n be the number of ingredients (signals) and q the codeword
length {the number of ingredients wanted by addicts}., Letm = (2) and

g = 2tn-2t{n-q), semaphere array s[0:n-1] serves to prevent a supplier

from providing its ingredient twice when a series of q is being collected.

The initial wvalue of these semaphores is one, semaphore array ingr[0:n-1]

represents the ingredients; the initial value of the semasphores is zeroc.

semaphore array a{l1:z] represents the set of semaphores of which only a

subset is used corresponding to the desired codewords, (As Parnas observed,
if overflow is a preblem, we can introduce dummy addicts for all the ir-
relevant semaphores. Their program is nothing more than a repetition of

a P-operation on such an irreleveant a-semaphore. The initial value of the
a semaphore is zero. semaphore quant indicates the number of ingredients
that must be provided to corplete 8 codeword. Its initial value is q.
semaphore mutex serves to ensure mutual exclusion when operations with

variable t are perfermed. Its initial value is one. integer t is a
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variable in which a codeword is assembled: its initial value is zaro.

process supplier(i) = e i=104,1,.,.,n-1
begin sup: P(s[i]);
P{quant):
V{ingr[i]);

gotp sup
end

The function of the first P-operation is to prevent that ingredient[i]
is produced again before an addice has gignaled the acceptance of the pre-
ceding instance, The subsequent P-operation stops the asuppliers after a
group of q ingredients (a codeword) have been produced. The intention is
that eventually one &addict reacts on this codeword and this addiet is
supposed to perform q V-operations on semaphore quant Te 3llew pro-
duction of the next codeword. The order of the two P-operatiouns is sig-
nificant; with the order reversed, a deadlock would arise if a supplier
passed P(quant) twice and it was stopped in P{(s[i]}). When gquant gets 2ero
in that situarion, at most q-1 ingredients have been produced and so ne

addict will be activated and do V{quant) to relesase the suppliers.

process pusher(j) = c i=10,1,...m-]
begin pu: P(ingr[jil);
P(mutex);
t o= t#213; v@a(t];
V(mutex) ;

geto pu
end

The pusher program is still the same as in the preceding sections. The

function of the pushers is to assemble the codewprd in t, which results
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eventually in waking up one of the addicts.

n-1 . n-1
process addict(k) = c k= .E ci21,ci=0 orl, ¢ c;=q

begin integer array c[1:q9]; i=0 i=0

integer i,j; j := 1;
for i := 0 until n-1 do
if k#$21(i+1) = 211 then

begin c¢[j] := i; j := j+1 end;

ad: P(aftl);
t := 0;
for 1 := 1 until q do
begin V(quant); V(sfc[i]]) end;
goto ad

end

The first for statement in the addict program initializes array ¢ with
the set of ingredient indices that is typical for the kth addict. Array
¢ and both the for statements serve the purpose of representing all
addict programs in one for all possible n and q. When a particular n, g
and k are given, array c¢ and the first for statement can be left out
entirely. The second for statement can then be replaced explicitly by
the characteristic (and fixed) sequence of V-operations typical for that
addict.

The idea of the statement P(a[t]) is, as in the preceding sections, to
activate an addict right after a codeword has been assembled., It is ap-
parently assumed that, when an addict makes its move, no pusher is active,
for variable t is reset to zero with the idea that t is still zero when
the next set of ingredients is going to be produced. The subsequent for
statement enables the production of the next set of q ingredients and re-

leases the suppliers which contributed to the current codeword.
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CORRECTNESS PROOF OF THE VARIATION

We recall the equation m(sem) = MIN(p(sem), ctv(sem)), where m(sem)

represents the mmmber of times a P-operation on sem has been passed suc-

cessfully. Application leads to:

m(s) = MIN(p(s), ntv(s)) (1)
m({quant) = MIN{(p(quant}, q+v(quant)) (2
miingr} = MIN{(p(ingr), v{(ingr)) (32
m(a) = MIN{p(a), v(a}) {(4)

The initial value of v{s}, v{quant), v{ingr) and v(a} is zero.

&)

b}

c)

d)

e}

according to (1} n suppliers are able to begin when the system
is started

according to (2) not more than g suppliers can complete their
move until v{quant) is incremented in move a]. - ai = sq+1
according to (3} a pusher will move when a supplier periorms
v(ingr}, hence, the first g suppliers activate the firsr gq
pushers — N < 12 for all i

an addict cannot move until a pusher performs the right

v{a[t]) according to (4)

n-1 .
("Right" means that the codeword t = I ci21, where c; = |
n-1 i=0
or 1 and ¥ c¢. = q,) This implies, since variable t = 0

i=g *

initially, that move a, is preceded by at least g p-moves.)
a supplier camnnot move a secomd time until an addict has moved .
{d) in cenjunction with {e) implies that the first gq s-moves
produce different ingredients and activate g different pushers.

Hence, the first q p-moves produce a codeword and so the first g



-19-

p-moves cause the first a-move, = sj < pj < a, for all

J=lieasq.

Let the notation x < y mean that move x causes move y, and x strictly
precedes y in time; let the notation x < y mean that move x causes move y,

and x is all done before y is completed.

X<y y—fove x ., . WOYG ¥ _
move y

i

1
move X

X =y

Let ¢, = {sk,pk | 8y, < Py k = i*g+l,,..,i*grg}, for i = 0,1,... .
Thus, e represents the ith set of g s-moves and q p-moves, This set is

not ardered, but its first element is s, and it is completed when all

i*g+1

its p-moves are completed.

1f a, represent getting the system started, the result of the analysis

above is

a, s ¢. < a
The following thecorem implies that the system runs deadlock free:

Theorem, If P-operations are performed when possible, suppliers, pushers

and addicts move in the order a, = ¢, < &, Z ¢, < a

o 0 1 1 25(: L amranas

2

Proof. The statement iIs true for the sequence &g = ‘:{]| = 31 {see above),

Hote that ¢q Dot juat precedes a, in time, but it actually causes a4,
i,e., the compound move <y incremented v(a&) by one (see (4)). Suppose

it had been proven that the programs generate the sequence

8. = O - TR - = o, . i i i
0 g 1 i-1 c1_1 and that cJ results in incrementing v(a) by one
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0,7,...,i-1. It must be shown that this assumption implies that,

if possible P-operations are performed, the sequence

a, = < < 8.-.2, 4 = i < ais ¢y
is generated and that s also results in v(a) := v(a)+l.

a) When ¢ is completed, i-~1 a-moves have been completed not
counting age Hence, the number of possible P-operations on
the a-semaphores is p(a) 2 i-1 + (Z) z i, wv(a) is initialized
at zero and incremented i times — v(a) = i. Hence, -

m{a) = MIN(p(a),v(a)) = MIN(p{a),i) = i and so i causes
a, and 1 < ai.
b) It will be shown next that move a, causes s-moves

Si*q+1""’si*q+q’ which cause in turn p-moves

, cessP. . en variable t is reset to zero in move
p1*q+1’ ’pl*q+q Wh

a;s v(quant) = (i-1)*q (for, i-1 a-moves have been completed).

But m(quant) = q + v(quant) = i*q (see (2)) = move Si*q+1

does not start before move a,. On the other hand, m(quant) = i%q,

because each compound move ¢, {(j = 0,...,1i-1) contains exactly

i

q S-moves.

- m{quant) = q + v(quant) = i*q and so, move si*q+1 is the one

that will occur the next time v(quant) is incremented,.

Move a, has been completed; this can be derived from the assump-

i-1

tion and part (a), Since t = 0, move 3. cannot start until

at least q p-moves are completed. The next q p-moves are

because s,

i - and s, < p,
xR is the next s-move an 3 pJ

pi*q‘i'.l e :Pi*q_‘_q’
for all j.
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CONCLUSION

It has been shown that Parnas' solution to the Cigarette Smokers'
Problem is deadlock free, The particular choice of three ingredients
happens to be rather unfortunate, because it does not reveal anything
about the distinguishable codewords that can be produced. A generalization
of the problem showed that Parmas' solution also applies to the production
of codewords of length q out of a set of n ingredients (0 < q < n). It
was also found that the largest set of distinguishable codewords in a
code with n ingredients has (:) elements, where g = ENTIER(n/Z) and so
nothing is gained by letting the codeword length vary.

The last variation on the problem does not leap to the obscure con-
clusion that the ingredients to assemble a codeword have to be produced
by one supplier, 1Instead, a supplier produces only one ingredient at a
time and codewords must be assembled out of potentially concurrent sup-
pliers and pushers. The variation has still the same basic difficulty
as the original problem, although the supplier programs differ consider-
ably in appearance from Patil's agent. It is interesting to notice that
the solution is nevertheless very close to the one given by Parnas.

Throughout the paper the invariant equation that describes the work-
ing of Dijkstra's P- and V-operation has shown to be very useful, But
the length and most of the phrasing of the proofs show that it is even
hard to apply our current proving techniques to what seems rather obvious

to the programmer,
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-* move & causes moves ', . . . ,>® e exikgs >0

cause moves

Ti*g+leteel’i¥grg 7 P U877 "> e
) It remaing to be shown that moves "i*g+i >+ e & >, j*qqg produce
different 1ingredients such that moves p.. ......P... result

in an increment of wv(a).

A particular supplier{j}) would tza able tc move twice after

move a” started if it wag waiting in P{guant) and move a”

is
going tc perform a V-operation omn =[j]. The latter implies
that supplier{(j) moved in compcund move . But until at least
move a® * each s-move was followed by a V-operation inm an a-move
and so m{s[]]l} = 1 + w{s[]]1) when move a™ starts. But then an

attempt to supply ingredient[j] after a” started cannot succeed

until move a” increments v{(s[j]l) because of

n{slil) = MIN(p(=[]l1).,1 + v{s[]1))

Hence, such a supplier[j] can only move once after move a’

started and consequently all suppllier moves s"qg+i > e e 1*g+qg

are different. Thusg, the p-moves P * " > e & ¢ sPi*qg+q " "' " "

on different indices and go exactly one codeword 1g the result

or vi{a) 1ig incremented by one.

It is remarkable that this proof is not a copy of the correctness

procf of the first gemeralization. This is mainly due tc the fact that

the first cone 18 less complex, because producing all the ingredlients for

one codeword in one supplier digsmisges the problem of proving that dif-
ferent ingredients are precduced. However, parts a) and b)

of this proof

are very slimilar to parts of the firgt correctnegs proof.
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