
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

OBSERVATIONS ON THE PERFORMANCE OF AVL TREES

R. E« Scroggs, P, L. Karlton,
S. H. Fuller, and E. B. Kaehler

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

July, 1973

This work was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-73-C-0074) and is
monitored by the Air Force Office of Scientific Research.

ABSTRACT

This paper presents the results of a series of simulations that investi

gate the performance of AVL trees. It is shown that the only statistic of

AVL trees that is a function of the size of the tree is the time to search

for an item in the tree; the performance of all other procedures for maintain

ing AVL trees are independent of the size of the tree for trees greater than

« 3 0 nodes. In particular it was discovered that an average of .465 restruc

tures are required per insertion and .214 restructures per deletion. More

over, an average of 2.78 nodes are revisited to restore the AVL property on

insertion, and 1.91 nodes are revisited on deletion. Actual timings of the

AVL procedures for insertion, searching, and deletion are presented to provide

a practical guide to estimating the cost of using AVL trees.

i

T

INTRODUCTION

This paper empirically examines the computational cost of insertion,

deletion, and retrieval in AVL trees. An AVL tree is any rooted, binary

tree with every node having the following property:

AVL property. The height of the left subtree differs by at most one

from the height of the right subtree. (The height of a tree is the

length of the longest path from the root node to a leaf node.)

For example, the tree in Figure 1(a) is an AVL tree but the tree in

Figure 1(b) is not because nodes A and D do not exhibit the AVL property.

Given that a node possesses the AVL property, we will refer to It as bal

anced, left heavy, or right heavy depending on whether the height of the

left subtree is equal to, greater than, or less than the height of the

right subtree.

Immediately after inserting or deleting a node from an AVL tree one or

more nodes may lose the AVL property. Figure 2 shows the two cases that

can occur on insertion (and the two most common cases for deletion) and how

to locally restructure the tree to restore the AVL property to all the nodes.

A third case restructuring exists in deletion. It is similar to the single

rotation case shown in Figure 2(a) except subtree P has a height of h+1,

i.e., node C is balanced. A single rotation is sufficient to restore the AVL

property to the critical node and we will subsequently refer to this case as

the modified single rotation ease. For a more detailed description of AVL

trees see [1, 2, 3, 4, 5, 6, 7] .

(b) The double rotation case.

Figure 2. The Two Restructuring Cases for Insertion

For a tree structure in which insertion and deletion operations are

frequently performed, it is important to know the costs of performing

those operations as well as the cost of locating a node in the tree. AVL

trees have the attractive property that all three operations (insertion,

deletipa*, and retrieval) can be performed in O(log N) steps, i.e., on the

order of log N steps, where N is the number of nodes in the tree. This is

in contrast to random trees and completely balanced trees in which the worst

case of at least one of the three operations can take as many as 0(N) steps.

Our goals here are to empirically find the average number of comparisons to

find a node in the tree and to obtain more detailed estimates of the costs

for restructuring the tree after a.n insertion or deletion.

EMPIRICAL OBSERVATIONS

In order to observe the performance of AVL trees, we presented random

permutations of an ordered list to the procedure that inserts nodes into

the AVL trees. Specifically, we used a uniform random number generator* to

provide the values of the successive nodes to be, inserted. To study the

deletion process we selected any node in the tree for deletion with equal

probability, To minimize correlation in the simulation we did N insertions

and then N deletions, etc. Therefore, all observations of inserting (delet

ing) a node into an N node tree are independent events.

For the statistics that follow, 500 trees of size 5000 nodes were built

up and then broken down, collecting statistics on trees of size 1 to 5000

in the process.

*The random number generator used was:
x i + 1 - 3141592631 ^ + 14522135347 modulo 2 3 5 .

On insertion the properties we tabulated were: <1) the average number

Of comparisons necessary to locate the position where a new node should be

added (this is the average depth of the leaves and semi-leaves), (2) the

percentage of insertions that caused a restructuring to be performed (statis

tics were kept for both types of restructuring), and (3) the average number

of nodes visited during the traceback procedure (counted from the father of

the node just added to the tree to the node at which tracebuack terminated).

On deletion the properties we tabulated were: (1) the average number

of comparisons necessary to locate the node to be deleted (this is the aver

age depth of all nodes in the tree), (2) the probable number of restructurings

necessary on each deletion (statistics were kept for each of the three types

of restructuring), and (3) the number of nodes visited during the traceback pro

cedure (counted from the father of the node deleted from the tree to the

node at which traceback terminated). On deletion, if the node to be deleted

was not a leaf or a semi-leaf, we interchanged that node with its predecessor

or successor*before deleting it.

Table 1 and Figure 3 present the results for insertion and deletion.

The graphs for the average number of comparisons on insertion and deletion

show that the retrieval time is logarithmic in the number of nodes in the

tree. All other statistics, however, when plotted on graphs similar to

Figure 3, were observed to be asymtotically independent of the size of the

tree and,to within the precision of the simulation, the statistics had reached

their asymtotic values for trees greater than - 30 nodes. Our results for the

*The node to be deleted was interchanged with its predecessor or successor
depending on whether the node was heavy to the left or right, respectively.
If the node was balanced, the node was Interchanged with its predecessor.

-5-

Table 1. Insertion and Deletion Statistics

Insertion:

Single Rotation rebalance

Double Rotation rebalance

Number of nodes visited in
traceback

Mean

.2327

.2324

2.778

Standard
Deviation

.4226

.4223

1.625

95# Confidence
Interval for Mean

+.0006

+.0006

+.003

Deletion:

Modified Single Rotation
rebalance

Single Rotation rebalances

Double Rotation rebalances

Number of nodes visited in
traceback

.0536

.0781

.0826

1.912

.2253

.2838

.2888

1.410

+.0003

+.0004

+.0004

+.002

1 4 -

12 ,

1 0 -

8 ^

to c o

3

4 -

10

on insertion
.0131og2N + .104)

on deletion
(approx. 1.0031og_N - .798)

50 500 1000
N

Figure 3. Expected Number of Comparisons to Locate an Item in
an AVL tree of N Nodes. (Each point is surrounded by
its 95$ confidence interval.)

i
OS
I

5000

2

Table 1. Insertion and Deletion Statistics

Insertion:

Single Rotation rebalance

Double Rotation rebalance

Number of nodes visited in
traceback

Mean

.2327

.2324

2.778

Standard
Deviation

.4226

.4223

1.625

95$ Confidence
Interval for Mean

+.0006

+.0006

+.003

Deletion:

Modified Single Rotation
rebalance

Single Rotation rebalances

Double Rotation rebalances

Number of nodes visited in
traceback

.0536

.0781

.0826

1.912

.2253

.2838

'.2888

1.410

+.0003

+.0004

+.0004

+.002

16 A

14-1

10 50 100 500 1000 5000
N

F igure 3. Expec ted Number of Comparisons to Locate an Item in
an AVL t r e e of N Nodes. (Each p o i n t is su r rounded by
i t s 95$ conf idence i n t e r v a l .)

- 7 -

insertion costs concur with those of others [4] . The most surprising re

sults are those for deletion; the worst case restructuring might involve

log^N rebalances, but we observed that the probable number of rebalances

per deletion was half that expected for insertion. A related observation

is that the traceback on deletion visited approximately one less node per

operation than on insertion.

It is interesting to note on insertion, to within the 95<£ confidence

intervals of the simulation, that the single and double rotation cases appear

to occur with equal frequency. In fact, a simple argument shows they must

be equally probable. In Figure 2(a) consider the subtree rooted at C: it

includes all items in the interval bounded by the values of nodes A and X.

Sittcel 4e°i:equ£ife the nodes in the entire tree to arrive in random order, all

the nodes that are within the interval bounded by A and X must also arrive

in random order. Hence the subtree rooted at C is an AVL tree that is as

probable to be left heavy as right heavy. However, the single feature that

distinguishes the single rotation case from the double rotation case is

whether or not node C is heavy in the same, or opposite, direction as the

critical node.

TIMING STATISTICS

To compare the actual costs involved in performing the retrieval and

restructuring operations, we gathered timing statistics for the operations.

The following cost functions were derived from an implementation of the AVL

procedures written in BLISS/lO [7] and run on a PDP-10 (all times are in

microseconds):

Insertion

search for the location to attach the new node

attach node to the tree

restructure the tree

total

Deletion

search for the node to be deleted

detach the node from the tree

restructure the tree

total

150 + 90 per compare

80

350

580 + 90 log 2N

150 + 9 0 per compare

325

250

725 + 90 log 2(N)

These results show that deletion is slightly more expensive than insertion,

but that for large trees, the search time is the dominant factor in both

operations.

*Flgure 3 gives the expected number of comparisons as a function of the size
of the tree.

-9-

References

1. Adel'son-Vel'skii, G. M. and E. M. Landis, "An Algorithm for the Organiza
tion of Information." Doklady Akad. Nauk USSR Moscow 16, No. 2 (1962),
pp. 263-266 (Russian), English translation in Soviet Math. Doklady 3
(1962), pp. 1259-1263, ~ *

2. Foster, C. C , "Information Storage and Retrieval Using AVL Trees,
Proc. ACM 20th Nat. Conf.. 1965, pp. 192-205.

3. Knott, G. D., "A Balanced Tree Storage and Retrieval Algorithm," Proc.
Symp. on Inform. Storage and Retrieval. April 1971, pp. 175-196.

4. Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973, Sec. 6.2.3.

5. Kosajaru, S. Rao, On Information Storage and Retrieval by AVL Trees,
Department of Electrical Engineering, The Johns Hopkins University,
Baltimore, Maryland.

6. Nievergelt, J. and E. M. Reingold, Binary Search Trees of Bounded
Balance, Department of Computer Science, University of Illinois, Urbana,
Illinois.

7. Stone, H. S., Introduction to Computer Organization and Data Structures.
McGraw-Hill, New York, N. Y., 1972, Sec. 11.2.3.

8. Wulf, W. A., D. B. Russell, and A. N. Habermann, "BLISS: A Language
for Systems Programming," Comm. ACM 14, 12 (December 1971), pp. 780-790.

APPENDIX: A Set of Procedures for Inserting into,
Deleting from, and Searching AVL Trees

inlegex array (r«fl[0:H,l:6],drct,patA[0:2.25*lK<n+2)];
ini££ex treeba*e,level;

comment These identifiers represent the data structures to
be used in the procedures.

1) tree represents the AVL tree, it is accessed with
two values, a pointer to a node and a field
specification within that node, tree is declared as an
array, but any data structure accessed in the above
manner is acceptable. The actual tree constructed is
built as the left subtree of a special header node
pointed to by trecbase.
2) path and drct are used as a stack to record
movements through the tree, path holds pointers to
nodes and drct holds the direction moved when stepping
down from the node identified by the corresponding pointer in
path, level is used as a stack pointer into
path and drct. ;

inlesex nutlinktmaxkey,
integer llink,rlink,rank,key,infoptrMlance->

comment The first two identifiers above represent
constants and the second six represent the field
specifiers for each node in the tree. In this
implementation, the latter six take on the values
1,.„,6 respectively, corresponding to the second index of
the array tree.

1) The llink and rlink of each node contain pointers
to its left and right sons. The value rmHfnfc(which must be
chosen to be distinct from all valid link values) in a
field indicates that no son is present on that side of
the node, llink in the header node holds a pointer to
the root node of the tree, rlink in the header always
has the value nullink.
2) The rank of each node specifies the relative position of that node
in the subtree of which it is the root, i.e., one plus
the number of nodes in its left subtree. The ronlt
of the header node, therefore, specifies one plus
the number of nodes in the tree.
3) If the AVL tree is being used to store nodes by
value, then the key of each node contains the value that uniquely
identifies the node and the nodes are stored in
lexicographic order based on the value of key. If
the AVL tree is being used to store a linear list,
then the key values are not necessarily distinct. In
this case, each node is accessed by specifying its
position in the postorder sequence of the tree. The
key of the header node contains the
value maxkey which must be chosen larger than any key
to be added to the tree.

4) the infoptr of each node contains a pointer to the information
associated with that node. If only a small, constant
amount of information is associated with each node,
the pointer can be eliminated and be replaced by the
information itself. The infoptr of the header
node always has the value nullink.
5) the balance of each node indicates the balance of the subtree for
which that node is the root. The possible values are:
left heavy, right heavy, or balanced. The balance
of the header node is undefined. ;

integer balancedtleft,rightJound,notfound,boinderror,
delete^etrieve,inscrt;

comment These identifiers represent constants in the
procedures. They may be assigned any value such that
within each of the following three sets, each member has a
distinct value.

{balanced,left,right}
{found,notfound,bQunderror}
{deletc,retrieve,insert) ;

integer procedure OPPSIDE(sidc);
integer side, value side;

OP PS IDE.-\t side = left then right else, left',

integer procedure OPPSUNK(side);
inteeer side; value side;

OPPSUNK.=\L side = left then rlink else llink;

integer: procedure SfDELINK(side);
integej: side; value side;

SIDEUNK.=ii side -left then llink ejse. rlink;

procedure INITHE/iDER;
begin
comment
Function: to initialize the special header node for the
tree. This procedure must be called before any tree
operations are performed.

Side effects: None. ;

trec[treebasesank]:-U
tree[trcebasc,key]:=maxkcy,
tre«[trcebasc,infoptr]i=nullink;
trcc[trceba*c,llink]:~trce[trcr!bax<!,rlink]:<*nullinki
treeltreebase,balance]^balanced

end /NITHE/1DER;

T

-12-

integer procedure SE/lRCU(positionscarch,scarchkeyttypetearchYt

boolean poshiomearcM integer searchkey.type^arch,
value positionsearch,seorchkeyttypcsearchi
Bfigin integer tpoimJield,loopdummytchgval\
comment
Permissible values for the parameters:

1) positionsearch - tLUfi, false.
2) searchkey - a list position or a key value
3) typesearch - insert, retrieve, delete

Function: to search for a node in the tree. If positionsearch -
LTJJ& then searchkey is interpreted as a position in the
postorder sequence of the tree, otherwise searchkey is
interpreted as a key value.

Side effects:
1) path and drct are filled with the links and
directions taken on the path from the header node to
the desired node. path[level] points to the desired
node when it is found in the tree, otherwise it points
to the leaf or semi-leaf from which the desired node
could be a son. On insertion drci[lcvel] specifies
which side of the node pointed to by Path[lcvel] the
new node will be added.
2) typesearch indicates the purpose of the
search, i.e., a search for a position to insert a new
node, or a search to find a node so that it may be
deleted, or a search for retrieval of information.
The rank field of the nodes on the path are adjusted for
the insert and delete cases with the assumption that
the operation will subsequently be performed.

Value of SEARCH:
1) found - node located in tree, pointed to by
path[level\
2) not found - node not located in tree, Path[level]
points to node which could be the father of desired
node.
3) bounderror - position specified does not occur in
hsUon search by position only). ;

- 13 -

procedure RESETH/INK(typescarch);
mister, typetearch; value typetearch;
begin inlflgfiL chgvaltfeveh
comment
Permissible values for the parameter typenearch: insert,
delete.

Function: to restore the value of the rank field in
each node. This only has to be done if an attempt
was made to insert(by value) a node which already existed
in the tree or an attempt was made to delete a node which
did not exist in the tree, typctcarch specifies for which
case the correction is being made(tn*cr(, delete).

Side effects: None.

chgv<il:=\i typesonrch = uuert then ' 1 filSfi. U
for tlevet-MU. chgsw = imcrl

then level-l ejs£ level)
step -1 until 0 da
il drct[tlcvel] - left

then tree[path[tlevellranky.=
tree[path[tlevel],rank]+chgval

end RESETRANKj

comment The body of SEARCH begins here. >
11 (position.<earch A

{{tearchkey < 0) V
Uearchkey > trce[trecbn^,rank]) V
(typoearch ft imert A searchhey - tr««[lr<w»M«fran*]))) V

(- positiomcarch A *eorc/ifcey > maxkey)
then

begin
SE/lKCI/:=6«>ui.dciTor;
goto endtrrh

chgval:-it typetearch •= m,«rt
then 1 fil5£ (it (ypowart* - delete

thfin -1 eJsfi 0);
/wW:- i£ potititrnJoarcA thfin rank else, key.

fox /ooprfurnmy:=l while true dQ.
begin

patA[/efl«J]:=tp<Hnt;
if searcfcfccy * tree[*poiru,/icJif]

then
begin integer wrfc;

rfrcl[leiwI]:-*Wif:-ii ^arrftifccy < lrCC[rporH((/i«M]
then left else ri*fti;

ii positionsearch A (side-right)
\b&&*carchkcy;-scarchkcy-trcc[tpointfank];

trcc[tpoint,rank]:=trcc[tpoitUfank]+
(\i side = /«?/* then chgval else 0);

i l h positionsearch) A (tpowit = nullink)
then

begin
ii lyp**«areA = delete then RESET RAN {((delete)-,
SEARCH :=nol found;

endj

end
else

begin
it typesearch = insert

then
begin

ii - positionsearch
then RESETRANK(insert)
eke

begin
drei [/fit;*/]:=/c/i;
i « e [p o t W « w / V « n t] : -

frfle[pat/»[Zet>cf],ranJfc]+lf
ii tree[path[level],ltink] + nullink

then
begin

path[level]:-
tree[path[levcl-l],llink];

drci\lcvcl~\:-right;
fox palh[levcl+l);=

tree[path[levellrlink]
vtfhUe. (pat/.[lcwc/+l] * nullink) dfi

begin

end
end.

end
endj

SEARCH-.-found;
goto endsrch

end
end:

endsrch.
end SEARCH;

-15-

procedure SINGI.ER0T/1TE;
begin inlstBL pfathcr,pCrilical,pcrit*onl,*i<i«\
comment
Function: to perform a 'single' rotation at a critical node
to re-establish the AVL property. The Uink, rlink,
balance, and rank values are adjusted for the critical
node, its father and the the heavy side son of the
critical node.

Side effects: none. ;

pfalhcr-.-pathilevcl-l];
pcritical:~path[level]i
pcrit*onl:=path[level+\l
aide:=>tree[pcriticalj>alancc]i
tree[pfather£IDEUNK(drct[tevcl-l])y.-pcrit*onh
trec[pcritical,SfDEUM{*idc)y.=

trcc[pcritsonl,OPPSUNK(side)l
tree[pcritaonl,OPPSLINKUide)]:«pcriticali
trec[pcritical,rank)\'*

tree[pcrilicalfrank~\-
(il aide = left thfin tree[pcrit*onlfank] else. 0);

tree[pcrit*onl,rank]:=
tree[pcrit*onl,rank]+

<il side - right then tree[pcriticalfank] eJsft 0);
tree[pcritical,bttlancey.'tree[pcrit$onlMlonee]i-balaneei

end SINGLBROTATE;

p r o c e d u r e DOUBLE ROT ATE;
begin in teger pfathei
comment

pfatherpcriticHpcritsonlpcrUson2,side;

F u n c t i o n : to p e r f o r m a 'double ' rotation at a critical node
to r e - e s t a b l i s h the AVL proper ty . The llink, rlink,
balance, and rank values are adjusted for the critical
n o d e , its f a t h e r , the the heavy side son of the
cr i t ica l n o d e , and the heavy side son of that son.

S ide e f f e c t s : none. ;

p father:**path[lcvcl-1];
pcritical:=path[lcvcl];
pcritsonl:=path[lcvcl+l];
pcritson2:=path[lcvcl+2];
side:=tree[pcriticalfialance]\
trce[pfathcr>SIDEUNK(drct[lcvclA])]\=A

trec[pcritsonl,OPPSUNK(sidc)]: =
trcc[pcritson2fSIDELINK(sidc)];

tree[pcriticalSIDELlNK(side)]: =
trec[pcritson2>OPPSLINK(sidc)i

tree[pcritson2fSI DELI NK(sidc)]:=pcritsonli
trcc[pcritson2tOPPSLINK{sidc)]i=pcriticah
trec[pcritical,rank]: =

trcc[pcriticalfrank]~
(Lt side = left

(il side = right then tree[pcritson2trank] else 0);
tree[pcritson2trank]:ss

treelpcritsofank]*
(i l side = left then trcc[pcritsonl>rank]

then
tree[pcritson

tree[pcritson

trec[pcritsonl>rank]+trec[pcritson2trank]
2,ranfc]: =

lfrank~\-

else 0);

else tree[pcriticaltrank])i
trcc[pcritical,balancc]:~

jl tree[pcritson2,halance] « side
then OPPSIDE(side) ekfi. balanced**

treclpcritsonltbalance]:A

LL trcc[pcritson2,balance] « OPPSIDE(side)
then side else balanced;

tree[pcritson2,balancc]:-balanced
end DOUBLEROTATE;

-17-

procedure ATTACH NODFApfrccnewkeypewinfoptr)i
inlfififiL pfrce,neu>keypewmf&ptrf

value pfree,newkcynewinfoptr,
begin
comment
Permissible values for the parameters:

1) pfree - a pointer to any empty node
2) newkey - value of key for the new node
3) ncwinfoptr - value of information pointer for the
new node

Function: to insert a new node into the tree.
The new node is attached to the node pointed to by path[level]
on the side specified by drct[level\

Side effects: pfree is placed in path[lcvel+\] for use by
the rotation procedures. ;

trcc[path[lcvcllSI DFJJ NK(drct[lcvcl])]:-pfrce;
tree[pfree,rank]:= 1;
tree[pfree,llink"\:-tree[pfreelrlink]:Anullink;
treelpfreefialancey.-balanced;
tree[pfreeskey]:-newkey;
tree[p free,in foptr]:*=ncwinfoptr>
path[level+l]:=pfrce

end. ATTACHNODE;

procedure REBUILDINSERT;
begin
comment
Function: to trace back along the path from the father of
the node just attached to the tree, checking
that the AVL property has been maintained. A rotation is
performed if the property no longer holds at a node. At
most one rotation is performed but traceback may terminate
without performing a rotation or reaching the top of the
tree.

Side effects: none, i

trec[path[levcllbalancc].=
& trcc[path[levcl]Mlattr,c}- balanced

then drct[level] else balanced;
it trcc[path[levcllbaldncel t balanced

then
begin integer loopdummy, boolean crittw;

critsu,:=teS£i
for loopdummy."l while (level > 1) do
begin

fetiefc-fetwJ-l;
if tree{path[levellbalance] ¥• balanced

begin
trcc[path[lcvcl],balancc]:=

it tree[path[level],halnnce] - drct[levcl]
then drct[level] else balanced;

crimw.=
it tree[paih[level],halnnce] - drct[tevel]

then Irjje else false;
goifi chkerit

end
dSZtrcc[path[lcvciy>alance]:->drct[levcl]

end;
chkerit;

ii crittw
then

begin
ii tree[path[levellbalance] =

trcc[path[lcvcl+llbalancel
then SINCLEROTATE
else DOUIILEROTATE

end
end

end REBUILDINSERT;

procedure DETACH NODE;
begin integer pdet;
comment
Function: to delete the node specified by path[level] from
the tree.

Side effects: If the node to be deleted is not a leaf or a
semi-leaf, then the node is interchanged with its post order
predecessor(successor) before being deleted, path and drct
are filled out with the path down to the
predecessor(successor). The predecessor is chosen if the node Is left
heavy or balanced, otherwise the successor is chosen. ;

pdel:=path[lcveiy
i l (tree[pdel,llink] ft. nullink) A

Uree[pdel,rlink] ft nullink)
then

begin integer. tpoint,tlevcl,temp,tidefihgval,»Unk;
comment Node is not a leaf or semi-leaf, find its

predecessor(successor). ;
tlevel\=level-\;
drcttlevelli=side:=\L tree{pdel,balance} - right

then right else left;
chgval'.-\L side •= left then 0 ejf& 1;
tree[pdcl,rank):-

tree[pdel,rank]-{l-chgval);
level:=level+U
pathllevel]:=tree[pdel,SlDELINK(Mid*yb
side:=OPPStDE(*idey,
tUnk^SIDEUNK(tide);
tat path[level+iy.=tree[path[level],Mnk]

while (path[level+1] ft nullink) da
begin

drct[level]:~sidei
tree[path[levellrank]i-

tree[path[level],rankychgmli
level:=level+l

ends
comment Perform interchange. }
tpoint.=patk[levell
tree[patk[thvellSIDEUNK(drct[tlevel])]^tpointi
temp:=tree[pdeminky,
tree{pdel,llink]:~tree[tpoint,llink]i
treeitpointtfinky.-tempi
temp:=tree[pdel,rlinky,
trec[pdclslinky.=trec[tpointflink]i
tree{tpoint,rlinky.-temp;
treeltpaint,ranky.=trec[pdetfankl
trec[tpoint,balancey.=tree[pdelMl*nee}i
path[tlevel+iy.=tpoint

endj
comment Delete leaf or semi-leaf. ;
tree[pat h[level-l]£fDEUNK{drci[leVel-l])]:-

tree[pdel,H tree[pdet,llink] « nullink
then rlink else llink)

end DETACH NODE;

procedure REBUILDDELETE;
begin integer loopdummy,
comment
Function: to trace back along the path from the father of
the node deleted from the tree, checking that
the AVL property has been maintained. A rotation is
performed if the property no longer holds at a node.
Several rotations may be necessary but traceback may
terminate without performing a rotation or reaching the
top of the tree.

Side effects: none. ;

fox toopdummy.-l while (level > 1) dfl
begin

level.-level-l;
Li trc<i[Path[loverbalance] - balanced

then
begin

tree[path[levellbalance]:=OPPSlDE(drct[level]H
goto endrbld

end
else, ii tree[path[levellbalance] = drct[level]

thsRtrce[path[lcvollMl<tncey.=batanced
else

begin
path[tevel+l]:=

tre«[path[level]jOPPSUNK(dtct[leV*l}n
ii trcc[path[level+l]Jhalancc) - balanced

S! NC LEROTATE;
tree[patb[level\balancel-

OPPSWE(drct[leveiy-t

tree[path[level+\],balattce]:-drct [levels
gfilfl. endrbld

end
else ii tree[path[levellbalance] =

tree[path[level+llbalance}
then SINGLEROTATE
else

begin
PatAr>t«.i+2]:=

SlDEUNK(tree[path[level+11
balance])];

DOUBLEROTATE
end

end
end:

endrbld:
end REBUILDDELETE;

