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Abstract

The reprasantstion powsr of goal-subgoal trees amd .

tha adaqumcy of thiz form of problem reduction is con-
aidered, A oumber of inadequacies in tha claagical
form are illustrated, apd two verszionms of a ayntaccie
procedure incorporating extensions are given, Although
the form of the correctipns are snggasted from resolu-
tion theory results, and the value pf this connectien
emphasized, the paper discusses tha goal tree format
and its axtensions on an informal level.

Key words: theorem proving, goal Lrees, AND/OR traes,
Geometry Theorem Machine, resclution, model elimina-
tion.

1. Introduction

Aftmr naveral years when almost sll theorem prov-
ing systems, and many problem solving systems, were
based on resolution, many researchers are returning to
vatural deduction type logics, often implemanced via
spme form of goal-subgoxl tree ootaction using & prob-
lem reduction approach, In this paper the goal-sub-
goal tree form {(or AND/DR trea form) is considered.

We show that I{f one wishes to use this syntactic form

for Tepresentation of the deductions and search space

as & full replacement for the resolution approach, one
muust make some mRdditions to the classical problem Te-

duction formulation. '

To show that there exist holes in the classical
goal-gubgoal problem reduction method we nead only
pressnt some examples, which we supply., To determine
an appropriate correctiion dnd measurve its power takes
momé theery. It turns put that resglution theory, in
.particular the mode]l elimination procedurs rasults,
grovides an adequate theoretical base, In thiz paper.
we only scare the consaguences for the problem reduc-
tion approach, owitting proofs, However, we want to
stress the value of resolution theory for the insight
it gives to the problem reduction method and remark
that mgre information than ig exploited here can cer-
tainly ba pullad from exiating resolurion thepry,

AND/OR trees, used a5 goal trees, are componants
of most problem solving systems that-are not resolu-
tion basad. We are hereafter concerned only with goal
trees uged for logical infarence, We show, among
ather things, that the wsual way of orgenizing goal-
mibgoal traes is incomplete yet one small change makes
the mechanism completw, sssuming equality substitution

is not relavant, and if the equality predicate is used,’

seversl added rules gives completeness in general. By
completenseg, we mean that the goal treeg and asgopi-
nted syntactic mechanism is capable of establishing a
Egodl statemant whenever the goal ig valid given the
Azsertions present. The systems we discuss are the
seprch trees such ag are usgd in the Gesmetry Theorem
Machine {Gelernter et al.Zs 'h). the Logic Theorist
(Newell et al.1?) and elsewhere, Indeed, when the
aquality predicate is not preasent, the mechanism of the
Plane Geometry Machine is sufficient in structurs and
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machanism to be complete vet iz not complete.

The subject of complatansss is smbrailed in con-
trpversy thass daya. Wa feel a developing consensus
that toral complatensss is pointleas to pursue, and for
aleoat all problems, pursuit of the solution will be
done by mathods (particularly search methods) incomplete
in themselves, yet the total rezervoir of tools to be
dravm upon should be complete if ar all posaible. In
particular, one wishea the underlying organizacion and
recording mechanism (this is what AND/OR goal trees
ars) to ba capable of handling any situwaction. The
worst possible situation 1is to be prevented from estab-
lishing a simpla inference not hecause one is unable to
thread through the search spece bur becsuse the infer-
ence chain cannot aven be represented. We claim this
is particularly bad becsuse the problem specific search
tools are axpactad to ba updated frequently while the
underlying recording {proof) mechanism {s viewed as far
more stable, In analogy, inabiliry to express concepts
due to inadequate grammatical structure is worae than
insdequacy due to & limited vocabulary, for one more
randily adds to his (her) vocabulary. One wishes a
goammar "complete" although no one expeets & "complate™
vocabulary.

As regarda goal trees, onea instance of inadequate
undarstanding of goal trees and the asgociated mechan-
tsms is reported in Gelernter’. This paper documents
an instance where 2 mechanism mixing use of the STUCK
and ESTABLISHED labels with geal elimination due to
identical higher goal resulted in the inability to in-
fer theorems whoae known proof complaxity suggested
solution should be possible, A= aearch spaces were
relatively small, most runs could be carefully analyzed,

"an the flaw was probably discovered on the first theorew

for which the flaw acrually prevented the proof. How-
ever, the Gepmetry Theprem Machine had been in operation
nearly a year at that time &nd many "production” runs
ware mada prior to this discovery, Moral: flaws in
infrequently used logical paths may be particularly bad

" because siwple (and important?) results may be blocked

long after the system is believed "debugged” in its

- basie routines,

We do not consider completeness proofs here but
rely on examples te suggest the need and degree of ap-
plicability of extensions to the classical form for
goal trees, Those familiar with resolution theory {in
particuler, model eliminstion as given in Loveland] s
also in Kowalski and Kuehner®) will be able to verify
some claimg. Other agsertions are basad on resules to
mppear in 8 forthcoming book on theorem proving by one
of the authors!l.

At this stage of development of the artificial
intelligence field, we feal it is unnecessary to justi-
fy interest in theorsm proving techniques themselves,
The bibliography lists a small sample of papers that
investigate theorem proving techniques or apply such
techniquas to robot guidance, gquestion-ansverer sys-
tems, sutomatic programming, etc.

2, GCosl Trees

By a goal tree we mesn an AND/OR tree developed
by a problam reduction mechanism, A "classical® treat-
want of goxi trees occurs in Nilsson'? and Sllgle]g,
for sxsmuple, We review this notion briefly by outline




and example.

Let us represent our syntactic, or gemantic, Atoms
by capital Lacin lettera: A, B, €, ..., with sub=-
scripts if neceasary, Of course, A may be & complex
formula, e.g., (¥y)(¥x)P(x,y} = Q(y), but we agree not
to consider its incterior structure relevant to the par-
ticular problem so it {s "packaged” 23 A, We consider
our primary, or top, goal G to be the atom to be ez-
tablished. Asgsertions (facta) are of the form
A,A...h&n - C (1mglicaFinns) or P (premises). The Ai
are antecedents and € iz the cansequent of the implica-
tion. For notational convenience, we define the conse-
quent of & premise to be the premisze itgelf and the set
of antacedents of a premise to be the empty sac, For
4 particular problem we begin with & goal to be estab-
lished and » sat of assertions, We congider the ax-
pression format more closely later,

A goul tree racords the development of the search
to establish G by liuking it to the premises via the
implications. G is the top gonal; if it is also a
premise, G is established, OQtherwise all implications
with consequent G are located and the antecedents of
each such implication become new godls, subgoals of G.
G 13 the parent of eéch new goal apd each new goal is
tha successor of G, If each new goal for one of the
iwplications can be established, & is then established
(by aszerting the implicatien)s ~ The antecedents of
one iwplication form partner goals. We also refar to
a tonjunction of godls meaning the set of antecedents
from one iwplication. Any single set of partner goals
{goals in conjunction) at this lavel that can be es-
tablished establishes G. Thfs yields 8 disjunction of
partner goml sets. If no partner goal set corresponds
to 8 set of pramises, some parcner gosl set is select-
ed and each of the partners not & premise (& again
watched against Iimplication conclusions to create (pos-
sibly) new subgpal sets (not necessarily as a single
parallel action), This proceeds in iteration until a
sufficient set of prewmise matches are found, or the
sanrch stops. The conjuncclon/disjunc:ion ralation=-
ship above leads to the name AND/OR cree.

A goal A 14 an ancestar of goal Bif A 13 the paTtent
of B or A is an ancestor of the parent of B. A partner
of an ancestor of the goal A is called &n ancestor

partner of A,

We give an elementary example from plene geomebry
in the sgpirit of the Geometry Theorem Machine (GTM):
sea Figure 1, Immediate subgodals lie below their goal
apd are connected by a slanted line. Partner goals are
connected by a hovrizontal line. In Figure 1 tha bot-
tom leftmost conjunction of goals is rejected even
though two goals are premises becawse the third goal
also occurs 4s the top goal, thus it is an ancestor of
icself. Any goal that oceurred as an ancestor geoal of
{tself was rejected at the lower level in the GTM
structure because {f it could be established at all,
it could be established from the higher level, Alsp
in the GTM astructure wids & way of discarding a con-
junction of goals if & higher conjunction containing
an dncestor was easier to prove, We do not elaborate
for we handle this somewhat differently. The key
point is that interaction with ancestor goals exigted,
and was very important due to the "depth first" search
which wmeant not legving & branch until you could go no
furcher. :

We now snlarge ouyr format for expressions. This
is done by allowing our atoms to be licerals, atoms
poasibly preceded by a neg#tion sign, Thus if A is a
complex expression, we look inside only to check if
the leftmost symbol is 4 “"mot" operstor of proposition-
al logic. 7Tf so, it is displayed., We let 4, B, C,...

‘(poasibly with gubgser{pts) represent litarals. To

emphasize that B 1la A proceeded by a "not" wa will
somatimes write B s mA. A and A ave complement lit-
erals. Othervise, our expression format is ag before.

The use of negated goals has not appedred in the
classical Inference programs using goal-subgoal sys-
tems. The Geometry Theorem Machine avoided the need ta
recognize complemencary goals almost by aceclident, for
concepts like "XYZ 1% collinear” and "XYZ Ls not col-
linear" boch appeared bub did not interact, However,
in general situations parcticularly in robot systaems,

question answerer systems, etc. Interaction between

complementary literals is to be expected. Certain re-
cent systems of a goal-subgoal format have been de-
gigned to handle negated formulas so that comp*gmented
literals interdct; see Bledspe et al,', Reiter 7,
These syztemg are lesz in the classical geal-subgeal
format than the system conzidered here and also appear
to be incomplete,

We coneider in Figure 2 a simple example in which
the goal follows from the a&ssertions but the goal-sub-
goal mechanism so far illuscrated will not escablish
the goal, One reason {s that the contrapositive of
ona of tha assearcions {8 needed. We add the codtrapos=-
itive 83 8n explicit agsertion. We note, however, that
thare 18 no way of proceeding to & premisze! Yet the
problem is simple enough so that one can read the in-
tended meaning of the assertions and see that the goal

follows, We claim that because ~C occurs as an {indir=-

act) subgoal of €, we can tredt ~C a5 if it were a
premise and terminate that branch, That is, ~C is now
marked contradicted and considered establighed, Az A
is 8 premise, B 1g establiphed, so ¢ is eatablished, asz
desired,

Tha rationgle for the mechzanism above 13 not hard
to find. Either € iz true or ~C is true., 1If ~C i3
true, then we can establish C {after establishing other
pertinent suhbgoale), which is impossibla. Thus C is
true, This is an argument by contradiction. We ob-
gerve that the check for this is trivial if poszibla
identity with ancestor goale is checked as in the GDM.
One simply checks for identity and then complementa-
tion.

) The not-so-immediate fact is that wa now have a
prapositionally complete system, That is, if no sub~-
gtitution inside literals is allowd so az to make dis-
tinct literals alike (or complementary) np further
glmmicks will be necessary. In Figure 2, we note a
possible alternate argument to produce estéblishment
iz that one of D and ~D is true mo one of the two ways
af esteblishing ¢ should be permitted. Iz this suffi-
clent also? Probably so, we are not sure. In any
avent, it is generally a much more difficult check as
the occurrences of D &nd ~D #re on different disjunc-
tive branches &nd can be made co appear a4t an arbitrary
depth by wmaking the inference connecting C and D more
complex, Thus instead of a nearly free check one has
a relatively complex tree gearch. But might such a
tree search be necessary anyway, for some case wheve
ancestor complements do not occur? No, That is the
meaning of our statement that the system is now prop-
asitionally complete, The proof iz & consequence of
the completeness of model elimination (ME).

In generdal problem solvers will not be comstrained
te work propositionally, The expressions we have con-

" sidered, gral and assertions, will in general have free

variables and functions, including Skolem functionsa
which build in universal quantifiera, We do not con-
gider in detail the process of general converzion to
our chosen format (generalized somewhat below). It is
bagicklly the conversion to digjunctive normal form
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with Skolem functionsa, the dual to the "conversion” in
Nilssaul3. for example. The general structure of the
goal-pubgosl mechaniem wher operating in the presence
of free (individual} variables smd substitutien is rhe
seme but with direct comparison replaced by the notion
af unifﬁiytion from fﬁsolution (roe Bobinaoul?,
Kilasen ~, or Siagle .

Ona of the common substitution situstions invelves
aqualicy. LE we have goal P(a} and essercion a=b we
certainly consider Pib} a subgoal whose establishment
would yield Pis). Indeed, scme resders may wonder why
we need to write Pi(b) explicitly. Pf{a) might be inter-
preted as all atateneats equivelent teo Pla) under
equality substitution., This has disadvantages when
substitutions vee mmerous derived sguaticos so we Te-
ject this hare although & use of much identification
might be satisfactery. Such e trestment is coumpatible
with our mein points but requires & modified grganiza-,
tion to that given below.

In Figures 3, 4, and 5 we give exsmples where the
goal should be inferrved from the mgsertions presenced
but cannot be inferred under the simple format cf the
preceding paragraph, These figures suggest the formac
in which we propose to haodle such problems. That is,
in our geuaral description below the problema stated
would generste the goal tree presented. HNote that id
Figure & an alternace form of implication 1 is needed.
We supply it here as assertion 4. We cell 4 a general
contrapositive of T. We remark that we would expect
the situetion of Figure & to ariee very infrequently
s0 such an inference route showld be investigated only
when desperate,

Again, if we adopt the few rules for handling
equality giveo below, of which three instances have
been displeyed, we have completeness of the goal tres
procedure when equality substitutiom is included. The
completeness proof comes from the appropriste form of

ME with paramcdulacion (an equality hludling uachlni;n}
whose proof éppears in Loveland

A numbexr of other featrurees for gosl tree analysis
can be gleaned from results concerning ME. MHost are
patural in this setting such as the removal of & con-
Junction of goals when cne goal matches &n ancestor
gosl, We noted this was incorporasted in the GTH. A
pon-intuitive sitvation is that a conjunction of goals
can be elimipated if one of the compenent goals 1is
couplementary to &n unexpanded ancestor partner gesl,
i.e., & goal with ne subgoals vet recorded, but com-
pleteness is not essured unless a8 gral is oarked dis-~
placed, and treated as established, whenever it match-
es an upexpanded partner or an unexpanded ancestor
parcner goal, Displacement is 1llustrated in Figure
6. Displacement avolds expanding tha same subgoal
twice. One has no need for the dispiece-
aent device if the colncident ancestor partner has
been expanded and established, The matching subgoal
can ditectly be marked "established'.

Figure 7 is &n exsmple of another situation we
muet handle, If 5 {s an unsacisfisbie formmla, S = C
is valid for any formula C, We use the device of the
contradictory formula ¢, which may be considered a
shorthand for formulm P A =P. This device allows a
natural extensfon of our motion of assertion aopd goal
apd suffices to handle cases where the goal, or sub-
godl, canonot be directly dexrived although it is a
valld consequence of the assertions.

Wa write the general format for cur goal tree
system &s if a preopositicnal sysctem is pur concern.
Thet is, all comparisons of litersls are by identity
or conplementaricy, However, the word matches is used

" hereafter we consider a single goal G.

for this identity check. By ilnterpreting matches as
using & most general unifying substitution, the general
form i3 realized when avbatituction for (imdividusl)
free variables (s permitted, We inélude in our format
the subscitution of equalicy but, agein, wich the ambi-
guity which may or may not allow free variables in
those teras,

For convenlence we label the problen reduction
procedure below the HESON {(Hodel Eliminatien Subgeal
Driented) procedurs.

We consider again the expressicn format. An arbi-
trary first order formula can be converted to the ap-
propriate expression format, preservieg validiry. A
formula, or (finite) met of formulas, not already suit-
ably expressed should be converted to the following
form:

B h...ﬁBn -G,

1
where B, {3 of the form A A... -C or C ard G is of
the fomn L oA... , where the A L ‘s and C are lit-
erals., Thls 1s readily obtaLne& from the disjunctive
normal form of the original formela, G then defines
the goal: if K=1, L] is the mingle gosl, otherwise
Lisese,ly are top level partner gosls all of which must
be eventuslly established. We can tackle one at a time
{though they m&y be linked by common variables} so

A h...hﬁ -
ie an asmertion implication, and C a premlse. A% im-
portant equivalence for format preparation is
(A~BVC)={4A~B—Cl This iz used to form the
varioua general contrapositives needed for couwplete-
nass, We extend this to generéte ~& — _é from &, for
example.

~ If the goal is believed ko follew directly from
‘the assertions (as is usually the case) the use of ¢
may be avoided, Otherwise, add £ — G, the assertion
generated from the goal, to the assertions and for each
aasércion™ pher- ~ € add the general contrapesitive
A M. M A ~C = 7 and for each premise add ~C — £,
Cnly one such formules need be added to the assertion
list 1f some version of that assertion is believed
necessary to establish the result.

It is necessary to consider, for each assertion
ilmplication A A...AA —+ C, m general contrapositives
plus the origipal assertion if completeness is to be
preserved, There should be one general contrapositive
AT-""-... J".»Ch-l'i vash &+ A for each L. The
ordex c* lntecedents In any Zssertlon is imnaterial,

3,  The MESON Procedures

The procedures presented here are for proposirion-
al (varisble free) problems. We will make occasional
reference to the requirements of the procedures utiliz-
ing variables,

The procedures represent syntdctic systems for
adding to a goal tree information about goal-subgoal
reletionships and esteblishment of goals. The proce-
dures teturn "“success' or “failure" according to wheth-
er the top goal can be established or not respectively.
Of course, the ability to return "failure” disappears
when substitution iz allowed, e.g., first-crder [ormu-
lations. A returned value of "failure" for a problex
indicates either the top gral does not follow from the
assertions or the search ordering and goal generation
ond deletion strategies specified by the planning rou-
tine are inadequate for the problem. (It is possible
to write a complete plamning routine which theoretic-
ally always returns "success” for soiwable probloms.)

We will now present tWo MESOR procedures for goal




tree analysis incorporating the new rules discussed
above* The procedures are logically divided inte four
subprocedures with labels "initialize", "lcop®, "up-
datejnarks" and "updatejgoals".

The instructions placed at the label "initialize®
define GOALS (the set of goals toc be attempted) to be
the set consisting of conly the tcop geal and also ini-
tialize the goal tree.

The instructions placed at the label "loop" select

a goal G from GOALS, an operation to be performed and
an acsertion D if needed. The selected operation is

then performed for the goal G and asgertion D. Those
operations try to establish goals or create subgoals.

The instructions placed at the label “"update”
marks" mark a goal "establighed" if each of a 1ilt of
partner successors 1s marked "established", "contra-
dicted" or "displaced". Thus, if each of a conjunc-
tion set of subgoale of a goal ig established, the
gocal is established.

The instructions placed at the label "update
goals" add newly generated subgoals to the tree and
GOALS provided certain acceptance criteria are meb.

The selection of the next goal in GOALS to be
operated upen and the selection of the operation and
the assertion to be used in operating on that goal are
assumed to be accomplished by some externally speci-
fied planning routine ("the planner"). The planner,
in addition to specifying a search strategy, may re-
strict or totally eliminate use of some of the opera-
ticne. For example, traditional goal tree procedures
without the contradiction mechanism correspond to a
planner which never uses the operation at "op3™.

The planner, by applying the cperation at "op5"
tc a geal, removes the goal from GOALS and thereby
signifies that no meore operations will be applied to
the goal.

If one wisheg to incure completeness, the planner
nucst in some order process all operations (except the
cperation at "ops") for each goal and potentially ap-
plicable assertion. The planner may select the goals
of a conjunctive set cof gcals in any desired order to
attempt their establishment. The procedure(s) make
no ascsunption as to whether the search i1s depth-first,
breadth-first, or gome mixture of thece

MESCN procedure
Let GOALS be a set consisting of conly

the top goal. Initialize the goal tree
to the top goal.

initialize:

If GOALS is empty, exit procedure with
"failure". Let G be a goal in GOALS
selected by the planner. The planner
celects one of the following operaticns
to be performed on G and selecte D, a
premise, implication or general contra-
pogitive of implication, asg required by
the cperation.

loop:

opl: If G matches the premise D, mark G

"established" and go to updatejnarks.

Qtherwise ge te loop. ~

op2: IL G matches the consequent of D, where
L is an implication or general contra-
rositive of implication, 1let A be the

set of the antecedents of D and go to
updatejgoals. Otherwise go tc loop.

op3: If G matches the complement cf an anceas-
tor of G, mark G "contradicted" and go
to updatejnarks. Otherwise go to loop.

ap4: If G matches an unexpanded partner of G
not tnarked "displaced" or an unexpanded
ancestor partner of G, mark G "displaced”
and go to updatejnarks. Otherwise go to
loop.

op5: Delete & from GOALS and go to leoop.

updatejnarke: If G is top goal, exit procedure with
"success". If all partner geals of G
are markad "established", "contradicted"
or "digplaced", let G, be the parent of
G, set G-Gj, mark G "esctablished" and go
to updatejnarks. Otherwige go to loop.

updatejgoals:
test 1: If a member of A is identical teo G cor an

ancestor of @, go to loop.

test 2: If 3 member of A is complementary to
another member of A, an un-
expanded partner cf ¢ or an unexpanded

ancestor partner of G, go te loop.

Ctherwise add the members of R to CGOALS
and Lo the goal tree as a conjunctive
set of succesegore of &G and go to loop.

The MESON procedure for equality incorporates
rules for handling the equality relation. It differs
from the MESCN procedure in that three new cperations
are added. Also, the rules for disregarding newly gen-
erated subgeoals (at "test 1" and "test 2") have not
been proven to preserve completeness although we ke-
lieve completeness ig pregserved with these rules ap-
plied. We maintain the updatejgeals gubprocedure in
the MESON procedure for ecuality with the admenition
that if completeness is to be preserved these rules
should ke bypassed (at present}.

For technical reascns, 1t is necegsary te put in
premises of the form a»a for each term a or, if in a
setting using free variakles and substitutions, one
must put in x«x and £(x",...,X) - fi(x.,...,X) for
each n-ary function symbol f£. Such axicms can be re-
placed by apprepriate procedure rules if desired.

MESON procedure with equality

initialize: {same as for MESON procedure)
loop: {preface and operations 1-5 same as for
MESON procedure; only change is the ad-
diticn of the following operabtions)
opé: If G contains a term matching term a

where a»b or bra is the consequent of
D, where D i1s a premiee, implication or
general contrapositive of implication,
let A be the set consisting of G with a
single instance of a replaced by b plus
the antecedents of D and go to update”
geoals. Otherwise go to loop.

op7: If the consequent of D, where D is a
premise, implication or general contra-
pogitive of implication contains a term
matching term a where @ is a/b or b"a,
let B be the sget consisting of the



compliemented consequent of D with a
aingle instance of a repliaced by b plus
the antecedents of D and go to update_

goals, Otherwise go to loop.
op8: If H is an ancestor of G or G itself

and H (resp. G) contains a term matching
term a where G (resp. H) is afb or bia,
let A be the set consisting of H (resp,
G) with a single instance of a replaced
by b and go to update goals. Otherwise
go to loop.
(Mote: see examples below,)

update marks: (same as for MESON procedure)

update goals: (same as for MESON procedure)

We attempt to clarify op8 and shed light on its
usefulness. Consider the case that H is G and G is
nfh, a and b simple constants, Then, reading the
“respectively" case, we see that G contains term a and
H is afb. Then A, the possible new subgoal, is G with
replacement, f.e., b¥b., Taking the other case (ignor-
ing the "respectively") yields the same possible sub-
goal. This is certainly unproductive and could actu-
ally be deleted with no risk involved., However, in a
free variable setting with substitution it is important.
Suppose the goal is £{x)¥x &nd the sole premise is
£(£(x))¥x. By op8 where H is G is f(x)#x, ignoring
the respectively's (for variation), we have H contain-
ing a term x matching f(y), under substitution £(y)
for x, where G is f(y)fy (the change of variable name
is a necessary detatl); now afb is f(y)fy. Then A
consists of H with replacement, i.e., f(f(y))#y. This
subgoal matches the premise and the desired result is
obtained,

It is impossible to give an adequate discussion
within this paper of the modifications required to
handle first order formulas, i.,e., allowing quantifica-
tign of individual variables in the problem statement.
This is best done elsewhere where space permits a full
discussion. The modifications are generally straight-
forward if the reader is familiar with resolution
theory, in particular ME., See Loveland!!. Subtle
points do arise, however, as suggested below.

Performing matching by use of the general unifica-
tion algorithm is an important idea and, although we
can conceive of reasons to select less general substi-
tutions under certain conditions, the advantages of
obtaining the most general substitution should not be
given up lightly., This is &n important aspect where
knowledge from resolution theory can enhance the prob-
lem reduction method.

We make two further points, really warnings, con-
cerning &dopting the above description of the MESON
procedure to first order expressions, If the goal has
a free variable in it, the negation of the goal should
be made a (hypothetical) premise, To see this, con-
sider the following example: Goal: P(y) (i.e., we
want to know if TyP(y)}). Assertion: ~P(f(a)) = P(a).
Clearly either P(a) or P(f(a)) holds. We need ~P(x)
a5 2 premise to vealize this. A second point: a sub-
stitution may occur in & subgoal when applying an as-
sertion implication. This substitution must be made
at each occurregce of the replecad variable through-
out the goal tree.  Thus copies of the goal tree must
be retained in such instances for back up in case of
failure. A good format for handling this involves
adopting the ME format to the MESON procedure organizs-
tion.

- 13, Wilssom, K. J.

4. Conclusion

This paper can be read simply for the illustra-
tions of possible extensions for the problem reduction
method, However, we have attempted to convey inform-
ally that resolution theory cam contribute to the under-
standing of alternate syntactic methods. Other devices
of resolution such as linear representation of goal
trees and use of unit clauses from premises may also be
of use., We do believe that the MESON format, which
simply extends classical goal tree representation, may
present a very useful way of incorporating resolution
ideas in future problem solving programs.
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Problem Statement

Prove the basa angles of an isosceles triangle are equal,
Prove: < BAC = ¥ARC
Given: JAC = 4CB
MAERC -
Theoremg: 1., AKYZ = AUW - xXYZ = ¥UW
2, ¥XYZ o ¥RST A FUVW = YRST
) ~ X XYZ = FUW
3. XY =AUV A SYZ = AW
A¥XYZ = LUW - AXYZ = bUW ,
4, IXY =2UV A AYZ = IW A B
ASXZ = AU = AXYZ 4 AW

ABAC = AABC BAC =#ACB  xCBA = XACB
falee in diagram false in diagram

8,

Bhd,

.JBA‘H 44B  JAC 'HJBC ‘ £ BAC = XABCABA e JAB JAC =JBC . JBC =dAC
identity premise higher goal identity premise premige

Figure 1




Problem Statement

I have a swimming pool.

If I have a swimming pool and it
doesn't rain, I will go swimming.
If I go swimming, I will get wet,
If it rains, I will get wet.
Prove 1 will get wet.

A: I have a swimming pool.
B: I go swimming.

C: I get wet.,

D: It rains.

Goal: 0. C
Assertions: 1. Al
2, AANAD-B
3.8~C
4, D= ¢C
[5. ~C ~» ~D
(general contrapositive of 4)
C
(applying (applying
assertion 3) assertion 4)
B D

(applying assertion 2)

~D A
premise

(applying assertion 5)
\

~C
contradicted

Fffiure 2




Goal:
Agsertions:

LN —-O
L]
oL e o

AbsSsa-ag=ph

WANAN
P COCT O

bzo0

(applying assertion 1)

I L] L
azl asbhb b<a
premise premise premise

Fl?ure 3



Goal:
Asgertions:

m Je AA=b—=b=¢

-Pw:‘}—.lc.
o> p R
+ Pt +7
o ocoo

n

L]

o

= 2¢ AD f ¢ =+ a f b general contrapositive of 1]

agb

(applying assertion 4)

& + b'- 2c bfe
premise

(substituting from higher subgoal)

afec

premise

Frgure 4




Goal:

0. a¥b
Asgertions: 1, a>0-a =0
2, a>10
3. b< 8 i,e,, ~b =10}
agb
{substituting into assertion 1)

a>0 ~b 2 0)
premise premise

-‘C-J'?‘E-{r‘ﬁ'. 5




Goal: 0. A
Assertions: 1., B AC=—A
- 2. D-+B
3. B~-»C
4, D
A
(applying assertion 1)
c B

applying assertion 3) (applying assertion 2; expanded last)

B D
displaced premise

Fryure ¢




Goal: 0. ¢C
Aggertions: 1, A
2. ~A
[3. ﬁ ~ ¢ agsertion generated from 0]
(4. -~ + £ Rgeneral contrapositive of 1]
¢

applying assertion 3)

£

(applylng assertion 4)

premige

: lcft?ure 7




