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" ABSTRACT

This peper surveys varioue anslytic techniques for l-atudying the
extent of memory interference in a multiprocessor system with a
'érosspoint switch  for  processor-memory  communication.  Processor
beh'avior. is simplified to an ordered sequence of a memory reguest
.followe'd by a certain amount of processing time. The systam is assumed
to be bus bound; in other words, by the time the processor-memory bus
completes servicing a processor’s request the processor Is ready to
initiate another request and the mémory module is ready fo accept
another request. The techniques discussed include discrete and
continuous time Markov chain models, and some approxlmate‘ analytic
methods, viz. diffusion approximation and Strecker’s approximation. The
results are compared with a-simulation madel, in which the processing

time has an exponential distribution and the memory cycle time s

constant.




1.INTRODUCTION

Carnegie-Meallon  University is currently in the process of
cbnstructing a multiprocessor computer system‘(c.mmp)r that will have up
to sixteen centrai ‘processors (Pc’s)¥ sharing the same physical address
space ([BellC71b; WulfW72] and concern has been expressed about the
performance o.f‘such a system with this many active processors. Figure
1.1 ustrates the major components of a'mqltiprocessof such as C.mmp.
In addition to the processors, there is a set of memory modules that
are able’ to. operate independently; little would be gained if all the
processors had to wait for service from a single memory module. Between
the processors an;i the memory modules (Mp’s) is a n by m switch. There
are a number of ways of implerﬁenting the switch; Fig. 1.2(a) depicts a
n by m crosspoint switch, and Fig. 1.2(b) iHustrates - the use of trunk
lines; and combinations of these ‘two basic schemes can yleld many other
other schemus. 'I"his report wiil examine the performance of a crosspoint
switch since initial indications are that the crosspoint switch is the
highest performance switching structure for a multiprocessor system and

C.mmp is _ using such a switch. Other multiprocessors, although Ilimited

describe hardware organization,
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to a small number of Pc's, ie. two to four also basically use a
crosspoint switch, e.g. the Burroughs D825[AndeJ62] and Univac 1110.
For further discussion of trunk lines, and a variety of other switching

structures, the reader is referred to Bell and Newell [1971}

Mathematical models of computer systems can be developed at
various levels of abstraction. A large number of models for
time-sharing systems consider a job as a basic unitfef. MckiJ69], and
in many models of multiprogrammed computer systems the block of
instructions between |I/O operations is taken as a basic unitfef.
buzelJyi; GaveD67]. However, in this study a much more detailed model is
used to analyze interference as processors access individual words from
the memory modules. Each processer's performance is measured by the
number of memory accesses per unit time. In a multiprocessor system the
performance of each Pc is not independent of the behavior of the other

Pc*s.

Thu following sections will discuss various techniques that can be
used for analysing multiprocessor systems that are bus bound, ie.
systems in which the Pc¢ is ready to initiate another request and the Mp
module is ready to accept® the next request exactly at the time the
Pc-Mp bus recovers. The analysis is also valid for multiprocessor
systems in which the effective processing time is equal to the memory

rewrite time. The major contribution of this paper is a systematic



method for a discrete Markov chain model. Other techniques described
include Strecker's approximation [StreW70], systems with exponentialiy

distributed memory service time, and a diffusion approximation.

2. GENERAL MODFELING ASSUMPTIONS

Due to .the complexity of thes problem, the ewxact detailed behavior
of memecry interference in a mulliprocesser system is difficull to
model. Some of the parameters that characterize the behavior of a Pc

are:

{i}¥ Instruction mix : Instructions can be characterized by their
relative frequency. In general, processor behavior varies for different
instructions. However, in this report differences in instrucltions are
ignored. Processor behavior is modeled as a ordered . sequence of a.
memory request followed by a ceriain a'mqunt of ‘executioﬁ time. At this
level of abstraction no déstinction is made between the processing
negded to decode an instruction and the processing corresponding to its
executton. Thus, the processing time characterifing @ Pc depicts only
‘the aggregiﬁe behavior of the real Pc. Figure 2.1 depicts the actual

and ebstracted behaviors.
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(i) Average processing time: This is obtained from measurements

similar to those used for determining the probability distribution.

(iii) Access pat-tern of a Pc: This is the trace of the pages or.
memory locations accessed by the Pc. In this study serial correlation
Between successive memory accesses wili be ignored. Demand patterns
will be modeled as sequences of Bernoulli trials, Memory accesses will

be characterized by the memory unit to which it is addressed.

Primary memory be_havior is a function of the fabrication
technology ie. core or semiconductor. Memory performance can be
characterized by the access time (ta), rewrite time (tw), and cycle
time (tc). Nominally, the cycle time is the sum of the other two. In
this study, no distinction 'is made between read and write operations.
The effect of interleaving within a Mp module is to make the access and

cycle times variable,

3. CONTINUOUS TIME MARKOV‘CHAIN MODEL

Consider a 'multiprocessor system which consists of n Pc’s and m Mp’s
-connected by a single crosspoint switch. Let Pij denote the prabability
that the i-th processor reqdests service from the j-th memory unit.

Thus, the demand pattern of each. processor is equivalent to a sequence




of Bernoulti fki_‘ilg; A “processor is ‘éaid to be quewed If it s Wllif.ij;iﬁ
~for: df In the process of receiving: memory service. A ﬁrachs:qf‘ is said
to bo aétiﬂe,.if s currently being serviced by a mamcry.‘l.‘ikawise,‘"“‘l‘.
mai'hb.l"y .i:s | said to be nccupwd or busy if there is ‘at !aistl oﬁq

o processor queued for that momory unit.

if the systam is bus-bound and tha bus recovers at thn same tlme
.that tha memory Is ready tn service tha naxt raquost then the
effactlve processmg hme (s sean by the mamary) is equal to,thé

' memory rewrite time.

in our first model, we apply the ciassic simplifying assumption In
.queuéing models: wa model the sarvi-ce time, or cycle time, of ‘thb‘
i'r\a'lﬁqr'y ‘m;.:dulas as expon;n.tially ‘distributed random variables [cf,
" WagnhH69] Clearly most memory systems do not have an axponanllal‘ly“
distributed éycle time, However, techniques such as interleaving, cache
Lmarﬁofi'ﬂs,' and the type of memory access{read, write, rsad-modify-wrfte)
5uggesi ~ that. this ‘expunen‘tial assumption may be as good an
abproximafion as tﬁe assumption tha‘t‘ the memory cycls time Is fixed,
énd no:t variable at all. Without further assumptioué or apbroximations,
‘_Wa can use tha results of Jackson [1953], and Gordon and Nawell [1957]
to ﬁnd tha parformance of the mullfprocessor ‘system, This technlqus is_

' alao used by McCredie [1973] ‘for multiprocessors with tp>tw.




Let the number of service c_enters_ be m. The states of the system
are m-dimensional vectors with non-negative integer components, the
j-th  component representing the queue length =2t center j. If
K=(k],k2,....km) is a state vector, then S{K)-_illﬂi. TFansitioln from one

. i
center to another is characterized Ey a routing probability Rij, ie.
the probability of going to center j on completion of service at center
i. Jackson [1.953] has obtained the- eguilibrium  joint  probability
distribution of queue iengths for a broad class ~of queueihg-theoretical
models representing a2 network of service centers. Customer arrivals are
modeled as a generalized Poisson .prccasé [cf. WagnH69], whose mea.n
arrival rate wvaries almost arbitrarily with the total number of
customers already in the system. Service completions at each center are
also modeled as generalized Poisson processes, the mean service rate
{u} at each‘centar varying arbitrarily with the queus fength there.
Nete that | in Jackson’s moael all customers are identical. Muntz and
Baskett [1872] have a more general queueing network model that allows
different  clesses  of  customers to  have  different  branching
probabilities. Gordon and Newell [{1967] have presented a solution
technique for closed queuesing systemé, i.e. networks of queues in which

the number of custamers is constant.

For closed queueing systems, Jackson’s formuise for obtaining the

aquilibrium state pr_nbabiﬁties:at‘e listed below;
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P(K) = w(K)/T(S{K)).
where,
m_km
w(K) = TT TT [e(j)/u] for je[1,m]
j=1i=1 -
where e(j) = Ze(i)R(,j)}  je[1,m]
i=1
T(K) = 3 wK) summed over K with S(K)=n
But, with Pc requests distributed uniformly and with the bus-bound
situation or tp=tw, Jackson’s model reduces to m servers with customers
circulating with uniform routing probabilities ie. Rij=Pij=1/m. Using
the above formuiae we get,
w(K) = (1/u)tn
n+m- 1 '
T(K) = ( gy 11 /u)tn
. - om- -I)- ..1 s m
P(K) = [_( me1 for all K such thatigrl-n
ie. all the states of the system have equal probability. Physically,
" this indicates that states with greater congestion in the queues are as
likely as ‘evenly distributed queues. The probability that a particular
Mp module is idle, Prob{Mp[i] is idle}, is the fractiom of the total
" number of states that has ki=0.
In other words,

Prob{Mpl[i] is idle} = nuinber of ways of assigning n Pc’s to m-1 Mp’s
number of ways of assigning n Pc’s to m Mp’s

n+m-2
- (.m-2
n+m-1
( m-1

Prob{Mp[i] is busy} = n/(n+m-1)




1

 E[number of busy Mp's] = msProb{Mgl[i] is busy}

- m_tnf[m-m-l}

‘The_ above expression has 2 number of interesting prnpertie's: the
expression is symmetric in m and n; it has a basic hyperbolic form,
asymplotic to n as ‘m gets large; and, if we let m=n Lthe above
expression becomes

nf(2-1{n)
and

E[number of busy Mp's} - nj2 for n>>1

The final observation has important implications. # states that
a-:s multiprocessor systems grow to include more and more Pc‘s, we are
not faced with a law of diminishing returns: no matter how many Pc's
are used, if we have the same number of memory modules, we can expect

half the processors to be active.

4. A SIMPLE DISCRETE MARKOY CHAIN LKJDEL

For this enalysis let us assume that all the Fc’s wore

characterized by a single constant processing time tp. Also, all the




12

memory units are a;sumed to. have the same cycle time‘ tc a.nd access time
ta. Thus, tﬁe memory rev_vrite' time is given by tw=tc-ta. If tp= tv.v then
all memory units can be considered to be operating syhchronously. Thus,
during any memory cyclbe the number of active Pc’s is equal to the
number of busy Mp’s. With tp=tw, the analysis is simpler than with
tp<tw and ‘tp>tw. Also, it is a boundary condition for the -other two
cases. Thus, tp=tw is an interesting case for a preliminary comparison
of wvarious modeling techniques, even when tp is not equal to tw in

reality.

In this section, a simple Markov Chain Analysis is presented for
the case in which the processors request every memory with equal
likelihood. A multiprocessor systerm with n Pc’s and m Mp’s is likened
to. an occupancy problem with n balls and m urns. Balls are randomly
assigned to the m urns at the beginning of a memory cycie-. At the end
of the cycle one ball is removed from each urn; Thus if there are k
non-empty urns during cycle s then k balls are available for assignment

during tha (s+1)-th cycle.

The state of the above mentioned process is defined by a m-tuple

(k1%2,.km), where >ki=n and Oskisn for all L The number of
i=1 _ n+a-1

distinct states of the system is given by the combination, (m-‘; ) i.e.

the number of ways in which n balls can be assigned to m bins

[FellW66]. However, since all the processors behave identicaily, a
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number of the distinct states are equivalent ie. they have the same
occupancy and have the same components, e.g. states (2,1,1), (1,2,1),
(1,1,2) are equally likely. Thus, the reduced states are given by the

different ways in which the number n can be partitioned into m parts.

m

i.e. the unordered solutions to the equation £Xi«n for OAXten represent
equivalent classes of equally likely states. The number of such

partitions (for n<m) is asymptotic to
1 exp[n(2n/3)t0.5] [cf. BeckE64]
4TTH3

Also,

F(x)« | (
(I-x)(1-xT2) . . .(1-xTm)

» 1+Ep(»)xti
1=1.

is an ordinary generating function of the sequence ({p(0), p{l),

p(m)), where p(i) denotes the number of partitions of the integer i

that have no part exceeding m [LiuC638].

Let the representative state Si denote the set of compositions of
the number n that vyield the same partition e.g. the compositions
(21.,1), (1,2,1) and (1,1,2) correspond to the partition of the number
4 which has two Ts and one 2. Further, let Sij be the individual
compositions of the partition typified by representative state Si and

Si.l be that composition which has its components arranged in monotone
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Figure 4.1 An algorithm for generating partitions




non-decreasing order, ie. (2,1,1) for the above example. The algorithm
shown in Fig. 4.1 generates all the partitions of n with the components

in monotone non-increasing order.

Let Xij denote the probability of a transition from 8§ to Si.
Then, due to the symmetry of the problem,

Xij » £Prob{Transition from $j.| to SLk}
si.k£si

Let the m-tuple (kl,k2,....km) denote the state of the Markov
chain. If x is the number of non-zero elements in this vector then at
the end of the memory cycle, x new processors have to be reassigned to
memory modules. At the end of the current memory cycle the queue is
characterized by the m-tuple {JI,J2.....Jm), where

Ji  -ki-1 if ki>0

«0 otherwise.

A new state (LIL2,..Lm) is reachable from <kl,k2,..km) if and
only if Lixdi for |IEi€m. If the above condition is satisfied the

probability of the state transition is given by

=]

X x-dly ,x-dl-d2 x-Edi
(dl) ) (dz )‘( d3 )h""( dm )

where di- Li-Ji
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ie. x! #(1/m)x

P ——

dl! d2! ..dm!

o : m m m
Note that since 2 ki =3 Li=n, >di=x

i=1 i=) i=1
Thus, we now have a formula for generating the transition
probabilities. Due to the symmeiry of the problem it suffices to
generate only the transition probabilities for the representative class
6f stétes. All  the different way§ of obtaining the same part,itidh are

_ lumped together to form a reduced state.

To illustrfa -a  computational methods* for generating the
transition probabilities consider an example of a 4 by 4 system. The
number 4 .can be partitioned in5 differeht ways'as Iisted bélow:

4000
31 0‘-.0
2200
2110

1111

xThe use of a tree to generate the transition probabilities was suggested
by F. Baskett and D.Chewning of Stanford University.
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These partitions represent 5 equiv.alent classes that characterize
_the state of the Markov Chain. Let us consider the state (2,2,0,0). At
the end of a memory cycle, the resultant par_tiai state is (1,1,0,0)
with 2 free processors .to be reassigr.'ngd. Figure 4.2 shows the different
ways in which the&-;e 2 Pc's' can be assigned, one at a time, to reach a
new partial representative state. After‘ both -f‘c’s are assigned a
terminal lstate is reached. The numher on the arrow indicates the number
of ways of reaching the partial or terminal state that the arrow points
to. Now the number of ways in which a final state can be reached from '
the initial state can be computed by traversing the tree, e.g. there
are 2x1 ways of reaching (1,1,1,1) and {(2x2 + 2x3) ways of reaching

(2,1,1,0) from (2,2,0,0).

It is possible to construct a single tree with different pointers
for differe_nt initial states. Figure_Q.a shows a complete tree for a
Ax4 system. Initial states are circled. The entire transition matrix
can be filled by traversing this tree. A convenient way" of traversing
this tree is by using a stack which has depth equal to one more than
the number of Pc’s. At each level the stack contains a partial state
and has a pointer to the initial representative state (if any). from

which it is derived. The stack is initialized to contain the path that

YAn alternative method for traversing the tree is described in Appendix |.
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Initial State Final Terminal States

3100
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1100 2110
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111

Add 1 Pc Add 1 more Pc

Figure 4.2 Next states accessible from initial state (2,2,0,0)
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Figure 4.3 Enumeration tree for a 4 by 4 multiprocessor system
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leads to the topmost final state. For this example tha stack is
Initialized as shown in Fig. 4.4, and Fig. 45 shows an slgorithm for

using the tree to generate the transi'tion-matr_ix, shown in fig. 4.6.

The following theorem and lemma can be used to increase the

afficiency of the program that generates the transition probabilities.

Theorem 1@ There s one-to;one correspondence  betwsesen a8
representative stale and a partial state that the representstive state

reduces to at the end of a cycle.

Proof: 1et (kl,..km) be & representative state., The pertial
state at the and of the cycle is given by

(J1,92,.pdm)

where Ji=ki-1 if ki0
=0 otherwise
i m
Since no two representative states wre alike and Zki=n, it follows that

i=1

the partial states are distinct.

femma A partial state at level L in the enumerative tree of Fig. 4.3

can correspond to a terminal state with exactty n-L occupied Mp's.
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4 000 1 level 4
4 000 _ 3000 1 level 3
31700 2000 1 level 2
2110 1000 4 level 1
1111 OGcooD level O
Initial
state STACK MWAYS
pointer Wumber of ways of

getting to level L
from level L-1

Figure 4.4 1Initial contents of the stack for traversing
the tree shown in Figure 2.3
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Proof: Let J=(JI,J2......dm}) be a partial state in the tree
depicted in Fig. 4.3. Furthermore, let the number of non-zero elements
elements in the partial state be y and let «n-x. Since one Pc is
always removed from a non-empty queue at the end of a cycle, J is a
partial state that can be reduced from a valid representative state
K«{kl.k2,....km)}, if and only if

(i) The number of non-zero elements in K is x,and
(ii) x>y

Note that x and y are both less than or equal to min{m,n) and £Kki-n.
i=1

Then, if x>y, J has atleast x-y =zeres. If x<y then there is no
representative state K that corresponds to the partial state J. If xEy,
then the representative state is obtained by adding y I's to the

non-zero elements of J and replacing x-y zeros of J by 1. At level L,

m

2ZJi» L Therefore, x, the number of occupied Mp*s in K, is equal to
n-L

Figure 4.7 shows the average number of busy Mp's when n-m. The
curve has an almost constant slope of .586 for n>4. Figures 4.8 and 4.9
show the effect of adding a Pc and an Mp respectively on the average

number of busy Mp's.
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DONE
at
Level L 7

K A

Use Level L-1 to
change Level L

Update NWAYS

Generate transition prote
abilities from all initial
state pointed te by the
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Update pointer
to initial state

L=1+1

¥ i)

Trensition matrix has -een
completely generated,

&

\*

Normalize each column so
that sum going down a
column is 1,

Figure 4.5 Algorithm for traversing the tree shown in Figura 4.3
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1

4 000 3 100 2200 2 110 1111
4 000 1 1 0 1 4
3 10 0 3 3+3 2 3+3+6 12+12+24
2200 0 3 2 3+6 12424
2 110 0 6 4+6 6+12+18 | 24+48+72
1111 0 0 g 6 24
STEP 1: Xij is the number of ways of reaching i from 7.
{obtained from the tree of fig. 2.3)
STEP 2; Xij Xij {Note that SXij=m , where x of them
TXii i

components of j are non-zero)

Final equations to be solved simultaneously:

4000

‘3100

"2200

"2100

‘1111

0.25

0.75

0.00
0.00

0.00

SUBJECT TC P

Figure 4.6

4000

0.0625

0.3750

0.1875
0.3750

0.0000

+

0.000

0.125

0.125
0.625

0.125

P3100 - 2200

0.015625

0.187500

0.140625
0.562500

0.093750

2100 07

1111

0.015265

0.187500

0.14Q625
0.562500

0.93750

Steps in the generation of the transition matrix

4000

3100

2200
2100

1111
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Average number of busy Mp's

2 3 4 5 6 7 8 9 10 n

Number of Pc'a = Mumbor of Mp's

Figure 4.7: Multiprocessor Systems with n=m.
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5. OTHER DISCRETE MARKOV CHAIN MODELS

5.1 Discrete Markov Mode! of Skinner and Asher

Skinner ' and Asher [1969] model the multiproéessor ‘system as &
discrete Markov chain. They. assﬁme a mafrix  of probabilities that
express the likelihood .that a given processor requests service from a
given memory at the beginning of'.a memory cycle, provided the Pc¢ is not
queued. 'I_'hey‘ also assume a matrix of probabilities that- express the
likelihood of the various outcomes that can arise when there are
simultaneous requeéts to one memory by several processors. The state of
the sys;tem is characterized by the processors queued for the different
memory modules. A state transition matrix is formed from the access
probabilities and the steady state probabilities of various states are
determined by solving “the state traﬁsition equations. The number of
states of the system increases very steeply with an increase in the
number of Pc’s and Mp’s. Closed form solutions are presented only for
cases with up to. 2 Pc’s and n Mp’s. The analysis in the previous
section is similar to Skinner'and Asher, but with uniformly random

accass patterns for all the Pe¢’s, ie, Pijwl/m for all i.
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b.2 Strecker’s Approximaticn

Strecker _{19?0] has an approximate closed form solution to the
discrete. Markov Chain model presented here. His approach is Equivalent
to removing thg' queued processors from all the memory modules at the
end of a memory cyi:.le and reassigning them. Thus the state of the
system is considered independent of the state during the last cycle. If
we use this assumption fhe distfibutian of Pc’s queusd for an Mp

follows the binomial distribution:

]
Prob{Yer} = (r):(um)r*(l_um) -r
where Y is a random variable equal to the number of Pc's

queued for Mp[j] and Pij=t /m for ali i and j.

Thus,

Prob{Mp[j] is busy} = 1~ Prob{nobody is queued for Mpfji}
= 1-{1-1/m)tn

" In other wbrd#, the occupancy of Mpfjlis 1-{1-1/m)Tn, and

E[no. of occupied Mp’s} = S-{Occupancy of Mp[il}

¥1
= mafi~{1-1/m)tn]

Teble ! shows a comparison of Strecker's results end the exact
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Marfcov  chain analysis. Note that Strecker's results are optimistic
estimates of the wunit execution rate. It is encouraging to note that
such a simple expression is within 6 to 83 of the exact Markov Chain
model for m/n>0.75. This is because his analysis assumes that all n
Pc's always make a new request at the beginning of each memory cycle,
whereas in the discrete Markov chain only those Pc's that receive
service are allowed to make new requests. Moreover, note that the
expression m*[I-(I-I/m)fn] can be written in an exponential form as
m*{l-exp[n* In (1-1/m)]}
Figure 51 shows a plot of the above expression for fixed m; the

relaxation time [ In (I-1/m)f' approaches m as m gets large.

6. DIFFUSION APPROXIMATIONS

An approximation method that has been proposed for the solution of
general queueing networks is the diffusion approximation [cf NeweG71;
KobaH73]. A discrete-state process is approximated by a Wiener-Levy
diffusion process with a continuous path. The key assumption in such an
analysis is that incremental changes in the queue lengths are normally
distributed. This leads to a characterization of the queueing network

by a set of diffusion equations. The accuracy of the approximation
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depends on three factors: (i) approximation of a discrete-state processr
by a time-continuops Markov process, (i} c¢hoice of proper reflecting
" barriers, and {iii) discretization of the continuous density function.
for queue lqngths. Surprisingly, for the simple discrete Markov Chain
model. of section 4, the diffusion approximation yields‘ a result
identical to that with exponential servers derived from Jackson’s
formulée. However,. tHe main utility of the diffusion approximation in
this context is that it can be used to analyze the effect of different
coeffi-cients of variation ( ratic of standard deviation to the mean)

for the service time distribution.

7. CONCLUDING REMARKS

Tables 1 and 2 compare the numerical results obtained from the
different models described. Strecker’s approximation gets better as m/n
increases, whereas the continuous .timel and discrete Markov models get.
closer ‘for‘lafger n/m ratios. Table 3 shows some simulation results
obtained with exponential distributions for the processing time, with

mean equal to tw.

i.e. Prob{tp=x} = A exp(-Ax) where A=]/tw=1/ta=1/E{tp]
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Note that the values in Table 3 lie between those predicted by Strecker
and Jackson. Table 4 shows the characteristics of the parameters in the

various models.



34

TABLE 1

Expected number of busy memories in one cycle
Number of Pc’s = 1,2,..,8 (rows)
Number of Mp’s = 1,2,..,8 {columns)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
- 1.0000
1.0000
1.000Q
1.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
1.5000
1.6667
1.7500
1.8000
*1.8333
1.8571
1.8750

1.0000
1.5000
1.7500
1.8750
1.9375
1.9687
1.9844
1.9922

Q.0000
0.0000
4.9979
7.1429
7.6389%
7.3856
6.8548
6.2507

1.0000
1.6667
2.0476
2.2701
24102
2.5059
25751
2.6274

1.0000
1.6667
2.1111
2.4074
2.6049
2.7366
2.8244
2.8829

0.0000
0.0000
3.1012
6.0482
8.0782
9.2063
9.6812

Discrete Markov Chain Model

1.0000
1.7500
2.2692
2.6210
2.8633
3.0370
3.1663
3.2657

1.0000
1.8000
2.4095
2.8630
3.1996
3.4533
3.6436
3.8024

1.0000
1.8333
25054
3.0365
3.4530
3.7809
40418
42621

1.0000 1.0000
1.8571 1.8750
25748 2.6272
3.1657 3.2652
3.6482 3.8019
40415 4.2H18
43636 4.6292
46294 4.9471

Strecker’s Approximation

1.0000
1.7600
23125
2.7344
3.0508
3.2881
3.4661
3.5995

1.0000
1.8000
2.4400
2.9520
3.3616
3.6893
3.9514
4.1611

1.0000
1.8333
25278
31065
3.5887
3.9906
43255
4.6046

Percentage Error

0.0000
0.0000
1.9082
4.3266
6.5484
8.2680
9.4685

0.0000
0.0000
1.2658
3.1086
5.0631
6.8340
B.2991

0.0000
0.0000
0.8941
2.3053
3.9299
55463
7.0191

1.0000 1.0000
1.8671 1.8750
25918 2.6406
3.2216 3.3105
3.7613 3.8367
4.2240 4.9096
46206 4.8584
49605 5.2511

0.0000 0.0000
0.0000 0.0000
0.6602 05100
1.7658 1.3874
3.1002 2.4935
45157 3.7114
5.8896 4.9512

97244 10.2214 9.4335 82900 7.1521 6.1450
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TABLE 2

Expected number of busy memories in one cyclae

Number of Pe's = 1,2,...,8 {(rous)

Numbaer of Mp's = 1,2,...,8 (coiumns)

1.6088
- 1.6688
1.66808
1,.6000
1.60a0
l,6620
1,468
1.0008

1.6008
1.@088
1.@008
1.6080
1.6082
1.0680
1.6060
1.6080

g.6088
B.GoEe
8. 66806
B.6B08
B.BEYB
B. ouoe
g.68eo
P.ope8

1.8008
1.5008
1.6667
1.7508
1,$000
1.8333

1.8571-

1.8758

1.6098
1.3333
1.5000
1.609@
1.6667
1.7143
1.75@d
1.7778

B. 6048
11.1133
18,8018

8.5714

7.4856

6.4918

5.7671

5.1848

Discrete Markov Chain Mode!

1.08880
1.6667
2.08476
2.2761
2.4102
2,5659
2.5751
2.6274

1.80808
1.7500
2.2692
2.6210
2,8633
3.8370
3.1663
3.2657

1.6808
1.8000
2.40835
2.8638
3,1996
3.4533
3.6486

3.80824

1.0660
1.8333
2.5054
3. 8365
3.4538
3.7883
4.8418
4.2521

1.e0608
1.8571
2.5748
3.1857
3.6482
4,8415
4, 3636
4,b6234

Continuous Time Markov Chain Model

1. 0808
1.58e0
1.3000
2.608e
2.1428
2.25688
2.3333
2. 46808

1.66608
1.6680
2. 0008
2.2857
2.5e08
2.6667
2,308
2.98391

1.0000
1.6667
2.1423
2.5608
2.7778
3.66809
3.1818
3.3333

1.0668
1.7143

2.2580

2.6667
3. 06680
3.2727
3.5c00
3.6923

Percentage 0Oifference

8.e0ea
18.8018
12.8322
11.8982
11.8384
19.2113
9.3899
&.6549

A.pees

8,5714
11.8632
12.7928
12.6882
12,1338
11.5687
19.9196

8.0868

7.4856
11.@645
12.6798@
13.1822
13.1266
12.7933
12,3363

0. 6000
6.4910
10,1948
12.1785
13.1198
13.4412
13.4843
13.1653

1.9088
1.7580
2,3333
2.8000
3.1818
3.5000
3.7682
4.00080

8.0000
5.7671
9.3794
11.5519
12.7844
13,3985
13.6218
13.5857

1.0000
1.8758
2.6272
3. 2652
3.8019
4.2518
46292
4,9471

1.8008
1.7778
2.4800
2.9991

3.:3333
3.6923
4. 0080
4.2667

B. 6680
5.1848
8.6438
- 18.385%3
12,3254
13.1591
13.592d
13.7535



TABLE 3

- Expected number of busy memories in one cycle :

-Exponential distribution for tp

Constant tw=ta=E[tp]

Simulation resuits

Ty 2 3 4 5 & 7 8
N2 1.4088 15931 '
n=3 1.6185 1.9878 22075
n=4 22198 25643 2.8004
n=5 2.7980 3.1472 3.4300
n=6 3.4088 3.7122 40040
n=7 3.9990 43196 45804

n=8 45666 4.9028
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TRBLE 4
Hewory Cycie Analysis
Tima .
Constant Exact
Constant RApproximate
Exponent|al Expet
Constant Rpprox imkte
Constant Approxinate
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Solutlon Iis
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Unnieidy for
Targs n.

Closed form
soluilon.
Simptle formula.

Closad form
polutlbn.
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Unuleldy due to
sion xtochastle
convergence,
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APPENDIX |

The tree In Fig. 4.3 can be converted into a mesh by Ilumping
together all occurrences of a partial state in the tres. e.g. state
2100 at level 3 appears twice. the resulting mesh for the 4 by 4
example is shoﬁn in Fig. 1. the algorithm for generating the transition
matrix is shown in Fig. 4. though the impiementation of this algofithm :
involves a matrix mulftipiication and requires more temporary storage it
is faster than the algorithm in section 2 for larger n. Thus, a

space-time trade-off affects the selection of the algorithm to be used.
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Fig, 1. Enumeration mesh for a A by 4 multiprocessor system.



generate partitions of N into M parts,
let the vector X8YS denote these partitions,
that represent the state of the system.

Generate partitions of N-l into M parts.
Let X2 denote these partial states.

Y

Compute B.
I*tatrix B is the number of ways
of reaching XSYS from X2.

Update TRANS (i.e. matrix of number
Of ways of reaching X8YS from X8YS.)
If any state in X2 is a reduction
of estate in XSYS8.

Generate partitions of |
Vector Xl

Compute matrix A.
A is the number of ways of
reaching X2 from XI.

Matrix Multiplication.
B-A*B
Interchange Xl and X2.
B is now the number of ways
of reaching XSYS from X2.

If 00...0 is a reduction of a
state in XSYS update TRANS.

Evaluation of
the required matrix of the number
of transitions, TRANS is complete.

Figure 2 An algorithm for evaluating the transition matrix.



