NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17. U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document withoul permission of its author may be prohibited by law.

OBESERVATIONS ON THE PERFORMANCE OF AVL TREES

R. E« Scroggs, P, L. Karlton,
8. H. Fuller, and E. B. Kaehler

Department of Computer Science
Carnegie-Mellcen University
Pitteburgh, Penngylvania

July, 1973

This work was supported by the Advanced Regearch Projects Agency of
the Cffice of the Secretary of Defense (F44620-73-C-0074) and is
monitered by the Air Force 0Office of Scientific Research.

ABSTRACT

This paper pfesents the results of a series of simulations that investi-
gate the performance of AVL trees. It is shown that the only statistic of
AVL trees that is a function of the size of the tree is the time to search
for an item in the tree; the performance of all other procedures for maintain-
ing AVL trees are independent of the size of the tree for trees greater than
~ 30 nodes, In particular it was discovered that an average of ,465 restruc-
tures are required per insertion and .214 restructures per deletion. More-
over, an average of 2,78 nodes are revisited to restore the AVL property on
insertion, and 1.91 nodes are revisited on deletion. Actual timings of the
AVL procedures for insertion, searching, and deletion are presented to provide

a practical guide to estimating the cost of using AVL trees.

INTRODUCTIOR

This paper empirically examines the computational cost of insertion,
deletion, and retrieval in AVL trees, An AVL tree is any rooted, bihary

tree with every node having the following property:

AVL property. The height of the left subtree differs by at most one
from the height of the right subtree, (The height of a tree is the

length of the longest path from the root node to a leaf node.)

For example, the tree in Figure 1(a) is an AVL tree but the tree in
Figure 1(b) is not because nodes A and D do not exhibit the AVL property.
Given that a node possesses the AVL property,.we will refer to it as bal-
anced, left heavy, or right heavy depending on whether the height of the.
left subtree is equal to, greater than, or less than the height of the
right subtree, |

Immediately after inserting or deleting a node from an AVL tree one or
more nodes may lose the AVL property. Figure 2 shows the two cases that
can occur on insertion (and the fwo ﬁost common cases for deletion) and how
to locally restructure the tree to restore the AVL property to all the nodes.
A third case restructuring exists in deletion. It is similar‘to the single
rotation case shown in Figure 2(a) except subtree B has a height of h+l,
i.e., node C is balanced, A single roﬁation is sufficient tdlrestore the AVL
property to the critical node and we will subsequently refer to this case as
the modified single rotation ease. For a more detailed description of AVL

trees see (1, 2, 3, 4, 5, 6, 7].

-2-

(a) An AVL tree (b) A non-AVL tree

Figure 1, Search Trees

critical node —» o

Subtrees
name

height

(b) The double rotation case,

Figure 2. The Two Restructuring Cases for Insertion

-3

For a tree structure in which insertion and deletion operations are
frequently performed, it {s important to kpow the costs of performing
those oparations as well as the cost of locating a node in the tree, AVL
treeg have the attractive property that all three operations (imsertion,
delaetipn,. and retrieval) can be performed in O(log N) steps, i.e,, on the
order of log N steps, where N .is the number of nodes in the tree. This is
in contrast to random trees and complately balanced trees in which thg wbrst‘
case of At least one of the three operations can take as many as O(N) steps,
Our poals here are to empirically find the average number of comparisoms to
find .4 node in the tree and to obtain more detailed estimates of the costs

for restructuring the tree after an insertion or deletion.
EMPIRICAL OBSERVATIONS

-.In-order to observe the performance of AVL trees, we presented random
permutations of an ordered list to the procedure that inserts nodes into
the AVL trees. Specifically, we used 2 uniform random pumber genara;or* Lo
provide the values of the successive nodes to be inserted, To study the
deletien process we selected any node in the tree for deletion with equal.
probability, To minimize correlation in the simulation we did N insertions
and then N deletions, etc, Therefore, all observations of inserting (delet- _
ing) & node into &n N node tree are independent events,

. For the statistics that follow, 500 trees of size 5000 nodes were built

up. and then broken down, collecting statistics on trees of gize 1 to 5000

in the process.

% - — .
The random number generator used was:

= 3141592631 x, + 14522135347 modulo 235.

X441 1

On insertion the properties we tabulated were: (1) the average number
vf comparisons necessary to locate the position where a new node should be -
added (this is the average depth of the leaves and semi-leaves), (2) -the
percentage of insertions that caused a restructuring to be performed (statis-
tics were kept for both types of restructuring), and (3) the average number:
of nodes visited during the traceback procedure (counted from the father of
the node just added to the tree to the node at which tracebuack terminated).

On deletion the properties we tabulated were: (1) the average number
of comparisons necessary to locate the node to be deleted (this is the aver-
age depth of all nodes in the tree), (2)'the probable number of restructurings
necessary on each deletion (statistics were kept for each of the three types
of restructuring), and (3) the number of nodes visited during the traceback pro-
cedure (counted from the father of the node deleted from ﬁﬁe tree to the
node at which traceback terminated). On deletion, 1f the node to be deleted
was not a teaf or a semi-leaf, we interchanged that node with its predecessor
or successor*befbre deleting it.

Table 1 and Figure 3 present the results for insertion and deletion.

The graphs for the average number of comparisons on insertion and deletion
show that the retrieval time is logarithmic in the number of nodes in the
tree, All other statistics,-hoWever,'when plotted on graphs similar to

Figure 3, were observed to be asymtotically independent of the size of the
tree and,to within the precision of the simulation, the statistics had reached

their asymtotic values for trees greater than ~ 30 nodes. Our results for the

*

The node to be deleted was interchanged with its predecessor or successor
depending on whether the node was heavy to the left or right, respectively.
If the node was balanced, the node was interchanged with its predecessor.

Table ¥, Insertion and Deletion Statistics

Standard 954 Confidence
Mean Deviation Interval for Mean

Insercion:

Single Rotation rebalance 2327 G226 +.0006

Double Rotation rebalance \2324 4223 +.0006

Number of rodes visited Ln'” 2,778 1.625 +.003
traceback

Deletion:

Modified Single Rotation ' 0536 .2253 +.0002
rebalance o

Single Rotation rebalances .05817 - .2838 +. 0004

Double Rotation rebalances .0826 .2888 +.0004
Number of modes visited in 1,912 1,410 +.002

traceback

Comparisons

16 —

T4 |

12

10—

searches on insertion
| {(approx. 1.0131{:32N + 104}

\searchea on deletion

{approx, 1.0031032 - ,798)

[i _ | ,) i i
10 50 100 500 1000 5000
N
Figure 3, Expected Number of Comparisons to Locate an JTtem in
an AVL tree of N Nodes. (Each point is surrounded by
its 95% confidence interval.)

o -

-g.n.

5.

Table 1, Insertion and Deletion Statistics

Standard 95% Confidence
Mean Deviation Interval for Mean
Insertion:
Single Rotation rebalance .2327 4226 +.0006
Double Rotation rebalance .2324 4223 +.0006
Number of nodes visited inl: 2,778 1,625 +.003
traceback .
Deletion:
Modified Single Rotation .0536 .2253 +.0003
rebalance '
Single Rotation rebalances . .078) K .2838 +.0004
Double Rotation rebalances .0826 2888 +.0004
Number of nodes visited in F 1.912 1.410 +.002

traceback

16"

14-1

12~

10-

searches on 1nsertion
(approx. 1.0131log, N+ .104)

] 6 '
\scarchcs on deletion
(approx. 1.003logN - .798)
4 -
7

10

o

0 100 500 1000 3000
N
Figure 3. Expected Number of Comparisons to Locate an Item in
an AVL tree of N Nodes. (Each point 1s surrounded by
1ts 93% confidence interval.)

ingerticon cogts concur with thoge of others [4]. The most surpriging re-
sults are those for deletion; the worst case restructuring might inveclve
log™N rebalances, but we observed that the probzble number of rebalances
per deletion was half that expected for insertion. 2 related cbservation
is that the traceback on deletion visited approximately one legs node per
operation than on ingertion.

It is interesting to note on insertion, to within the 9%<E confidence
intervals of the simulation, that the single and double rotation cases appear
to occur with equal frequency. In fact, a simple argument shows they must
be equally probable. In Figure 2(a) congider the subtree rooted at C: it

includes all items in the interval bcounded by the valuss of nodes 2 and X.

Sitteel 4e%i:equfife the nodes in the entire tree tc arrive in random order, all
the nodes that are within the interval bounded by A and X must also arrive
in random order. Hence the subtree rocted at C is an AVL tree that is as
probable to be left heavy as right heavy. However, the gingle feature that
distinguishes the single rotation case from the double rcotation cage is
whether or not node € ig heavy in the same, or oppesgite, direction ags the

critical node.

TIMING STATISTICS

To compare the actool costs 1nvolved 1n performing the retrieool and
restructuring operations, we gathered timing statisgtics for the operations.
The following cost functions were derived from an implementation of the AVL
procedures written in BLISS/IO [7] and run on a PDP-10 (all times are in

microseconds):

Insertion
.search for the location te attach the new node 150 + 90 perwcumpare*
attach node to the tree 80
restructure the tree- 350
total o 580 + 90 Logzﬂ
Deletion
search for the nooe to be deleted ' 150 + 90 per compare*
detach the node from the tree 325 -
restructure the tree 250
total ' 725 + 90 Log, (N)

These results show that deletion is slightly more expensive than insertion,
but that for large trees, the search time is the dominant factor in both

operations.

*
Figure 3 gives the expected number of comparisons as a function of the size
of the tree.

References

1.

Adel’'son-Vel'skii, G, M, and E, M, Landis, "An Algorithm for the Organiza-
tion of Information," Doklady Akad., Nauk USSR Moscow 16; No. 2 (1962),

pp. 263-266 (Russian), English translation in Soviet Math. Doklady 3
(1962), pp. 1259-1263, _ —

Foster, C. C., "Information Storage and Retrieval Using AVL Trees,
Proc, AM 20th Nat. Conf., 1965, pp. 192-205.

Knott, G. D., "A Balanced Tree Storage and Retrieval Algorithm," Proc.
Symp. on Inform, Storage and Retrieval, April 1971, pp. 175-196.

Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973, Sec, 6.2.3.

Kosajaru, S. Rao, On Information Sto'rage and Retrieval by AVL Trees,
Department of Electrical Engineering, The Johns Hopk1ns University,
Baltimore, Maryland.

Nievergelt, J. and E. M. Reingold, Binary Search Trees of Bounded
Balance, Department of Computer Science, University of Illinois, Urbana,
I1linois.

Stone, H. S., Introduction to Computer Organization and Data Structures,
McGraw-Hlll New York, N. Y., 1972, Sec. 11.2.3.

Wulf, W. A., D. B. Russell, and A. N, Habermann, "BLISS: A Language
for Systems Programming,"” Comm. ACM 14, 12 (December 1971), pp. 780-790.

=10~

APPENDIX: A Set of Procedures for Imserting into,
Deleting from, and Searching AVL Trees

integer array trea[O:n,1:6])dret,path{0:2.25+In{n+2)};
integer trechbaseevel;

comment These identifiers represent the data structures to
be used in the procedures.
1) tree represents the AVL tree, it is accessed with
two wvalues, a pointer to a node and a field
specification within that node. tree is dectared as an
array, but any data structure accessed in the above
manner is acceptable, The actual tree constructed is
built as the left subtree of a special header node
pointed to by treehase.
2) path and dret are used as a stack to record
movements through the tree. path holds pointers to
nodes and dret holds the direction moved when stepping
down from the node identified by the corresponding polnter in
path. level is used as a stack pointer into
path and dret. ;

integer nullink,maxkey;

.integer linkrlink,rank keyinfopirbalance;

comment The first two identifiers above represent

~constants and the second six represent the field

specifiers far each neode in the tree. In this
implementation, the latter six take on the values
1,.,6 respectively, ccrrespondmg to the second index of
the array iree.
1) The Hink and rlink of each node contain pelnters
to its left and right sons. The value nultinkiwhich must be
chosen to be distinct from all valid link values) in a
field indicates that no son is present on that side of
the node. llink in the header node holds a pointer to
the root node of the tree, rlink in the header always
has the value nellink.
2) The renk of each node specifies the relative position of thst node
in the subtree of which it is the root, i.e, one plus
the number of nodes in its left subtree. The rank
of the header node, therefore, specifies one plus
the number of nodes in the tree.
3} If the AVL tree is being used to store nodes by
value, then the key of each node contains the value that uniguely
identifies the node and the nodes are storedin
lexicographic crder based cn the value of key. If
the AVL tree is being used to store a linear fist,
then the key values are not necessarily distinct. In -
this case, each node is accessed by specifying ils
position in the postorder sequence of the tree. The
key of the header node contains the
value maxkey which must be chosen larger than any key
to be added to the tree.

-1t-

4) the infoptr of each node contains a pointer to the information
associated with that node. If only a small, constant

amount of information is associated with each node,

the pointer can be eliminated and be replaced by the

information itself. The infoptr of the header

node always has the value nullink.

5) the balance of each node indicates the balance of the subtree for
which that node is the root. The possible values are:

left heavy, right heavy, or balanced. The balance

of the header node is undefined. ;

integer balanced,lefi,right,found,notfound,bounderror,
deleteretrieve,insert; '

comment These identifiers represent constants in the
procedures. They may be assighed any value such that
within each of the following three sets, each member has a
distinct value,
{balanced leftright}
{found,notfound,bounderror}
{delate,retrieveinsort} ;

integer procedure OPPSIDE(side);
integer side; value side;
OPPSIDE:=if side = left then right else left;

integer procedure OPPSLINK(side);
integer side; value side;
OPPSLINK:=if side = left then rlink elise llink;

integer procedure SIDELINK(side);
integer side; value side;
SIDELINK :=if side = left then lliink glse rlink;

procedure INITHEADER;

begin

comment '

Function: to initialize the special header node for the
tree. This procedure must be called before any tree
operations are performed.

Side effects: None. ;

treefirechaserank}=1;
treeftrechase,key)=maxkey;
tree{treebase,infoptrl:=nullink;
tree(trecbase,llink}:=tree[trecbaserlink]:=nullink;
tree[trecbase,balancel:=balanced

end INITHEADER;

-12-

integer procedure SEARCH{pesitiontearchsearchkey,iypesearch);
boolean positionsearch; integer searchkeytypesoarch;
value positionsearchscarchkeyiypescarch;
begin integer tpoint,fieldloopdummy,chgval;
comment
Permissible values for the parameters:
1) positionsearch - {rue, false
2) searchkey - a list position or a key value
3) typesearch - insert, reirieve, delote

Function: to search for a node in the tree. If positionsearch =
true, then searchkey is interpreted as a position in the
postorder sequence of the tree, otherwise searchkey is
interpreted as a key value.

Side effects:
1) path and dret are filled with the links and
directions taken on the path from the header node to
the desired node. peib[leve!l] points to the desired
node when it is found in the tree, ctherwise it points
to the leaf or semi-leaf from which the desired node
could be a son. On insertion dred{level] specifies
which side of the node pointed to by pathflevel] the
new node will be added.
2} typesearch indicates the purpose of the
search, i.e,, & search for & position to insert a new
node, or a search fo find a node so that it may be
deleted, or a search for retrieval of information.
The renk field of the nodes on the path are adjusted for
the insert and delete cases with the assumgption that
the operation will subsequently be performed.

Value of SEARCH:
1) found - node located in tree, pointed to by
pathilevel].
2) notfound - node not located in tree, path[level]
points to node which could be the father of desired
node,
3} bounderror - position specified does not occur in
list{on search by positicn only). ;

-13-

procedure RESETRANK (typezecarch);
" inleger typesearch; yalue typesearch;
begin integer chgvaltievel;
comment
Permissible values for the parameter typasoarch: insert,
delote. ‘

Function: to restore the value of the rank field in

each node. This only has to be done if an attempt

was made to insert(by value) a node which already existed
in the tree or an attempt was made to delete a node which
did not exist in the tree. typesearch specifies for which
case the correction is being made(insert, delote).

Side effects: None.

chgval:=if typesearch = insert then -1 else 1;
for tlevel:=(if chgsw = insert
then level-1 else level)
step -1 until © do
if dret[tlievel] = left
then tree(path{tlovelrank):=
trecl path(tlevel]rank)+chgval
end RESETRANK;

comment The body of SEARCH begins here. ;
if {positionsearch A
({searchkey < Q) v
(searchkey > treo[tracbase,rank]) v
(typesearch # insert A searchkey = tree{irasbaserank)))) v
{~ positionsearch A secarchkey > maxkoy) . :

{hen .

SEARCH :=bounderror;
goto endsrch
end;
tpoint:=trecbase;
level:=0;
chgval:=if typesearch = inseri
then 1 else (if typesearch = delete
then -1 else 0);

field:=if positionsearch then rank glse key;

-14.

for leopdummy:=1 while true do
begin
path[level:=tpoini;
if searchkey # tree(ipoint,field)
then
begin integer side;
dret[level):i=side:=|f scarchkey < treeft polm,f iold)
then lefi else right;
if positiongearch n (side = right)
then searchkey:=searchkey-tree[tpoint,rank);
tree[tpoint,rank}i=tree[tpoint,rank]+
(if side = left then ehgval gise 0)
tpoint:=tree[tpoint, SIDELINK(side));
it (-~ positionsearch) n (1point = nullink)
then
begin
if typesearch = delote then RESETRANK(dalem)'
SEARCH :=notfound;
g0oi0 andsrch
end;
level:=level+]
end
else
begin
if typesearch = insert
then
begin
if ~ positionzearch
then RESETRANK(insert)
glse
begin .
dret[level]:i=left;
tree[pathllevellrank):=
treel path[levellrank]}+1;
if tree[path[levellllink] # nullink
then ‘

level:=level+1;
path{level]:=
tree[path[level-1),llink];
dret[level |:=right;
for pathilevel+1):=
tree[path{level]rlink]
while {(path{level+1] # nullink) do

level:=level+1;
dret[level l:=right
end
end
end
end;
SEARCH :=found;
goto endsrch
end
end;
endsrch:

end SEARCH;

=15

rrocedure SINGIL.EROTATE;

begin integer pfather,peritical,peritronl side;

comment

Function: to perform a ’single’ rotation at a critical node
to re-establish the AVL property. The llink, rlink,
balance, and rank values are adjusted for the critical
node, its father and the the heavy side son of the
critical node.:

Side effects: none. ;

plather:=path{level-1];
peritical:=path[lovel);
peritsonl:=path[level+1];
side:=tree[peritical,balance);
tree[pfather, SIDELINK(dret[level-1))):=peritsonl;
tree[peritical SIDELINK (side)):=
treel peritson,0PPSLINK (side));
tree| peritson,OPPSLINK (side)}:=peritical;
treel peritical,rank):=
treef peritical,rank]-
(if side = left then tree{peritsonirank] glse 0)
tree[peritsonl rank]:=
tree{peritsonlrank]+
(if side = right then tree[peritical,rank] glse 0)
tree| peritical,balancel:=treo] peritsonl,balance}=balanced
end SINGLEROTATE;

-16-

precedure DOUBLE ROT ATE;

begin integer piatherperitic™ peritsonl perUson2.side;
comment

Function: to perform a 'double’ rotation at a critical node
to re-establish the AVL property. The [link rlink
balance, and renk values are adjusted for the critical
node, its father, the the heavy side son of the
critical node, and the heavy side son of that son.

Side effects: none. ;

p father:**pathiflevelA 1
peritical: =pathflevelf:
peritsonl: =puthf level+l;
peritson?: pathflevel) 2f;
side: =treefperiticalfialance]
treefpfather=SIDELINK {arctflcvclA]) f1="
trecfperitsonl, OPPSUNK(side) [: =
trecfperitson 2STDELINK (side) [
treefperitical SIDELINK side) [: =
treciperitson2>OPPSLINK (side)i
wreefperitson2ST DELT NKsidejf: peritsonli
recf peritson20PPSLINK {side) fi=poriticah
recfperitival rankf: =
recfperitical rank]--
(Lt side = lefi

then trecperitsonl »rani] | trecfperitson2rank] else
treefperitson 2. ranfc]:=
frecf peritson frank--\-
(il side = right then itreefporitsonirankf else 03;
weeperttson2rank]:
weelperitso™fank]
(il side lefi then treefperitsonl>rank]
else treefperiticalrank)i

recfperitical balancef.
jl wreefperitson2 halancef « side
then OPPSIDE(side) ekfi. saiancea*=
treciperitsonitbalance |7
LL treefperitson2 halance] « OPPSIDE side)
then side else halanced,
treefperitson balance f:-balenced

end DOUBLEROTATE:

0):

-17-

procedure ATTACH NODIApficc newkeynewinfoptr)i
inlfififiL pfice newkeypewmt&per
value pfree newkey pewinfoptr.
begin
comment
Permissible values for the parameters:
1) pfiee - a pointer to any empty node
2) newkey - value of ltey for the new node
3) ncwinfoptr - value of information pointer for the
new node

Function: to insert a new node into the tree.
The new node is attached to the node pointed to by parifievelf
on the side specified by drciflevel

Side effects: pfice is placed in pathificvel—/ for use by
the rotation procedures. ;

tree/pathflovellST - DELS NK{dret}iovelf) [:-pfice;
treefpfiee rank] — 1;
tree/pfiee ink' -tree pfree rlink - "mullink;
ireclpfrecfialancey.-balanced.
iree[pfree key]:-newkey:
treefp freein foptr] ¥ —newinfoptr>
pathflevel | 1] —pfree
end ATTACHNODL;

-18-

procedure REBUJLDINSERT;
begin |

somment :

Function: to trace back along the path from the father of
the node just attached to the tree, checking

that the AVL property has been maintained. A rotation is
performed if the property no longer holds at a node. At
most one rotation is performed but traceback may terminate
without performing a rotation or reaching the top of the
tree,

Side effects: none. ;

tree[path[level)balance]:=
if tree[pathllevel)balance} = balanced
then dretllevel] else balanced;
if treefpathllevellbalanee] # balanced
then
begin integer loopdummy; boolean critsw;
critsw:=false;
for loopdummy:=1 while (level > 1) do
begin
level:=level-1;
if tree[path[level)balance] # balanced

tree[path[lovel)balance):=
if tree[path{levellhalance] = dretflevel]
then dret[lavel] else balanced;
eritsw:=
if tree{path[level)balance] = dret[level]
then true else false;
goto ehkerit
end
else tree[path[level]lbalance]:=dret[level]
- end;
chkerit:
if critsw

then .

if tree[path[level]balance] =
tree[path[level+1)balance]
then SINGLEROTATE
else DOUBLEROTATE
end

end
end REBUILDINSERT;

~19.

erocedure DETACIINODE;

begin integer pdel;

comment

Function: to delete the node specified by palh[lcml] from
the tree.

Side effects: If the node to be deleted is not a leaf or a

. semi-leaf, then the node is interchanged with its postorder
predecessor{successor) before being deleted. path and drct

are filled out with the path down to the
predecessor{successor). The predecessor is chosen if the node is lafi
heavy or balanced, otherwise the successor is chosen, ;

pdel:=path[level];
if (eroelpdel,llink] # nullink) A
(treo[pdel,rlink] ¥ nullink)
then ‘
begin integer tpaint,tlevol temp,side,chgval,slink;
comment Node is not a leaf or semi-leat, find its
predecessor{successor), ;
tlevel:=level-1;
drct(levell:=side:=il treo{pdel balance) = right
then right else lefy;
chgval:=if side = left then O elga 1;
tree{ pdel,rank]:=
tree[pdel,rank]-(1-chgval);
level:=lavel+1;
path{level :=tree[pdel SIDELINK(aida)}
side:=QPPSIDE(side); ,
slink:=SIDELINK (side);
for path[level+1):=tree[pnth{level]slink]
while (path{level+1] # nullink) do
begin
dretflovalli=sidn
trea[path(level)rank]:=
tree path[level) rank]-chgval;
level:=level+1
end;
somment Perform interchange. ;‘
tpoint:=path[level};
tree(paih[tlevel \SIDELI NK(drcl[tlew!])] -tpoim,
temp:=tran pdel llink];
trea pdel,UlinkJ:=tree[tpoint Ilink};
tree(tpoint,llink):=temp;
temp:=tree| pdel,rlink};
tree[pdelrlink i=tree[t point rlink);
tree{t point,rlink)i=temp;
treelipoint rank):=tree[pdel,rank];
tree[tpoint balancefi=troe] pdel balance}
path[tievel+])=t point
end:
comment Delete leaf or semi-leaf, ;
tree[path{level-1}SIDELINK (dret[lovel-1])]):=
treo[pdel,if tree[pdel,llink] = nullink

then rlink else Ilink)
and DETACHNODE,;

~20-

procedure REBUILDDELETE;
begin integer loopdummy;
comment

Function: to trace back along the path from the father uf '
the node deleted from the tree, checking that

the AVL property has been maintained. A rotation is
performed if the property no longer holds at a node.
Several rotations may be necessary but traceback may
terminate without performing a rotation or reachmg the
top of the tree

Side effects: none. ;

for lospdummy:=1 while {fevel > 1} do
kegin

level:=lovel-1;

if tree| path[lovel]lbalance] = balanced

kegin
tree| path[levellbolance:=0PPSIDE(drci[level]s
gelo endrbld
end ' ’
else if sroe[path[level Lhalance] = dret[ievel]
then tree| path[level] balance):i=balanced
glse

path{level+1]:= ,
treapath[level JOPPSLINK (drei[level D]

if treelpath[level+]1lbalance) = balanced
then '

SINCLEROTATE,;
tree] path[level Lbalanca]i=
OPPSIDE(drei[level]);
iree[path[level+1 L balancei=dret[level};
goto endrbid
end
glse if treelpath[levellbalance] =
treef paih[level+1)balance]
then SINGLEROTATE

glse

begin

pathllavel+2]:=
treelpath(level+1],
SIDELINK{tree[path[level+]],
balance]}];

DOUBLEROTATE

end

end
end;
endrbld:

end REBUILDDELETE,;

