NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

A HOLE IN GOAL TREES:
 SOME GUIDANCE FROM RESOLUTION THEORY ${ }^{\dagger}$
 D. W. Loveland * and M. E. Stickel

June 1973

Department of Computer Science Carnegie-Mellon University Pittsburgh, Pa. 15213

This paper is to be presented at the Third International Joint Conference on Artificial Intelligence.

```
\(\dagger_{\text {Research supported in part by NSF Grant GJ-28457X1. }}\)
*Present address: Computer Science Department, Duke University,
Durham, N. C. 27706.
```


A hole in goal trees: some guidance from resolution theory ${ }^{\dagger}$

D. W. Lovaland * and M. E. stickel
Depertment of Computar Science
Chrnegie-Mellon University
Pittoburgh, Pa. 15213

Abstract

The representation power of goal-subgoal trees and the ndequacy of this form of problem reduction is conaidered. A number of indequicies in the elassical form Hre illustrited, and two versions of a ayntacric procedure incorporating extensions are given. Although the form of the corrections are suggeated from rasolution theory regultg, and the value of this connection emphatized, the paper discusses the gonl tree format and its extensions on an informal level.

Key vordg: theorem proving, goal trees, AND/OR traes, Geometry Theorem Machine, resolution, model elimination.

1. Introduction

After geveral years when almost 11 theorem proving systems, and many problem solving eystems, tere bmed on resolution, many researchers are returning to gatural deduction type logics, often implemenced via tone form of goal-aubgoll tree notation uting a problen feduction approach. In this paper the gonl-subgoll tred form (or AND/OR tree form) is considered. We show that if one wishes to use this syntictic form for repregentation of the deductions and search space en full replacement for the resolution approach, one mist make some additions to the elassical problem re-由uction formulation.

To show that there exist holes in the clagsical gonl-subgonl problem reduction method we need only preaent some examples, which we supply, To determine ap appropriate correction and medsure its power takes mome theory. It turns out that resolution theory, in particular the model elimination procedure reaults, provides an adequate theoretical base. In this paper we only brate the consequences for the problem reduction eppronch, omitting proofs. Honever, we wanc to etregs the value of resolution theory for the insight it gives to the problem reduction method and remark thet more information than is explofted hefe can certininly be palled from existing resolution theory.

AND/OR trees, used as goal treeg, are components of most problem aolving gystems thet are not resolution bested. We are hereafter concerned only uith goal trees used for logical inference. We show, among other things, that the usual way of organizing goalnubgoal tritt is incomplete yet one small change makes the mechanism complete, essuming equality substitution is not relevant, and if the equality predicate is used, eveval added mules gives completeness in general. By completeness, we mesn that the goal trees and associated syntactic mechanism is capable of establishing a goal statemant whenaver the goal is valid given the asartions present. The aystems we discuss are the senrch trees auch ma are used in the Geometry Theorem Machine (Gelernter et al. $2,3,4$), the Logic Theorigt (Neuell et al.12) and elsewhere. Indeed, when che equality predicate is not present, the mechanism of the Plize Geometry Machine is gufficient in geructure and

[^0]mehanism to be complete yet is not complete.
The frobject of completeness is mbroiled in controversy these days. We fael de developing consensus that total completentss is pointless to pursue, and for almost all problems, pursuit of the solution will be done by methods (particularly search methods) incomplete in thenselves, yet the total reservoir of tools to be drawn upon should be complete if at all posaible. In particular, one wishet the underlying organizacion and recording mechanism (this is what AND/OR goal trees are) to be capable of handling any situation. The worst possible situntion is to be prevented from establishing a simpla inference not because one is unable to chread through the search space bur because the inference chain cannot aven be represented. We claim this is particularly bad because the problem specific search tools ere expected to be updated frequently while the underlying recording (proof) mechanism ig viewed as far more stable. In analogy, inability to express concepts due to inadequate gramatical structure is worse than inadequacy due to a limited vocabulary, for one more readily adds to his (her) vacabulary. One wishes a grammer "complete" although no one expects a "couplate" vocabulary.

As regards goal trees, ond instance of inadequate understanding of goal trees and the associated mechanisms is reported in Gelernter ${ }^{3}$. This paper documents an instance where a mechanism mixing use of the STUCK and ESTABLISHED labela with goal elimination due to identical higher goal resulted in the inability to infer theorems whose known proof complexity suggested solution should be possible. As search spaces vere relatively amall, most funs could be carefully analyzed, so the flaw was probably discovered on the first theorem for which the flaw actually prevented the proof. However, the Geometry Theorem Machine had been in operation noarly a year at that time and many "production" runs were mada prior to this discovery, Moral: flaws in infrequently used logical paths may be particularly bad because simple (and important?) results may be blocked long after the system is believed "debugged" in its basic routines.

We do not consider completeness proofs here but rely on extmples to suggest the need and degree of applicability of extensions to the classical form for goal trees. Those familiar with resolution theory (in particular, model elimination as given in Loveland io, also in Kowalski and Kuehner ${ }^{8}$) will be able to verify some claims. Other aggertions are based on results to mppear in a forthconing book on theorem proving by one of the authors ${ }^{17}$.

At this stage of development of the artificial inteliigence field, we feel it is unnecessary to justify interent in theortm proving techniques themselves. The bibliography lists a small sample of papers that inveatigate theorem proving techniques or apply such techniques to robot guidance, question-answerer systems, tutomatic programing, ttc.

2. Gonl Trees

By a golal tree we mean an AND/OR tree developed by a problem reduction mechanism. A "elassical" treatmatht of gotil trees occurs in Nilason ${ }^{13}$ and Slaglels, for exmple. We review this notion briefly by outife
and example.
Let us represent our syntactic, or sematic, atoms by capital Latin letters: A, B, C, \ldots, with subscripte if necessary. Of course, A may be a complex formula, e.g., $(\forall y)(\forall x) P(x, y) \supset Q(y)$, but we agree not to consider its interior atructure relevant to the particular problem so it is "packaged" as A. We congider our primary, or top, goal G to be the atom to be es* tablished. Assertions (facts) are of the form $A, \wedge . . . A_{n} \rightarrow C$ (implications) or P (premiges). The A are anteçents and G is the consequent of the implication. For notational convenience, we define the consequent of a premise to be the premise itself and the set of antectents of a premise to be the eapty sec. For a particular problem we begin with a goal to be established and a set of assertions. We consider the expression format mort closely later.

A goal tree records the development of the search to establish G by linking it to the premises via the fmplications. G is the top gonl; if it is also a premise, G is established, Otherwise all implications with consequent G are located and the antecedents of each such implication become new goals, subgoalg of G. G is the partent of each new goal and each new goal is the successor of G. If each new goal for one of the tuplications can be established, G is then established (by asserting the implication): *The antecedents of one implication form partner goals. We also refer to a conjunction of goals meaning the set of antecedents from one implication. Any single set of partner goals (goals in confunction) at this level that can be established establishes G. This yields a disjunction of partner goal sets. If no partner goal set corresponds to a set of premises, some partner goal set is selected and each of the partaers not a premisa is again aatched against implication conclusions to create (possibly) new subgoal sets (not necessarily as a single parallel action). This proceeds in iteration untila sufficient set of premise matches are found, or the seareh stops. The conjunction/disjunction relationship above leads to the name $A N D / O R$ tree.

A goal A is an ancestor of goal Bif A is the parent of B or A is an ancestor of the parent of B. A partner of an ancestor of the goal A is called an ancestor partner of A.

We give an elementary example from plane geometry In the spirit of the Geometry Theorem Machine (GTM); see Figure 1, Immediate subgoals lie below their goal apd are connected by a slanted line. Partner goals are connected by a horizontal line. In Figure 1 the bot tom leftmost conjunction of goals is rejected even though two goals are premises because the third goal also occurs as the top goal, thus it is an ancestor of itself. Any goal that occurred as an ancestor goal of itself was rejected at the lower level in the GMI structure because if ic could be established at all, it could be established from the higher level. Also in the GTM structure was a way of discarding a conjunction of goals if a higher conjunction containing an ancestor was easier to prove. We do not elaborate for we handle this somewhat differently. The key point is that interaction with ancestor goals existed, and was very important due to the "depth first" search which meant not leaving a branch until you could go no further.

We now enlarge our format for exprestions. This is done by allowing our atoras to be literals, atoms possibly preceded by a negation sign, Thus if A is a complex expression, we look inside only to check if the leftmost symbol is a "not" operator of proposition1 logic. If so, it is displayed. We let A, B, C, \ldots
(possibly with subseripts) represent literals. To emphasize that a is A proceeded by a "not" wo will somatimes write B as m A. A and A are complement literals. Otherwise, our expression format is as before.

The use of negated goals has not appared in the classical inference programs using goal-subgoal systems. The Geometry Theorem Machine avoided che need to recognize complementary goals almost by accident, for concepts like "XYZ is collinear" and "XYZ is not collinear" boch appeared but did not interact. However, in general situations particularly in robot systems, question answerer systems, etc. Interaction between complementary literals is to be expected. Certain recent systems of a goal-subgoal format have been designed to handle negated formulas so that complemented Ifterals interact; see Bledsoe et al. ${ }^{1}$, Reiter ${ }^{15}$. These systems are less in the classical goal-subgoal format than the system considered here and also appear to be incomplete.

We consider in Figure 2 a simple example in which the goal follows from the assertions but the goal-subgoal mechanism to far illustrated will not establish the goal. One reason is that the contrapositive of one of the asservions is needed. We add the coritrapositive as en explicit assertion. We note, however, that there is no way of proceeding to a premise. Yet the problem is simple enough so that one can read the intended meaning of the assertions and see that the goal follows. We ciaim that because ac occurs as an (indir ect) subgoal of C, we can treat $\sim C$ as if it were a premise and teminate that branch. That is, $\boldsymbol{m C}$ is now marked contradicted and considered established. As A is a premise, B is established, so C is established, as desired.

The rationale for the mechanism above is not hard to find. Either C is true or $\sim \mathrm{C}$ is true. If $\sim \mathrm{C}$ is true, then we can establish C (after establishing other pertinent gubgoals), which is impossible. Thus C is true. This is an argument by contradiction. We observe that the check for this is trivial if possible identity with ancestor goals is checked as in the GTM. One simply checks for identity and then complementation.

The not-so-immediate fact is that we now have a propositionally complete syttem. That is, if no substitution inside literals is allowd so as to make distinct literals alike (or complementary) no further gimaicks will be necessary. In Figure 2, we note a poasible alternate argument to produce establithment is that one of D and \sim D is true ao one of the two ways of estabilishing C should be permitted. Is this sufficient also? Probably so, we are not sure. In any event, it is generally a much more difficult check as the occurrences of D and \sim are on different disjunctive branches and can be made co appear at an arbitrary depth by making the inference connecting C and D more complex. Thus instead of a nearly free check one has a relatively complex tree search. But might such a tree search be necessary anywa, for some case where ancestor complements do not occur? No. That is the meaning of our statement that the system is now propositionally eomplete. The proof is a consequence of the completeness of model elimination (ME).

In general problem solvers will not be constrained to work propositionally, The expressions we have considered, goal and assertions, will in general have free varlables and functions, including Skolem functions which build in universal quantifiera. We do not conaider in detail the process of general conversion to our chosen format (generalized somewhat below). It is basically the conversion to disjunctive normal form

With Skolem functions, the dual to the "conversion" in Milason ${ }^{13}$, for exaple. The general structure of the gosi-subgoml mechanism then operating in the preseace of free (iodividual) variables and aubstitution is the sene but with direct comparison repleced by the notion of unifyghtion from fegolution (net Robinaon ${ }^{37}$. EAlason ${ }^{1 \xi}$, or SAagle ${ }^{\text {² }}$).

Ona of the conmon substitution situations imvolvea aquality, If we have goal $P(a)$ and asaertion an we certafnly consider $P(b)$ a sabgoal whose establishment would yield $P(A)$. Indeed, some resders maty wonder why we need to write $P(b)$ explicitly. $P(a)$ might be inter preted as all atotement: equivalent to $P(a)$ under equality substitution. This has disadvantages when oubstitutions use mumerous derived equations so we re ject this hare although a use of much identification aight be satisfactory. Such a treatment is compatible with our mein points but requires modified organization to that given below.

In Figures 3, 4 , and 5 we give examples where the goli should be inferred from the aseertions presented but cannot be inferred under the simple format of the preceding paragraph. These figures suggest the formet in Which we propose to handle such problems. That is, in our general description below the problema stated would generste the goal tree presented. Note that in Figure 4 an alternate form of foplication. 1 is meeded. We supply it here as assertion 4. We cell 4 a general coutrapositive of T. He remark that we would expect the bituation of Figure 4 to aribe very infrequantly so such an inference route ahould be investigated only when desperate.

Again, if we adopt the fav rules for handing equality given below, of which three instances bave been displayed, we have completeness of the goal tree procedure when equality substitution is included. The completeness proof cones from the appropriate form of ME with paramoduletion (an equality handing mechanam whose proof eppears in Lovelagd 11 .

A number of other fedtures for got lree analysis can be gleaned from results concerning KE. Host are natural in this setting such as the removal of a conjunction of goals when one goal matches an ancestor gos1. We noted this was incorporated in the GTw. A non-intuitive situation is that a conjunction of goal: can be eliminated if one of the component goals is complementary to an unexpended ancestor partner goal; f.e., a goal with no subgoals yet recorded, but completeness fs not assured unless a goal is marked diaplaced, and treated as established, whenever it matches an unexpanded partner or an unexpanded ancestor partner goal. Displacement is illustrated in Figure 6. Displacement avoids expanding the same subgoal
 ment device if the colncident ancestor partrer has been expanded and established. The matching subgoal can directly be marked "established".

Figure 7 is an example of another situation we must handle. If S is an unsatisfiable formala, $S \rightarrow C$ fs valid for any formula C. We use the device of the contradictory formula A, which may be considered a shorthand for formula P A $-\mathcal{R}$. This device allows a natural extension of our motion of assertion and goal and suffices to handle cases where the goal, or subgoal, cannot be directly derived although it is a vilid consequence of the assertions.

We write the general format for our goal tree syetem sis if a propositional sybtem is our concern. That is, all comparisons of literals are by identity or complementarity. However, the word matches is used
for this identity check. By interpreting entches as using most general unifying mubatitution, the general form is realized when abbstitution for (individusl) free viriables is permitted. We tnelude in our format the substitution of equality but, agein, with the mbiguity which may or mey not allow free variablen in thore ternt

For convenience we label the problem reduction procedure below the HESON (Model Elimination Subgoal Oriented) procedure.

We conaider again the expression format. An arbitrary first order formula can be converted to the appropitate expression format, preserving validity. A formula, or (finite) get of formulas, not already suitobly expressed should be converted to the following form:

$$
B_{1} A+\cdot A B_{n} \rightarrow C_{n}
$$

where B, is of the form $A, A, \ldots A_{m} \rightarrow C$ or C and G is of
 erdis. This is readily obtained fromithe disjunctive normal form of the original formula, G then defines the goal: if $\mathrm{K=1}, \mathrm{~L}$ is the gingle goal, otherwise L, ,...., Lh are top level partner gosls all of which anst be eventifily established. We can tackle one at a time (though they may be linked by common variables) so hereafter we consider a single goal G. A. A...Ah \rightarrow C is an asaertion implication, and C a premise. A思 for portant equivalence for format preparation is $(A \rightarrow B \vee C) \equiv(A A \rightarrow B \rightarrow C)$. This is used to form the various general contrapositives needed for completenass. We extend this to generate $\sim A \rightarrow \notin$ from A, for example.

If the goal is believed to follow directly from the assertions (as is usually the case) the use of $\&$ mat be avoided, Otherwise, add $\& \rightarrow G$, the assertion generated from the goal, to the assertions and for each asertion $A, A+\ldots A \rightarrow G$ add the general contrapositive
 only one such formula need be added to the assertion list if some version of that assertion is believed oecessary to establish the result.

It is necessary to congider, for each assertion faplication $A A_{+\ldots} M_{i} \rightarrow C$, m general contrapositives plua the original as硅ertion if completeness is to be preserved. There should be one general contrapositive A, A...A $A \sim A A A A_{1} \ldots A A \rightarrow A$ for each 1 . The

3. The MESOH Procedures

The procedures presented here are for proposition1 (variable free) problems. We will make occasional reference to the requirements of the procedures utilizing variables.

The procedures represent syntactic systems for adding to a goal tree information about goal-subgoal relationships and establishment of goals. The procedures return "success" or "£ailure" according to whether the top goal can be established or not respectively. Of course, the ability to return "failure" disappears wen aubstitution is alloned, e.g., first-arder formulations. A returned walue of "failure" for a problem indicates either the top goal does not follow from the ssertions or the search ordering and goal generation and deletion strategies specified by the planning routine are inadequate for the problem. (It is possible to write a complete planning routine which theoreticLIy always returis "success" for soluable problans.)

We will now present two MESON procedures for goal
tree analysis incorporating the new rules discussed above* The procedures are logically divided into four subprocedures with labels "initialize", "loop", "updatejnarks" and "updatejgoals".

The instructions placed at the label "initialize" define GOALS (the set of goals to be attempted) to be the set consisting of only the top goal and also initialize the goal tree.

The instructions placed at the label "loop" select a goal G from GOALS, an operation to be performed and an assertion D if needed. The selected operation is then performed for the goal G and assertion D. Those operations try to establish goals or create subgoals.

The instructions placed at the label "update^ marks" mark a goal "established" if each of a lilt of partner successors is marked "established", "contradicted" or "displaced". Thus, if each of a conjunction set of subgoals of a goal is established, the goal is established.

The instructions placed at the label "update_ goals" add newly generated subgoals to the tree and GOALS provided certain acceptance criteria are met.

The selection of the next goal in GOALS to be operated upon and the selection of the operation and the assertion to be used in operating on that goal are assumed to be accomplished by some externally specified planning routine ("the planner"). The planner, in addition to specifying a search strategy, may restrict or totally eliminate use of some of the operations. For example, traditional goal tree procedures without the contradiction mechanism correspond to a planner which never uses the operation at "op3".

The planner, by applying the operation at "op5" to a goal, removes the goal from GOALS and thereby signifies that no more operations will be applied to the goal.

If one wishes to insure completeness, the planner must in some order process all operations (except the operation at "op5") for each goal and potentially applicable assertion. The planner may select the goals of a conjunctive set of goals in any desired order to attempt their establishment. The procedure (s) make no assumption as to whether the search is depth-first breadth-first, or some mixture of these.

MESON procedure

initialize: Let GOALS be a set consisting of only the top goal. Initialize the goal tree to the top goal.
loop:
If GOALS is empty, exit procedure with "failure". Let G be a goal in GOALS selected by the planner. The planner selects one of the following operations to be performed on G and selects $D, ~ a$ premise, implication or general contrapositive of implication, as required by the operation.
opl: If G matches the premise $D, \operatorname{mark} G$ "established" and go to updatejnarks. Otherwise go to loop.
op2: If G matches the consequent of D, where D is an implication or general contrapositive of implication, let A be the
set of the antecedents of D and go to updatejgoals. Otherwise go to loop.
op3: If G matches the complement of an ancestor of G, mark G "contradicted" and go to updatejnarks. Otherwise go to loop.
op4: If G matches an unexpanded partner of G not tnarked "displaced" or an unexpanded ancestor partner of G, mark G "displaced" and go to updatejnarks. Otherwise go to loop.
op5: Delete G from GOALS and go to loop.
updatejnarks: If G is top goal, exit procedure with "success". If all partner goals of G are marked "established", "contradicted" or "displaced". let G be the parent of G, set $G-G j, ~ m a r k ~ G ~ " e s t a b l i s h e d " ~ a n d ~ g o ~$ to updatejnarks. Otherwise go to loop.
updatejgoals:
test 1: If a member of A is identical to G or an ancestor of G, go to loop.
test 2: If a member of A is complementary to another member of A, an unexpanded partner of G or an unexpanded ancestor partner of G, go to loop.

Otherwise add the members of A to GOALS and to the goal tree as a conjunctive set of successors of G and go to loop.

The MESON procedure for equality incorporates rules for handling the equality relation. It differs from the MESON procedure in that three new operations are added. Also, the rules for disregarding newly generated subgoals (at "test 1" and "test 2") have not been proven to preserve completeness although we believe completeness is preserved with these rules applied. We maintain the updatejgoals subprocedure in the MESON procedure for equality with the admonition that if completeness is to be preserved these rules should be bypassed (at present).

For technical reasons, it is necessary to put in premises of the form a»a for each term a or, if in a setting using free variables and substitutions, one must put in $x \propto x$ and $f\left(x^{\wedge}, \ldots, X_{\text {. }}\right)-f(x, \ldots, X)$ for each n-ary function symbol f . Such axioms can be replaced by appropriate procedure rules if desired.

MESON procedure with equality

initialize: (same as for MESON procedure)

loop:
(preface and operations 1-5 same as for MESON procedure; only change is the addition of the following operations)
op5: If G contains a temm matching term a where $a \times b$ or $b » a$ is the consequent of D, where D is a premise, implication or general contrapositive of implication, let A be the set consisting of G with a single instance of a replaced by b plus the antecedents of D and go to update^ goals. Otherwise go to loop.
op7: If the consequent of D, where D is a premise, implication or general contrapositive of implication contains a term matching term a where G is a / b or $b^{\wedge} a$, let A be the set consisting of the
complemented consequent of D with a aingle instance of a replaced by b plus the antecedents of D and 80 to update. goals. Otherwise go to loop.
op8: If H is an ancestor of G or G itself and H (resp. G) contains a term matching term a where G (resp. H) is af b or $\mathrm{b} \neq \mathrm{fa}$, let A be the set consisting of H (resp. G) with a single instance of replaced by b and go to updace_goals. Otherwise go to loop.
(Note: see examples below.)
update_marks: (same as for MESON procedure)
update_goals: (same as for MESON procedure)
We attempt to clarify op 8 and shed light on its usefulness. Consider the case that H is G and G is $a f b$, a and b simple constants. Then, reading the "respectively" case, we see that G contains tem a and H is afb. Then A, the possible new subgoal, is G with replacement, i.e., $b \neq b$. Taking the other case (ignoring the "respectively") yields the same possible subgoal. This is certainly unproductive and could actually be deleted with no risk involved. However, in a free variable setting with substitution it is important. Suppose the goal is $f(x) \neq x$ and the sole premise is $f(f(x)) \neq x$. By op 8 where H is G is $f(x) \neq x$, ignoring the respectively's (for variation), we have H containing a term x watching $f(y)$, under substitution $f(y)$ for x, where G is $f(y) \neq y$ (the change of variable name is a necessary detail); now $a \notin b$ is $f(y) \neq y$. Then A consists of H with replacement, i.e., $f(f(y)) \notin y$. This subgoal matches the premise and the desired result is obtained.

It is impossible to give an adequate discussion within this paper of the modifications required to handle first order formulas, i.e., allowing quantification of individual variables in the problem statement. This is best done elsewhere where space permits a full discussion. The modifications are generally straightforward if the reader is familiar with resolution theory, in particular ME. See Loveland 11. Subtle points do arise, however, as suggested below.

Performing matching by use of the general unification algorithm is an important idea and, although we can conceive of reasons to select less general substitutions under certain conditions, the advantages of obtaining the most general substitution should not be given up lightly. This is an important aspect where knowledge from resolution theory can enhance the problem reduction method.

We make two further points, really warnings, concerning adopting the above description of the MESON procedure to first order expressions. If the goal has a free variable in it, the negation of the goal should be made a (hypothetical) premise. To see this, consider the following example: Goal: $P(y)$ (i.e., we want to know if IyP(y)). Assertion: $\underset{\sim}{P}(f(a)) \rightarrow P(a)$. clearly either $P(a)$ or $P(f(a))$ holds. We need $\sim P(x)$ as a premise to realize this. A second point: a substitution may occur in a subgoal when applying an assertion implication. This substitution must be made at each occurrence of the replecad variablo throughout the goal tree. Thus copies of the goal tree must be retained in such instances for back up in case of failure. A good format for handling this involves adopting the ME format to the MESON procedure organization.

4. Conclusion

This paper can be read simply for the illustrations of possible extensions for the problem reduction method. However, we have attempted to convey informally that resolution theory can contribute to the understanding of alternate syatactic methods. Other devices of resolution such as linear representation of goal trees and use of unit clauses from premises may also be of use. We do belleve that the MESON format, which simply extends classical goal tree representation, way present a very useful way of incorporating resolution ideas in future problem solving programs.

Bibliography

1. Bledsoe, W. W., R. S. Boyer and W. H. Henneman. Computer proofs of limit theorems. Artificial Incelifgence, 3 (1972), 27-60.
2. Gelernter, H. Realization of a geometry theoremproving machine. In Feigenbaum, E. A. and J. Feldman (eds.) Computers and Thought. McGraw-Hill, New York, 1963, 134-152.
3. Gelernter, H. Machine generated problem solving graphs. Proc. Symp. Math. Theory of Automata (1963), 179-203,
4. Gelernter, H., J. R. Hansen, and D. W. Loveland. Empirical explorations of the geometry theorem machine. In Feigenbaum, E. A. and J. Feldman (eds.), Computers and Thought. McGraw-Hill, New York, 1963, 153-163.
5. Green, C. Application of theorem proving to problem solving. Proc. Int. Joint Conf. on Artificial Intelligence (1969), 219-239.
6. Hewitt, C. Description and theoretical analysis (using schemata) of PLANNER: a language for proving theorems and manipulating models in a robot. MIT Artificial Intelligence Laboratory report AI TR-258 (April 1972).
7. Kowalski, R. AND/OR graphs, theorem-proving graphs and bi-directionsl search. Machine Intelligence 7, 1973.
8. Kowalski, R. and D. Kuehner. Linear resolution with selection function. Artificial Intelligence 2, (1971), 227-260.
9. Loveland, D. W. A simplified format for the model elimination theorem-proving procedure. J. ACM 16, 3 (July 1969), 349-363.
10. Loveland, D. W. A unifying view of some linear Herbrand procedures. J.ACM 19, 2 (April 1972), 366-384.
11. Loveland, D. W. Forthcoming book on mechanical theorem proving. North-Holland (early 1974).
12. Newell, A., J. Shaw and H. Simon. Empirical explorations of the logic theory machine. In Feigenbaum, E. A. and J. Feldman (eds.) Computers and Thought. McGraw-Hill, New York, 1963, 109-133.
13. Nilsson, N. J. Problem Solving Methods in Artificial Intelifigence. McGraw-Hill, New York, 1971.
14. Reiter, R. Two results on ordering for resolution with merging and 1 inear format. J. AGM 18 (October 1971), 630-646.

15* Reiter, R. The use of models in automatic theoremproving. University of British Columbia Department of Computer Science report 72-09 (September 1972).
16. Robinson, G. A. and L. T. Wos. Paramodulation and theorem-proving in first-order theories with equality* In Meltzer, B. and D. Michie (eds.) Machine Intelligence 4. American Elsevier, New York, 1959 , 135-150.
17. Robinson, J. A. A machine-oriented logic based on the resolution principle. J. ACM 12, 1 (January 1965), 23-41
18. Robinson, J. A. A review of automatic theorem proving. Proc. Symp. Appl. Math. 19 (1966), 1-18
19. Slagle, J. R. Artificial Intelligence: The Heuristic Programming Approach. McGraw-Hill, New York, 1971.
20. Waldinger, R. J. and R. C. T. Lee. PROW: a step toward automatic program writing. Proc. Int. Joint Conf. on Artificial Intelligence (1969), 241-252.
21. Wos, L. T., D. F. Carson and G. A. Robinson. The unit preference strategy in theorem proving. AFIPS 25 (Fall, 1954). Spartan Books, Washington, 615621.

Problem Statement

I have a swimming pool. If I have a swimming pool and it doesn't rain, I will go swimming. If I go swimming, I will get wet. If it rains, I will get wet. Prove I will get wet.

A: I have a swimming pool.
B: I go swimming.
C: I get wet.
D: It rains.

Goal:
Assertions:
0. c

1. A
2. $A \wedge \sim D \rightarrow B$
3. $\mathrm{B} \rightarrow \mathrm{C}$
4. $\mathrm{D} \rightarrow \mathrm{C}$
[5. $\sim \rightarrow \rightarrow$ D
(general contrapositive of 4)

[^1]

Figure 4

Figure 5

Goa1:	0.	A
Assertions:	1.	$B \wedge C \rightarrow A$
	2.	$D \rightarrow B$
	3.	$B \rightarrow C$
	4.	D

Figure 6

Gonl: $\quad 0 . \mathrm{C}$
Assertions: 1. A
2. A
[3. $\& \rightarrow c$ assertion generated from 0]
[4. . $\sim A \rightarrow \&$ general contrapositive of 1]
C
1
(applying assertion 3)

Fiqure 7

[^0]: Fieserch supported in part by NSF Grant GJ-28457X1.
 *Prepent eddress: Computer Science Deppritnent, Duke Unituryity, Durham, N. C. 27706.

[^1]: Figure 2

