NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PROGRAM HOLDER MOOULE
L. Robinson and DO.L. Parnas
and

DESIGN AND IMPLEMENTATION OF A MULTI-
LEYEL SYSTEM USING SOFTWARE MDOULES

l.. Aobinson

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pa. 15213

June, 1973

This research was supported by the National Science
Foundation under Grant GJ 322589 and Grant GJ 237728 to
Carnegie-Mellon Univerelty and also by the Advanced Research
Projects Agency of the Office of the Secretary of Defense
{(F44620-708-C-0187), monitored by the Air Force of Sciantific
Research.

Abstract

This paper degcribes a mechanism for holding a program in
syntactic form. This mechanism can be useful to any program which
processes pragrams; in program verification, automatic
programming, and specialized text editing. In this «casge the
program holder is used to form the basis for a syntax-driven text
editar. Formal gpecificationg for the program holder are also
given.

L. Robinson and D. L. Parnas

5/16/73
A Program Holder Module

Introduction

This paper describes a mechanism for holding a program in
syntactic form. This mechanism ¢an be useful to any program
which procegees programs: in program verification, automatic
programming, and specializad text editing. In thies case the
program holder is used to form the basis for a syntax-driven text
aditor.

The program holder is designed so that it can be
initialized with any context-fres grammar. Thus it can be the
basis for a text editor in most programming languages. Editors for
different languages wlll have different features, but can make use
of the same progam holder.

The design of the program holder was accomplished by
writing specifications for it wusing the software module
specitication language of 0. L. Parnas [11. The specifications for
the program holder can be found in the appendix. The program
holder was then used as the basis of a text editor for the
- programming tool MUTAS ([2].

- X

i1

Specification of the program holder

A. Representation as parse tree

In an umbiguous context-free grammar G there exists a
unique parse tree for an input string in the language L(G). Thus a
parse tree 1is the most obvious form for holding & program in
parsed form. A parse tree is simply an n-ary tree wuith
gspecialized information at the nodes, so that the structural
functions (Table I)-of the program holder module represented an
n-ary tree (an extension of Parnas’ binary tree) [1]. Table I (a)
shows the functions for creating and deleting nodes. The nodes are
referred to by integers, so that the "name" of the node is simply
the integer corresponding to it.

The parse tree 1is illustrated by the folliowing example.
Suppose that the editor is initialized with a grammar G:
<A> 1= <C»

B> i1=ab | be (1)
<C> 1:= d
Then the parse tree for the string abd would be
<A>Q)
VA
' ® <C>‘® (2)
AT
a® b d®

The circled numbers next to each node are the names of the nodes,
each node corresponding to a uniqgue integer. Each node can have
an arbitrary number of sons, so that the number on the edge
connecting a father and one of its sons is the index of that son.
The functions which define the interconnections of nodes are
listed and described in Table [(b}.

B. Representation of grammar and syntactic type assignment

The grammar is represented as & list of smaller trees,
esch tree corresponding to a production. The grawmar G would be
represented as :

o <A>
/ \3 (3.1)
” ¥B> <C>
- : 7 :
/ \2 (3.2] _ / \,{ (3.3)
3 b b c :
<C»
‘ {3.4)
1
o

The functions which represent the grammar are |isted and explained

“in Table [}.

When a node is initially created, its syntactic type is
undefined. There is a function in the program halder which can
assign a syntactic type o« to a node., Before such an assignment
can be succesfully completed, the sons of the node are checked to
see if they correspond in syntactic type to the right side of the
production in the grammar which defines o, lf o« 1s a2 terminal
sumbof, no checking need be done, but in this case any node to
which « is to be assigned must have no sons. For example, if the
incomplete parse tree |ooked |ike thie

unde fined
(4}
1 2 '
 <C>

tube <A> could be assigned to the undefined node in (4) by the
application of production (3.1}, In this manner syntax checking
is done ohe leve! doun from the place of assignment in the pregran
tree. 1f an exact match is not found, the typa assignment is not
made and an error call results. Tha functions which handie type
assignments are listed and described in Table Ill.

In this manner a parse tree can be built from the bottom
up. There is also a mechanism for generating a tree top-dowun.

Note that {3.2} and {3.3) represent tuo productions which
define the nonterminal . Uhen & node is assigned type , it
muet be specified which alternative of is being assigned. Once
the type assignment has besen successful ly made, the TYPE function -
for either alternative would have vazlue , and the ALT function
uwould be used to distinguish between differsnt alternative
derivations of the same nonterminal symbol {see Table Il}. This
method of referring to productions is useful: in the suntax
checking nscessary for assignment in (4}, the first son must be an
instance of -- the alternative is irrelsvant; in other cases,
such as compilers, it is nacassary to knou the alternative. Thus
it is wuseful to separate this information, which al! sources do
not "need %ta know," '

The. repressntation of grammars in the program hoider is
different from that of context-free grammars in one raspect, It
enabies one to define a nonterminal as a2 list of zero or more
instances of another symbol, separated by instances of yet a third
type of symbol, Thus, the productions
_ <M> 1:= <¥s | <¥»>, <¥> ({5}
can be replaced by '

<H> 1:=4 <¥>, {BJ

which means that <¥X> is defined as a iist of <Y>» with "," as
separator. This is ussful because it much easier to refer to the
nth item of a |ist uhen it 18 representad as in (B] &t the module
ievel. Referring to the nth item of a list is very important in
text editing and related functions. Many program constructs can be
considered as |ists: e.g. the list of formal parametere in an
Algol procedure, or & compound viewsd as a list of siatements
bracketed by begin . . . end.

C. Incomplete syntax assignment

When a syntax assignment c¢¢ hag been successfully made to a
node i, a strong agsumption can be made about the subtree of which
node i 1is the root: that the tree represents a valid derivation of
the input string (represented by the leaves of the subtree) from
aymbol a in the grammar contained in the program holder. Thisg
assumption is useful in applications such as deterministic
bottom-up parsing. However, in other applications, such as
top-down parsing or working with incomplete programs, it ig
desirable to have a tentative or incomplete syntax assignment. In
top-daown parsing, for example, the goal must be set before a wvalid
derivation existsg. With incomplete programg, parts of the code
are left out in which decisions are postponed. When the missing
information ig filled in, & definite syntax assignment can always
be made. The functions which control incomplete syntax assingment
are described in Table IV.

In an incomplete syntax assignment, the derivation may be

incomplete but 1is never inconsistent. In other words, a tree 1in
which incomplete assignments are present can always be completed
byv addition to form a wvalid derivation in the language. Below
are five wvalid incomplete assignments (7.1}, designated by an I,
and three invalid ones (7.2). The grammar is that defined above.
I I * I I I
<A> < e < B\ <A> <A
/ / ‘ 7 (7.1)
<B=> undefined <C>
I
<A <A> <A>
/[
<(C> <> unde f i ned

Conclusion

The program holder medule has been ilmplemented, and we are
currently investigating 1ts uses in tasks which invelve operations
on other programs: text edi t ing, veri fication, compilation, and
interpretation.

Tabla |
Structural Functions for Program Holder
a) Creation ang delation of nodes
function value explanation
SETU - creates a ned nade and csets the value

of NEWNCDE to the name (a unlique
integer) of the newly created node

NEWNODE " integer holds the name of the lamt nade created
SPACE integer number of storage iocations |eft

DESYN (1) - deletss node named |

EXISTS (i) boo | ean true 1ff node named | exists (i.e,

created by SETU, but not deleted)

b} Connecting nodes to form an n-ary tree

function valua explanation

ERSI (i, n) boalean refers to the nth son of node 1 {true
iff such a relation exists)

REI (i, n} integer name of the nth son of node i (defined

iff ERGILi, n) is true)

ELST (i) boelean refers to the father of node 1 (true
iff such a relation exists)
LSI (i} integer name of the father of node | {defined
iff ELSILi} i1s truel
LSIX (i) integer if ELSI{i} is true, RSIILISC(i}, LSIX(I}) = i
EMRS (i) boalean true iff dn [ERSI{I, N} = trus |
MRS (i} integer ' maximum index of sons of i (defined iff

EMRS(i} is true}

SREL (i, j, n) - . sets up connection betwesn nodes | and]
such that
RSIti, n) =] ERSI (i, n} = true
LSIEj) = i ELSI(j} = true
LSIX{j} = n
DREL{I, nl} - deletes father-son reiation between

rodas + and RSI(}, n)

Tabie 1

Functions Describing

Representation of Grammar in Program Holder

function
NTERM{ ty)

TERM(ty)
LIST{ty)

SYMB { ty)

NALT { ty)

- NPROD(ty, ai

PROD{ty, n, a}

- ITEMA{ty)

SEP(ty}

value
hoolean

boolean
baoclean

koo lean

integer

Integer

integer

integer

integer

explanation

true iff ty refers to a nonterminal
sumbao i '

true iff ty refers to a terminal symbol
true 1f NTERM{ty} is true, and if ty
refers to a list of symbois

irue 1ff ty refers to a symbol table
entry

number of alternative right hand sides
Wwhich have symbol ty on the left

{deflined If NTERM{ty} ls trus,

and if LIST{iy} is false)

number of elements in right hand side of
the ath alternative production, of uWhich
symbol ty is on the left {defined iff
NALT{ty} < a)

syntactic type of nth symbol in the ath
aiternative production, of which

symbol ty is on the |left {defined iff
NPROD{ty, a) < n)

symbol of which ty 1s a list {(defined
iff LIST(ty) ie true)

symboi which separates items of list
designated by ty (defined iff LIST(ty)
is truel '

Table 111
Functions Reguiating

Assignment of Syntactic Tupes to Nodes of Program Tree

function
SETTRM LI,
SNTERM (1,

SSYMB (1,
ETYPE (i)

TYPE (1)
ALT (1)

PSYMB (i)

DTYPE (i)

ty)

ty, a)

ty, p)

valua

boolean
intager

integer

intager

explanation |

assigns type ty to node 1 1§ TERM(i) is
true

assigne type ty (alternative a) to node
if NTERM(ty) is true and if a match with
the grammar exists

assigns type ty to node i if SYMB(ty) is
true. p & the symbol table pointer

{tupe integer) '

trua iff node | has a syntactic type
assignment

integer designating syntactic type of node
i (defined iff ETYPE(I) ies true)

1f NTERMITYPE(i}) is true, deslgnates

the index of the.alternative uWhich
corresponds to this instance of TYPE({i)
pointer to symbol table {(defined iff

- SYMB(TYPE(i)}} is true)

removes syntactic type assignment
nhode |

function

SPTYPE (1,

EPTYPE (1)

PTYPE (1)

DPTYPE (i)

Table IV
Functions Regulating
ITncomplete Syntax Assignments
value explanaticn
ty, a) - makes incomplete syntactic type assignment

of ty (alternative a) to node 1 (NTEREL (ty)
must be true)

boolean true if node i has an incomplete
gyntactic type assignment
integer incomplete syntactic type assigned to node

i (defined iff EPTYPE(i) 18 true)

- removes incomplete syntactic assignment
from node 1

Appendix*

Function FILLED
PV: integers
PA: none
Iv: 0
EF: none

Function NEWNODE

PV: integers

PA: none
Iv: undefined
EF: none

Function EXISTS()

PV: true, false
PA: integer i
1v: false

EF: '
ECS51if(i<0)vi>pl)

*Note: Grammar functions are shown initialized with a specific
grammar,

Function EPTYPE{}

PY: true, false

PA: integer i
Iv: undefined
EF:

EC52 if (i < 0} v {i > pi}
EC53 if "EXISTSYi) = false

Function PTYPE(i)

PV: integers

Pi: integer i
IV: undefined
EF:

ECBaif (i<Oyv(i>pl)
ECS5 if "EXISTS'i} = false
ECB6 if "EPTYPE'(i) = false

Functions DPTYPE()} -

PV none
PA: integer i
IvV: nfa

EF:

ECs7ifli<O) v ii>pl)
ECES if "EXISTSYi) = false
ECE9 if "EPTYPE’(i) = false
EPTYPE(i} = false
PTYPE() = undefined

10

Function ETYPE()

PV: true, false

PA: integer i
Iv: undefined
EF:

ECE0 if (i < Q) v {i>pl)
ECE1 if "EXISTSi) = falce

Function TYPE()

PV: integer i
PA: integers
IV: undefined
EF:

ECo2 it (i <O) v (i>pl)
EC63 if "EXISTSYi) = false
EC84 if "ETYPE"() = {alss

Function DTYPE(i)

PV: none
PA: integer i
Iv: n/a

EF:

ECES5 if (i< v (i>pl)

EC6E6 if "EXISTSY(i) = false

if "ELSI'(i) = true then
EC6E8 if "ETYPE'(CLSI(I)) = true

EC67 if "ETYPE™(i) = false

ETYPE(i) = false

TYPE() = undefined .

if 'NTERM'CTYPE™i)} = true v
SYMB'CTYPE'(i)) = true

then ALT(i) = undefinad

11

Function ELSI(i)

PV: true, false

PA: integer i
Iv: undefined
EF:

EC69 if (i <0) v (i >pl)
EC70 if "EXISTS™(i) = false

Function L3I(i)

PV: integers

PA: integer i

IV: undefined

EF:
EC71if (i <0) v (i>pl)
EC72 if EXISTS'(i) = false
EC73 if ELSI(i) = false

Function DREL(, n)

PV: none

PA: integer i, n
IvV: nfa

EF:

EC74if {i<0) v (i>pl)
EC75 it (n<0)v(n>pl)
EC76 if "EXISTS™(i) = false
EC77 if "ERSI'(i, n) = false
ELSICRSIYi, n)) = false
LSICRSI, n)) = undefined
LSIX('RSI(i, n)) = undefined
ERSI(i, n) = false ‘
RSKi, n) = undefined
if-3m [m#n

*ERSI(i, m) = true]
then begin

MRS(i} = undefined

EMRS(i) = false

end
else Im[msen

*ERSI(i, m) = true

Yp(p#Em

p¥n
*ERSIi, p) = true)
[p<m]
MRS(i) = m]

12

Function ERSKi, n)

PV:
PA:
Iv:

EF:

true, false
integer i, n
undefined

EG78 if (i <0) v (i > pi)
EC79 if (n < 1) v <n > pi)
EC80 if 'EXISTS'I) - false

Function RSKi, n)

PV:
PA:
V:
EF:

integers
integer i, n
undefined

EC81 if (i < 0) v (i > pi)
EC82 if (n< I)v(n>pl)
EC83 if 'EXISTSXi) - false
EC84 if 'ERSI'(i) - false

Function LSIX(i)

PV; integers

PA: integer i

Iv: undefined

EF:
EC90 if (i <0} v (i > pl)
EC91 if *EXISTS(i) = false
EC92 if ELSIXi) = faise

Function ALT(i)

PV: integers
PA: integer i
Iv: undefined
EF:
ECO3if (i <O}y v(i>pl)
EC94 if "EXISTS(i) = false
ECYS if CETYPE(i)} =false) v CEPTYPE(i) = false)
if ’ETYPE’(i) = true then
EC96 if "NTERM'('TYPE'(i)) = false

14

Function SETU

PV: none
PA: none
V: n/a
EF:
EC98 if 'FILLED' * p2
k[k>0
k < pi

'EXISTS'(k) = false
EXISTS(k) = true

EPTYPE(k) - false

ETYPE(K) = false

ELSI{k) = false

Vij(j>0

j < pi) ERSKK, j) « false]

NEVWNODE - k]
FILLED - 'FILLED* 1

Function DESYNfl)

PV: none

PA: integer i
v: n/a

EF:

EC99 if (i < 0) v {i > pi)

EC100 if 'EXISTS'd) -false
EC101 if 3j ['ERSHi, j) - false]
EC102 if 'ELSI'(i) - true
EPTYPE(i) - undefined

PTYPE(i) - undefined

EXISTS(i) - false

TYPE(i) = undefined

ETYPE(i) - undefined

FILLED - 'FILLED' - 1

Function SETTRM(i, j)

PV: none

PA: integer i, j
v: n/a

EF:

EC103 if (j <0) v (j > pi)
EC104 if (i < 0) v {i > pi)
EC105 if 'EXISTS'I) - false

EC 108 if 'ETYPE'(j) - true

EC 107 if 'TERMY(j) = false
EC108 if 'EPTYPE'()) - true

EC 109 if 3k ['ERSKi, k) - true]

15

if "ELSI(i) = true then
begin if *(EPTYPECLSI(i)} = true then
begin
ECLBY if "NTERM{PTYPE{(LSI(i})) = false
if *LIST'(CPTYPE'("LSI1))) = true then
begin
if "LSIXi} is odd then
EC187 if j o "ITEM('PTYPE('LSTYi)))
eise EC{88 if j ¥ *SEPCPTYPE{’LSIH)))
end
end
begin
EC11} if "PRODPTYPE(CLSI)), *LSIX'(i),
TALTCLSP N o
end
end
ETYPE(i) = true
TYPE(i} =

16

Function SNTERMi, ty, m)

PV:
PA:
iv:

EF:

none
integer i, ty, m
n/a

EC128 if (i< 0) v {i > pl)
EC129 if im < 0) v (m > pl}
EC130 if (ty < O) v (ty > pl)
EC131 if EXISTSYi) = false
EC132 if ETYPE'(i) = true
EC133 if "EPTYPE™(i) = true
ECL134 if '"NTERM(ty) = false
if *ELIST (ty) = false then
begin
EC135 if 3n [EPROD(ty, n, m) = true
ERSD(i, n) = false]
EC136 if 3n [’EPROD(ty, n, m) = faise
: *ERSPG, n) = true }
¥n (*ERSI’(i, n) = true)
[EC137 if (ETYPE('RSI'(i, n)) = false
EC138 if 'PROD(ty, n, m) # "TYPE'CRSI(i, n))]
end
else begin
Vn { "ERSI’(i, n) = true)
[EC139 if "ETYPE’(CRSIXi, n)) = false
EC140if Ik [k =n :
k is odd
"TYPE(CRSP(, k) # 'ITEM’(ty)]
EC194if Ak[k=n
k is even
TYPE'CRSI'(i, k)) # *SEP™(ty)]
EC195if k[k <n
ERSI(i, k) = false]]
end
end
if "ELSI’(i} = true then
begin
if "EPTYPE’CLSI(i)) = true then
EC197 if "PROD’CPTYPE'(CLSI(i)),
LS, ALTCLSI)) # ty
end
ETYPE(i} = true
TYPE(i) = ty
ALT(i) = m

17

Function TERM(i)

PV: true, faise

PA: integer i
v: Yk (k251
k £ 100)

[TERMKK) = true]
ali others false
EF:
EC141 if (i <O} v (i > pl)

Function EPROD(ty, n, k)

PV: true, false

PA: integer ty, n, k

IV: EPROD(1, I, 1} = true -
EPROD(1, 2, 1) = true
EPROD(1, 3, 1) = true
EPROIN1, 4, 1) = true
EPROD(1, 5, 1) = true
EPROIX1, 6, 1) = true
EPROD(1, 7, 1) = true

all others false

EF:
EC142 if (ty <0} v (ty > pl)
EC143 if (n < 0) v (n>pl)
EC144 if (k < 0) v (k > pl)
EC198 if *"NTERM(ty) = false
EC199 if "ELIST (ty) = true

Function PROD(ty, n, k)

PV: integers

PA: integer ty, n, k

Iv: PROD(1, 1, 1) =51

- PROD(1, 2, 1) = 41

PRODX1, 3, 1) = 2
PROD{(1, 4, 1) = 78
PROD(1, 5, 1) = 62
PROD(1, 6, 1) = 77
PROD(1,7,1) =9

all others undefined

EF:
EC145 if {ty < 0) v (ty > pl)

18

EClA46 if {n<O) v in > pl)
EC147 if (k <0} v {(k > pl)
EC200 if *NTERM'(ty) = faise
EC201 if "ELIST (ty} = true
EC148B if *EPROD'(ty, n, k} = false

19

Function SPNTERMi, tv, m}

PV:
PA:
EF:

none
integer i, ty, m

EC149if (i < D) w (i » pl}
EC150 if (ty < 0} v {ty > p1)
EC151 if {m <0) v {m > pl)
EC152 if "EXISTSXi} = false
EC153 if "EPTYPE'(i} = true
EC154 if "ETYPE'(i} = true
EC155 if '"NTERM(ty) = false
if ’ELIST{iy} = false then
¥n { "ERSDYi, n} = true }
{ ECI56 if "EPRODty, n, m} = false
Yo {k=n
ETYPE (RS, k}) = true)
[EC157 if "PRODYty, k, m) # *TYPEXRSIi,)}]
Yh{k=n
*EPTYPE'("RSIN, k}) = true)
[EC158 if "PROD'ty, k, m} # 'PTYPE'"RSY(i, k}}])
else ¥n { "ERSI(i, n) = true }
[Yk{k=n
*ETYPE*CRSIi, k)} = true)
[if k is odd then ECL59 if
"TYPE'CRSI(i, k)) # "ITEMty)
else EC202 if "TYPE'CRSIi, k)) # *SEP'(ty)]
¥Yk{k=n
EPTYPE'CRSI'(i, K)) = true)
[if k is odd then EC203 if "PTYPEX’RSI(i, k)) ¥ "ITEMty)
else £EC204 if "PTYPE'(’RSI(, k}} # *SEP(ty}]]
EPTYPE(:} = true
PTYPE() = ty
ALT(i} = m

20

Function SREL(, i, n)

PV:
PA:
v:

EF:

none
integer i, j, n
t/a

ECIE0 if (i < Q) v (i > pl)

EC16) if (j <0} v (j>pl)

ECLI62 if (n< Q) v (n>pl)

EC163 if "EXISTS'(i) = false

ECl64 if EXISTS(j) = false

ECLES if ELST{j) = true

EC166 if "ERSI(i, n) = true

ECL67 if "ETYPEXi) = true

if 'ETYPE’(j} = true then

begin If "EPTYPED) = true then
begin EC168 if (EPROD("PTYPE (i), n, "ALT(i)) = false
EC205 if *PROD('PTYPE’(i), n, "ALT™(i)} ¥ "TYPE'(j)
end
and

~else if "EPTYPE'(i) = true then

begin EC206 if "EPROD’(CPTYPEXi), n, "ALT(i)) = false
it ‘EPTYPE"(}) = true then
EC207 if "PROD'CPTYPE'(), n, ’ALT"(i)) o "PTYPEY())

end

ERSI(i, n) = true

RSKi, n) = j

ELSKj) = true

LSKj) =i

LEIX(j) = n

if *"MRS(i) < n then MRS(i) = n

21

Function DSTR(i)

PV:
PA:
1V:

EF:

none
integer i
n/a

EC169 if (i < 0) v (i » pi)
EC170 if 'EXISTS'{i) - false
EC171 if 'LSI'(i) - true
EXISTS(i} - false
vn ('ERSI'O, n) = true)
[RSI(i, n} - undefined
ERSKIi, n) - undefined]
ETYPE(i) - undefined
TYPE(i) - undefined
FILLED = 'FILLED' - 1
EPTYPE(i) - undefined
PTYPE(i) - undsfined
LSI{i)Jundefined
ELSI(i) = undefined
LSIX(i) = undefined
MRS(i) - undefined
VK { 'ELSI'(k) - true
ELSKk) - undsfined)
[EXISTS(k) - false
Vn ('ERSHK, n) = true)
[RSKk, n) - undefined
ERSKK, n) = undefined]
ETYPE(k) - undefined
TYPE(k) - undefined
EPTYPE(K) - undefined
PTYPE(k) - undefined
LSI{k) - undefined

ELSKk) - undefined
LSIX(k) - undefined
MRS(k) * undefined
FILLED - FILLED - 1]

Function LIST()

PV:
PA:
IV:

EF:

true, false
integer i

LIST{2) = true

LIST(6) = true

LIST{9) = true

LIST{16) = true
LIST(19} « true
LIST(31} = true
LIST(34} = true
LIST{40} » true
LIST{44) = true
LIST(45) = true
all others false

ECL77 if (i < D) v {i > pl)
EC178 if "NTERMi) = false

Function SEP()

PY:
PA:
Iv:

EF: .

integers
integer i

SEP{2) = 78
SEP(G) = 79
SEP{(9) = 79
SEP(16) = 79
SEP(18) = 79
SEP(31} = 79
SEP(34) = 79
SEP{A0) = 79
SE44) = 79
SEP(45) = 79
all others undefined

ECL79if (i < Q) v (i>pl)
EC180 if '"NTERWYi) = false
ECLBL if 'LISTYi} = false

23

Function PSYMB(i)

PV: integers

PA: integer i

Iv: undefined

EF:
ECLI5 if (i <0) v (i > pl)
EC116 if "EXISTSYi) = false
EC117 if *ETYPE(i) = false
EC118 if *SYMB*CTYPEX()) = false

Function SYMBXi)

PV: trus, false
PA: integer i
Iv: Ve (k>0
k £ 100
k¥4l
-k o 42
k # 43)
[SYMB(k) = false]
SYMB(41) = true
SYMB(42) = true
SYMB(43) = true
EF:
ECL19if (i < Q) v (i > pl)

24

Function SSYMB(, j, k)

PV: none

PA: integer i, j, k
Iv: n/a

EF:

EC120 if (i < 0) v (i > pl)
EC121 if (} <0) v {j>pl)
EC122 if (k <0) v (k > pl)
EC123 if *EXISTSYi) = false
EC124 if *ETYPEXi) = true
EC125 if EPTYPE'(i} = false
EC126 if *SYMB(j) = false
it ’ELSIi) = true then begin
if "EPTYPE'(CLSI'(i)) = true then begin
if "LIST'CPTYPE'CLSIi))) = true then
begin
if "LSIX’(i} is odd then
EC190 if j o "ITEM(PTYPE('LST(1)))
else EC191 if j # "SEP’CPTYPE(CLSI(D)))
end
else begin ‘
EC192 if *EPROD’CPTYPE'CLSIi)), "LSIX'(i), "ALT’CLST(i))) = false
EC193 if *PROD’CPTYPECLSI(i)), "LSIX(1), "ALT'CLSTG)) # j
end
end
end
ETYPE(i) = true
TYPE() = j
PSYMB(i} = k

Function MRS(i)

PV: integers

PA: integer i
IvV: undefined
EF:

ECi85 if (i <0) v (i > pl)

EC186 if "EXISTSYi) = false

EC208 if *(EMRS(i) = false
Function NTERM()

PV: true, false

PA: integer i
Iv: Yh(k21
ks4a3)

[NTERMKK) = true]

25

all others false
EF:
ECI187 if (1 < Q) v (i > pi)

Function EMRS(i)

PV: true, false
PA: integer i
I\ undefined
EF:

EC209 if (i < 0) v (i > pi)
EC210 if 'EXISTS'(i) - false

Function SSYME, j, k)

PV: none

PA: integer i, |, k
v: nfa

EF:

EC120if (i <0) v (i > pl)
EC121if(j<O)v (j>pl)
EC122 if (k <0) v (k > pl)
EC123 if EXISTS(i) = false
EC124 if "ETYPE'(i) = true
EC125 if "EPTYPE'(i) = false
EC126 if 'SYMB'(j) = false
if JELST(i) = true then begin
if "EPTYPE(CLSI(i)) = true then begin
if LISTCPTYPE'(CLSIXi))) = true then
begin
if *LSIX™i) is odd then
EC190 if j # "ITEMCPTYPE'CLST()))
else EC191 if j # *SEP’CPTYPE(LSINi)))
end
else begin .
EC192 if "EPROD'(PTYPE’CLST(i)), "LSIX'(i), "ALT'CLSI(i))) = false
EC193 if 'PROD’CPTYPE’CLST(i)), "LSIX'(i), "ALT'(CLSI(D))) # - |
end
end
end
ETYPE(i) = true
TYPE(i) = j
PSYMB(i) = k .

Function MRS(i)

PV: integers

PA: integer i

1v: undefined

EF:
EC185 if (i <Q) v (i > pl)
EC186 if "EXISTS(i} = false
EC208 if "EMRS’(i) = false

Function NTERM)

PV: true, false
PA: integer i
Iv: Ykk 21
ks43)
[NTERMKK) = true]

25

all others false
EF:
ECI187 if (i<O) v (i>pl)

Function EMRS{i}

PV: true, false

PA: integer i

Iv: undefined

EF:
EC209if i< Q) v(i>pl)
EC210 if 'EXISTS(i} = false

26

Function 1TEM)

Pv: ECiB2it{i<0}v(i>pl}
EC183 if 'NTERM'(i) = false
EC184 if "LISTYi) = talsa

Function NALT{ty}

PV: integers

PA: integer ty

IV: NALT(1) =1
NALT(2) = 1
NALT(3) = 1
NALT(4) =]
NALT(S) = 2

all others undefinad

EF:
ECL7S5 H {ty < 0) v {ty > pl)
EC176 if "NTERMYty) = false

Refarsnces

[1) Parnas, O.L., "A Technigque for Softuare Module Spsifications
with Examples," Communications of the ACH, May 1972, Available
as a Technical Report, Computer Sciance Department,
Carnegie-Malion University, 1971.

(2] Charng, H.C. and O.L. Pafnas, “Genera! Purpose Macro Expander,"
Unpubl ished manuscript,

28

Abstract

A mechanism for helding programs in syntactic form was
degired for use by systemg which operate on other programs:
program verifiers, autcmatic programming systems, and specialized
text editors. The mechanism was designed using the software
module gpecification language of D. L Parnas, and implemsnted in
SAIL, an Algcl-like language on the PDP-18. It is suggested that

gpecifications assist in both the design and implementaticn
processes.

iii

L. Robinson
/28773

Design and lmplsmentation of a Multi-Level Systew
Using Software Modules

Intreoductiaon

A mechanism for holding programs in syntactic form wWas
desired for wuse by systems uhich operate on cther programs:
program verifiers, automatic programming systems, and specialized
text editors. The mechanism was designed using the ecftuare module
specification janguage of 0. L., Parnas [1], and implemented in
SAIL, an Algol-like Janguage on the FOP-18. ’

This paper describes the process of design and
implementation of this system by one person. [t has been shown
that software module specifications are useful in group projects
2. This paper wifl demonstrate how the specifications can be
useful 1in an individual programming effort by isolating
programming problems, by aliowing programming problems to be
approached in an organized manner, and by sinplifying the process
of getting the programs to run correctly.

29

Motivation for a syntax-driven text editor

It has been the case in construction of programs with
standard text editors, for programmers to use various gimmicks to
perform "intelligent” text editing functions, For example,
suppose one were constructing a LISP program and uwanted to see if
the parentheses matched, and how the nested S-expressions related
to one another. For a large enough program one could spend hours -
uith a standard text editor, or one could use one of the many
specialized editors uhich take advantage of the LISP syntax. It
is argued that such features would be useful in the construction
of programs in other languages as weil. The desired features uwouid
vary depending on the language to be edited.

Most standard text editors consider a program as a set of
lines, each Iine containing a character string. A syntax-driven
editor would treat a program as a set of lexemes related by the
application of the syntactic rules of that language. If one
wanted to change all instances of the identifier "A" to the
identifier "B", a standard text editor (uithout extensions} would
be of almost no use. There are text editors [3] which have been
extended to permit substitution of <separator>A<separator> for
<separator>B<separator>, but these editors have already made a
concession to defining a lexical unit and to utilizing syntactic
generality. Another use for the syntax-driven text editor is for
insertion, deietion, and substitution based on a syntactic
pattern. Knouwing that quick changes to a program are syntacticatlly
correct saves much compile time. The syntax-driven text editor
gives some of the benefits of incremental compilation for changing
programs. This s especially useful in writein programs for
languages uWith highly optimizing compilers, uhere compilation time
is a major cost consideration.

30

Motivation for a program holder

For a programming system such as a syntax-driven text
editor, some mechanism is necessary for inputting a program, for
attributing syntax information to the program text, and for
changing the text of the program in a manner limited by the syntax
of the 1anguage. These capabilities are universal to a
syntax-driven text editor for any language. Ue have specified a
mechanism called a program holder which realizes these
capabilities. The program holder is wuseful for an task which
operates on programs: verification, automatic programming,
compilation, and interpretation.

A

Deacription of the program holder

The program to be held in syntactic form is stored as the
valuea of functlions which describe a parse tres. The parse tres
is simply an n-ary tree with specialized information at the nodea.
The program holder has acces to a representation of the grammar of
the language. This enables syntax checking within the module.
root of a valid parse tree, one could use functions to assign this
information to the node. Thus the functions of the program holder
module could be divided into three disjoint sata:

1) Structural functions -- creatipn, deletlon, and
linking of nodes to form & parse tres.

2) Functions which describe the grammar.

3) Functions which assign syntactic information to
tha nodes.

32

Nesign evolution of a hierarchical systenm

The spacification in [4) describes the program holder as a
set of functions wuhich comprise a single module. In the
imptementation these functions must map to a data structure which
storea the function values, or toc a procedure or macrc which
calculates the values. The mapping could be done by coding the
module directly in a given programming language. For a module as
complex as the program holder (36 functions, 288 error calls),
there are tuwo disadvantages:

1) Direct implementation would be messy to do without
relying on some specific louer-level abstractions.

2] The direct implementation of a complicated system
may generate design decisions which are very
difficult to change.

The approach which We chose was to decide which lower level
abstractions are needed toc implement the top leve! meodule {in this
case the pregram halder), and to write sof tware module
specifications for these louwer level abstractions. This process
continues until the designer judges that the mapping from the
current lowest level to a program is straightforward.

At thie point the designer has specifications for the
different layers or ahstractions in his system. The
specifications for various modules are independent of one another,
in the sense that the specifications make reference only to
functions in the same module. The process of creating mappings
between different abstractions (or virtual machines)} constitutes
the imp!ementation cof the system.

13

Example of the hierarchical design process -- syntax-driven taxt
. editor

At first, the design effort involved an enumeration of the kinds
of operations desired of the taxt editor:

1) Input of programs or parts of progranms.
2} Internat storage of program in parsed form.

3) Searching and substitution on stringe classified
by syntactic type.

4} Ability to work Wwith incompiete programe for the
purpcses of stepdise refinement.

[t was only after examination cf the desired capabilities that we
determined that the editor shouid be bui{t arocund the storage of
programs in parsed form, rather than around any particular
capability. The other parts of the system uouid make use of this
program storage mechanism and could therefore be built tater. The
mechanism for such storage was calied the program holder; other
parts of the editor would be a parser, a lexical analyzer, an
input/output module, and a pattern matching and substitution
module {see figure 1}.

Several design deci=ions went into the epecifications for
the program holder. Here is a list of decisions which Were made
in approximately chronological order:

1) Representation of the program as a parse tree
[excludes representation as an unparsed string of
‘tokens].

2) The structural functions of the parse tree should
be those of an n-ary tree where n is variable [ruies
out restriction o©f n-ary tree uith n fixed,
specifically a binary treel. '

3) The assignment of syntax information to the nodes
reguired tuc design decisions:
al To include a representation of the grammar in
2 submodutle of the program holder module.
b} To specify automatic syntax checking as part
of the holder,
It turned out that a) and b} could be incorporated
into specifications wWwhich describe & program holder
for any context-free grammar, instead of having a
different set of specifications for each grammar
dealt with. This was a generalizaticn beyond our
initial goals.

34

4) For special applications (uorking with incomplete
programs and top-doun parsing) a sescond type of

syntax assignment -- incomplete syntax assipnment --
was incorporated into the specifications, This
mechanism will detect errors if an incomplete program

ia syntactically inconsistent.

S} A special type of nonterminal was provided, wuhich
was defined as a list of zero or more instances of
anothar syntactic type.

These factors were all considered in the development of a
set of specifications. Next it was time to consider the
implementation of the program holder in terms of louer level
abstractions. The major problem was hou to implement the n-ary
tree, which was the structural basis for the program holder.
Paerhaps the most flexible means was to devise specifications for a
list processing system which could allocate and link elements of
arbitrary size. This decision allouad many possible formats for
the nodes of the tree and permitted various schemes to specify the
linkage of one node to an arbitrary number of other nodes ({a
requirement for an n-ary tres). List processing systems require
some means of dynamic storage allocation, so that the third
(louest level) abstraction to be specified Has that of a storage
allocator mechanism.

At this point the design consisted of three module
specifications wuWhich uwere independent of one another. The
implementation then consisted onity of the designer's idea of the
mappings betueen the levels of abstraction; these mappings uJere
the last design decisions to be made: they uere still flexible at
a time uhen the specifications uers relatively fixed. Although the
specifications for this three-level system uere written from the
top down, the implementations were were written in reverse order,
to facilitate the debugging and testing of the syatem. (If the
higher of tuwo tevels is to be tested, one needs either an
implementation of the lower level or a simulation of it., Since
the louwer level implementation had to he built anyuway, it was
natural to implement this system from the bottom up.) Table 1|
describes the implementation of the multi-level system in terms of
design decisions. The design decisions are divided into the
follonwing categories: tasks to be performed, information to be
exchanged with the outside of the module {(or program), information
hidden inside the module, information unknoun to the module (Which
must be kept outside), and the implementation of the module in
terms of lower level abstractions. A detailed description of the
program holder specification can ba found in [4].

35

In the syntax-driven text editor the design phase
consisted of several distinct processes:

1) Consideration of the entire problem in terms of a
set of capabifities for the finished product.

2) Decomposition of this practical problem into one
or more collections of shared information
(incorporated with operations wupon it)., Each
collection becomes a softuare module. Examplest
al Building the editor around a program holding
mechanism. S '
b} Building the n-ary tree of the program holder
from a list processing system,
c) Building the list processing system from a
storage allocation mechanism,

3) UWriting the formal specifications for a module
once its roie has bsen identified.

4) Implementaion cf the module specifications, either
in terms of louwer-tevel abstractions or directly in a
programming |anguage.

Of the above processes, 1) and 4) are common to all methods of
program design. 2) is an extremely difficult process, because
there are many modular decompositions which Will deecribe a
particular system -- some of which are very poor from the
vieupoint of information hiding. The Parnas specifications [11
assist in process 2}, because they limit the effective size of a
given module by forcing the designer to enumerate ail external
connections (functions) and internal state changes (effects). In
our experience bad dscompositions yield large, unuieldy
specifications. Once a decomposition has been arrived at, process
3) is rather mechanical, involving many small decisions. Given
the module specifications from process 3}, process &) is easy.
Houever, it is a difficult task to produce an efficient

implementation of a modular program, because the modules limit the
" potentially destructive but -efficient "tricks" wuwhich the
programmer can perform, There witl aiways be some efficiency
sacrificed in the modularization of a programming system. We
expect that higher reliability and increased efficiency from
improved modular programming techniques may minimize complaints
about inefficiency of modular programming With formal
specifications.

36

Variability of design decisions using the modules

Several guesticng come to mind concerning the constraints
imposed by the wuse of the modules, and the ability to change
design decisicns already made:

1) How large should a module be?

2) How difficult 1is it to change design decisgions in
the specification stage?

3) How difficult is it to change design decisions in
the implementation stage?

There 1is no clearcut answer to the first question. In the
case of the program holder two geparate abstractions were present
the parse tree and the representation of the grammar. If these
two abstractiong were in separate modules, the sgyntax checking
desired in the parse tree could not be explicity included in the
parge tree module (becausge a given goftware module specification
must not make references to functions in another module) . Thus
the parse tree and the representation of the grammar were kept
together in o©one large module so that explicit syntax checking
could be included in the gpecification. In other caseg, a design
decision might indicate the breakdown of a large module into
geveral sgmaller ones.

Changing design decisions during the specification process
is easy, because the specificat ion process involves the writing of
a "first draft" of a specification, and then refining the original
work . Besides the maximum flexibility during this phase (one is
net burdened with having sgtarted the implementation concurrently),
the information contained in the specification makes it easy to
enumerate degign decisgsions, to decide appropriate changes, and to
make the desired changes 1in the specifications. One method of
determining whether or nct the specifications are adequate is to
write programs {for flowcharts) of desired operations using the
modules. 11 becomes apparent which degired capabilities are
impossible, or at least difficult, to accomplish. When such
difficulties occur, changes in the specifications are indicated.

37

When the specifications have become fixed and used in
impliementing other modules, some design decisions are difficult to
changse. The easiest decisions to change are the ones uwhich involve
no changes In the specifications, because such changes are
invisible outside the module In which the changes are made. An
example of this was a decision to completely reurite the
Implementation of the storage allocator module (bottom tevel of
the program holder). The original implementation had been running
far too slowly, and major changes seemed necessary. Since the
daesired changes could hbhe made wWithout any change Iin the
gpecifications, it was unnecessary to change any of the code for

the higher levels. Usually a change in the lowest level of a
system which is not formally specified will result in havoc wuith
the wupper levels. With the storage allocator, the change Has

mace easily, Without the higher levels being affected.

Making a change uwhich does affect the specifications is
far more serious and should be avoided wherever possible. In a
group project such a change may propagate errors throughout the
system.

38

Writing code for the system

The 1language chosen for implementation of the program
holder was SAIL (Stanford Artificial Intelligence Language) [5], on
a Digital Equipment PDP-18. The language is essentially Algo)-68
uith separately compiled outer biocks, call-by-reference inetead
of call-by name, a macro facility, and built-in 1/0 routines which
interface well with the machine. The presence of separately
compiled outer blocks was especially helpful for the following
reasonsi ‘

1) A block could contain all the code for the
implementation of a single module. In one module,
those procedures whose text is written inside the
block, but whose names uwould be availabie outside the
module {as functions} would be deciared "INTERNAL."
Any separately compiled block (another module)} which
Hanted to use the procedures must declare them
"EXTERNAL" (i.e. supplied from outside) at the
outermost block level in which they are used.

2} Different implementations of a module could be
trivially "plugged in" without recompliling.

39

Error caill implementation

Hhen_ an implementation of a function from a module
specification is written, tests are made for all the error
conditions in the "EFFECTS" section of the function. Then the
function’s value is caluclated, or the state of the module is
changed as indicated in the specifications.

In the implementation of a mutti-ievel system, error
checking on a higher level may prevent an incorrect function cali
at a lower level. Nevertheless, error checking at a lower leve!

is still carried out, causing a farge amount of time to be spent
in rarely useful error checking. Since many errors on a higher
level correspond to errors on a louwer level (such as an
out-of-bounds argument), some muiti-leve! error checking is

redundant. These difficulties can be handled in two ways:

1} The touer-level error calls can be eliminated.
This would increase effieiency, but would require the
"custom tailoring" of a module implementation every
time a higher level was added. In addition thise
solution assumes that the implementation of the next
highest level is correct, in the sense that it does
not make any incorrect calls to the lower level. This
assumption cannot aluways be made. 1f an incorrect
call were made of a lower-level function which had no
error checking, recovery from (or even detection of)
the error would be impossible.

2} iInstead of making a time-consuming test for an
error condition, each upper-level error call would
set a trap location for a certain louer leve! error
call. This would allouw the errors to be detected at
a lower level but recovery could be specified by the

“highest level at which the error could have occurred.
Parnas [6] has suggested the feasibility of this
method of handling error calis in a multi-level
system. This system uWill be implemented for the
program holder in the near future.

Note that only in the second case do all modules meet their
specifications.

40

Program testing and verification using the specifications

Having softuare module specifications for a program can
simplify the process of testing or verifying the progam. In
program testing the specifications provide a complete description
of the classes of external program behavior, so that writing a
test program for these external cases can be done directly from

the specifications. Of course the module speicfications do not
provide any indication of the classes of internal behavior of the
program to be tested. In most cases some analysis of the

impiementation algorithms is necessary in order to determine and
test internal cases wuwhich are not manifested on the outside.
However, the specifications have eliminated much of the work in
deciding what to test for and uhere to test it.

In the case of verification of an implementation, one can
interpret that each statement in the "EFFECTS" section of a
function specification corresponds to an assertion. One can
verify that the desired effect has taken place by inspection of
the part of the function implementation uwhich corresponds to that
particular effect. Care must be taken to ensure that an assertion
which is true at a given point in the function implementation is
also true on exit® from the function call, Considering the
specifications as assertions is also useful for more formal
verification procedures. The specifications constitute a complete
set of assertions, so that a programmer is less |ikely to "forget"
about an important property of the program if he can refer to the
specifications. Such forgetfuiness is |ikely to occur when large
programs are being written.

Note that when the behavior of simple functions is
established (either by testing or verification), thie behavior
forms a base from which other functions retated to the simple ones
may be tested or verified. Picking the correct order can speed the
testing or verification of an entire moduie.

The foilowing results were obtained wWith the program
holder implementation:

1) For each of the three modules written, the times
for coding a module and testing/verification were
approximately equat. The specification time for the
two lower~ievel modules was approximately equal to
that of coding them. The top level of the program
holder, in which many design decisions were made,
took tuice as tong to specify as to code.

2) For the total system (approximately 2308 |lines of
SAIL code), in 5 months there has been only one "bug"
detected after the testing/verification procedure (an
error was detected by the wrong error checking
statement).

41

Conclusion

One big problem In software development is that the total
time sopent in the coding and debugging of large systems is
exponential in the size of the system. Software module
specifications, because they fragment the programming problem and
because debugging time seems to be reduced, may be a way to help
reduce the magnitude of the "software crigis." This conjecture has
yet to be rigorously tested in a large-scale softuware effort.
There is a group experiment which indicates that the presence of
softuare module specifications can result in the successful
interface of programs written by many different inexperienced

programmers [2]. The experience of one person in the
implementation of the program holder mechanism suggests that the
module specifications are also wuseful in a one-man effort of

writing a large system.

42

Table I —- Dasign decisions in syntax-driven texi sditor

Program

Type of spscification

Dexign decizlons

1. Tazkz to ba pertormed

Il. Inforsalion sxchanged with
outside of wodula

111. Information hidden ulthin
modu &

1¥. Information unknosin to
module {which musl be Xepi
cuteide}

V. Implemantation of module
in tarms of lowsr leval
abstractions

Edllor

Inforeat -— in tarms of tasks (hat
the edlior should perlform

1. Should bs sole to parforw all standerd
tent editing funciions (smallest unlt may be
A laxawe instesd of & charsctar). :
2. Spacialized taxi sditing functiona dependsnt
on tha syntax of iha progrém
#4) Chacks for myntax errors
b) Can match on a patiern of terminals and
nontarminals
) [Indenting
d) Printing of parse tres
) Horking With Incomplestis, but
syntactically conxistenl prograns
3. Driginal intendsd uze — o
halp ganarate tha module speclflicetions

Input
Program 1mxt
GCrawmar (oo inttiatlizeilon)
Edltor commands
Dutput
Altared progrsm text
Formatisd program text
FParzs irus
Edltor rasponses and disgnostics

1. Internal represantation ol program

2. Parzing algorithe

3. Symbol table forwat

4. Horizontal decomposifilon at fousr lwval

not finally declded

Tasks perforwad by algortthmic wodulss
I/0
Searching, substitution, snd patiern maiching
Parzing

Information stored in Parnax typs modules
Program holder
Lexical aralyzer

43

Table 1 (continued)

Program
Type ot specification
Design declisions

I. Tasks to be performed

1I. Information exchanged with
outside of module

111. Information hidden uithin
module

IV. Information unknown to

module {(which must be kept
outside)

V. Implementation of module
in terms of lower level
abstractions

Pragram holder

Parnas (format) specification

1. Process any context-iras language
2. Reprasentation of program as
parse tres (n-ary tree)
3. Grammar -— tixed &t jnitialization
4, Traes can be built up and
deleted dynamically
5. Syntax assignment
a) Automatic syntax checking
snsures valid parse below
b} Representation of grammar
must be internal to module
6. Need incomplete syntax assignment
a) Top down parsing
b) Stepwise refinement of
programs
7. Consideration of a special class
of nontarminal defined as a list
of symbols

Input
Creation and deletion of nodes
Data associated with nodes
Grammar -- at initialization
Output
Existance of nodes
Reslations betwesn nodes
Data assigned to nedes
Productions of grammar

1. Hanner in which nodes ars gliven
values

2. Internal representations of
parse tree and productions of
grammar

3. Aigorithm for syntax checking

4, Hleans of determining existence of
nodas and whether data In nodes
is defined

1. Node indices not referrsd to
in context (i,s., pointers Into
the trese are reguired)

2. Correspondence of intsgers to
syntactic types

3. Symbolic information' associated
with the nedes (i.e. & symhol
table is required)

1. Grammar is stored in an array
with tinks and is accessad by
wacros

2. Program holder iz implamented

by calls to functions of list

processing modufe

&) MNodes in parse tree
correspond to list alements

b) Pointers to sons ars stored
in blocks |linked to father
node

44

Tabla I (continued)

Program
Typa of spacification
Design decisions

J. Tasks to be pertormad

11. Information exchanged with
outside of module

I11. Intormation hidden within
module

IV. Information unknoun to
module (dhich muzi ba kept
outslde)

V. Implamantation of module
in terms of lowsr lavel
abstractions

List processing system

Parnaz (formal) spacification

1. Create and destroy tist alssents

2. Can spacify the number of flaids
in sach atament craated

3. Can datermina from ouiside
whether or not & fleld has been
glvan a valuw

4. Can zat values of flelds

Input
Creation and deistion of sisments
Yaluex of fields
Qutput
Existence of wiwments
Existonce of a valuas for a flatd
in an slament
Values of fields

1. Heans of detarmining the
sxistence of slements

2. Hhat value constituies an
undafined {leld

3. fathod of a#llocating and
thoosing indices Yor slsments

L. Whathar & field iz & pointer or
data

2. Indices of elements referred
to out of contaxt

List processcr calls zioraye
allocator module
a) undetined = 2134 -)
b} indicas of nodas are
"addresses” in storage
&t locator

45

Table 1 (continued)

?roqram
Typs of specitication
Design decisions

I. Tasks to be performed

I1. Information sxchanged with
outside of module

I1I11. Information hidden sithin
module

IV. Information unknouwn o
module (which must be kept
outside) :

V. Implementation of wmodule
In terms of lower fevel
abstractions

Storage allocator

Parnas (formal) specification

1. Allocate and free blocks of
variable size

2. Desire knouledge of whether or nol
an address is the head of a block
(biocks are referred to by address
of head)

3. Desire knowliedge of whather or not
an address is fras or aliocated

4. Con only free storage uhich has
bean aliocatsd a2 » block

input

Size of block for allocation
Rddress of biock for fresing

Output

2'
3.

1'

1.
2.
3.

4,

Hhether an address iz free or

allocated

Hhethar an address is head of a block
Whether an address is used by

allocator for bookkesping

Keeping track of free and
allocated blocks

Determination of heads of blocks
Storage ailocation strategy

Compacting process {khen fres
storage becomes tight)

Referanca to block haads out of
context (calling program must
remember the addrasses of blocks
it has altocatad)

Direct impiementation in SAIL
First fit ailocation strategy
Bit matrix to determine free
storage

Storage to be allocated is SAIL
integer array

46

Editor

Searching,
Program holder Symbol Lexical Input- 7
FParser pattern match-
Pargse JRep. .
Table Analyzer output Lna and Sub-
tree - of 3 .
| Grammafr stitution

List process - nteger
ing module Array

Storage
allocator

nteger
Array

Figure 1 - Structure of a Syntax-Driven Text Editor

References

[11] Parnas, D.L., "A Technique for Software Module Specifications
With Examples," Communications of the ACH, May 1972. Available as
a Technical Report, Computer Science Department, Carnegie-Mellon
University, 1971, '

{2} Parnas, D.L., "Some Conclusions from an Experiment in Software
Engineering Techniques," Proceedings FJCC, 1972. Available as a
Technical Report, Computer Science BDepartment, Carnegie-Mellon
University, 1972.

[31 Savitzky, Steven, Son of Stopgap, Stanford Artificial
Intelligence Laboratory, Operating Note 58.1, September, 1989,

{4] Robinson L. and O.L. Parnas, "A Syntax-Driven Text Editor,"

Technical Report, Computer Science Department, Carnegie-Mellon
University, 1973. |

[5] Suinehart D. and R. Sproull, SAIL Manual, Stanford Artificial
Intelligence Project, Operating Note No. 57, November 193869,

(8] Parnas, 0.L., "Response to Detscted Errors in We!l- Structured

Programs," Technical Report, Computer Science Department,
Carnegie-Mellon University, 1872.

48

