
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Comparison of Register Transfer Languages
for Describing Computers and Digital Systems.

M.R. Barbacci
Department of Computer Science

Carnegie-Mel lon University

March 1973

This Research was supported by the National Science Foundation under grant no.
GJ 3 2 7 5 8 X .

I would like to thank Professors Gordon Bell, Allen Newell, and Daniel Siewiorek for
their comments and suggestions during the preparation of this report .

Abstract

Different notations have been proposed over the years to describe Register
Transfer (RT) systems. They have met with varying degrees of success and to provide
a direct comparison of them is a difficult task. One of the reasons for this is the
d i f fe rent views of the RT level of design held by the proponents of the languages.

The approach used this paper is to provide a common ground, or kerne l , for the
ent i t ies the languages try to describe. The starting point is, since the RT level is an
abstract ion of the Switching Circuit level, the ability to describe systems at the lower
l e v e l . Then the concepts introduced by the RT level of design, namely, the selective
control of the activities, is presented. At this point, a clasification of the languages
into Procedural and Non-procedural is provided.

The next step in the study deals with the ability of the languages to.denote the
asynchronous control modules as defined in [M 0 7 . M 1 1] . The next step deals with their
usefulness to describe complex systems (e.g. , Instruction Set Processors) and the w a y
a descript ion is organized to provide different levels of detail. A few remarks are
made about their implementation for simulation and automatic design systems. Finally,
the languages are compared against a set of requirements for writing behavioral and
structura l descriptions of digital systems.

Table of Contents

Section page

Introduction 1

1.0 The Design Levels 2

2.0 The Languages 3

3.0 Characterization of the RT Level 4

3.1 Carriers and Operators 4

3.2 Arrays 5

3.3 Conditional Actions 9

4.0 Concurrent and Sequential Actions 10

4.1 Sequencing in Non-procedural Languages 11

4.2 Sequencing in Procedural Languages 12

5.0 Asynchronous Control Primitives 14

6.0 Behavioral and Structural Descriptions 16

6.1 Instruction Set Processors 17

6.2 Organization of the Description 18

6.3 Example: A Microprogrammed Computer 19

7.0 Simulation and Design Automation 24

8.0 Language Requirements 27

References 31

iii

Tables

Tab le page

I Carr ier Declarations 6

II Carr ier Accesses 7

III Primitive Operators 8

IV Conditional Operators 9

V Sequencing in Non-procedural Languages 11

Vf Sequencing in Procedural Languages 13

VII Asynchronous Control Primitives 15

i v

1

INTRODUCTION

A l though the RT level is a perfect ly val id level of des ign , it has not been ful ly

de f i ned and unders tood (it is not a problem of youth fu lness, the level was r e c o g n i z e d

as such in the ear ly 5 0 f s) . As a consequence we do not have a p roven and accep ted

(c o m p l e t e ?) set of primitive elements. A lso , there is no accepted design f o r m / s t y l e ,

and usual ly informal f l o w - c h a r t and data path diagrams are used. The result is that a

d e s i g n e r , wo rk ing at the RT level must ocasionally descend one level (to the gate leve l)

to desc r i be prec ise ly a part icular piece of hardware. Contrast this wi th the gate level

o f d e s i g n , w i th the tradit ional ly accepted set o f primitives (AND, OR, F L I P - F L O P e tc .)

w h e r e it is indeed rare for a designer to have to describe a gate in terms of d iodes or

t r a n s i s t o r s (the Circui t L e v e l) .

RT languages are similar to most programming languages since both ca r r y out
r e g i s t e r ass ignments. The special nature of hardware suggests that it could be useful
to at least have a special notat ion, even though programming languages such as
F O R T R A N can be used for this purpose. The need for such a notation is due to the
in f luence that it has upon the designer, simultaneously limiting his intellect (a sys tem
may be more easi ly descr ibed in one language than in another) and enhancing it (a
no ta t ion p rov ides a formal mechanism to generate and transmit k n o w l e d g e) . The main
m o t i v a t i o n , is t h a t : "Complex i ty diminishes and clarity increases to a marked deg ree if
a lgor i thms are descr ibed in a language in which appropriate control s t ruc tu res are
pr imi t ive or easi ly e x p r e s s i b l e " [R06] .

The fundamental propert ies of hardware systems dictate the p roper t ies an RT
language must possess . In hardware systems many activities occur concu r ren t l y . T h u s
it is important to have a natural w a y of describing parallelism. Other character is t ics of
h a r d w a r e sys tems are the n o n - r e c u r s i v e nature of their opera t ion , and timing issues
that must be cons ide red . Since machines are designed from logically disjoint funct ional
u n i t s * , a w a y of describing interactions between units, both as sub rou t ines
(h ie ra rch ica l re la t ionships) and as coroutines (symmetric re la t ionsh ips) , is r e q u i r e d .
T h e behav io r of the system is descr ibed by sequences of actions or act iv i t ies, (w h e r e
con t ro l f lows along selected paths - an abst ract ion) , and mechanisms requ i red to
gua ran tee the harmonious cooperat ion (synchronizat ion) between act iv i t ies.

C o n t r o l operat ions in the language should provide only the informat ion
n e c e s s a r y to unders tand the behavior of the system and should imply the actual
implementat ion as Irttle as possib le. The efficiency of a RT language depends upon the
g e n e r a l i t y of the contro l operat ions, i.e. whether a given operat ion exists as a
pr imi t ive in an RT set or is descr ibed as a composition of more primitive ope ra t i ons .

* E v e n w h e n the primit ives were gates and f l i p - f l o p s , the complexi ty of a computer
made it impossible to v iew the machine as a large network of components , i ns tead ,
d e s i g n e r s w o u l d think in terms of busses, shift reg is ters , adders etc.

2

1.0 - - THE DESIGN LEVELS

Five major levels exist in the digital systems hierarchy [R 0 2] , for which we are
in terested in formally defining, using notations, and computer recognized languages.
T h e y a r e :

PMS level (System l e v e l) . - The top level of description, evaluates the gross
proper t ies of the computer system. Its elements are processors, memories, switches,
per iphera l units e tc , and the parameters are costs, memory capacities, information f low
r a t e s , power etc .

Programming l e v e l . - The basic components are the interpretation cycle , the
machine instructions, and operations (which are defined at the RT leve l) . The behavior
of the processor is determined by the nature and sequence of its operations. This
sequence is given by a set of bits in primary memory (a program) and a set of
in terpre ta t ion rules. Thus, if we specify the nature of the operations and the rules of
i n te rp re ta t ion , the actual behavior of the processor depends solely on the initial
conditions and the particular program.

Register Transfer level (Functional l e v e l) . - Data flow and control operate in
discrete steps. A combination of switching circuits is used to form regis ters ,
r e g i s t e r - t r a n s f e r s and other data operations. The elements (registers) are combined
(t rans formed) according to some rule and then stored (transfered) into another
reg is ter . The rules of transformation can be almost anything, from simple transfers to
complex logical and arithmetic expressions.

Switching circuit level (Sequential and Combinational s u b l e v e l s) . - The system
structure is given by a collection of gates and f l i p - f l o p s , and the behavior by a set of
boolean equations. Timing is carried out at a finer degree than at the preceding leve l ,
a time unit being usually on the order of a gate delay.

Circuit l e v e l . - Gates are described as some interconnection of d iodes,
t rans is tors , resistors, etc. according to electrical circuit laws. Most of the discrete
proper t ies of the previous two levels are lost, and timing is carried out at a f iner
d e g r e e , where transient behavior is usually a very important consideration.

Part of the characterization of a System Level, (as described above) is the
existance of a notation for representing the system, that is, the components, modes of
combination and laws of behavior. The three intermediate hardware leve ls :
Programming, Register Transfer and Switching can all be described using a single
language. In fact , conventional programming languages have been used. The issue is,
h o w e v e r , how much they must be changed to reflect parallelism, timing and the
s t ructure of the object being represented.

3

2.0 THE LANGUAGES

Four languages were selected on the basis of their characteristics as
representa t ive of a class of languages. They are :

1) CDL [L 0 6 . L 0 7] , one of the most successful, it has been in use for several
years and has been implemented for simulation and design automation purposes
[S 1 2] . CDL is an excellent representative of the class of n o n - p r o c e d u r a l
languages (the distinction is given below).

2) APDL [L 0 8] , a representative of the class of Algol + languages
[L 0 8 , L 1 2 , L 1 9 , L 2 5] , i.e. languages based on Algol with extensions to handle
timing and register variables.

3) APL [L 1 6 . l l 7] , selected because of the richness of the set of data
operators and its facility to handle arrays. A major drawback is the lack of
facilities to describe parallel activities. It is used in the ALERT System
[S 0 5 . S 0 6] developed at IBM as a front end for their Design and Logic
Automation Systems [S0A.S18] .

4) ISP [R 0 2 . L 0 4] , developed initially to describe the primitives of the
programming level of design, handles concurrency and sequencing of activities
in a simple fashion and provides an adequate set of data and control opera tors .

Non-procedural languages [L01 ,L05,L06,L09,L22,L241 attach no meaning to
the lexicographical ordering of statements describing the operation of the system.
Statements are associated with some sort of "label" describing the condition for
execut ion (activation) of the operation described by the statement(s) . They can be
w r i t t e n as a table , where each entry consists of a label (activation conditions) and a
set of activit ies.

Procedural languages impose an explicit ordering in the activities, given by the
sequential ordering of the statements. The activation of activities is conditioned by the
complet ion of the preceding ones. Concurrent activities are described in "time blocks"
and the description is then a list of these blocks.

http://L16.ll

4

3.0 - - CHARACTERIZATION OF THE RT LEVEL

The RT level is a generalization of the Switching Circuit level . The structural
e lements are arrays of identical subsystems belonging to the Switching leve l , i .e.,
registers are made of f l ip - f lops and gates, driven by clocks (or c lock- l ike signals) .
The behavior is described by transformations (functions) and transfers be tween
reg is ters . The key element that sets this level apart from the lower level is the
appearance of control (the ability to perform these transformations and transfers in a
select ive w a y) as an explicit entity. Section 3.1 describes the primitive components at
the Switching Circuit level. The generalization of these components at the RT level is
p resented in section 3 .2 .

3 . 1 - - CARRIERS AND OPERATORS. -

Operators are entities that produce information by transformation of bit
pat terns to which a meaning has been assigned. These bit patterns reside in carriers,

which are the entities used in storing and transmitting the information to and from the
o p e r a t o r s .

Operators take their input from carriers, perform their function on the data and
present their outputs onto carriers. At the Switching Circuit level , operators range in
complexity from simple transfer paths between carriers, to logical gates, to
combinational networks.

Carriers can be divided into two types, according to the latency of the
information stored in them. Thus, we have memory components where the information
s tored in them is kept over periods of t ime; and we have memoryless carr iers , where
the information is of a more transient nature. An example of the latter is wires coming
out of a combinational network.

It would not be possible to make a clear distinction between these two types of
car r ie rs on the basis of their function in transmitting or storing information. There are
many cases in which the distiction would be rather foggy. For instance, a bus is used
to transmit information i.e. a carrier, but it also keeps it (a memory function) for a
per iod of time adequate for the information to be collected at the receiving end. On
the other hand, a set of f l ip - f lops connected as a shift register provides both a
s torage and transmission function.

Among the physical operators and carriers we have the individual gates (AND,
OR, NOT, EXOR, EQUIV, NAND, NOR, etc) and f l ip - f lops of different types (RS, JK, D,
e t c .) . These operators and carriers can be combined to form combinational and
sequential networks.

At the Switching level , notations are based on Boolean equations or Logic
diagrams and there seems to be general acceptance of the industrial or military
standards currently in use. The use of logic equations allows a more concise

5

representa t ion of the system but does not provide for physical configuration
descript ions. Logic diagrams provide a pictorial representation and allow the
descr ipt ion of elements required by the circuits (physical restrictions) but not by the
logic.

3 . 2 - - ARRAYS. -

The first specialization introduced by the RT level is the generalization of the
opera to rs and carr iers , i.e. arrays of (identical) operators performing simultaneously
on the information held in arrays of (identical) carriers. At this point, carriers become
hierarchical ly organized information structures, in which each level consists of a number
of subcarr iers , all identically organized. This decomposition eventually yields
e lementary carr iers that can not be decomposed further (bit carr iers) .

This abstraction allows the designer to reduce the complexity of his task by
using logic equations to describe the network (Logic diagrams are less useful since the
ob ject ive is the reduction of detail, specially when logically i r re levant) . This implies
that operators and operands are now actually arrays of identical entities. Subcarriers
are r e f e r r e d to by some subscripting or array notation (similar to those in most
programming languages). A concatenation operator is used to represent compound
c a r r i e r s . RT languages usually have the following elements:

- Registers are vectors of components whose values can be characters from an
arb i t rary alphabet. They are declared by giving the name of the register , the
dimensions, and the size of the alphabet (defaulted to 2 in most cases, i .e.
b i t s) . Dimensions are given in brackets or parenthesis, as a list of subscripts
or element names. Abbreviated lists are indicated by bound-pa i rs using some
range operator , for instance, 1:5 stands for the list 1 ,2 ,3 ,4 ,5 .

- Suhrcgisters are part of registers and are usually declared with their own
name and subscript specifications. /

- Compound registers, formed by concatenation of several registers and
subregisters can be declared. The declaration usually provides a name and
subscript specifications.

- Arrays of registers are declared by providing a name, dimensions, and the
specification of the individual registers (element names and base) .

6

Table f Carrier declarations

CDL APDL APL ISP

Base binary general general

(1)

general

Register
s t ructure

declarat ion

list of names

or bound-pa i rs

(4)

bound-pair number of
elements

(2)

list of names

or b o u n d - p a i r s

<4>

Register
a r r a y

dimensions

one dimension
(3)

multiple
dimensions
(Algol)

multiple

dimensions

(6)

multiple
dimensions

Subregisters
declarat ion

mnemonic
subscripts

(5)

general
(one dimension)

no general

Compound
registers

declarat ion

general
(one dimension)

general
(one dimension)

no general

Memoryless
car r ie rs

one dimensional no no

(7)

multidimensional

Special
car r ie rs

LIGHT.SWITCH

DECODER

(1) Binary in ALERT
(2) Indexing is from 0 to N - l or 1 to N depending on system parameter.
(3) Requires explicit use of memory address register.
(4) Numbers represent element names and not relative positions (as subscripts) along
a given dimension.
(5) Mnemonic subscripts can be used to represent ranges of subscripts. Does not
allow independent naming of subregisters.
(6) Up to two dimensions in ALERT.
(7) Macros are used for this purpose in ALERT.

7

Carr iers are accessed through their names and the specification of the
subcomponents by some subscripting mechanism. There are several modes of
specify ing this subscripting, depending on the number of dimensions and the number of
subcomponents accessed. The following are typical RT language propert ies:

- Single characters (for instance, bits) are accessed by providing a full set of
subscripts, one for each dimension up to the individual character.

- Complete registers are accessed by their names alone (defaulting the list of
individual component names and bound pairs) . Register arrays require
specification of the subscripts up to the individual register.

- Partial registers are specified by providing a list of component names and
bound pairs, in the order in which access is desired (not necessarily the order
they occupy in the register) .

- Multiple registers can be specified by lists of component names and bound
pairs along the dimensions of the register array.

Single
character

COL

Y

Table II Carrier accesses

APDL APL ISP

Y

Full
register (1)

Y

Scat tered
register

Sca t te red
a r r a y

Expression
subscripts

N

N
(3)

N

Y

(2)

Y

(2)

Y
(4)

(1) Total register access by name alone.
(2) Only for constant subscripts in ALERT.

(3) A lways requires use of the Memory Address Register used in the declaration.
(4) Only for single bit access in ALERT.

8

The primitive operators are classified into logical, arithmetic vector, and
special . The symbols used to represent the operators are either special characters or
combinations of letters (names).

Expressions are formed by combination of constants, operators, and operands.
Rules of precedence are usually as in Algol, with the notable exception of APL (right to
left precedence) . The value of the expression represents the signals at the output of
the combinational network that performs the operation.

New operators, beyond those of the Switching level, are introduced such as a
transfer (< -) operator to describe the loading of information in a register. Several
complex operations are now taken as primitives, for instance, shift and rotation.

Logical

Arithmetic

Vector

Special
operators

Concatenation*

Transfer

Table III — Primitive operators

CDL APDL APL

-» v A (& =

add sub

shift
rotate

countup
countdn

-* v A ©

(1)

exchange

v A

ISP

- » V A © 5

(1)

+ - x * * | + - * *

take .drop,
rotate, (2)

(3)

(4)

+

(1) Since the registers can have elements in any base, the logical operators have been
general ized in APDL and ISP, to handle non binary values.
(2) Operators that modify dimensions of variables are excluded in ALERT.
(3) Expressions can be followed by a modifier, providing more information about the
meaning and interpretation of the operands and operators. A modifier consists of a
data type specification or an operation mode enclosed in curly brackets, e . g . :

B + C { l f s complement}
(4) Special operators, *-SET and PRESET, are used in ALERT to select the SET and
RESET inputs to the f l i p - f lops .

9

3 . 3 - - CONDITIONAL ACTIONS. -

At the switching circuit level the systems are considered as networks of
e lements performing their activities continuously. All components are considered
equal ly re levant to the specification of the system state. When the system is of more
than trivial s ize , the difficulty in comprehending the behavior increases, and new
abstractions are introduced.

In RT level descriptions, the elements are assumed to be going through periods
of act ivity and rest . Clearly, the physical elements are always active. The abstraction
mere ly consists in specifying, at different times, the components were " interest ing"
activit ies are taking place. For instance, storing new information in a carr ier or
changing the inputs to an operator.

This abstraction is reflected in the description by the use of conditional
opera to rs that specify the subsystems that are to be considered "active" (in this n e w ,
abstract s e n s e) , and also the conditions for this transition of activity state to take
p lace.

Conditional statements are used to select actions under a condition generated
by a test network . The network is described by a Boolean or relational expression.
Single bit tests are usually simplified by using the bit itself as a Boolean expression.
This can be extended to an empty /non-empty test for a whole register.

Conditional statements, in most languages, can be nested to any depth (In APL,
conditional statements are implemented by testing and branching).

Table I V - - Conditional operators

APL ISP

= M > < > =*<><>

-» ()
(1) (2)

(1) The branch operator -* is used to select a label or line number. The right hand
side evaluates to a vector and the branching is to the line number given by the first
e lement of the vector. The next line is taken if the vector is empty. The ALERT
(s impl i f ied) syntax is : IF (boolean expression) GO TO label.
(2) Corresponds to the IF ... THEN case of Algol:
(boolean expression =J> actions)

Relational
opera tors

Conditional
statements

CDL

IF THEN ELSE

APDL

10

4.0 - - CONCURRENT AND SEQUENTIAL ACTIONS

At the switching circuit level, logic equations describe the nature of the input
signals to the individual f l i p - f l o p s , including the timing and control pulses.

In RT level descriptions, the basic building blocks are the ample actions, for
instance, the transfer to a register of the contents of another register or the value
encoded in the output lines of a combinational network. Simple actions can be executed
in paral lel if there is no conflict in the use of resources (e.g. , simultaneous transfers to
the same register , or simultaneous use of a bus to transmit different pieces of
in format ion) .

An accurate description of a hardware system must specify the time required
to per form the operations, usually in terms of a basic cycle time or time unit. Time

blocks are used to group actions that are performed concurrently (taking a certain
number of time units to complete). A succession of time blocks may be used to define
sequential operations. The selective activation of components, introduced in the
previous sect ion, allows the representation of the timing and control signals as the
condit ion for the activation of the transfer operation (represented as an assignment
s t a t e m e n t) . The data (logically relevant) part of the original equations forms the
expression whose "value" is transferred to the register.

At the RT level , concurrent activities are described by allowing them to be
act ivated simultaneously (i .e. under the same conditions). Synchronous or
asynchronous systems differ mostly in the way the activation conditions are speci f ied,
i .e. whether it is a signal coming from a central clock or a signal produced at the
completion of the preceding activities or a combination of b o t h * .

The concept of selective activation of elements in the system introduces the
f irst classification of RT languages into Procedural and Non-Procedural Languages.

* Clocks are special units used to generate sequences of pulses that can be used to
s tep the actions of the system. Clock variables when used in expressions are
considered as Boolean variables whose value alternates between 0 and 1 automatically,
according to some frequency.
Synchronous systems operate in synchronism with the clock pulses, and the length of
the time blocks is usually the period of the clock.
Asynchronous systems do not usually require a clock. Each time block can take
d i f fe rent time intervals, depending on the operations performed.

11

4 . 1 - - SEQUENCING IN N O N - PROCEDURAL L A N G U A G E S . -

Non-procedural RT languages use some special control variable* to f o r m a

label d e s c r i b i n g the condit ions for execut ion of a time block. Sequencing is p e r f o r m e d

by m o d i f y i n g the contro l var iab les used in the labe ls , hence enabl ing or inhibi t ing the

a c t i v a t i o n of the t ime blocks. The modification of these control va r iab les can be made

e x p l i c i t , as part of the operat ions per formed in the time block or can be g e n e r a t e d by

an i n d e p e n d e n t e n t i t y of the s y s t e m , work ing c o n c u r r e n t l y , for instance a clock or a

f i n i t e s t a t e a u t o m a t o n .

Some l a n g u a g e s , like CASSANDRE [L 0 1] and DDL [L 0 9] , make use of f i n i t e

s t a t e machines as the control l ing ent i t ies for the opera t ions . They use state registers

to s t o r e in fo rmat ion about the state of the sys tem. Special o p e r a t o r s are used to

d e s c r i b e the sequenc ing of operat ions by testing and modifying the va lue i.e. the s t a t e

he ld in the s t a t e r e g i s t e r s .

Tab le V — Sequencing in n o n - p r o c e d u r a l languages

T i m e block

labe ls

S e q u e n c i n g

C lock

v a r i a b l e s

CDL

contro l

express ion

assignments

to contro l

v a r i a b l e s

Y

(1)

CASSANDRE [L 0 1] D D L [L 0 9]

state value state value

assignments

to state

registers

Y

(2)

assignments

to state

registers

Y

(1) Used w i t h o ther var iab les in control expressions.

(2) Used to s t e p the opera t ions inside a block def ined by a state l abe l , thus p r o v i d i n g a

h i e r a r c h y of t ime blocks.

12

4 .2 - - SEQUENCING IN PROCEDURAL LANGUAGES. -

In procedural RT languages, systems are described as lists of statements
represent ing the actions. Parallel actions are grouped into time blocks and sequential
actions are described as lists of time blocks. Sometimes this definition can be used
recurs ive ly (by using some type of brackets), to build complex time blocks (a group of
concurrent sequences)

Conditional activities can be of two types, depending on the interpretat ion of
the tes t . In some cases, the test is continuously performed and the actions are initiated
e v e r y time the condition becomes true, i.e., there is a monitoring function being
p e r f o r m e d concurrently with the rest of the activities. In other cases, the test is
p e r f o r m e d once, and the actions are executed or skipped depending on the result.

Time blocks are described as a list of conditional and unconditional actions. All
n o n - m o n i t o r i n g statements are executed once and in the order in which they are
w r i t t e n (unless modified by branches). Monitoring statements are assumed to be
permanent ly active and performing the test. They cease to be active when the end of
the time block is reached (the scope of a monitoring statement is that of the time block
in which it occurs) .

Delay operators are used to hold up the execution of a sequence for a number
of time units. Delays are similar to an empty time block that takes the appropriate
number of time units.

Since APL does not allow the description of concurrent activities, ALERT

provides several conventions to that effect:

- Concurrency of simple actions can be determined automatically by the
system. The algorithms used will try to group the sequence of simple actions
into the minimun number of time blocks. For each sequence of time blocks
obtained in this fashion, a sequence counter is provided to step the machine
through the time blocks. Sequencing is obtained by stepping the counter , by
forcing a value into it, or inhibiting the counting when waiting for a condition to
become t rue .

- At a higher level , concurrency is obtained by dividing the description in
microprograms, capable of operating concurrently. Each microprogram
specifies whether the system is to provide the grouping of simple actions or
not . In the latter case the statements are assumed to be active simultaneously
(as in non procedural languages, with the enabling and disabling of actions
explicitly described in the microprogram).

13

Table V I - - Sequencing i n procedural languages

APDL APL ISP

Sequential Y Y Y
actions (1) (2)

Concurrent Y N Y
actions (3) (4) (5)

Monitor statements IF EVER.,.. (wait.... =». . . .)
THEN....;

Recursive description N N Y
of concurrent and (6) (7)
sequential , actions

GO TO operator Y Y N

Delay operator wait wait

Clock variables PULSE

(8)

(1) List of time blocks separated by
(2) List of actions using the term "next" as delimiter.
(3) Concurrent actions are described in time blocks of the form:

n TIME BEGIN END
to describe a statement or group of statements requiring n cycle times.
(4) ALERT provides some conventions to describe concurrent activities.
(5) In ISP concurrency of actions is assumed by default. Concurrent actions are
descr ibed as a list of statements using the V as delimiter.
(6) Time blocks can not be nested. IF EVER statements are taken as declarations, local
to an Algol block and can be nested to any depth.
(7) Parenthesis are used to group statements and to indicate the scope of conditional
act ivi t ies. Complex sequential and concurrent activities are described using "next" ,
" (" and in a recursive way.
(8) Pulses are boolean variables that are automatically reset to 0 one cycle time after
t h e y are set to 1 .

14

5 . 0 - - ASYNCHRONOUS CONTROL PRIMITIVES AND THEIR REPRESENTATION

The Computation Structures Group at MIT is involved in the. investigation of
formal descriptions of computer systems. In particular the definition of asynchronous
control structures [M 0 7] , generating signals to direct the actions of data operators in a
data f low structure.

Nine types of control modules were identified [M i l] as sufficient to implement
simple control structures. The modules are interconnected by direct links that are
capable of transmitting ready and acknowledge signals used to indicate a request for
some operat ion or the completion of a requested action, respectively. The reasons
behind the selection of this particular set of modules, their representation in terms of
P e t r i - n e t s , and other formal considerations do not belong in this paper , and our
concern will lie on the presence or absence of similar control function as primitives in
the RT languages. The Nine modules a re :

- The source module generates a ready signal each time an acknowledge signal
is received.

- The sink module responds with an acknowledge each time a ready signal is
rece ived.

- The sequence module causes ready/acknowledge cycles to occur on each of
its output links, one at a time, for each ready signal received on the input link.

- The wye module is used to permit several actions to proceed concurrently by
generat ing simultaneous ready/acknowledge cycles on its output links.

- The junct ion module causes an operation to wait for several independent
events to occur. It waits until a ready signal has been received oh each of its
input links before generating a ready/acknowledge cycle on its output link.

- The trigger module implements the basic control mechanism for an operator
in a chain of operators that processes data in pipeline fashion. It generates a
ready/acknowledge cycle (the stage operations) when a ready signal is
rece ived, provided that the next stage is idle (the acknowldge signal of the
current stage is used as the ready signal for the next stage) .

- The decision module permits actions by a control structure to be affected by
external conditions. When a ready signal is received, it performs a tes t , and
depending on the result a ready/acknowledge cycle is generated on one of its
output links.

- T h e u n i o n module causes a ready/acknowledge cycle to occur on its output
link for a ready signal on any of its input links.

15

- The arbiter module causes a ready/acknowledge cycle on one of the output
links for each ready/ackowledge cycle in the corresponding input links. It
provides an interlocking mechanism so that only one of a set of activities can be
executed at a time.

Table VII - - Asynchronous control primitives

CDL

Source

Sink

Sequence

W y e

Junction

Tr igger

Decision

Union

Arb i te r

(4)

(1J

to

IF THEN ELSE
DECODER

(3)

APDL APL

PULSE
variables

; lines

TIME BLOCK
IF EVER stmts.

END
(Algol)

ISP

(2)

IF THEN ELSE
SWITCH

(2)

Procedure call Function call

next

next

(2)

()

Process call

(1) Conjunction of signals as control expression (label) .
(2) Conjunction of signals as condition in conditional statements.
(3) Disjunction of signals as control expression (label) .
(4) Output of decoder/counter network as control expression (label)

16

6.0 - - BEHAVIORAL AND STRUCTURAL DESCRIPTIONS

Several levels of detail can be used in a system description. They range f rom
behavioral descriptions (in which the properties of the system are specified in terms of
the input /output relationship between variables - a black box approach) , to structural

descript ions (where the system is described in terms of the real hardware components
and their interconnections). Intermediate, functional, descriptions represent the
system in terms of the actual components and their functional relationship or algorithm.

Behavioral descriptions are closer to conventional programs in mcst
programming languages. Complex expressions and operators are allowed for simplicity
in the descript ion, e .g . , the use of arithmetic expressions as subscripts, Variables and
opera to rs do not necessarily have a hardware counterpart and timing details are usually
ignored i.e. operations are assumed to take no time since the intention is only to show
the algorithm at a gross level.

Functional descriptions are closer to the real hardware. They describe the
system as an algorithm in terms of the real registers and components of the machine.
The operators may or may not be hardware primitives and expressions can be of a
complicated nature. Timing and concurrency are taken into account.

Structural descriptions represent the system in terms of the hardware
components . Operators have physical counterparts (i .e. they are primitive) and the
descriptions tend to give more detail than the other two levels. Being closer to the
physical implementation, timing is described in terms of clock pulses or event completed
signals.

N o n - p r o c e d u r a l languages tend to impose more restrictions on the user. The
sequence of operations (the algorithm) must be described by providing the timing and
the conditions to execute the operations. This kind of detail is irrelevant if the
designer only wants to describe the algorithm in terms of input/output sequences,
wi thout any consideration to the actual clock pulses or state register values.

Procedural languages are better suited for behavioral descriptions. The
algorithm is described as a sequence of steps (as in conventional programming
languages) and the details of control can be ignored. At the lower level , where these
detai ls (required by non-procedura l languages) are needed, procedural languages are
capable of describing the system using conditional statements. The conditions are the
labels used in non-procedura l languages. In fact, at the lower levels, if necessary, a
procedural description can appear as a table of (concurrent) primitive conditional
act ions, much like a non-procedura l description.

17

6 .1 - - INSTRUCTION SET P R O C E S S O R S . -

T h e behav ior of a processor is determined by the nature and s e q u e n c e of its

o p e r a t i o n s . This sequence is g iven by a set of bits in pr imary memory (a p r o g r a m)

and a set of i n t e r p r e t a t i o n rules (usually in the centra l p r o c e s s o r) . T h u s , i f we s p e c i f y

t h e n a t u r e of the o p e r a t i o n s and the rules of i n t e r p r e t a t i o n , the actual behav ior of the

p r o c e s s o r d e p e n d s on the initial conditions and the particular p r o g r a m .

This b e h a v i o r a l leve l d e s c r i b e s , roughly s p e a k i n g , what the p r o g r a m m e r s e e s ,

n a m e l y , the architecture of the machine.

C o m p u t e r a rch i tec tures are usually descr ibed in terms of the f o l l o w i n g

r e l a t i v e l y f i x e d f o r m a t :

M e m o r y . - Physical components which hold information encoded in d a t a .

P r i m a r y - m e m o r y . - Contains program and its da ta .

P r o c e s s o r - s t a t e . - Registers accessible to the program - i.e. g e n e r a l

reg is ters and program location counter .

C o n s o l e - s t a t e . - Lights and switches enabl ing communicat ion w i t h the

processor .

Input / O u t p u t - s t a t e . - Control ler registers accessible to the p r o g r a m .

D a t a - T y p e s . - Descr ibed in terms of registers which could ca r ry i n f o r m a t i o n .

D a t a — O p e r a t i o n s . - Defining operat ions that can be car r ied out in t e r m s of

d a t a - t y p e s .

I n s t r u c t i o n - F o r m a t . - Specific instances o f d a t a - t y p e s .

A d d r e s s i n g - S c h e m e . - Defining how instructions and data are a c c e s s e d .

I n t e r p r e t e r . - The mechanism of the processor which f e t c h e s , d e c o d e s , and

e x e c u t e s the instruct ions.

I n s t r u c t i o n - S e t . - Definit ion of the particular instructions that the p r o c e s s o r

e x e c u t e s .

T h e s t r u c t u r a l descr ip t ion , on the other hand, cor responds to the machine

organization, i.e., the part icular combination of reg is te rs , busses , combina t iona l

n e t w o r k s , and cont ro l (w h e t h e r microprogramming or s e q u e n t i a l) .

T h e se lec t ion of an arch i tecture is usually the first s tep in the des ign p r o c e s s ,

and it is f o l l o w e d by the select ion of a machine organ iza t ion . This p r o c e s s , h o w e v e r , is

18

not a top down set of decisions. The architecture influences the machine organization
by impossing a set of requirements (a particular instruction set) and the organizat ion,
mainly for technological reasons, influences the architecture of the machine. The result
is usually that a given computer architecture can be implemented on a set of machine
organizat ions, and a given organization accepts several architectures.

6 . 2 - - ORGANIZATION OF THE DESCRIPTION. -

C D L . - The description consists of a list of declaration statements followed by a
list of execution statements. There is no provision for partition of the
description in blocks of related statements (reflecting a particular organization
or hierarchy of activities).

A P D L . - The description is organized like an Algol program i.e. a set of blocks,
each with its own declarations and statements. Blocks can be nested to any
d e p t h , providing a simple scheme to organize a description in a hierarchical
fashion.

A P L . - The programs are sequences of statements (there are no declarations in
the language) . Large programs can be divided in segments or functions.
ALERT descriptions are organized in microprograms. A description consists of a
list of declarations followed by a list of microprograms.

I S P . - Descriptions follow the block structure of Algol programs. A description
of a machine consists of a list of declarations followed by the processes
(subunits) and action sequences. Descriptions can be named and used as
independant processes or as part of larger units.

19

6 . 3 - - EXAMPLE; A MICROPROGRAM-CONTROLLED COMPUTER

A small microprogrammed computer [L07] will be described in CDL (the original
descr ip t ion) and in ISP (at different levels).

The processor has a main memory M with capacity of 32K, 24 bit words , and a
control memory of I K , 24 bit words.

The microprograms reside in the control memory and the sequencing of
microinstructions is explicitly given in an address field (the first 10 bits) in each
microword . This address points to the next microinstruction to be executed.

The microwords contain, besides the address of the successor, several one bit
f ie lds , each representing a specific micro-order . The micro-orders in a microword
are executed in synchronism with a three phase clock.

Instructions are fetched and executed using two control memory words. The
f irst one implements the instruction fetch and the second implements the instruction
p r o p e r i.e., the data operations. For this simple machine each instruction requires only
one microword. An instruction cycle of the machine, takes 6 clock pulses (3 for each
control memory w o r d) . The address of the first control memory word (the fetch
sequence) is a constant (9) . The address of the second (the instruction sequence) is
g iven by the operation code.

Sequence name and address of microwords in control memory

9 0 1 2 3 4 5 6 7 8

Field FETCH ADD SUB JOM STO JMP SHR CLS CLA STP
F (0 - 9) 0 9 9 9 9 9 9 9 9 9
F (1 0) 1 1 1 0 0 0 0 0 1 0
F (l l) 1 0 0 0 0 0 0 0 0 0
F (1 2) 1 0 0 0 0 0 0 0 0 0
F (1 3) 0 1 1 1 1 1 1 1 1 1
F (1 4) 0 0 0 0 1 0 0 0 0 0
F (1 5) 0 1 0 0 0 0 0 1 0 0
F (1 6) 0 0 1 0 0 0 0 0 0 0
F (1 7) 0 0 0 0 0 1 0 0 0 0
F (1 S) 0 0 0 1 0 0 0 0 0 0
F (1 9) 0 0 0 0 0 0 1 0 0 0
F (2 0) 0 0 0 0 0 0 0 1 0 0
F (2 1) 0 0 0 0 0 0 0 0 1 0
F (2 2) 0 0 0 0 0 0 0 0 0 1

20

C D L - 1 S t r u c t u r a l D e s c r i p t i o n

R e g i s t e r , R (0 - 2 3) ,

A (0 - 2 3) ,

C (0 - 1 4) ,

D (0 - 1 4) , V

F (0 - 2 3) ,

H (0 - 9) ,

G,

buffer register for memory M

arithmetic register

address register for memory M

program register

buffer register for memory CM

address register for memory CM

start-stop control register

S u b r e g i s t e r , R (o p) = R (0 — 5) , op-code part of register R
R (a d d r) = R (9 - 2 3) , address part of register R

F (a d d r) = F (0 - 9) , address part of register F

M e m o r y , M (C) = M (0 - 3 2 7 6 7 , 0 - 2 3) , main memory

C M (H) = C M (0 - 1 0 2 3 , 0 - 2 3) , control memory

S w i t c h , P o w e r (O N) ,

S tar t (O N) ,

S top (O N) ,

C l o c k , P (l - 3) , three phase clock

/ P o w e r (O N) /

/ S t a r t (O N) /

/ S t o p (O N) /

G < - 0 , F < - 0 , H < - 0 , C < - 0 , D < - 0 , R < - 0 ,

G « - l , F (1 2) « - l , F (0 - l l , 1 3 - 2 2) « - 0 ,

G < - 0 ,

/ F (1 0) * P < 1) /

/ F (1 1) * P (2) /

/ F (1 2) * P (3) /

/ F (1 3)

/ F (1 3)

/ F (1 4)

/ F (1 4)

/ F (1 5)

/ F (1 6)

/ F (1 7)

/ F (1 8)

/ F (1 9)

/ F (2 0)

/ F (2 1)

/ F (2 2)

* P (2) /

* P (3) /

* P (1) /

* P (2) /

* P (2) /

* P (2) /

* P (D /

* P (1) /

* P (1) /

* P (D /

* P (1) /

* P (1) /

memory fetch

address of microvoord (instruction sequence)

increment program counter

R « - M (C) ,

H < - R (o p) ,

D « - C o u n t u p D ,

IF (G)

T H E N (F « - C M (H) , C « - R (a d d r)) control memory fetch

E L S E (H < - 9 , C < - 0 , D < - 0 , R<-0) clear register

H « - F (a d d r) , address of microword (fetch sequence)

C « - D , F « - C M (H) , control memory fetch

R « - A f store accumulator (2 cycles)

M (C) « - R ,

A < - A add R f

A « - A s u b R,

D < - R (a d d r) ,

I F (A (0)) T H E N (D < - R (a d d r)) ,

A « - s h r A ,

A « - c i l A ,

A < - 0 ,

G < - 0 ,

21

ISP — 1 Structural Description

R < 0 : 2 3 >

A < 0 : 2 3 >

C < 0 : 1 4 >

D < 0 : 1 4 >

F < 0 : 2 3 >

H < 0 : 9 >

G

R . o p < 0 : 5 > :s R < 0 : 5 >

R . a d d r < 0 : 1 5 > R < 9 : 2 3 >

F . a d d r < 0 : 9 > F < 0 : 9 >

M [0 : 3 2 7 6 7] < 0 : 2 3 >

C M [0 : 1 0 2 3] < 0 : 2 3 >

Power

Star t

Stop

P < 1 : 3 >

P.toop := (P * - l ; n e x t P«-2;rtext P«-4;n«xt P.loop)

(P o w e r s G ^ 0 ; F « - 0 ; H * - 9 ; C * - 0 ; D * - 0 ; R * - 0)

(S t a r t s G < - l ; F < 1 2 > « - l ; F < 0 : l l , 1 3 i 2 2 > < - 0)

<Stop=» G < - 0)

(F < 1 0 > A P < 1 > = » R < - M [C]) ;

(F < 1 1 > A P < 2 > = » H* -R.op; D«-D + l)

(F < 1 2 > A P < 3 > = * (G=> F « - C M [H) ; C * - R . a d d r) ;

(- ,G=» H«-O;C<-0;D«-0sR«-0>) ;

< F < 1 3 > A P < 2 > = >

(F < 1 3 > A P < 3 > = >

(F < 1 4 > A P < 1 > = »

(F < 1 4 > A P < 2 > = >

(F < 1 5 > A P < 2 > = *

(F < 1 6 > A P < 2 > = >

(F < 1 7 > A P < 1 > = >

(F < 1 8 > A P < 1 > = *

< F < 1 9 > A P < 1 > = »

< F < 2 0 > A P < 1 > = >

< F < 2 1 > A P < 1 > = *

(F < 2 2 > A P < 1 > = *

H«-F .addr) ;

F « - C M [H] ; C < - D) ;
R « - A) ;

M[C]<-R>$
A * - A + R) ;
A « - A - R) ;
D« -R .addr) ;

(A < 0 > = » D«-R.addr)) j
A « - O O A < 0 : 2 2 >) ;
A « - A < 1 : 2 3 > D A < 0 >) ;
A * - 0 > ;
G < - 0)

22

I S P - 2 Functional Description

The exact sequencing of operations is described without timing details.

R < 0 : 2 3 >

A < 0 : 2 3 >

C < 0 : 1 4 >
D < 0 : 1 4 >

F < 0 : 2 3 >

H < 0 : 9 >

G

R . o p < 0 : 5 > := R < 0 : 5 >
R . a d d r < 0 : 1 5 > R < 9 : 2 3 >
F . a d d r < 0 : 9 > := F < 0 : 9 >

M [0 : 3 2 7 6 7] < 0 : 2 3 >

C M [O : 1 0 2 3] < 0 : 2 3 >

Power

Star t

Stop

(P o w e r s G * - 0 ; F < - 0 ; H < - 9 ; C < - 0 ; D « - 0 ; R < - 0 >
(S t a r t s G < - l ; F < 1 2 > « - l ; F < 0 : l l , 1 3 ; 2 2 > < - 0)
(S t o p = » G « - 0)

(H = 9 = » R « - M [C] ; n e x t H<-R.op;DD + l;next

(G=» F< -CM[H] ;C« -R .addr) ;

<-.G=> H « - 0 ; C « - 0 ; D « - 0 ; R « - 0))

(H = 0 = * R*-M[C]* ,next A «-A +R;H*-F.addr;next C « - D ; F « - C M [H])

(H = l = * R < - M [C h n e x t A * - A - R ; H « - F . a d d r j n « x t C«-D;F <-CM[H])

(H = 2 = » (A < 0 > = » D«-R.addr);next H«-F.addr ;next C « - D ; F « - C M [H))

(H = 3 = > R « - A ; n e x t M [C] « - R ; H<-F.addr ;next C «-D;F < -CM [H] >

<H = 4 = » D<-R.addr;next H«-F.addrjnext C« -D ;F« -CMIH])

< H = 5 = * A < - 0 D A < 0 : 2 2 > ; n e x t H«-F.addr;next C«-D;F<-CM[H]>

<H = 6 = » A < - A < l : 2 3 > D A < 0 > ; n e x t H<-F.addr;next C«-D;F < - C M [H])

(H = 7 = » R < - M [C] ; A < - 0 ; n e x t A«-A + R; H<-F.addr;next C * - D ; F « - C M [H J)

(H = 8 = » G«-0 ;next H<-F.addr 5 next C«-D;F<-CM[H])

23

I S P - 3 Behavioral Description

No details about timing and control are provided, only the algorithmic description of the
ef fect of each instruction upon the memory components of the system.

R < 0 : 2 3 >
A < 0 : 2 3 >
D < 0 : 1 4 >
G

R . o p < 0 : 5 > i * R < 0 : 5 >
R . a d d r < 0 : 1 5 > i = R < 9 i 2 3 >

M [0 : 3 2 7 6 7] < 0 : 2 3 >

Power
Star t
Stop

(P o w e r * * G * - 0 ; D « - 0)
(S t a r t s G « - l))
(S t o p = » G « - 0)

I N T E R P R E T E R : s (G = * R « - M { D] ; D * - D + l ;next EXECUTE;next INTERPRETER)

EXECUTE := (
(R . o p = 0 = > A « - A + M [R . a d d r]) ;
(R.op = l = > A < - A - M [R . a d d r]) j
(R . o p = 2 = * (A < O = * 0 « - R . a d d r)) ;
< R . o p = 3 = * M [R . a d d r] * - A) ;
(R . o p = 4 = > D« -R .addr) ;
(R . o p = 5 = » A « - A * 2 {LOGICAL}) j
< R . o p = 6 = * A < - A * 2 { R O T A T E }) ;
<R.op = 7 = » A « - M [R . a d d r]) t

< R . o p = 8 = » G < - 0)
)

24

7.0 - - SIMULATION AND DESIGN AUTOMATION

Several languages have been implemented in Design Automation Systems in an
at tempt to facilitate the design and implementation of complex digital systems. The
main areas of application a r e :

- Simulation and Analysis . - Prior to the actual implementation of the system its
characteristics are evaluated using a digital systems simulator. The information
required by the simulator and the techniques used depend upon the level of
design. This has been the most succesful application of computers as design
aids, as witnessed by the proliferation of material dealing with automated
analysis and simulation of digital systems [S 0 1 - S 2 1] .

- S y n t h e s i s . - The implementation of the physical machine is a process of
translation from a symbolic representation to a physical representat ion, wi th
the constraint that both representations define the same behavior (a lgori thm)
and that the physical implementation satisfies the constraints associated wi th
the elements (e .g . f a n - i n , f a n - o u t , etc) and constraints imposed by the
designer (cost, speed, e tc) . This application has been relatively succesful at
the lower levels of design (combinational and sequential switching circuits) .

i
j

| As the complexity and size of the systems increases, modular components have
become a necessity for the designer. It is no longer economic (in terms of design and
development t ime) to design at the gate level. Several sets of modules are available
[M 0 1 - M 1 1] . They reflect in hardware (the physical representation) what the RT
languages are for the symbolic representation of systems, namely, reduction of the
complexity of the design task by abstraction and elimination of redundant details.

At this level , automatic design programs have yet to be implemented. There
are no techniques for analysis or synthesis* of modular digital systems, but this
situation is bound to change as more research is done in the area [R01].

For a survey on the Automated Design and Analysis of Digital Systems at the
tower level of design, see [S 0 2] .

* Simulation of modular systems has been more succesful, perhaps because of the
closeness of the RT level description to conventional programming. This allows simple
transl i terat ion of the RT description into executable programs, providing cheap and fast
simulation (although in many cases, RT languages are compiled d i rect ly) . Most
simulation techniques used at the lower level are applicable to register t ransfer
systems.

23

I S P - 3 Behavioral Description

No details about timing and control are provided, only the algorithmic description of the
e f fect of each instruction upon the memory components of the system.

R < 0 : 2 3 >
A < 0 : 2 3 >
D < 0 i l 4 >
G

R . o p < 0 : 5 > : s R < 0 i 5 >
R . a d d r < 0 : 1 5 > := R < 9 : 2 3 >

M [0 : 3 2 7 6 7] < 0 : 2 3 >

Power
Start
Stop

(P o w e r s G « - 0 ; D < - 0)
(S t a r t s G « - l >)
(S t o p = * G < - 0)

INTERPRETERja (G = £ R « - M [D] ; D « - D + l ;next EXECUTE;next INTERPRETER)

EXECUTE :=<
< R . o p * 0 = > A<-A + M [R . a d d r]) ;
<R.op = l = » A < - A - M [R . a d d r)) ;
(R ; o p * 2 = > (A < 0 = » D « - R . a d d r)) t

(R . o p = 3 = * M [R . a d d r) < - A) ;
(R . o p = 4 ^ Q«-R .addr) ;
< R . o p = 5 * * A * - A * 2 {LOGICAL}) ;
(R . o p = 6 ^ A < - A * 2 { R O T A T E }) ;
<R.op = 7 = » A « - M [R . a d d r]) }

(R . o p = 8 = » G < - 0)
)

24

7.0 -- SIMULATION AND DESIGN AUTOMATION

Severa l languages have been implemented in Design Automation Systems in an
at tempt to facil i tate the design and implementation of complex digital sys tems . T h e
main areas of appl icat ion a r e :

- Simulation and A n a l y s i s . - Pr ior to the actual implementation of the sys tem its
character is t ics are evaluated using a digital systems simulator. The informat ion
requ i red by the simulator and the techniques used depend upon the level of
d e s i g n . This has been the most succesful application of computers as des ign
a i d s , as w i tnessed by the proli feration of material dealing w i th automated
analysis and simulation of digital systems [S 0 1 - S 2 1] .

- S y n t h e s i s . - The implementation of the physical machine is a p rocess of
t rans lat ion f rom a symbolic representat ion to a physical r e p r e s e n t a t i o n , w i th
the constra int that both representat ions define the same behav ior (a l go r i t hm)
and that the physical implementation satisfies the constraints associated w i th
the elements (e . g . f a n - i n , f a n - o u t , e tc) and constraints imposed by the
des igner (c o s t , s p e e d , e t c) . This application has been relat ively succesfu l at
the lower levels of design (combinational and sequential switching c i r cu i t s) .

As the complexi ty and size of the systems increases* modular components have
become a necess i ty for the designer. It is no longer economic (in terms of des ign and
d e v e l o p m e n t t ime) to design at the gate level . Several sets of modules are avai lable
[M 0 1 - M 1 1] . T h e y reflect in hardware (the physical representa t ion) what the RT
languages are for the symbolic representat ion of sys tems, nameiy, reduct ion of the
comp lex i t y of the design task by abstraction and -.elimination of redundant detai ls .

At this l e v e l , automatic design programs have ye t to be implemented. T h e r e
are no techn iques for analysis or s y n t h e s i s * of modular digital s y s t e m s , but this
s i tuat ion is bound to change as more research is done in the area [R01].

F o r a s u r v e y on the Automated Design and Analysis of Digital Systems at the

l o w e r level o f d e s i g n , see [S 0 2] .

* Simulat ion of modular systems has been more succes fu l , perhaps because of the
c loseness of the RT level descr ipt ion to conventional programming. This al lows simple
t rans l i t e ra t ion of the RT descr ipt ion into executable p rograms, provid ing cheap and fast
s imulat ion (a l though in many cases , RT languages are compiled d i r e c t l y) . Most
s imulat ion techniques used at the lower level are applicable to reg is ter t r ans fe r
s y s t e m s .

2 5

C D L . ~ A simulator and Boolean translator has been implemented for CDL [S I 2] . During
the execution of the simulator, the contents of chosen registers, memory words , and
positions of switches can be displayed at every clock cycle. The execution of the
simulator runs in a loop called label cycle, during which:

a) If a manual switch operation occurs, the micro-statements of the

corresponding switch statement are carried out.

b) All labels are evaluated, the activated labels i.e. the labels having the value

1 , are located.

c) The micro statements of the activated labels are carried out in two steps.
F irst , atl values to be stored in various registers and memories are evaluated
and collected. Then the collected values are stored.

d) It is checked whether the simulation should be terminated. If not , the
process starts from a) again.

The translation into Boolean equations consists of four phases. During the
f irst phase , the design is scanned and a micro-statement table is generated. The
second phase generates a truth table for each micro-statement. During the third
p h a s e , Boolean product terms are generated from the truth tables. The fourth phase
sorts and combines the product terms into a list of Boolean input equations for each
dev ice .

Since the meaning of the inputs to the storage devices depend on the type of
device (f l i p - f l o p) , the output of the Boolean translator must be processed later w i th
g iven f l i p - f l o p definitions.

APDL. — An APDL system exists, in which descriptions are compiled into executable
c o d e * . This code, combined with a set of run time routines, can be executed to
simulate the system described. Since APDL has no simulation command language, all
reading of data , computing of statistics, and printing of results must be included as part
of the descript ion.

A special procedure , , T M (Time) is called, at run time, at the beginning of each
simulated cycle t ime. This procedure increases the cycle time counter, resets the
PULSE variables that were true during the previous cycle time, and evaluates the
IF EVER conditions (executing the proper statements if the condition is sat isf ied) . At
the end of the procedure, control is returned to the object code program and the
n o n - m o n i t o r i n g statements of the time block are executed.

* Actual ly , it translates into a subset of Algol, thus providing exportabil i ty, but at the
cost of executing parallel statements serially which may produce undesirable side
e f f e c t s .

26

The implementation program produces a hardware specification list consisting
of t h r e e i tems:

a) A list of hardware components

b) A list of data paths between the hardware elements.

c) An SFD-A lgo l [L 1 9] description of a finite state controller that will sequence
the data transfers via the data paths listed in b) .

The hardware specification is not complete since it does not provide the
information on the particular types of elements to be used i.e. they are somewhat
ideal ized but have feasible realizations.

A P L . - The ALERT implementation does not provide a simulation capability. The system
is used as a front end for the IBM Design and Logic Automation Systems [S 0 4 , S 1 S] .
The description is processed in S steps that provide details needed to complete the
logic design.

1) T rans la t ion . - Transforms the description into an internal format, performing
syntax analysis.

2) Selection decoding , - Provides array accessing logic.

3) Macro genera t ion . - Introduces predefined combinational networks.

4) Sequence analysis . - Control and sequencing requirements are determined.

5) F l i p - f l o p identif ication.- Non-declared variables are implemented as
f l i p - f l o p s whenever a memory capability is required.

6) Control p rov is ion . - Introduces the sequence control counters.

7) Consol idat ion.- Eliminates redundant logic blocks, rearranges the
connections, and associated elements are tied together.

8) Expansion . - Arrays of elements are replaced by individual devices and

connections.

27

8.0 LANGUAGE REQUIREMENTS

What p roper t ies are desired in a language for wr i t ing behavioral and s t ruc tu ra l

desc r i p t i ons of a digital system?

RT languages are similar to most programming languages since they both c a r r y
out r eg i s te r ass ignments . The parallel nature of hardware suggests that i t could be
usefu l to at least have a special notat ion, even though programming languages such as
F O R T R A N can be used for this purpose.

We can div ide the set of propert ies in two c lasses : one of them consists of the
requ i remen ts for a scientif ic notation used in a design p r o c e s s ; and the o ther has to
deal d i rec t l y w i th the objects we are dev is ing , namely digital s y s t e m s , par t i cu la r ly
c o m p u t e r s .

G E N E R A L PROPERTIES

A) R e a d a b i l i t y . - The notation is going to be used as a conveyo r of i n fo rmat ion , not
on ly be tween man and machines but among humans, who do not all have the same
e x p e r i e n c e or involvement in the design. A descript ion in this notation shou ld be
p r e c i s e , concise and elegant (considerat ions o f t y p o g r a p h y , charac ter s e t s ,
f o r m a t s , the w a y operat ions such as array accesses are d e s c r i b e d , e t c .) . I t shou ld
be usable as the ultimate source of information about the ob jec t . Informat ion
shou ld be ex t rac ted from the context rather than by syntax which clouds the
desc r i p t i on (e . g . reg is ter declarat ions, keywords e t c .) .

C D L . - Fa i r , express ions are simple but the f low of control requ i res more
detail than necessary for a behavioral descr ip t ion. A small charac ter set
imposes res t r ic t ions, such as the use of M -M as both a range ope ra to r and a
reg is ter concatenat ion operator .

A P D L . - Fair, Algol block structure facilitates partit ioning of the d e s c r i p t i o n .
Requires a targe number of reserved keywords .

A P L . - G o o d , but requires a large character set. Few r e s e r v e d k e y w o r d s
(s y s t e m parameters) . Compact encoding of algorithms (" o n e - l i n e r s ")
requ i res the development of some reading skills.

I S P . - G o o d , v e r y few reserved keywords . A large character set w i th
simple t ransl i terat ions. Block structure allows the part i t ioning of the
desc r ip t i on .

B) Fam i l i a r i t y . - Primit ive concepts in the language should be named and used in a
w a y cons is tent wi th general pract ice.

C D L . - G o o d .

2 8

A P D L . - Good,

A P L . - Fair, uses a non standard precedence.

I S P . - Good.

C) G e n e r a l i t y . - T h e notation should describe the elements occurring in the universe
of in terest , and at several levels of detail (in a hierarchical w a y) , by suppressing
repet i t ive or unnecessary detail.

C D L . - Fair ; does not allow the suppression of unnecessary detai l , for
instance, the use of the Memory Address Register in memory access
operat ions.

A P D L . - Good; allows descriptions at different levels of detai l . The
language has all the power of Algol as an algorithmic language.

A P L . - Good; A powerful set of operators can be used to describe
algorithms at different levels.

I S P . - Excellent; systems can be described at any level of detai l , f rom the
programming level down to the switching circuits.

D) S impl ic i ty . - There should be few primitive concepts, and they should be used
consistently throughout the description, avoiding special cases of more general
concepts , or things that are of relative importance or that imply a specific
implementation.

C D L . - Good, there are few types of statements. Uses a few elements that
are special cases of more general concepts I.e. DECODER (combinational
n e t w o r k) , SWITCH, LIGHT (registers).

A P D L . - Poor, too many types of registers and register arrays which are
special cases of the general concept of information carrier.

A P L . - Excellent, very few concepts which are used consistently throughout
the language.

I S P . - Excellent, one type of carrier declaration allows the definition of
registers, memories, and combinational networks. Actions and action
sequences have block structure, allowing description of complex activities in
a recursive fashion.

SPECIFIC PROPERTIES

A) Extensib i l i ty . - The language should be able to extend gracefully by defining
constructs in terms of elements already in the language. This also gives the
capabil i ty to describe machines in a hierarchical fashion.

2 9

C D L . - Poor, does not allow the description of new operators (except
combinational networks) or procedures.

A P D L . - Good, restricted to the use of Algol procedures. Does not atiow

the declaration of combinational networks.

A P L . - Good, procedures can have up to two parameters. Macro

substitution was added in the ALERT system.

I S P . - Excellent, procedures and operators can be defined by the user.
Expression modifiers can be used to provide information about the
d a t a - t y p e s . Names can be substituted by abbreviations (al ias) .

B) F i d e l i t y . - The organization of the description should reflect the organization of
the machine, making the intentions of the designers transparent to the users ,
humans or simulation/production automation processes.

C D L . - Good, the description reflects the organization of the machine at the
RT leve l , but not at the programming level.

A P D L . - Good.

A P L . - Poor, lacks block structure and parallelism.

I S P , - Excellent, descriptions can be partitioned and organized in di f ferent
ways to reflect the machine organization at different levels.

i

C) Timing and Concurrency . - Machines are essentially parallel and this implies that
concurrency should be the rule rather than the exception.

C D L . - Excellent.

A P D L . - Good, new statement types allow the description of concurrent
activities. Time blocks can not be nested.

A P L . - Poor, does not allow the description of concurrent activities.

I S P . - Excellent, concurrency of actions is assumed by default.

D) Syntactically simple (w r i t a b l e) . - The notation is a tool for designers and
descriptions should be written by them and not (necessarily) by programmers.

C D L . - Excellent.

A P D L . - Good, Algol is a richer language.

A P L . - Excellent.

30

I S P . - Excellent.

E) Hardware independence. - The notation should be relatively independent of any
hardware technology, machine organization, timing mode, design procedure or
simulat ion/ production techniques. This is somewhat in conflict with the f idelity
p r o p e r t y .

C O L . - Good, the language is best suited for synchronous systems.

A P D L . - Good, the language favors synchronous systems.

A P L . - Excellent. ALERT is, however, oriented towards a specific
technology.

I S P . - Excellent.

F) S e p a r a b i l i t y . - The notation should be able to express the dichotomy b e t w e e n
data and control . It should express the structure and behavior of the data f low,
which implies the behavior of the control part. Also separability should permit the
function of a primitive (e.g. an AND gate) to be described in an independent
fashion.

C D L . - Excellent, true in all non-procedural languages.

A P D L . - Fair, Algol statements mix data and control operators. Separat ion
is provided by the compiler.

A P L . - Poor, in ALERT the control can be automatically provided by the
design programs.

I S P . - Good, specialized control components like clocks and pulses could be

added to the language.

31

The conclusion that may be extracted from the preceding comparison is t h a t ,
except for minor improvements, the languages do all that could be desired. This is ,
h o w e v e r , not t rue . Designers that use these languages tend to write the description in
terms of ve ry simple constructs, because that is all that the languages prov ide .
Simi lar ly , and to complete the circular argument, languages are designed with simple
e lements because that is all the users need.

The situation will change in the future, as the level at which we design our
h a r d w a r e raises. For instance, all the present RT languages are more or less suitable
to describe the primitive components of the programming level of design, that is, they
are capable of describing instruction set processors for machine languages as we know
t h e m , i.e. relatively fixed instruction formats, static machine organizations, static
in terpre ta t ion of operands and operators etc. This is not enough to describe future
machines, say , that interpret directly a high level language. The RT languages are not
capable of handling dynamic interpretation of names or instructions.

32

REFERENCES
LANGUAGES

[L 0 1] Anceau, F., Liddelt, P., Mermet, J . , and Payand, C: "CASSANORE: A
Language to describe Digital Systems, Applications to Logic Design".
Third International Symposium on Computer and Information Science
(C O I N S - 6 9) , Miami, December 1969.

[L 0 2] Baray , M.B. and Su, S.Y.H.: "A Digital System Modeling Philosophy and
Design Language". 8th Annual Design Automation Workshop, Atlantic
C i ty , New Jersey, June 1 9 7 1 , pp. 1 - 2 2 .

[L 0 3] Barbacci, M.R., Bell, C.G., and Newell, A . : "ISP: A Language to describe
Instruction Sets and other Register Transfer Systems". IEEE Computer
Conference, COMPCON 72 , San Francisco, September 1 9 7 2 , pp .
2 1 9 - 2 2 2 .

[L 0 4] Bel l , C.G. and Newell , A . : "The PMS and ISP Descriptive Systems for
Computer Structures". SJCC 1970 , pp. 3 5 1 - 3 7 4 .

[L 0 5] Burnet t , G.J.: "A Design Language for Digital Systems". M.S. Thesis, EE
department, MIT, 1965.

[L 0 6] Chu, Y . : "An Algol - l ike Computer Design Language". CACM, Vol . 8 ,

October 1 9 6 5 , pp. 6 0 7 - 6 1 5 .

[L 0 7] Chu , Y . : "Introducing the Computer Design Language". IEEE Computer
Conference, COMPCON 7 2 , San Francisco, September 1 9 7 2 , pp .
2 1 5 - 2 1 8 .

[L 0 8] Darr inger, J.A.: "The Description, Simulation, and Automatic Implementation
of Digital Computer Processors". PhD Thesis, EE Department, C M U ,
May 1 9 6 9 .

[L 0 9] Duley, J.R.: "DDL - A Digital Design Language". PhD Thesis, EE
Department, University of Wisconsin, June 1970 .

[L 1 0] Falkoff, A.D. , Iverson, K.E., and Sussenguth, E.H.: "Formal description of
Sys tem/360" . IBM Systems Journal, Vol. 3 , pp. 1 9 8 - 2 6 2 , 1 9 6 4 .

t L l . 1] Falkoff, A .D. : "Formal description of processess - The first step in Design
Automation". IBM Research Note N C - 5 1 0 , June 1965 .

[L I 2] Gtese, A . : "HARGOL - A Hardware Oriented Algol Language". A / S
Regnecentralen, Copenhagen, Denmark, Feb. 1969 .

33

[L 1 3]

[L 1 4]

[L 1 5]

t L 1 6]

[117}

[L 1 8]

[L 1 9]

[L 2 0]

[L 2 1]

[L 2 2]

[L 2 3]

[L 2 4]

[L 2 5]

Gorman, D.F. and Anderson, J.P.: "A Logic Design Translator". F X C
1 9 6 2 , p p , 2 5 1 - 2 6 1 .

Gorman, D.F.: "A System Descriptive Language and its Uses". PhD Thesis,
EE Department, University of Pennsylvania, April 1968 .

Gorn, S. , Ingerman, P.Z., and Crozier, J.B.: "On the Automatic Construction
Of Micro- f lowcharts" . CACM, Vol. 2, No. 10 , October 1 9 5 9 , p p .
2 7 - 3 1 .

Iverson, K.E.i "A Programming Language". Wiley, 1962 .

Iverson, K.E.: "A Common Language for Hardware, Sof tware , and
applications". FJCC 1962 , pp. 1 2 1 - 1 2 9 .

M e t z e , G. and Seshu, S.: "A proposal for a Computer Compiler". SJCC
1 9 6 6 , pp. 2 5 3 - 2 6 3 .

Parnas, D.L.: "System Function Description Algol".
Department, CMU, Feb. 1965.

PhD Thesis, EE

Proctor, R.M.: "A Logic Design Translator experiment demonstrating
relationships of Language to Systems and Logic Design". I E E E - T E C ,
Vol . E C - 1 3 , August 1964, pp. 4 2 2 - 4 3 0 .

Schlaeppi, H.P.: "A Formal Language for Describing Machine Logic, Timing,
and Sequencing (LOTIS)". IEEE-TEC, Vol. E C - 1 3 , August 1 9 6 4 , pp .
4 3 9 - 4 4 8 ,

Schorr, H.: "Computer Aided Digital System Design and Analysis Using a
Register Transfer Language". IEEE-TEC, Vol. E C - 1 3 , December
1 9 6 4 , pp. 7 3 0 - 7 3 7 .

Srinivasan, C.V.: "An Introduction to CDL1, A Computer Description
Language". A D 6 6 1 5 9 1 .

Stabler , E.P.: "System Description Languages", I E E E - T C , Vol. C - 1 9 ,
December 1970 , pp. 1160 - 1 1 7 3 .

Wi lber , J.A.: "A Language for Describing Digital Computers". M.S. Thesis,
Report No. 197 , Department of Computer Science, University of Illinois,
Feb. 1966 .

34

SIMULATION AND DESIGN AUTOMATION SYSTEMS

[S O I] Balducci, E.G., Davis, W.E., and Persels, C.G.: "Automatic Logic
Implementation". Proceedings of the ACM National Conference 1 9 6 8 ,
pp . 2 2 3 - 2 4 0 .

[S 0 2] 8 r e u e r , ' M . A . t "Recent Developments in the Automated Design and Analysis
of Digital Systems". Proceedings of the IEEE, Vol. 6 0 , No. 1, January
1 9 7 2 , pp. 1 2 - 2 7 .

[S 0 3] Breuer , M.A. (Ed):"Design Automation of Digital Systems: Theory and

Techniques". Vol. 1, Prentice Hall 1972 .

[S 0 4] Case, P.W. et a l : "Solid Logic Design Automation". IBM Journal of
Research and Development, Vol. 8 , April 1964 , pp. 1 2 7 - 1 4 0 .

[S 0 5] Friedman, T.D. and Yang, S. : "Quality of Designs from an Automatic Logic
Design Generator". IBM Research Report R C - 2 0 6 8 , April 1 9 6 8 .

[S 0 6] Friedman, T.D. and Yang, S.: "Methods used in an Automatic Logic Design
Generator (ALERT)". IEEE-TC, Vol. C - 1 8 , No. 7 , July 1 9 6 9 , p p .
5 9 3 - 6 1 4 .

[S 0 7] Guskin, J.R. and Dingwall, T.J.: "The Discrete, Logical Design, Simulation
System". CONCOMP Memorandum 2 6 , University of Michigan, Apri l
1 9 7 0 .

[S 0 8 J Jacoby, K. and LaLiberte, A.R.: "Using a Computer to Design a Computer" .
Computers and Automation, April 1966 , pp. 3 6 - 3 9 .

[S 0 9] Koomok, M. , Case, P.W., and Graff, H.H.: "The Recording, Checking, and
Printing of Logic diagrams". Proceedings of the EJCC, December 1 9 5 8 ,
p p 1 0 8 - 1 1 8 .

[S 1 0] Leiner, A.L., Weiberger, A., Coleman, C, and Loberman, H.: "Using Digital
Computers in the Design and Maintenance of new Computers" .
IEEE-TEC, Vol. E C - 1 0 , December 1 9 6 1 , pp. 6 8 0 - 6 9 0 .

[S l l] Lewin, D.W. and Waters, M.C.: "Computer Aids to Logic Systems Design".
The Computer Bulletin, November 9 6 9 , pp. 3 8 2 - 3 8 8 .

[S I 2] Mesztenyi , C.K.: "Computer Design language. Simulation and Boolean
Translation". Technical Report 6 8 - 7 2 , Computer Science center ,
University of maryland, June 1968.

[S 1 3] Parnas, D.L. and Darringer, J.A.: "SODAS and a Methodology for Systems
Design". FJCC 1967 .

35

[S 1 4] Parnas, D.L.: "More on Simulation Languages and Design Methodology for
Computer Systems". S X C 1969, pp. 7 3 9 - 7 4 3 .

[S 1 5] Po tash , H.: "A Digital Control Design Sys tem" . PhD Thes i s , Report No .
6 9 - 2 1 , School of Engineering, UCLA, May 1969.

[S 1 6] Rocket, F .A. ; "A Systematic Method for Computer Simplification of Logic
Diagrams". IRE International Convent ion , March 1961.

[S 1 7] Rosenthal , C.W.: "Computing Machine Aids to a development p r o j e c t " .

I R E - T E C , V o l . E C - 1 0 , September 1961, pp. 4 0 0 - 4 0 6 .

[S 1 8] Ro th , J . P . : "Systematic Design of Automata". f ;JCC 1965, pp .

1 0 9 3 - 1 1 0 0 .

[S 1 9] R o z e n b e r g , D.P. and Savage. R.L.: "A Proposal for the Computer Design
Process based on Mul t i - leve l Simulation". IFIP Congress 1971.

[S 2 0] Scheff , B .H . : "A Machine Design Aids System for Digital Des igne rs " .

Computer Design, October 1969, pp. 7 6 - 8 1 .

[S 2 1] U l r i ch , E .G . : "Select ive Path Simulation of Synchronous and A s y n c h r o n o u s
Digital Networks" . Report X 6 - 1 9 1 8 / 0 3 0 , North Amer ican
Av ia t ion /Autonet ics , Anaheim, Cali fornia, August 1966.

34

SIMULATION AND DESIGN AUTOMATION SYSTEMS

[S O I] Balducci, E.G., Davis, W.E., and Persels, C.G.: "Automatic Logic
Implementation". Proceedings of the ACM National Conference 1 9 6 8 ,
p p . 2 2 3 - 2 4 0 .

[S 0 2] Breuer , 'M .A . t "Recent Developments in the Automated Design and Analysis
of Digital Systems". Proceedings of the IEEE, Vol. 6 0 , No. 1, January
1 9 7 2 , pp. 1 2 - 2 7 .

[S 0 3] Breuer , M.A. (Ed):"Design Automation of Digital Systems: Theory and
Techniques". Vol. 1, Prentice Hall 1972.

[S 0 4] Case, P.W. et a i : "Solid Logic Design Automation". IBM Journal of
Research and Development, Vol. 8 , April 1964 , pp. 1 2 7 - 1 4 0 .

[S 0 5] Friedman, T.D. and Yang, S.: "Quality of Designs from an Automatic Logic
Design Generator". IBM Research Report R C - 2 0 6 8 , April 1 9 6 8 .

[S 0 6] Friedman, T.D. and Yang, S. : "Methods used in an Automatic Logic Design
Generator (ALERT)". IEEE-TC, Vol. C - 1 8 , No. 7 , July 1 9 6 9 , p p .
5 9 3 - 6 1 4 .

[S 0 7] Guskin, J.R. and Dingwall, T.J. : "The Discrete, Logical Design, Simulation
System". CONCOMP Memorandum 2 6 , University of Michigan, Apri l
1 9 7 0 .

[S 0 8] Jacoby, K. and LaLiberte, A.R.: "Using a Computer to Design a Computer".
Computers and Automation, April 1966, pp. 3 6 - 3 9 .

[S 0 9] Koomok, M., Case, P.W., and Graff, H.H.: "The Recording, Checking, and
Printing of Logic diagrams". Proceedings of the E X C , December 1 9 5 8 ,
p p 1 0 8 - 1 1 8 .

[S 1 0] Leiner, A.L., Weiberger, A., Coleman, C, and Loberman, H.: "Using Digital
Computers in the Design and Maintenance of new Computers".
I E E E - T E C , Vol. E C - 1 0 , December 1 9 6 1 , pp. 6 8 0 - 6 9 0 .

[S 1 1 J Lewin, D.W. and Waters, M.C.: "Computer Aids to Logic Systems Design".
The Computer Bulletin, November 9 6 9 , pp. 3 8 2 - 3 8 8 .

[S 1 2] Meszteny i , C.K.: "Computer Design language. Simulation and Boolean
Translation". Technical Report 6 8 - 7 2 , Computer Science center ,
University of maryland, June 1968.

[S 1 3] Parnas, D.L. and Darringer, J.A.: "SODAS and a Methodology for Systems
Design". F X C 1967.

35

[S 1 4] Parnas, D.L.: "More on Simulation Languages and Design Methodology for
Computer Systems". S X C 1969, pp. 7 3 9 - 7 4 3 .

[S 1 5] Potash, H.: "A Digital Control Design System". PhD Thesis, Report No.
6 9 - 2 1 , School of Engineering, UCLA, May 1969 .

[S 1 6] Rocket, F.A.: "A Systematic Method for Computer Simplification of Logic
Diagrams". IRE International Convention, March 1 9 6 1 .

[S I 7] Rosenthal, C.W.: "Computing Machine Aids to a development pro ject" .
I R E - T E C , Vol. E C - 1 0 , September 1 9 6 1 , pp. 4 0 0 - 4 0 6 .

[S 1 8] Roth, J.P.: "Systematic Design of Automata". FJCC 1 9 6 5 , p p .
1 0 9 3 - 1 1 0 0 .

[S 1 9] Rozenberg, D.P. and Savage, R.L.: "A Proposal for the Computer Design
Process based on Mul t i - level Simulation". IFIP Congress 1 9 7 1 .

[S 2 0] Scheff, B.H.: "A Machine Design Aids System for Digital Designers".
Computer Design, October 1969 , pp. 7 6 - 8 1 .

[S 2 1] Ulrich, E.G.: "Selective Path Simulation of Synchronous and Asynchronous
Digital Networks". Report X 6 - 1 9 1 8 / 0 3 0 , North American
Aviation/Autonetics, Anaheim, California, August 1966.

36

MODULES

[M 0 1] Bel l , C.G. and Grason, J . : The Register Transfer Module Design Concept" .

Computer Design, Vol. 10 , No. 5 , May 1 9 7 1 , pp. 8 7 - 9 4 .

[M 0 2] Bel l , C.G. Eggert, J.L., Grason, J . , and Williams, P.: "The Description and
Use of Register-Transfer Modules (RTM's)". I E E E - T C , Vol . C - 2 1 ,
No. 5 , May 1972 , pp. 4 9 5 - 5 0 0 .

[M 0 3] Bel l , C.G., Grason, J . , and Newell, A . : "Designing Computers and Digital
Systems". Digital Press, Digital Equipment Corporation, 1 9 7 2 .

[M 0 4] Bel l , C.G., Grason, J„ and Siewiorek, D.P.: "Register Transfer Modules
(RTMs) for understanding Digital Systems Design". IEEE Computer
Conference, COMPCON 7 2 , San Francisco, September 1 9 7 2 , p p .
3 0 5 - 3 0 8 .

[M 0 5] Clark, W.A. : "Macromodular Computer Systems", (an introduction to a set
of 6 papers on the subject) , SJCC 1967 , pp. 3 3 5 - 4 0 1 .

[M O 6] Clark, W.A. and Molnar C.E.t "The promise of Macromodular Systems".
IEEE Computer Conference, COMPCON 7 2 , San Francisco, September
1 9 7 2 , pp. 3 0 9 - 3 1 2 .

[M 0 7] Dennis, J.B.: "Modular, Asynchronous Control Structures for a High
Performance Processor". Conference Record of the Project MAC
Conference on Concurrent Systems and Parallel Computation, ACM, New
York 1 9 7 0 , pp. 5 5 - 8 0 .

[M 0 8] Digital Equipment Corporation: "POP 16 Computer Design Handbook", 1 9 7 1 .

[M 0 9] Ellis, R.A.: "Modular Computer Systems". IEEE Computer Conference ,
COMPCON 7 2 , San Francisco, September 1972 , pp. 301 - 3 0 2 ,

[M 1 0] Ellis, R.A. and Franklin, M.A.: "High level Logic Modules: A qualitative
comparison". IEEE Computer Conference, COMPCON 7 2 , San Francisco,
September 1 9 7 2 , pp. 3 1 3 - 3 1 6 .

[M i l] Pat i l , S.S. and Dennis, J.B.: "The Description and Realization of Digital
Systems". IEEE Computer Conference, COMPCON 7 2 , San Francisco,
September 1972 , pp. 2 2 3 - 2 2 6 .

37

OTHER REFERENCES

[R O l] Bell , C.G., Jordan, A.G., and Traub, J.F.: "Register Transfer (RT) l e v e l :
Components, Representation and Design techniques". Proposal f rom the
Electrical Engineering and Computer Science Departments, CMU, to the
National Science Foundation (Computer Systems Design Program) , CMU
proposal No. 1582 , October 1 9 7 1 .

[R 0 2] . Bel l , C.G. and Newell, A . : "Computer Structures: Readings and Examples".

M c - G r a w Hill Book Company, New York, 1 9 7 1 .

Chu, Y . : "Introduction to Computer Organization". Prent ice -Ha l l Inc.,
1 9 7 0 .

Chu, Y . : "Computer Organization and Microprogramming". P r e n t i c e - H a l l
Inc., 1972 .

Dennis, J.B., MIT Project MAC Progress Report VII, July 1 9 6 9 - J u l y 1 9 7 0 ,
pp. 1 1 - 4 1 .

Fisher, D.A.: "Control Structures for Programming Languages". PhD
Thesis, Computer Science Department, CMU, May 1970 .

Van der Poel, W.L.: "SERA 6 9 , a new hypothetical machine for educational
purposes". IFIP World Conference on Computer Education, 1 9 7 0 .

|
|

I

[R 0 3]

[R 0 4]

[R 0 5]

[R 0 6]

[R 0 7]

