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A SURVEY OF REGISTER ALLOCATION 

ABSTRACT 

One of the most important functions a compiler must perform is the allocation of 

reg is ters for the instruction stream it generates. In addition to assuring that the 

allocation of registers is consistent with the semantics of the program being compiled, 

many compilers attempt to make 'optimal' use of the registers. A survey of work in 

t h e area of optimal register allocation is presented, and the algorithms used in a 

part icular optimizing compiler {BLISS-11) are discussed. 



A SURVEY OF REGISTER ALLOCATION 

INTRODUCTION 

One of the important functions a compiler must perform is the allocation of 

reg is ters for use in the instruction stream it generates. In addition to the requirement 

that the allocation of registers be consistant with the semantics of the program being 

compiled, it is usually desirable for the compiler to make "clever" use of the registers. 

"Clever" may be taken to mean reordering the computation so that a minimum number 

of registers is used, minimizing the number of data transfers between registers and 

c o r e , minimizing the number of temporary core locations which must be used, or any 

o ther optimization involving the registers. 

In generat ing an instruction sequence to evaluate an expression, a compiler must 

be p r e p a r e d to deal with the case that the number of partial results generated 

exceeds the number of registers available to hold them. It may be possible to avoid 

this condition by changing the order in which the values of the subexpressions are 

computed . For example the value of the expression (A)+(B) where .(A) and (B) are 

a r b i t r a r y expressions, is independent of whether the value of (A) is computed before 

the value of <B) or vice versa (ignoring for the moment the possibility that the 

evaluat ion of (A) or (B) might have side-effects which change the value of the other 

expression) . On the other hand, the number of registers required for the evaluation 

sequence (A)(B)+ (Polish postfix) may be different from the number of registers 



* A common subexpression is an expression whose value is needed at more than one 
point in a part of a program in which the values of the constituents of the expression 
do not change, hence its value need be computed only once. The backslash notation 
will be used in this paper to introduce an abbreviation \ abr. 

requ i red for the sequence <B)(A)+. Within the limits of the semantics of a given 

p r o g r a m , a compiler is f ree to choose an evaluation order for subexpressions which 

minimizes the number of registers and temporary storage locations required. Note 

that when there is only one register available the same procedures may be used to 

minimize the number of temporary values which must be stored. 

Independent of the decision to evaluate (A) or <B> first in the above example is the 

decision of whether the sum will be formed in the register containing (A) , the register 

containing <B), or some third register. This decision is especially important in the case 

that e i ther (A) or (B) is a common subexpression \ cse*. 

In addition to these local register allocation considerations, there are questions of 

allocating registers to hold the values of c*e's. It is also possible to assign variables 

to registers either for segments of a program in which they are heavily used or for 

thei r ent i re extent . This paper is a survey of work which has been done in solving 

these problems of register allocation. 

HISTORY 

Horwi tz , e t . al . [H66] discussed index register allocation in a paper published in the 

JACM in 1 9 6 6 . The thrust of this paper is clearly toward FORTRAN-like programs 

which have simple array accessing mechanisms. An index is presumed to be a simple 

var iab le whose value must be retained either in a register or in core at all t imes. 



step index 
1 XI* 
2 * 2 * 
3 *3 
4 XI 
5 X2 
6 x 2 * 
7 X4 

w h e r e x * means that index x is changed in the step where x * appears. When a step 

catls for an index, that index must be in one of the index registers. The other index 

registers may contain any configuration of indices. The indices in the other index 

registers may or may not be in a modified state. 

Given the future index requirements of a program, the allocation of the index registers 

of the machine to the indices is considered. When all of the index registers contain 

values that will be needed again later in the program, a decision must be made to 

replace one of those values when a new index is required. 

Horwitz considers the possibility that an index may be changed while it resides in 

a reg is ter . If an index is changed in a register, and subsequently that register must 

be allocated to another index, the changed value must be stored in core. If the value 

is not changed, it is not necessary to store the value back into core when the register 

is needed . This problem is analogous to the problem of page replacement in a virtual 

memory system. It is less expensive to replace a page which has not been changed 

since it was read from secondary storage because a valid copy still exists e lsewhere . 

For the purpose of this problem, a program can be considered to be a sequence of 

steps each of which requires a specific index. The fact that there may be steps in the 

p rogram that do not require indices is not important. Consider the set of program 

steps and associated indices 



We may construct alt of the allowable configurations for each step i, i.e. all 

combinations of n of the indices used by the program which include the index required 

b y step » (where n is the number of index registers available). Consider the 

configurations to be nodes in a directed graph with branches from each configuration 

of the i th step to each configuration of the t+ lst step. Each of these branches can be 

assigned a weight which is the cost of making the change in configurations be tween 

steps i and i+1 represented by the branch. The cost of changing be tween 

configurations is defined as the number of memory references required to make the 

change. Thus each new index which is loaded has a cost of one, each starred index 

which is replaced has an additional cost of one. Changing an unstarred occurence of 

an index to a starred occurance of the same index, or replacing an unstarred index 

requi re no memory references and therefore have a cost of zero. 

Given this representation of the possible allocation of index registers, the problem 

becomes one of finding the shortest, i.e. least expensive, path through the graph from 

the first step to the last step. Although there are several algorithms for finding the 

shortest path through a directed graph, the number of calculations required for other 

than a small number of nodes makes these solutions impractical. Since it is necessary 

to f ind only one of the possibly many shortest paths through the graph, we may 

restr ict attention to a subgraph which contains a shortest path. Horwitz e t . at. devote 

the bulk of their paper to developing properties of these graphs which lead to rules 

for eliminating nodes and branches from consideration. Horwitz proves that the 

subgraph obtained by applying these rules does contain a shortest path, and gives a 

procedure for finding that path. Horwitz gives six rules for generating the subgraph 

f rom which an optimal index register allocation may be derived. In summary they are 

Rule 1 : Generate only minimal change branches and eliminate any node which has 
no minimal change branches entering it. A minimal change branch is defined as 



a branch from node n at step i to node n ' at step t+1 such that either nodes n 
and n ' are identical or n ' differs from n only in the index required at step * + l . 

Rule 2 : If n A and n 2 are nodes of step » and W(n 1>+w(n 1,n2>SW(n 2>, eliminate n 2 . 
Here w<ni ,n 2 ) is the cost of changing from the configuration of n t to that of n 2 . 
W<n') is the weight of node n' obtained by considering the nodes of the 
previous step and the branches entering n'. W(n') - min„(W(n)+w<&)) w h e r e 
w(b) is the cost associated with the branch from n to n' . The initial node has 
weight ze ro . 

Rule 3 : n i and n 2 are nodes at step » which differ in exactly one element. Let z i 
be the element of ^ which is replaced by z 2 in n 2 . Although the exact 
explanation is somewhat more complex, the idea is that node n 2 can be 
eliminated when W<ni)<W(n 2) and in the future z x will be used before z 2 . This 
requires the ability to look ahead in the program. 

Rule 4: This rule is a consequence of Rule 3 and prevents generation of nodes that 
would later be eliminated by Rule 3. If z i and z 2 are elements of a node n at 
step i and the next use of z A comes before the next use of z 2 , do not form a 
node at step i+1 which replaces zx by the index required at step 

Rule 5: Since we need only one shortest path, generate only one branch b into 
each node » ' such that W(n')-W(n)+w(6). 

Rule 6: If a node n of step i which is not the last step has no branches leaving i t , 
eliminate node n. 

Figure 1 shows the result of applying Rule 1 to the graph of the example program 

above when there are two index registers available. Step 0 is added to indicate the 

initial configuration which contains two indices not used in the program (x5 and x 6 ) . 

Each branch is labeled with the cost of the change between the indicated 

configurations and each configuration is labeled with the minimum cost to reach the 

configurat ion from step 0 . 

F. Luccio, writ ing-in the CACM [L67] , showed that Horwitz's rules may restrict the 

g r a p h so that at some steps only one configuration is possible. The program steps 

b e f o r e and after such a step may be treated separately. Luccio neatly describes his 

technique in terms of link diagrams. Six types of links are used to connect various 

combinations of starred and unstarred indices (figure 2). Links of types 1 , 2 , 3 , and 4 
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Figure 1 

are built whenever a second occurance of an index is seen. Links of types 5 and 6 

are built following occurances of starred indices and are maintained up to the current 

s t e p . These are called temporary links since they will be changed to one of the other 

t y p e s when a succeeding occurance of the particular index is encountered. 

x * x * x x x * x * 

x * x x * 

Figure 2 

A link is said to cover all the steps along its extension excluding the extremes. 

Only the first extreme is excluded for temporary links so that they cover the current 

s t e p . Luccio gives two rules for changing links of types 1 , 2 , 3 , or 4 to links of 

def ini te allocation (type 0 ) . The index corresponding to a link of type 0 must be kept 

in its register throughout the entire extension of the link. 

x 



tf there are N registers available then 

1) a link I of type 1 becomes type 0 if for each step k covered by I the number of 
other links of types 0 , 1 , 2 , 3 , or 4 covering k is less than N - l . 

2 ) A link / of type 2 , 3 , or 4 becomes type 0 if for each step fc covered by I the 
total number of other links covering ft is less than N - l . 

When the number of type 0 links covering a step fc is N - l , the configuration for k 

is f i xed . The » registers must contain the N- l indices corresponding to the type 0 

links and the index required by step k. At such steps the Horwitz method may be 

appl ied independently to the proceeding and succeeding steps. 

The Horwitz method is related to Belady's algorithm for page replacement in a 

v i r tual storage computer [B66] . Beiady showed that in a paging environment, the page 

to be replaced should be the page whose next use is farthest in the future . In 

addition he noted that if a page has not been written into it need not be wr i t ten out 

(to secondary storage) but merely deleted. The ability to determine which page 

( reg is ter ) is next used farthest in the future depends on knowing the future behavior 

of a program. 

Ikuo Nakata addressed the question of evaluation order in his paper describing the 

register allocation part of a FORTRAN compiler for the HITAC-5020 [N67] . Nakata 

shows that the order of evaluation of the subexpressions of an expression can affect 

the number of temporary values that are required at any one time. Consider the 

expression a*b+(c+d)/(e+f>. A straight forward code sequence to evaluate this 

expression is: 

a*b -» Ri 
c+d -» R z 

e+f -* R 3 

R 2 / R 3 -* R 2 

R1+R2 -» Ri 



Suppose , however , that this expression must be evaluated on a computer with f e w e r 

than th ree registers. To use the same evaluation order with only two registers 

available would require one of the intermediate results (namely a*b) to be stored in 

some temporary memory location. On the other hand, by changing the order of 

evaluat ion of the subexpressions, the expression may be evaluated using only two 

registers and without storing intermediate results. 

c+d -> Ri 
e+f -* R 2 

R1/R2 -+ Ri 
a*b -> R 2 

R2+R1 -> R2 

The central point of this example is that the subexpression (c+d)/(e+f) requires 

t w o intermediate values. Since those intermediate results are not needed after the 

division is performed, one of the registers may be used to compute a*b. Since the 

result of the evaluation of an expression occupies only one register, it follows that for 

any binary operator , the operand whose evaluation requires the larger number o f 

reg is ters should be evaluated first. 

The number of registers required to evaluate the expression (a) <binop> (b) w h e r e 

(a) and (b ) are arbitrary expressions and <binop> is some binary operator is given by 

the following analysis. Let I and tn be the number of registers required to evaluate 

(a) and (b) respectively. If either (a) or (b) contains no operators (it is a constant or a 

simple variable) it requires zero registers. (Note that require here means the minimum 

number of registers necessary to evaluate an expression without storing any 

intermediate results). 

There are two cases: 

1) { - m - p . (a) can be evaluated first leaving the result in one of the I registers 
used. Evaluation of (b) will require one more than the 1-1 registers remaining 
giving a total of p+1 registers for the expression. 



2 ) liim; max( l ,m)-p. In this case the operand requiring the larger number of 
registers is evaluated first leaving p -1 registers for the other operand. Since 
the other operand requires at most p -1 registers no additional registers are 
needed and the expression can be evaluated using only p registers. 

In both cases p is a lower bound on the number of registers required and p+1 is 

an upper bound. In case 2 , p is also an upper bound. 

Nakata gives an algorithm for labeling the nodes of a t ree with the number of 

reg is ters required for evaluation of the node. Briefly, this algorithm assigns a label Lit 

to each node n of the tree such that if n is a leaf then Ln-O, otherwise the immediate 

descendents of n have labels I and r and Ln-min(max(2+l, r), may (I, r + D ) . 

Nakata's algorithm for code production involves first labeling the nodes of the t r e e 

b y the above method, and then beginning at the root node, walking through the t r e e 

generat ing code to evaluate the expression represented. At each node the operand 

requir ing the larger number of registers is evaluated first. If the operands require the 

same number of registers, the left operand is evaluated first. Nakata does not 

consider formally the question of what to do when the number of simultaneous 

t e m p o r a r y values exceeds the number of registers. He does, however, offer some 

heuristics for deciding which temporary value should be stored. On most machines the 

left operand of a division or subtraction operation must be in a register, so the left 

operand of these operations should not be stored. This-may conflict with the other 

assert ion that the value to be stored should be the one whose use is farthest in the 

f u t u r e , but Nakata conjectures that the efficiency of the code produced will not be 

significantly affected by the choice of either of these courses of action. 

Using a graph theoretic approach, R. R. Redziejowski later proved that Nakata's 

algorithm does use the minimum number of registers [R69]. Redziejowski transformed 



Nakata 's t ree into a "lineup" or linear sequence of verticies. Each vertex represents a 

single operat ion in the tree and an arc is drawn from vertex * to ver tex y to 

represent a partial result which is computed at y and used at r . Choosing a feasible 

evaluat ion order is equivalent to ordering the sequence of verticies so that ver tex x 

preceeds ver tex y if there is an arc from y to x. (This is equivalent to requiring that 

any partial result be computed before it is used). 

At any vertex % the number of partial results created before * and used after * is 

r e p r e s e n t e d by the number of arcs passing over vertex x. Redziejowski calls this 

number the width of the lineup and develops an algorithm for producing a lineup of 

minimum width . Redziejowski's algorithm is in principle the same as Nakata'a algorithm 

and there fore Redziejowski's proof of his algorithm can be considered as a formal 

proof of Nakata's algorithm. Redziejowski generalizes the algorithm to include 

opera tors wi th more than two operands. 

Sethi and Ultman [S70] consider the more general problem of minimizing the 

number of program steps and/or the number of storage references in the evaluation of 

an expression with a fixed number of general registers. They exploit the associative 

and commutative properties of operators and assume that all elements are distinct (no 

c*e*s) and that there are no non-trivial relations between operators (e .g . no 

distr ibut ive law). 

Nakata's t ree labeling scheme is modified slightly to account for commutative and* 

non-commutative operators. This change assigns a label of one rather than zero to a 

leaf node which is the left descendent of its ancestor. The change means that the left 

and right operands of a binary operator may have different weights and accounts for 

the gains which may be made by exploiting commutativity. 



First considering only non-commutative operators, Sethi and Ullman prove that 

their Algorithm 1 (which is essentially Nakata's algorithm) uses the minimum number of 

reg is ters as well as the minimum number of loads and stores. Since the number of 

b inary operators is not changed by the allowed transformations, a program which has 

a minimum number of loads and stores has a minimum number of program steps. 

In Algorithm 2 , Sethi and Ullman consider commutative operators by adding a step 

to Algorithm 1 which interchanges the left and right descendents of a commutative 

opera to r when the left descendent is a leaf and the right descendent Is a non-leaf. 

Associativity is t reated only in conjunction with commutativity since in practice 

most associative operators are also commutative. The approach used by Sethi and 

Ullman is to make the associative-commutative operators into n-ary operators, reorder 

the operands so that the one or two operands requiring the largest number of 

reg is ters appear on the left , and then change back to binary operators associating to 

the le f t . This is conceptually similar to Redziejowski's treatment of n-ary operators . 

Sethi and Ullman prove that each of their algorithms generates an evaluation 

sequence containing the minimum number of loads and stores under the assumptions of 

the algorithm. They then show that this leads to the conclusion that the algorithms 

also minimize the number of storage references. 

In their conclusion, Sethi and Ullman point out that all of their algorithms can be 

p e r f o r m e d in time proportional to the number of nodes in the t ree . They also show 

that the algorithms can easily be modified to allow operations which require more than 

one register . 

Beat ty [ B 7 2 ] recasts the ideas of Sethi and Ullman in terms of axiom systems. 



Beat ty extends the Sethi-Ullman algorithm for associative-commutative operators to 

include the unary minus and its relations to the other operators. These relations 

include the equalities 

a -b - a+( -b) 
-<a*b) = ( -a)*b 

-<a /b) = <-a)/b = a / ( -b ) 

Bea t ty 's proof of minimality is considerably more complicated than the Sethi-Ullman 

proof due to the properties of the unary minus. 

The work thus far discussed has dealt only with the question of optimal use of 

registers in expressions. A paper by W. H. E. Day in the IBM Systems Journal [ D 7 0 ] 

considers the much broader problem of global assignment of data items to registers. 

Be fore describing Day's work, it is necessary to explain the distinction between what 

Day calls global assignment and what he considers local assignment. 

Consider a programming language I with statements that are ordered sequences of 

del imiters, operators , constants, and identifiers. The constants and identifiers form a 

subset of L whose elements represent data items. Statements in L are either 

descr ipt ive or executable, the latter specifying operations to be performed on data 

i tems. A data item is said to be 'defined' in a statement when execution of the 

statement causes a new value to be assigned to the data item. A data item is ' r e fe r red 

t o ' when the value of the data item is required for correct statement execution. 

Day defines a program P in L to be a finite ordered set of statements in L. A 

basic block in P is an ordered subset of elements of P which intuitively is "straight 

line code," i.e. a sequence of statements which can only be entered by branching to 

the first statement and which can only be left by branching from the last statement. 

Pf, is a representat ion of P as an ordered set of basic blocks. Pg is a representat ion 



of P as a directed graph with the elements of P& as the verticies and a set of arcs 

represent ing the flow of control among the basic blocks of P . A region R j is a 

strongly connected subgraph of Pg, and P, is a representation of an ordered set of 

regions: 

Pr - {R l . «2 « « } 
- {Ri I Ri + Rj for i t jf 

Ri n Rj - 0 or Ri c Rj for i<j, 
Rn-Pg} 

A computer has a set of registers G* whose elements are gi, and for most 

situations requiring the use of a register any available gi € C * may be assigned. Let d 

represent an element of P, Pfc, or Pr and define: 

G' - { gi | gi € C * , * j is available for assignment everywhere in d } 

/V' - { nj | ni is a data item in P, nj may be assigned to registers in d } 

Given these representations, Day offers the following definitions: 

1) A local assignment is a (possibly multi-valued) mapping of N 2 AT onto C = C 
for rf € Pf i . • * 

2 ) A global assignment is a (possibly multi-valued) mapping of N 2 AT onto C 2 C 
for rf € P r . 

3 ) A one-one assignment is a one-one mapping of N 2 A" onto C 2 C ' . A one-one 
assignment defines a one-to-one correspondence between Af and C . 

4) A many- few assignment is a single-valued mapping of Af 2 Af' onto C 2 C wi th 
C(A0 £ C(C) . < C U ) represents the cardinality of the set X ) . 

5 ) A many-one assignment is a many-few assignment in which C(C) - 1 . • 

A data item is 'active 7 at a point in d if it may be referred to before being defined 

subsequent to the point. Two data items interfere in d if they are both active at some 

point in d. A necessary condition for the assignment of N 2 N' to g € C in d is that n j 

must not interfere with nj for every «f, nj *N,i* j. 



Local assignment, as defined by Day, occurs entirely within basic blocks of a 

p rogram. The methods described by Horwitz et . af„ Nakata, Sethi-Ullman, and Beatty 

prov ide algorithms which may be used to obtain optimal local assignments under the 

assumptions dictated by those authors. Local assignment is not, however, able to cope 

w i th data items which may be active on block entry or exit. 

Global one-one assignment partially solves the problem of active data items at 

block boundaries by assigning data items to registers throughout an entire region. 

Wi th this type of assignment, precautions need be taken only at region boundaries to 

assure that values of active data items are retained. 

Assigning a data item to a register for an entire region may lead to Inefficient use 

of the registers. With accurate program flow information, it is possible to determine 

the points at which a data item is active. When the active points of all data items are 

k n o w n , a set of data items which do not interfere may be determined and the elements 

of that set assigned to the same register. The avalabtlity of complete and accurate 

f low information is critical to efficient of global many-one or many-few assignments. In 

the absence of flow information, many-one and many-few assignments degenerate to 

o n e - o n e assignments. 

Day formulates global one-one, many-one, and many-few assignment problems as 

integer programming problems. He makes the reasonable assumption there is some 

prof i t (>0) associated with the assignment of a data item to a register and that this 

prof i t depends on the frequency and context of the use of the data item. Day gives 

severa l algorithms for solving the assignment problems. Some of these give optimal 

results while others may produce non-optimal feasible results at a much lower cost in 

computational complexity. Day's formulations of the problems are summarized below. 



The global one-one assignment is the simplest of the three problems since no 

in ter ference data is required. Refering to the definition of a one-one assignment let 

n - C(N') and m - C(G') and let p be a vector of profits such that p j is the profi t 

associated wi th assigning n; < N' to a register. Vector * is a selection vector such 

that xi - 1 if rtj € TV' is assigned to a register, otherwise * j - 0 . The problem is 

maximize * - Px 
subject to J * £ m [ I * is the sum of elements of * ] 
where * j € {0 , 1} and p j > 0 

The solution to the one-one assignment is simple: assign the m data items with the 

largest profi ts to registers. 

The global many-one assignment problem is similar to the one-one problem except 

for the added restriction that no two data items which are assigned to the register 

may in te r fe re . Day expresses this condition in terms of a matrix of data item 

in ter fe rence values (C | c i f j - 1 if m, ity € N', i i* j interfere; cj,y - 0 otherwise) . 

The many- few assignment problem is an extension of the many-one assignment 

prob lem to more than one register. The problem Is to select the best combination of 

m a n y - o n e assignments. Day explicitly excludes multi-valued mapping which might 

assign a single data item to different registers at different points in a region. 

In his conclusion, Day reports the results of several tests of the actual execution 

characteristics of his algorithms for many-few assignment. The OPTSOL alorithm 

(which provides an optimal solution) requires much longer execution time for relat ively 

gain over the estimating algorithms. (Sample values: for one register and 4 8 data 

items t(optimat) - 6 s e c , t(estimate) - 0.06 s e c ) . The total profits produced by the 

ext imating algorithms are consistently greater than 90% of the profit produced by the 

OPTSOL algorithm and are significantly better than a one-one solution to the same 



prob lem. Day concludes that his algorithms are sufficiently fast to be included in an 

optimizing compiler. 

ACUTAL COMPILER ALGORITHMS 

Lowery and Medlock give an example of a global one-one assignment in their 

paper on the optimization in the IBM FORTRAN-H compiler [L69] . FORTRAN-H uses a 

simple forward-backward scan of the code sequence for loops to find the first and last 

uses of registers which are needed for intermediate values. This type of register 

allocation for straight line code Is described by Hopgood [H69] . After local assignment, 

the most important ( i .e. most frequently used) variables in the loop are assigned ( o n e -

one) to the remaining registers. Some care is taken to be sure that a sufficient 

number of registers is available for use in inner loops. In some cases values which 

have been assigned to registers in outer loops are stored-loaded at inner loop 

boundaries to make an additionai register available. Lowery and Medlock do not go 

into detail in the area of register allocation preferlng to treat the more glamorous 

optimizations of FORTRAN-H. 

Wulf and Johnsson [W73] describe a method of temporary name binding (register 

allocation) which is a global many-few assignment with some heuristic embellishments. 

T h e DEC PDP-11 (target machine for the described BLISS-11 compiler) has the 

p r o p e r t y that registers are not required for any operation. While the hardware 

requi res registers for some functions, e.g. indexing, those functions can be simulated 

in so f tware without using registers at the expense of program size and speed. The 

compiler takes advantage of this property by assigning a measure of importance to 



each quanti ty which might be assigned to a register and then choosing as many of the 

"most important" items as will fit in the available registers. 

BL1SS-11 divides a program into a set of regions which correspond to the 

(sub)routines of the program. Each routine is responsible for saving and restoring the 

contents of any registers it uses. At the time of register allocation, the compiler has 

global f low analysis information which identifies the eio's. Earlier phases of the 

compiler have also decided the evaluation order of the expressions based on a 

var ia t ion of Nakata's algorithm. The temporary name binding proceeds in three phases 

- t e m p o r a r y name \ TN assignment, ranking, and packing. 

The assignment phase consists of a left-to-right-depth-first tree walk during which 

temporary names are generated for the intermediate values required by the 

computat ion. The declaration processing phase of the compiler generates temporary 

names for the variables which are local to a routine. There are two types of local 

var iab les , those which must be assigned to a register (due to programmer 

specification) and those which may be assigned to either a register or a core location 

at the compiler's discretion. During this treewalk the compiler also assigns to each 

node in the t ree a unique pair of numbers indicating the position of the node in the 

t r e e re lat ive to linear order (linear order number \ Ion) and to flow order (flow order 

number \ fon). The Ion is a monotonicaly increasing value along a linear traversal of 

the program (essentially the position of the node in the source program). The fon 

increases along possible flow paths and is reset at the beginning of each of any group 

of paral lel flow paths. The diagrams in figure 3 should illustrate more clearly the w a y 

in which the Ion and fon are assigned. 

As the compiler walks through the tree and assigns Ion-fori values and temporary 

names, it records for each TN the following six values: 



I o n va lues 

Figure 3 

1) Ion of first use 
2) Ion of last use 
3) fon of first use 
4) fon of last use 
5) minimum use complexity 
6) maximum use complexity 

The first four values are the smallest (largest) Ion (fon) values at which the TN is in 

use . Items 5 and 6 represent the estimated total cost (in terms of storage references) 

if the TN is assigned to a register (5) or to a core location (6). The complexity of use 

at a specific node is a function of the addressing mode, the operator involved, and the 

depth of loop nesting. The difference between items 5 and 6 is a particular instance 

of the profit described by Day. 



After all TJV's are assigned and the ion-/on-complexity data computed, the I W ' s 

are ranked according to their "importance." Importance is defined to be proportional to 

the maximum use complexity and inversely proportional to the fon span (last use minus 

f irst use). Since the maximum use complexity is directly related to the number of 

t imes a TN is used, the importance measure is related to the use density of the TN 

throughout the region (routine) with additional consideration being given to TiV's used 

in loops, for indexing, or in other complex situations. 

The four Ion-fon values associated with each TN define a (possibly degenerate) 

rectangle in the lon-fon space. This rectangle is called the "lifetime" of the TN. The 

th i rd phase of temporary name binding binds the T/V's to the available registers and 

core locations. Necessary conditions for binding a TN t to a location I are: 

1) / is available, ( i .e. if M s a register then the contents of I will be saved at 
routine en t ry } if / is a core location then / has been "allocated" by the routine.) 

2 ) The lifetime of / does not overlap the lifetime of any other TN already bound to 

TN's are bound in the following order: 

1) TW's which must be bound to a specific register. (e.g. the value of a routine 
call is a TN which must be bound to a specific register) 

2 ) 7W's which must be bound to a register, but the compiler is free to choose any 
available register. 

3 ) all other TAPs in order of their importance. 

If TN's in group 2 cannot fit into an available register, a new register is "opened" 

(marked so that its contents will be saved at routine entry). Because TN's are placed 

in groups 2 and 3 only through programmer specification (either explicit or implicit), 

the condition of not having a register to satisfy a request in group 1 or 2 is 

considered semantic error . Since the structure of the PDP-11 does not require 



registers , the TiV's in group 3 need not be assigned to registers so that the problem 

of not having enough registers is not encountered. 

The algorithm for binding each TN in group 3 is: 

1) try an available register. 

2) if the cost of opening another register is greater than the difference in the 
maximum and minimum use complexities (if cost is greater than profit) then try 
an available core location. 

3) try to open another register. 

4) try an available core location (if not tried in 2). 

5) allocate another core location. 

The algorithm terminates with the first successful step. 

There are two additional actions taken during the assignment which increase the 

probability of "clever" assignments. These are "targeting" and "preferencing." 

Targeting tries to use the same TN for several intermediate steps in evaluating an 

express ion . Target temporary names are passed from ancestors to descendents in the 

treewalk. The descendent tries to use the TN it is passed if possible. Except in the 

case that the descendent is a control expression or a c$e, the target can usually be 

met. Obviously only one of the operands of a node can receive the target. The 

decision about which one is the "target path" is made by an earlier phase of the 

compiler. It is important to note that the target path decision and the evaluation order 

decision are independent. 

When a descendent cannot honor the request for a target, it returns to its 

ancestor the temporary name that was actually assigned. The ancestor then expresses 

the preference that the two TN's be bound to the same location. The binding 

algorithm contains a preliminary step which tries to honor the preferences. The 



UNSOLVED PROBLEMS 

The problem of optimal register allocation for expressions has been studied 

extensive ly in the papers by Horwitz, Nakata, Sethi-Ullman, Beatty, etc. A common 

f e a t u r e of these papers is they do not consider the implications of common 

subexpressions on the problem of register allocation. Clearly the overall performance 

of a program can be improved if the value of a era is computed only once. If the value 

is to be computed only once, then that value must be kept somewhere. The logical 

place is in the register in which the value was originally computed. The algorithms 

descr ibed for optimal register allocation do not necessarily produce optimal results in 

the presence of era's. Apperson has proposed a study of the problem of register 

allocation when era's are considered [A73] . 

The algorithms used in the BLISS-11 compiler attempt to solve the much more 

global problem of register allocation in large regions of a program. These algorithms 

are largely based on heuristics and would likely benefit from an attempt to formalize 

the problems. Day provides some insight into how to obtain an optimal solution to the 

global register assignment problem, but he does not discuss the problem of gathering 

the information which his algorithms require. 

assignment phase must always allow for the worst case in targeting and assigning 

TTV's. The preferenctng operation tends to promote "clever" assignment of registers 

in the simple cases. Preferencing also produces some interesting assignments in the 

cases of the last use of a local variable or a C M . The TN for the expression which 

contains the last use of a era is frequently bound by preference to the same location 

as the c$e. 



2 2 A Survey of Register Allocation 

A problem not addressed by either Day or BLISS-11 is the assigning of a data item 

to di f ferent registers at different points in a program. Using the BLISS-11 

terminology, it would be interesting to assign a new temporary name for local 

var iables each time a new value is assigned to the variable. Each variable would then 

have several "lifetimes" and these lifetimes could be considered separately when the 

actual assignments are made. The real difficulty in implementing this type of scheme is 

the difficulty of determining the separate lifetimes. There is also a difficulty in 

character iz ing the lifetime of a temporary name. The Ion and fon measures attempt to 

solve this problem, but they cannot adequately describe conditions of first or last uses 

of a temporary name on parallel paths in a program. 

It is an interesting commentary on the field that while every compiler must solve 

some form of the register allocation problem, little discussion of the solutions found is 

available In the l i terature. This suggests that although there are some formal proofs 

of optimal algorithms, actual compiler implementations tend to resort to heuristics and 

special case analysis. The general situation for real compilers might be summed up by 

the t reatment of register allocation by Cocke and Schwartz [C70] . t h e i r one page 

discussion of register allocation can be paraphrased: "If you have a good register 

allocation scheme you can produce better code." 

i 
i 
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