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ABSTRACT 

This paper presents the results of a series of simulations that investi

gate the performance of AVL trees. It is shown that the only statistic of 

AVL trees that is a function of the size of the tree is the time to search 

for an item in the tree; the performance of all other procedures for maintain

ing AVL trees are independent of the size of the tree for trees greater than 

« 3 0 nodes. In particular it was discovered that an average of .465 restruc

tures are required per insertion and .214 restructures per deletion. More

over, an average of 2.78 nodes are revisited to restore the AVL property on 

insertion, and 1.91 nodes are revisited on deletion. Actual timings of the 

AVL procedures for insertion, searching, and deletion are presented to provide 

a practical guide to estimating the cost of using AVL trees. 
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INTRODUCTION 

This paper empirically examines the computational cost of insertion, 

deletion, and retrieval in AVL trees. An AVL tree is any rooted, binary 

tree with every node having the following property: 

AVL property. The height of the left subtree differs by at most one 

from the height of the right subtree. (The height of a tree is the 

length of the longest path from the root node to a leaf node.) 

For example, the tree in Figure 1(a) is an AVL tree but the tree in 

Figure 1(b) is not because nodes A and D do not exhibit the AVL property. 

Given that a node possesses the AVL property, we will refer to It as bal

anced, left heavy, or right heavy depending on whether the height of the 

left subtree is equal to, greater than, or less than the height of the 

right subtree. 

Immediately after inserting or deleting a node from an AVL tree one or 

more nodes may lose the AVL property. Figure 2 shows the two cases that 

can occur on insertion (and the two most common cases for deletion) and how 

to locally restructure the tree to restore the AVL property to all the nodes. 

A third case restructuring exists in deletion. It is similar to the single 

rotation case shown in Figure 2(a) except subtree P has a height of h+1, 

i.e., node C is balanced. A single rotation is sufficient to restore the AVL 

property to the critical node and we will subsequently refer to this case as 

the modified single rotation ease. For a more detailed description of AVL 

trees see [1, 2, 3, 4, 5, 6, 7 ] . 



(b) The double rotation case. 

Figure 2. The Two Restructuring Cases for Insertion 



For a tree structure in which insertion and deletion operations are 

frequently performed, it is important to know the costs of performing 

those operations as well as the cost of locating a node in the tree. AVL 

trees have the attractive property that all three operations (insertion, 

deletipa*, and retrieval) can be performed in O(log N) steps, i.e., on the 

order of log N steps, where N is the number of nodes in the tree. This is 

in contrast to random trees and completely balanced trees in which the worst 

case of at least one of the three operations can take as many as 0(N) steps. 

Our goals here are to empirically find the average number of comparisons to 

find a node in the tree and to obtain more detailed estimates of the costs 

for restructuring the tree after a.n insertion or deletion. 

EMPIRICAL OBSERVATIONS 

In order to observe the performance of AVL trees, we presented random 

permutations of an ordered list to the procedure that inserts nodes into 

the AVL trees. Specifically, we used a uniform random number generator* to 

provide the values of the successive nodes to be, inserted. To study the 

deletion process we selected any node in the tree for deletion with equal 

probability, To minimize correlation in the simulation we did N insertions 

and then N deletions, etc. Therefore, all observations of inserting (delet

ing) a node into an N node tree are independent events. 

For the statistics that follow, 500 trees of size 5000 nodes were built 

up and then broken down, collecting statistics on trees of size 1 to 5000 

in the process. 

*The random number generator used was: 
x i + 1 - 3141592631 ^ + 14522135347 modulo 2 3 5 . 



On insertion the properties we tabulated were: <1) the average number 

Of comparisons necessary to locate the position where a new node should be 

added (this is the average depth of the leaves and semi-leaves), (2) the 

percentage of insertions that caused a restructuring to be performed (statis

tics were kept for both types of restructuring), and (3) the average number 

of nodes visited during the traceback procedure (counted from the father of 

the node just added to the tree to the node at which tracebuack terminated). 

On deletion the properties we tabulated were: (1) the average number 

of comparisons necessary to locate the node to be deleted (this is the aver

age depth of all nodes in the tree), (2) the probable number of restructurings 

necessary on each deletion (statistics were kept for each of the three types 

of restructuring), and (3) the number of nodes visited during the traceback pro

cedure (counted from the father of the node deleted from the tree to the 

node at which traceback terminated). On deletion, if the node to be deleted 

was not a leaf or a semi-leaf, we interchanged that node with its predecessor 

or successor*before deleting it. 

Table 1 and Figure 3 present the results for insertion and deletion. 

The graphs for the average number of comparisons on insertion and deletion 

show that the retrieval time is logarithmic in the number of nodes in the 

tree. All other statistics, however, when plotted on graphs similar to 

Figure 3, were observed to be asymtotically independent of the size of the 

tree and,to within the precision of the simulation, the statistics had reached 

their asymtotic values for trees greater than - 30 nodes. Our results for the 

*The node to be deleted was interchanged with its predecessor or successor 
depending on whether the node was heavy to the left or right, respectively. 
If the node was balanced, the node was Interchanged with its predecessor. 
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Table 1. Insertion and Deletion Statistics 

Insertion: 

Single Rotation rebalance 

Double Rotation rebalance 

Number of nodes visited in 
traceback 

Mean 

.2327 

.2324 

2.778 

Standard 
Deviation 

.4226 

.4223 

1.625 

95# Confidence 
Interval for Mean 

+.0006 

+.0006 

+.003 

Deletion: 

Modified Single Rotation 
rebalance 

Single Rotation rebalances 

Double Rotation rebalances 

Number of nodes visited in 
traceback 

.0536 

.0781 

.0826 

1.912 

.2253 

.2838 

.2888 

1.410 

+.0003 

+.0004 

+.0004 

+.002 
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insertion costs concur with those of others [4] . The most surprising re

sults are those for deletion; the worst case restructuring might involve 

log^N rebalances, but we observed that the probable number of rebalances 

per deletion was half that expected for insertion. A related observation 

is that the traceback on deletion visited approximately one less node per 

operation than on insertion. 

It is interesting to note on insertion, to within the 95<£ confidence 

intervals of the simulation, that the single and double rotation cases appear 

to occur with equal frequency. In fact, a simple argument shows they must 

be equally probable. In Figure 2(a) consider the subtree rooted at C: it 

includes all items in the interval bounded by the values of nodes A and X. 

Sittcel 4e°i:equ£ife the nodes in the entire tree to arrive in random order, all 

the nodes that are within the interval bounded by A and X must also arrive 

in random order. Hence the subtree rooted at C is an AVL tree that is as 

probable to be left heavy as right heavy. However, the single feature that 

distinguishes the single rotation case from the double rotation case is 

whether or not node C is heavy in the same, or opposite, direction as the 

critical node. 



TIMING STATISTICS 

To compare the actual costs involved in performing the retrieval and 

restructuring operations, we gathered timing statistics for the operations. 

The following cost functions were derived from an implementation of the AVL 

procedures written in BLISS/lO [7] and run on a PDP-10 (all times are in 

microseconds): 

Insertion 

search for the location to attach the new node 

attach node to the tree 

restructure the tree 

total 

Deletion 

search for the node to be deleted 

detach the node from the tree 

restructure the tree 

total 

150 + 90 per compare 

80 

350 

580 + 90 log 2N 

150 + 9 0 per compare 

325 

250 

725 + 90 log 2(N) 

These results show that deletion is slightly more expensive than insertion, 

but that for large trees, the search time is the dominant factor in both 

operations. 

*Flgure 3 gives the expected number of comparisons as a function of the size 
of the tree. 
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APPENDIX: A Set of Procedures for Inserting into, 
Deleting from, and Searching AVL Trees 

inlegex array (r«fl[0:H,l:6],drct,patA[0:2.25*lK<n+2)]; 
ini££ex treeba*e,level; 

comment These identifiers represent the data structures to 
be used in the procedures. 

1) tree represents the AVL tree, it is accessed with 
two values, a pointer to a node and a field 
specification within that node, tree is declared as an 
array, but any data structure accessed in the above 
manner is acceptable. The actual tree constructed is 
built as the left subtree of a special header node 
pointed to by trecbase. 
2) path and drct are used as a stack to record 
movements through the tree, path holds pointers to 
nodes and drct holds the direction moved when stepping 
down from the node identified by the corresponding pointer in 
path, level is used as a stack pointer into 
path and drct. ; 

inlesex nutlinktmaxkey, 
integer llink,rlink,rank,key,infoptrMlance-> 

comment The first two identifiers above represent 
constants and the second six represent the field 
specifiers for each node in the tree. In this 
implementation, the latter six take on the values 
1,.„,6 respectively, corresponding to the second index of 
the array tree. 

1) The llink and rlink of each node contain pointers 
to its left and right sons. The value rmHfnfc(which must be 
chosen to be distinct from all valid link values) in a 
field indicates that no son is present on that side of 
the node, llink in the header node holds a pointer to 
the root node of the tree, rlink in the header always 
has the value nullink. 
2) The rank of each node specifies the relative position of that node 
in the subtree of which it is the root, i.e., one plus 
the number of nodes in its left subtree. The ronlt 
of the header node, therefore, specifies one plus 
the number of nodes in the tree. 
3) If the AVL tree is being used to store nodes by 
value, then the key of each node contains the value that uniquely 
identifies the node and the nodes are stored in 
lexicographic order based on the value of key. If 
the AVL tree is being used to store a linear list, 
then the key values are not necessarily distinct. In 
this case, each node is accessed by specifying its 
position in the postorder sequence of the tree. The 
key of the header node contains the 
value maxkey which must be chosen larger than any key 
to be added to the tree. 



4) the infoptr of each node contains a pointer to the information 
associated with that node. If only a small, constant 
amount of information is associated with each node, 
the pointer can be eliminated and be replaced by the 
information itself. The infoptr of the header 
node always has the value nullink. 
5) the balance of each node indicates the balance of the subtree for 
which that node is the root. The possible values are: 
left heavy, right heavy, or balanced. The balance 
of the header node is undefined. ; 

integer balancedtleft,rightJound,notfound,boinderror, 
delete^etrieve,inscrt; 

comment These identifiers represent constants in the 
procedures. They may be assigned any value such that 
within each of the following three sets, each member has a 
distinct value. 

{balanced,left,right} 
{found,notfound,bQunderror} 
{deletc,retrieve,insert) ; 

integer procedure OPPSIDE(sidc); 
integer side, value side; 

OP PS IDE.-\t side = left then right else, left', 

integer procedure OPPSUNK(side); 
inteeer side; value side; 

OPPSUNK.=\L side = left then rlink else llink; 

integer: procedure SfDELINK(side); 
integej: side; value side; 

SIDEUNK.=ii side -left then llink ejse. rlink; 

procedure INITHE/iDER; 
begin 
comment 
Function: to initialize the special header node for the 
tree. This procedure must be called before any tree 
operations are performed. 

Side effects: None. ; 

trec[treebasesank]:-U 
tree[trcebasc,key]:=maxkcy, 
tre«[trcebasc,infoptr]i=nullink; 
trcc[trceba*c,llink]:~trce[trcr!bax<!,rlink]:<*nullinki 
treeltreebase,balance]^balanced 

end /NITHE/1DER; 

T 
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integer procedure SE/lRCU(positionscarch,scarchkeyttypetearchYt 

boolean poshiomearcM integer searchkey.type^arch, 
value positionsearch,seorchkeyttypcsearchi 
Bfigin integer tpoimJield,loopdummytchgval\ 
comment 
Permissible values for the parameters: 

1) positionsearch - tLUfi, false. 
2) searchkey - a list position or a key value 
3) typesearch - insert, retrieve, delete 

Function: to search for a node in the tree. If positionsearch -
LTJJ& then searchkey is interpreted as a position in the 
postorder sequence of the tree, otherwise searchkey is 
interpreted as a key value. 

Side effects: 
1) path and drct are filled with the links and 
directions taken on the path from the header node to 
the desired node. path[level] points to the desired 
node when it is found in the tree, otherwise it points 
to the leaf or semi-leaf from which the desired node 
could be a son. On insertion drci[lcvel] specifies 
which side of the node pointed to by Path[lcvel] the 
new node will be added. 
2) typesearch indicates the purpose of the 
search, i.e., a search for a position to insert a new 
node, or a search to find a node so that it may be 
deleted, or a search for retrieval of information. 
The rank field of the nodes on the path are adjusted for 
the insert and delete cases with the assumption that 
the operation will subsequently be performed. 

Value of SEARCH: 
1) found - node located in tree, pointed to by 
path[level\ 
2) not found - node not located in tree, Path[level] 
points to node which could be the father of desired 
node. 
3) bounderror - position specified does not occur in 
hsUon search by position only). ; 
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procedure RESETH/INK(typescarch); 
mister, typetearch; value typetearch; 
begin inlflgfiL chgvaltfeveh 
comment 
Permissible values for the parameter typenearch: insert, 
delete. 

Function: to restore the value of the rank field in 
each node. This only has to be done if an attempt 
was made to insert(by value) a node which already existed 
in the tree or an attempt was made to delete a node which 
did not exist in the tree, typctcarch specifies for which 
case the correction is being made(tn*cr(, delete). 

Side effects: None. 

chgv<il:=\i typesonrch = uuert then ' 1 filSfi. U 
for tlevet-MU. chgsw = imcrl 

then level-l ejs£ level) 
step -1 until 0 da 
il drct[tlcvel] - left 

then tree[path[tlevellranky.= 
tree[path[tlevel],rank]+chgval 

end RESETRANKj 

comment The body of SEARCH begins here. > 
11 (position.<earch A 

{{tearchkey < 0) V 
Uearchkey > trce[trecbn^,rank]) V 
(typoearch ft imert A searchhey - tr««[lr<w»M«fran*]))) V 

(- positiomcarch A *eorc/ifcey > maxkey) 
then  

begin 
SE/lKCI/:=6«>ui.dciTor; 
goto endtrrh 

chgval:-it typetearch •= m,«rt 
then 1 fil5£ (it (ypowart* - delete 

thfin -1 eJsfi 0); 
/wW:- i£ potititrnJoarcA thfin rank else, key. 



fox /ooprfurnmy:=l while true dQ. 
begin 

patA[/efl«J]:=tp<Hnt; 
if searcfcfccy * tree[*poiru,/icJif] 

then 
begin integer wrfc; 

rfrcl[leiwI]:-*Wif:-ii ^arrftifccy < lrCC[rporH((/i«M] 
then left else ri*fti; 

ii positionsearch A (side-right) 
\b&&*carchkcy;-scarchkcy-trcc[tpointfank]; 

trcc[tpoint,rank]:=trcc[tpoitUfank]+ 
(\i side = /«?/* then chgval else 0); 

i l h positionsearch) A (tpowit = nullink) 
then 

begin 
ii lyp**«areA = delete then RESET RAN {((delete)-, 
SEARCH :=nol found; 

endj 

end  
else 

begin 
it typesearch = insert 

then 
begin 

ii - positionsearch 
then RESETRANK(insert) 
eke 

begin 
drei [/fit;*/]:=/c/i; 
i « e [ p o t W « w / V « n t ] : -

frfle[pat/»[Zet>cf],ranJfc]+lf 
ii tree[path[level],ltink] + nullink 

then 
begin 

path[level]:-
tree[path[levcl-l],llink]; 

drci\lcvcl~\:-right; 
fox palh[levcl+l);= 

tree[path[levellrlink] 
vtfhUe. (pat/.[lcwc/+l] * nullink) dfi 

begin 

end 
end. 

end 
endj 

SEARCH-.-found; 
goto endsrch 

end 
end: 

endsrch. 
end SEARCH; 
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procedure SINGI.ER0T/1TE; 
begin inlstBL pfathcr,pCrilical,pcrit*onl,*i<i«\ 
comment 
Function: to perform a 'single' rotation at a critical node 
to re-establish the AVL property. The Uink, rlink, 
balance, and rank values are adjusted for the critical 
node, its father and the the heavy side son of the 
critical node. 

Side effects: none. ; 

pfalhcr-.-pathilevcl-l]; 
pcritical:~path[level]i 
pcrit*onl:=path[level+\l 
aide:=>tree[pcriticalj>alancc]i 
tree[pfather£IDEUNK(drct[tevcl-l])y.-pcrit*onh 
trec[pcritical,SfDEUM{*idc)y.= 

trcc[pcritsonl,OPPSUNK(side)l 
tree[pcritaonl,OPPSLINKUide)]:«pcriticali 
trec[pcritical,rank)\'* 

tree[pcrilicalfrank~\-
(il aide = left thfin tree[pcrit*onlfank] else. 0); 

tree[pcrit*onl,rank]:= 
tree[pcrit*onl,rank]+ 

<il side - right then tree[pcriticalfank] eJsft 0); 
tree[pcritical,bttlancey.'tree[pcrit$onlMlonee]i-balaneei 

end SINGLBROTATE; 



p r o c e d u r e DOUBLE ROT ATE; 
begin in teger pfathei 
comment 

pfatherpcriticHpcritsonlpcrUson2,side; 

F u n c t i o n : to p e r f o r m a 'double ' rotation at a critical node 
to r e - e s t a b l i s h the AVL proper ty . The llink, rlink, 
balance, and rank values are adjusted for the critical 
n o d e , its f a t h e r , the the heavy side son of the 
cr i t ica l n o d e , and the heavy side son of that son. 

S ide e f f e c t s : none. ; 

p father:**path[lcvcl-1 ]; 
pcritical:=path[lcvcl]; 
pcritsonl:=path[lcvcl+l]; 
pcritson2:=path[lcvcl+2]; 
side:=tree[pcriticalfialance]\ 
trce[pfathcr>SIDEUNK(drct[lcvclA])]\=A 

trec[pcritsonl,OPPSUNK(sidc)]: = 
trcc[pcritson2fSIDELINK(sidc)]; 

tree[pcriticalSIDELlNK(side)]: = 
trec[pcritson2>OPPSLINK(sidc)i 

tree[pcritson2fSI DELI NK(sidc)]:=pcritsonli 
trcc[pcritson2tOPPSLINK{sidc)]i=pcriticah 
trec[pcritical,rank]: = 

trcc[pcriticalfrank]~ 
(Lt side = left 

(il side = right then tree[pcritson2trank] else 0); 
tree[pcritson2trank]:ss 

treelpcritsofank]* 
(i l side = left then trcc[pcritsonl>rank] 

then 
tree[pcritson 

tree[pcritson 

trec[pcritsonl>rank]+trec[pcritson2trank] 
2,ranfc]: = 

lfrank~\-

else 0); 

else tree[pcriticaltrank])i 
trcc[pcritical,balancc]:~ 

jl tree[pcritson2,halance] « side 
then OPPSIDE(side) ekfi. balanced** 

treclpcritsonltbalance]:A 

LL trcc[pcritson2,balance] « OPPSIDE(side) 
then side else balanced; 

tree[pcritson2,balancc]:-balanced 
end DOUBLEROTATE; 
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procedure ATTACH NODFApfrccnewkeypewinfoptr)i 
inlfififiL pfrce,neu>keypewmf&ptrf 

value pfree,newkcynewinfoptr, 
begin 
comment 
Permissible values for the parameters: 

1) pfree - a pointer to any empty node 
2) newkey - value of key for the new node 
3) ncwinfoptr - value of information pointer for the 
new node 

Function: to insert a new node into the tree. 
The new node is attached to the node pointed to by path[level] 
on the side specified by drct[level\ 

Side effects: pfree is placed in path[lcvel+\] for use by 
the rotation procedures. ; 

trcc[path[lcvcllSI DFJJ NK(drct[lcvcl])]:-pfrce; 
tree[pfree,rank]:= 1; 
tree[pfree,llink"\:-tree[pfreelrlink]:Anullink; 
treelpfreefialancey.-balanced; 
tree[pfreeskey]:-newkey; 
tree[p free,in foptr]:*=ncwinfoptr> 
path[level+l]:=pfrce 

end. ATTACHNODE; 



procedure REBUILDINSERT; 
begin 
comment 
Function: to trace back along the path from the father of 
the node just attached to the tree, checking 
that the AVL property has been maintained. A rotation is 
performed if the property no longer holds at a node. At 
most one rotation is performed but traceback may terminate 
without performing a rotation or reaching the top of the 
tree. 

Side effects: none, i 

trec[path[levcllbalancc].= 
& trcc[path[levcl]Mlattr,c}- balanced 

then drct[level] else balanced; 
it trcc[path[levcllbaldncel t balanced 

then 
begin integer loopdummy, boolean crittw; 

critsu,:=teS£i 
for loopdummy."l while (level > 1) do 
begin 

fetiefc-fetwJ-l; 
if tree{path[levellbalance] ¥• balanced 

begin 
trcc[path[lcvcl],balancc]:= 

it tree[path[level],halnnce] - drct[levcl] 
then drct[level] else balanced; 

crimw.= 
it tree[paih[level],halnnce] - drct[tevel] 

then Irjje else false; 
goifi chkerit 

end 
dSZtrcc[path[lcvciy>alance]:->drct[levcl] 

end; 
chkerit; 

ii crittw 
then 

begin 
ii tree[path[levellbalance] = 

trcc[path[lcvcl+llbalancel 
then SINCLEROTATE 
else DOUIILEROTATE 

end 
end 

end REBUILDINSERT; 



procedure DETACH NODE; 
begin integer pdet; 
comment 
Function: to delete the node specified by path[level] from 
the tree. 

Side effects: If the node to be deleted is not a leaf or a 
semi-leaf, then the node is interchanged with its post order 
predecessor(successor) before being deleted, path and drct 
are filled out with the path down to the 
predecessor(successor). The predecessor is chosen if the node Is left 
heavy or balanced, otherwise the successor is chosen. ; 

pdel:=path[lcveiy 
i l (tree[pdel,llink] ft. nullink) A 

Uree[pdel,rlink] ft nullink) 
then 

begin integer. tpoint,tlevcl,temp,tidefihgval,»Unk; 
comment Node is not a leaf or semi-leaf, find its 

predecessor(successor). ; 
tlevel\=level-\; 
drcttlevelli=side:=\L tree{pdel,balance} - right 

then right else left; 
chgval'.-\L side •= left then 0 ejf& 1; 
tree[pdcl,rank):-

tree[pdel,rank]-{l-chgval); 
level:=level+U 
pathllevel]:=tree[pdel,SlDELINK(Mid*yb 
side:=OPPStDE(*idey, 
tUnk^SIDEUNK(tide); 
tat path[level+iy.=tree[path[level],Mnk] 

while (path[level+1 ] ft nullink) da 
begin 

drct[level]:~sidei 
tree[path[levellrank]i-

tree[path[level],rankychgmli 
level:=level+l 

ends 
comment Perform interchange. } 
tpoint.=patk[levell 
tree[patk[thvellSIDEUNK(drct[tlevel])]^tpointi 
temp:=tree[pdeminky, 
tree{pdel,llink]:~tree[tpoint,llink]i 
treeitpointtfinky.-tempi 
temp:=tree[pdel,rlinky, 
trec[pdclslinky.=trec[tpointflink]i 
tree{tpoint,rlinky.-temp; 
treeltpaint,ranky.=trec[pdetfankl 
trec[tpoint,balancey.=tree[pdelMl*nee}i 
path[tlevel+iy.=tpoint 

endj 
comment Delete leaf or semi-leaf. ; 
tree[pat h[level-l ]£fDEUNK{drci[leVel-l ])]:-

tree[pdel,H tree[pdet,llink] « nullink 
then rlink else llink) 

end DETACH NODE; 



procedure REBUILDDELETE; 
begin integer loopdummy, 
comment 
Function: to trace back along the path from the father of 
the node deleted from the tree, checking that 
the AVL property has been maintained. A rotation is 
performed if the property no longer holds at a node. 
Several rotations may be necessary but traceback may 
terminate without performing a rotation or reaching the 
top of the tree. 

Side effects: none. ; 

fox toopdummy.-l while (level > 1) dfl 
begin 

level.-level-l; 
Li trc<i[Path[loverbalance] - balanced 

then 
begin 

tree[path[levellbalance]:=OPPSlDE(drct[level]H 
goto endrbld 

end 
else, ii tree[path[levellbalance] = drct[level] 

thsRtrce[path[lcvollMl<tncey.=batanced 
else 

begin 
path[tevel+l]:= 

tre«[path[level]jOPPSUNK(dtct[leV*l}n 
ii trcc[path[level+l]Jhalancc) - balanced 

S! NC LEROTATE; 
tree[patb[level\balancel-

OPPSWE(drct[leveiy-t 

tree[path[level+\],balattce]:-drct [levels 
gfilfl. endrbld 

end 
else ii tree[path[levellbalance] = 

tree[path[level+llbalance} 
then SINGLEROTATE 
else 

begin 
PatAr>t«.i+2]:= 

SlDEUNK(tree[path[level+11 
balance])]; 

DOUBLEROTATE 
end 

end 
end: 

endrbld: 
end REBUILDDELETE; 


