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P R E F A C E .

The purpose of this paper is two-fold: First,

to present an adequate treatment of secondary stresses,

and second, to introduce-three new methods evolved by

the writer.

During recent years when the importance of

secondary stresses has exhibited itself a large amount of

literature has been written on the subject for advancing

the science of structural design* & critical study made

of these papers will at once reveal that they are subject

to one or more defects which greatly impair their practical

value. In the first place, too much attention has been

paid to the mathematical theories, which could be greatly

shortened for the benefit of practical engineers. Second-

ly, the treatment of the subject is generally limited to

a narrow field, in which only a few methods are applied

to only a certain class of structure. Thirdly, the

treatment of the four existing methods is entirely too

individual, in that the methods are generally considered

as being separate from each other^notwithstanding the fact

that they are more or less equivalent. Lastly, but not
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the least, the effect of secondary stresses on the design

is not adequately considered and sometimes sadly neglected.

With a view to avoid the above defects it has

been the writer's endeavor that the subject be treated in

an entirely different way——that it be more practical,

more comprehensive, and more logical; so that it could be

easily understood and appreciated by those for whom the

secondary stress has the most direct bearing the practical

engineers. The writer is aware that not all of these ob-

jects are attained in this paper, on account of limited

amount of time, but it is believed that the- scope of the

work and the arrangement of materials are sufficiently
50

effective^as to produce the desired results,

The methods for computing secondary stresses

have been greatly improved in recent years. Two objections,

however, still stand in the ways First, the amount of

time involved is often absorb itajyk-, and second, the lack

of a checking device by which the correctness of the

various steps of procedure may be ensured. While there

are numerous other defects these two alone are generally

sufficient to reduce their practical utility. Ever since

the beginning of 1917, when the writer undertook the ana-

lysis of secondary stresses in a two hinged arch, the

results of which have been published in the Transactions
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of American Society of Oivil Engineers, Vol. 82, p. 1104,

it always occuFed to him that there must be some method

which is not only shorter and less cumbersome than the
ivhi'c/i

current ones but also admits of a unique check. For two
a

and half years he has worked on the subject almost inces-

santly, striving to find some new method that will accom-

plish both. At last, much to his satisfaction, the

graphic method of deformation contour was obtained; which

not only takes less time, furnishes unique check, but also

gives remarkably accurate results. Along with this method,

almost contemporaneously, two more methods were evolved—

the graphic method of successive deduction and the analy-

tic solution of the graphic methods. All of the three

methods are described in detail in Part III, page '38,

Vvrhich,being treated more or less independently, could be

read without reference to other parts of the paper. A

perusal of Chapter 10, page 105, is hereby recommended.r

As these methods are new in their field it is hoped thaty
their usefulness be actually tested by further investigators

A

Besides the two purposed of the paper as hereto-

fore mentioned the following points deserve special

attention: (1) The method for the solution of simulta-

neous equations, p. 25. (2) The approximate methods in

Chapters 2 and 3, pages 115-125. (3) The well digested

principles of design in Chapters 1 to 6, pages 140-151.



In conclusion the writer wishes to express

his indebtedness to Professor H. R. Thayer, under whosB

direction the present work was undertaken.

Respectfully submitted,

October, 1919.
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I N T R O D U C T I O N .

CHAPTER I. GENERAL AND HISTORICAL NOTES.

Before proceeding With the subject of secondary stresses

it is proper to define exactly what "secondary" means. According

to German writers the stresses in a framed structure are divided

into two classes—the primary and the secondary. By "primary" is

meant all those stresses which pass through, the centre of gravity of

the sections and act along the axes of the member, producing either

an elongation or a shortening. The primary stresses caused by

the dead ioad or live load are called the "principal" stresses while

those due to impact, wind, centrifugal, yielding of support, tempera-

ture, etc.jare called the "additional" stresses. The "secondary"

stresses include all. tfoose stresses that are not axial whatever

their nature may be: bending, shearing, torsional, etc.

An English authority limits the secondary stresses to those

which will be automatically reduced Mien an incipient failure of the

parts stressed occurs. This is very hypothetical and not so clear

as the following definition evolved by an American writer. "Secondary

stresses are those which make up the difference between the ppimary

stresses and the actual stresses which the assumed static load would

produce". From practical point of view the following is representa-

1. Londfton Engineering, Jan. 7, 1916.
2% Proceedings of Eng. Society of Western Penn., Vol. 25.



tivs: "The secondary stress in any member at any section is equal

to one half the difference of the two extreme fibre stresses measured

at the same section. The primary stress is then equal to one half

the sum of the same extreme fibre stresses"•

As a distinction between the secondary and additional

stresses is advisable the present paper will define secondary

stresses as those which arise from bending, twisting, and shearing^

whatever may be their source.

The subject of secondary stresses was largely developed

by German writers. In the year of 1877 the folytechnic School in

Munich offered a prize Hap the solution of the following problem,

formulated by Asimont. "What stresses arise in the members of a

bridge truss owing to the fact that the angles of the tnuss triangles

do not undergo any change?". This prize was awarded to H. Manderla

who gave his solution in a paper published in 1880, in Allgemeine

Bauzeitung, under the title "The calculation o£ secondary stresses

which occur in simple trusses as a consequence of rigid joints.

In 1879 Engresser published an approximate method in

Zeitschrist fur Baukunde.

The first detailed computations of secondary.are found in

lrinklerfs Theorie der Brucken published in 1881. In 1885 Landsberg

contributed a graphical solution under the assumption that the chords

aloneaare riveted; in 1886 muller Breslan made an analytic contribution

Ritter, in 1890, gave a graphical solution and Engresser in 1892-93

published a book on secondary and additional stresses. The last

1. Transactions' of Am. Soc. of Eng., Vol. 82



analytic method was contributed by Mohr in 1892.

The first direct measurement of secondary stresses was

made by Frankel in 1883. In 1899 Mesnager published an account of

the measurement of stresses in a Pratt trnss of 180 foot span on the

Orleans Railway in France. In 1901 M.Rabut described a series

of; stress measurements which had been made on the bridges of the

Orleans Railway, In 1905-06 W. G-ehler conducted a series of tests

and measurements on a railway bridge of 128 foot span at Elsterwerda,

Saxony. In 1907-09 the American Railway Engineering Association

conducted a series of tssts on a large number of plate girders and

truss bridges, ranging in span from 30 to 440 feet. The latest

and most extensive measurement was made by Steinman on the Hell Gate

Arch in New York in 1915.



CHAPTER II. NATURE OF PROBLEM

According to the committee report presented to the American

Railway Engineering Association in 1914 and printed in Volume 15 of

its Proceedings the secondary stresses in a bridge are divided into

five classes, as follows: .

1, Bending stresses in the plane of the main truss due to

rigidity of joints, eccentricity of joints and weight of members.

2 Bending stresses in members of a transverse frame due

to the deflection of floor beams and to primary stresses in posts.

$. Stresses in horizontal plane due to longitudinal

deformation of chords, especially the stresses in floor beams and

in their connections.

4. Variation of axial stresses in different elements of a

membsr.

5 Stresses due to vibration of individual members.

The stresses under Nos. 1, 2, and 3 can be analysed mors
be

or less completely but those under Mos. 4 and 5 cannot as accurately

determined. It should be noticed that the 5th class does not conform

t6 i "the definition for secondary stresses adopted in this papsr.

Among the first thpee classes No. 1 is the most important and is the

one which has receives most of the attention in the present paper.

By "rigidity of joints" is meant the incapability of the

melabers meeting at a joint to rotate relatively one with respect to li

the other. This occurs in structureawwhere the members are connected

together by gusset plates and rivets and also to some extent in

structures connected by pins. Now if a structure is under load the

various members will undergo deformations as a result of the elasticity
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of the material of which the members are built. These deformations

tend to change the angles between the various members but are prevented
•from

i so by the rigidity of joints. A restraint is therefore imposed

o# the members and must be relieved by bending the members. The

stresses produced in the members by this bending form the principal

source of secondary stresses and $X& designated by class Ho. 1 above.

It will be notsd that if the joint is made of friction&ess pins so

that any member can rotate freely irrespective of the ethers the

deformations in the members could be taken care of by the change of

angles and the so called secondary stresses would disappear. This

is, of course, not true in practice but is the assumption upon which

all the primary stresses are computed.

Here, it is necessary to differentiate b&iws&n secondary

stresses which are attributive Hn<&i those which are essential.

The former applies to all structures composed of triangular elements

while the latter belongs to those structures with rectangular frames.

a.
In triangular structure the secondary stress is produced as result of

A

certain conditions imposed on the structures and is removed as soon

as those conditions are relieved. It is not essential for the sta-

bility of the structure, i.e., the structure can stand without the

existence of secondary stresses. In a rectangular frame, on the

other hand, the secondary stress is not attributive btffcessential,

without which the structure cannot stand. Here, the secondary stress

cannot be removed without having the structure collapse*'..

Furthermore, even in a structure of triangular farmss

the presence of secondary stresses is very necessary although not

essential. It has been found that rigidity of joints is the very £

thing that M^-H^s the structure and is highly desirable in an

economic design. Hence it is important to not9 that the object in



investigating secondary stresses is not to remove such stresses
to are.

wherever possible butAreducet$teinonly Miere tH«VAobjectionalble.

CHAPTER III. FIELD OF APPLICATION.

Until recently the subject of secondary stresses has not

been received with favor by practical engineers. Perhaps the

strongest argument against the consideration of secondary stresse5in
1

structures was advanced by the Engish writers who contended that

"we have never heard or known of a case in which the failure of a

roof or a bridge member not subject to altering forces has been

traced to the existence of secondary stresses"• They even went so

far as to declare that it is "doubtful whether an exact analysis of

secondary stresses in ordinary bridge structures will lead to any

marked improvements in design." Oppos&i to this view is that of

some American engineers who stated that "the fact that these struc-

tures stand up does not warrant a total disregard of secondary stress.

In structures with good details a much higher unit stresses could have

been employed in the design if the secondary stresses had been consi-

dered" . "For a design to be good it must be well balanced. Al-

though a structure must be safe it also should fee economical, .Good

engineering is that best insurance against failure and wasted

material is a tribute to ignorance," "Further in trusses designed
one

for lighter loads thain actual it behooves Ato kno\¥ the dangerous

limits1] lrhile both views seem to approach the extremes-^:.' thet

fact remains that actual observations of secondary stresses VLTC

relied upon as the best guidance. So £ar as the available data

of past experimsnts are concerned the importance of secondary stresses

1. London Engineering, Jan. 7, 1916.
2. Engineering News, Nov. 11, 1915
3. Proceedings of Eng. Soc. of Eng., Vol. 21.
4. Grimm. Secondary Stresses. P. 136
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cannot be minimized and should be considered at least in the

important and unusual structures. In buildings where the primary

stresses are largely statically indeterminate and never in practice

accurately computed it JL$ not worth •'-**»* while to consider the

secondary stresses which depend on the primary. But in bridges,

railway or highway, the primary stresses are generally computed

from a method which is fairly correct and is altogether dependable.

Based on this consideration it is entirely advisable to consider the

secondary stresses in the design which would mean an increase in the

safety of the structure and a decrease of waste in the material.

It should be notsd that the object is not so much i<3 find the. Qttnount

®{ secondary stresses in every individual structure as to determine

the distribution of secondary stresses in every type of structure.

It cannot be denied that such a knowledge would help considerably

in choosing the type of the structure and also in improving the design.

has $tdA
Summarizing from what beeA above i t may be concluded that

/N • ^V

the secondary stresses should be considered in all types of bridges

where the distribution of secondary stresses has not been known for

any kind of loading. For the same type of bridge it is also advis-

able to investigate the effects of secondary stresses on the change

of dimensions.
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P A R T I_. A N A L Y S I S 9 F S E C O N D A R Y

S T R E S S E S D U E T 0 R I G I D I T Y

O P J O I N T S .

CHAPTER I. INTRODUCTORY NOTES,

If a truss, the members of which are connected at the panel

points by frictionless pins, be loaded in any manner, the various

members will change in length slightly, the various panel points will

deflect, and the angles made with each other by the various members

meeting at each point will alter. The members will remain straight

between panel points, however, as they can rotate freely oh the pins.

If now a similar truss having rigid joints be consflered, the changes

in length in the members and the deflections of the panel points will

be substantially as before, but the angles between the various members

meeting at a panel point will be forced to remain unchanged. As a

result, each joint will rotate as a whole into some such positions

that equilibrium throughout the truss will be maintained and each

member will thereby be bent to some extent. Sending moments are thus

produced itn the members reaching a maximum nearing the joints. (This

is not the general case in compression members where the maximum

moment may occur somewhere between the two ends) The fibre

stresses result- Therefrom constitute the secondary stresses due to

rigidity of joints.

While .it is improper it is usual to consider the secondary

stress as that due to rigidity of joints alone. This is in fact
whfch

the only kind T&aJ the current methods for secondary stresses apply
whtch has

and is the oneAreceived the greatest attention ever since the nature
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of the problem was formulated by As&mont. There are at present

four methods for computing this kind of secondary stresses and each
been

has received with irrork or less favor. The fundamental principles

of these methods are exactly the same and it does not seem natural
61

to consider each of the methods separately as this would invlsve much

repetition of material* In the present paper, therefore, the treat-

ment of the subject begins with the fundamental principles which

apply to all of the different methods. The four existing methods

are next taken up followed by the three new methods proposed by the

writer."' The latfer treatment, however, is moreor less independent
A

so that its perusal does not require constant references t& the pre-

vious discussions. Lastly some paJpSs will be taken in the treatment

of the so called approximate and exact methods for the solution of

this kind of stresses.

Just as there are assumptions made for the
so li'kewise are. assumptions made for

computation of primary stresses^the secondary stresses. a#e aet

exceptions tr© %-tee rule* The following is list of the more important

assumptions which must be remembered.

(l), The axes of all the members are situated

in the same plane and bent in the same plane. It will be understood

that the expression "rigidity of joints" always applies to the joints

in "the same plane.
(2), All the external loads are applied in the

same plane.

(3). The primary stresses remain unchanged

after the panel points are deflected.

(4), The dBflectinn of the truss with rigid

joints is the same as if the joints were made of frictionless. pins.
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(5) The effects of shear upon the flexure

is neglected.

(6) All assumptions made in deriving the

flexure formulas hold true for all the members of the truss.

CHAPTER II. CHANGE OF LENGTH DUE TO PRIMARY STRESSES.

The primary stresses to be used in computing the change in

length of members are assumed to be the same as for the truss with

frictionless pin joints.

Let P = primary stress per unit area of the section

L = the length of the member

E = the Modulus of Elasticity

§1* = the change in length L, or the axial deformation,

Then,

§L = P.L / E,

Or, E»§L = P»L ... ... .,. .•• (1)

This equation will be used in the method o£ Mohr.

CHAPTER III. CHANGE IN ANGLES DUE TO PRIMARY STRESSES.

By the "change in angles" is meant the alteration of the

angle formed by any two members meeting at a point connected by a

frictionless pin. Since the triangle is an elementary figure in a

truss the change in angles in a triangle when the three sides are

s.tresses will bs first considered.

Let Pa, P^, PQ be the unit •

primary stresses in sides a, b,

J c and &A, §B, §C be the changes

in angles A, B, and Cy Ftq.L.
, 7 /
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From trigonometry,
o -

Cos A = =
2 b c

A = itos"1 ( b 2 + c2 - a 2 ) / 2 b c

Find the derivative of A with respect to a and substitute the expres-
fur\cfion5 of

sions involving a, b, and c by Cot B and cot G from trigonometry
.A

£ot
b

co t

a

G

B

there is obtained

3A _ Cot B + <?ot C
a a

Similarly, 3A
dh

3 A
a c ~ "

now &A = -r—"
3 a <5b 3 c

= (Cot B f cot o ) & - (fot c) i^. - t^ot B) fiSL
a b o

IA = ( Is. ~ l £ ) cot B + ( 52. - 55. ) cot c
But by (1 ) , SSL = £a , l 5 . = P b , §o = Pc,

a E b E ~ E

Therefore, E S.A = (Pa - Po) tjot B +( Pa - Pb) cot C

Similarly* E S.B = (P^ - Pa) 4ot 0 -f- ( Pb - Po) got A' \ . * . (2)

E So = (Po - Pb) Ctot A + ( Po - Pa) GOt B

The above method is due to Manderla. Other authorities
anci

like Muller Breslau, .band, Winkler, Ritter have also derived the same

formulas by either analytic or graphic methods.

Three features should be noted in the above Eq. (2):

(1) The change in angles are linear functions of the primary stresses*

(2) They are linear functions of the angles included between the

sides of the triangle, not the actual lengths of the sides^ (3) The

sum of the changes in angles of all the angles of any triangle is

Bqual to zero.
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CHAPTER IV, THE TWO FUNDAMENTAL EQUATIONS

Article^ JL. The Deflection Equation.

Fiq.Z,
Consider a beam 1-2̂  subjected to.the moments M^ and Mg

arapl steeacs V^ and Vg, but sustaining no intermediate loads. Assume

a counter clockwise moment to be positive.

From equilibrium of the member as a whole,

Vl= V2= V, Mi t Mg - V L = 0, V = (Mi + M2)/L

Moment at any section distant x from point 1 =

Mx = Ml " V X = Ml " (M1 + M2) ̂  >

How the equation of the elastic curve referred to X and Y as axes is

= - MX -f- (&!+ Mg) f,

j = - M-x + (M, -f Mp) 5 2 + 0 1 f

E l y = - M i ^ 2
+ (M-L t Mg) x fy 6L + Cxx +• Og,

2
Since y = 0 for x = 0,

y = 0 for x = L, Qn=
 2MI- " MJ. L,

2
Therefore, E I £Li = -Mnx + (M, f Mo) 5P +

d v
Let T^ be the value of -r-*- at 1 = the deflection angle of

u. X

the end tangent at 1 and Tg be -r—̂ -.at 2, then T^ is obtained from the

above equation by maldfeng x = 0, and Tg By making x = L. Hence,

• B I T * 2 Ml " % L, E I T 2 =
 2 ®2 " M l L,

Or, Mi = 2 J L 1 ( 2 T l-(- T S ) . M2 = 2_|_I_ ( 2 T s +

• • • • • • (S)
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This is the fundamental equation expressing the relations

between the deflection angles and moments at the two ends of the

beam and is applicable to any member of the truss.

Article 2« The Moment Equation*

Since the truss is in static equilibrium the resulting

moments about any panel point must be zero as otherwise the truss

would be in motion which is impossible. Hence if the members

12, 13, 14, etc., of a truss meet at the joint 1 and M12, M13,

^14* ©to. are the moments of the respective members about joint 1,

then,

M12 + M13 + M14 "+* M15 • • • = 0

Or, in general,

2 M around any joint = 0 ••• • (4)

Since M is a function of T by Eq. (5) this equation would give the

relations of T which must be satisfied by all the members meeting

at the joint.

In case the axes of members do not meet at the same point

there is introduced an eccentric moment Me which may be taken care

of in the above equation by expressing Me under the summation sign,

or,

2 M -fci • M@ around any joint =0 ...... ... (4a)

It is interesting to note here that the stresses of eccentricity

due to primary and secondary stresses are usually opposite in sign

and counter balance each other. Tnis fact was first noted by Hitter*
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CHAPTER V, DEFLECTION ANGLES AND THE RIGIDITY OF JOINTS.

If two members meet at a joint that is rigid the deflec-

tion angles of the two members at the joint will not be independent

of each other but will be connected by an equation which te Sopmo-d

with expressions depending on the primary stresses and the properties

of the tru^s. To put this into algebraic form let T ^ and T-,

be the deflection angles of two members In and lp meeting at joint 1,

then, T l n = F ( T l p ) ... (5)

where F is a known function depending on the property of the truss

and the conditions of the loading. This equation is very

important in that it forms the basis for all the methods used

for analysing secondary stresses.

CHAPTER VI. SOLUTION OF. THE PROBLEM.

To analyse secondary stresses in a structure amounts to

nothing more than the solution of mbments which the members of the

structure must be subjected to as a result of the rigidity of the

joints. In Eq, (5) it has been found that the moments at the ends

of any member are dependent on the deflection angles at the same ends.

If these deflection angles or their relations are known for every

member of the truss the moments can then be derived by a simple

procedure. In this connection use must be made of Eqs. (4) and (5)

as they express the relations which the deflection angles of different

members must hold. It will be fou&d later that Eq. (4) and (5) are

not only necessary conditions for the solution but they are also

sufficient. To utilize Eq. (4) and (5) three methods have been in

use at the present time: (l) The method of joints; (2) The method of
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triangles; and (3) The method^members. To the first me&hdd belong

the jnethod of Manderla and the method of Mixbr; to the second, the

*aethod of Muller isreslau; and to the last, the Sferthod of Ritter.

These will be considerediy separately in Part II. In Part III

will be given three new methods proposed by the writer in which a

new ffi©fctee&~aR& principle is used differing slightly from

given before.
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D U E T O R I G I D I T Y

CHAPTER I. THE METHOD OF JOINTS.

By applying Eq. (5) of Part I successively to the members

meeting at a joint it will be found that all the deflection angles

at the joint are deduci*ble one from the other and may be expressed

as a function in terms of a quantity that is a constant for the joint

if this constant "be G, then forcany member In at the joint the

deflection angle

Tn = F \ S ) • • • . . . • • • . . . \ •*- )

where P1 is a known function of the property of ike truss and the
-Ing

condition of the loading. Apply-Eq. (1) to every joint of the

truss it is seen that the total number of unknowns is simply equal

to the total number of joints, as each joint has only one unknown C.

How for every joint of the truss there is a moment^equation (4)

of Part I connecting the quantities T of the members meeting at

the joint and consequently connecting the unknowns C. There are

therefore as many moment equations for C as the number of C^and

the problem is always solvable. These equations, it should be

remembered, are simultaneous.

The quantity C forms the basis of the two methods into which

the method of joints is divided. In one method C is the deflection

angle of one of the members meeting aii. the joint and in the other it

is the rotation of the joint which is a constant for every member
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meeting at the joint on account of the joints being rigid-, c

This first method due to Manderla and improved analytically by

Winkier, is known as -the Manderla1s Method while the second is known

as tjRA Mohr's Method. As the quantity 0 used in Hohr's method is

a linear function of that used in Manderla's these two methods are

essentially equivalent altnough they differ widely in procedure.

For a combination of these two methods see Waddell!s Bridge Engineering,

page 181, and Thayer!s Structural Design, Vol. 2, page 230.

CHAPTER II. THE METHOD OF MANDERLA.

Article 1. The Reference Deflection Angle

Consider any joint n of any structure and let the straight

lines n-1, n-2, etc., represent the lines joining the several joints
•Fiq.3.

after distortion. The heavy lines show the bent forms of the

several members. The angles Tnl, Tn2, TnS, and T n 4 represent the

the deflection angles of the several members at joint n. Let A±

Ao, A^ be the original angles between the members In2, 2n5, and 3n4.

After distortion the angles between the straight lines joining the

Ffa. 3.
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apexes will be respectively Aj -+ 4A 1 ? Ag -f- SAg, and A3 -f SAg as shown.

Then if one of the deflection angles, Tn^ , be selected as a "Reference

Angle" the other values of T at the joint n may be expressed in

terms of the change of angles &A, as follows:

Tn2 - Tnl -+ ikl9
Tn3 " Tnl + ̂ Al +3.A2,

Tn4 = Tnl + &Ai + $A2 + 5 A3,

and so on for any number of members. Or, in general, for any

joint n,

nm nl ^; ' • * ••• ^^

where T n m represents any value of f, Tnl is the reference angle

selected and ^T && is tiie s u m of a^1 angular changes tip to the

member nm in consideration.

The reference angle may be selected at random b$tt for the
purpose or arrangement

systematic purpooc it is convenient to select it as th© deflection

angle of the first member encountered in passing around a joint in

a counter clockwise direction, beginning on the outside of the truss.

This deflection angle being the base for all the deflection angles
which is the

at the joint, will be denoted by a subscriptAsame as that for the

joint, i.e., T-. will be the reference angle for joint 1, etc.

Comparing Eq. (2) with Eq. (1) e£ Papk-£ it will be seen

that C = T ^ an<3- F* is a linear function in terms of the angular changes

Article 2, Moment Equations in Terms of tiie Reference Angles.

SubstitutBythe values of M of Eq. (3) in Eq. (4) of Part

I.there is obtained the following equation for the figure in the

previous article:
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2EIn5(S Tn3+ T5n) + §Es±(2 T n 4 + T4n) = 0
L

= D and dividing by 2E,

+ Tln> + Dn2<2Tn2 + TSn> + Dn3(
2Tn3 + T3n> + Dn4<2Tn4 + T4n>=°.

SubstituttiwT intterms of the reference angles,

2 Tn ( Dnl+ Dn2+ Dn3+ 0n4 ) +

2 [Dng^A! + Dn̂ SA-L + SAg) -f- D̂ CfiAi-f-

2 ^ + ( D4nT4+ DtoZ^J Â ) = 0

in which 2-/r ̂  r 8 P r e s s n t s ttLe s u m o f a H angular changes from

member 2n up to Tg, the reference member. Expressed in a general

form trie above may be written as

2 [( Z D) Tn -f- 2 ( D 2 <£A )J +

(( Dmn Tjn + .Djnn̂ T- ^ A )+(similar terms for othermembers)| = 0

••• ••• ••• \o)

The above equation may be written out for each of the

joints of the structure and there are therefore as many equations as

there are joints. Since the total number of unknowns, the reference

angle, is also equal to the number of joints the number of the equations

is just sufficient to solve all the unknowns. These equations will,

of course, be simultaneous but the number of unknowns in eaiih equation

is far less than the total number of unknowns, A consideration of

Eq, (3) will show that the number of terms in each equation is only

one more than the number of members entering into the joints for

which the equation is formed•

After the reference angles are obtained by solving the

simultaneous equations the deflection angles for all the members may
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be obtained from Eq. (2) and the moments in the members from Eg. (3)

of Part I. The fibre stresses are then computed from the flexure

formula f = M y / I. Or mere directly from the formula

•̂ nm = — ( ^ -̂ nm ~f~ ^mn ) ^ ••• ••• ^'
L

Article 3_. Details of Procedure.

By this method there are the following steps required

in the complete solution of the secondary stresses: (1) Calculation

of the changes of angles dA, from Eq, (2) of Part I, the primary

stressss being assumed to have been known, (2) tabulation of the

values of 2?&A for expressing T's in term of the reference angle,

(SReformulation of equations, one for each joint, (4) solution of

the equations, and finally (5) the calculation of the several

individual values of T and of the secondarytstresses.

In a procedure such as here considered it is highly

important to reduce the work to a mechanical basis and arrange the

computations in a most systemmatic way. This has been largely

accomplished by Turneaure in his book of "Modern Framed Structures",

Fart II, and also in an article in Engineering News, Vol. 68, p. 438.

As it is not the intent of this paper to advocate this method the

details of the numerical computations will not be given here.

Attention, however, should be directed to the example worked out

i>y this method in the article in Engineering Hews just referred to '

as the same truss used there will be analysed by the new methods in

Part III. For working details of Manderla's Method see Johnson,
and

Bryan, Turneaurefs Modern Framed structures, Part II, p. 440, and

also the Proceedings of the American Railway Engineering Association

Vol. 15.
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CHAPTER III. THE METHOD OF MOHR.

Article 1_. The Rotation of Joints and the Slope Deflection.

In Mohr's method the quantity C in Eq. (1) is made the
through

angle which the joint as a whole rotates as a result of the truss

P 7

deformation. Let line 12 be tne original position of member 12 and
•r A.

t 2 1! a n& 2T the displaced positions

of the panel points 1 and 2,

after the truss is under load.

The bent form of the truss is

shown by the curved line connecting lf and 2!. Draw lines 1**2"

and 2*1" parallel to the original positions of 12. From the figure,

B,, Bo = the angles of rotation of the end tangents of

the elastic lines from tne original positions

1-2,"

T-jo, TOT = the deflection angles &£QW. the elastic lines

from axis l'2f,

Hng, = the slope deflection of the axis lf2r from

the original position 12.

Also> T12 = Bl " H1S' T21 = B2 " H12>

Since all the members at Joint 1 are rigidly connected

together the end tangents of the elastic lines of these smembers

are fixed at constant angles apart and the rotation of one tangent

must bring about the same rotation of all the others. Hence B-̂

for member 1-2 is the same for any member In entering into the same

joint, and

Tln = Bl " Hln '•
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where Hi|_n is the slope deflection In from its original position.

Comparing Eqs. (1) and (5) it will be seen that C = B and Ff is

a linear function of H, the slope deflection.

The slope deflections H are geometrical functions of the

axial deformations of the truss and can be found graphically as

follows: From the changes in length computed by Eq. (l) of Part I

a Williot or displacement diagram can be drawn from which the displace-

ments of the panel points are obtained. It will be found that the

displacement of each point is brought about in two motions, one

is parallel to the member of which the point is one end and the other

is perpendicular thereto. The last named is therefore approximately

the arc described by the member during the distorts ion and is

a- measure of the rotation of the member. This quantity divided

by the length of the member gives the slope deflection required-

The Mohr movement of the Williot diagram is not necessary here as

it is only the relative motion of the straight axis of the member

that is required and not the absolute value. For each aaaiamed

condition of fixity of the truss there corresponds a different set

of B's in Eq. (5) but the value of T is not influenced by the

asaumption as the variation in B is taken care of by the correspond-

ing variation in H. In case the values of B are to be tested by

experiment, however, the Mohr movemenet is necessary and the condi-

tions of the fixity of the truss should be determined beforehand,

Article 2. Moment Equations in terms of the Hofeation of Joinfrs.

Sub s it i tut £125 the values of T in (5) in Eq. (3) of Fart I

there is obtained
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M 1 2 = -: • ( 2 Bx 4- Bg - 5 H 1 2 )
^12
2EI TO
— ( 2 B 2 -f- Bi - 3 Hi2 )

L12

Let the above equation be formed for all the members

eeting at any joint l^then by Eq. (4) of Part I,

2 M l n = 2 E ( 2 B 1 S D l n l 2 D l nB n - 3^ DlnHln) = 0

frtiere D as before = l/L. Hence,

2 Bl Z Dln + Z DlnBn - 3 2,DlnHln = 0 ... (6)

where Z/ includes all the members at the joint.

Since this equation could be formed for every joint of the

truss and for each joint there is only one unknown B the solution

of the problem can always be effected by solving the simultaneous

equations. After the values of B are obtained the secondary stress

is then found from the following equations

fnm = ^ L - ( 2 B n + B m " S Hnm > E <7 >

Article 5. Details of Procedure.

The necessary steps required in the method of Mohr are as

follows: (1) Computation of the changes of length by Eq. (1) of

Part I, (2) construction of the displacement diagram and the calcu-

lation of the slope deflection, (3) formulation of the equations,

(4) solution of the equations and (5) the calculation of B and the

secondary stresses.

Like the method of Manderla the systemmatic arrangement

of computations is essential in this method. This is largely

accomplished by Kunz as illustrated in an article in Engineering

.News, Vol. 66, p. 3T97« The example used in this article was
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taken later by Turneaure in illustrating, the method of Manderla and

also taken by the writer in illustrating the three new methods in
fey

Part III. A comparision of the results obtained the various

methods is not only instructive but also determines the relative

merits of the £ different methods. it is hoped, therefore, that

this article in Engineering Hews be familiar with the reada? of

this paper.

CHAPTER IV. THE SOLUTION OF SIMULTANEOUS EQUATIONS

It has been shown in the previous chapters that the method

of joints requires the solution of a set of simultaneous equations

involving as many unknowns as there are joints in the structure.

This part of the work has long been considered the most laborious

in the solution of secondary stresses and is the one that taxes

to the utmost

Biost &g the patience of the computer^ At the present there are

no less than four methods which have been used for the solution:

(1). The method of Gauss , proposed by Paez, formerly of Cornell

University, (2) the method of eMminat.±@n*i^ proposed by Turneaure,
3

(3) the method of approsimation, proposed by Mohr and (4) the
4

method of trial proposed by Waddell. Among the four methods the

first seems to be the most expedient and practical. The writer

has used this method in the solution of 10 sets of 34 simultaneous

equations each in connection with the secondary stresses in a 2 hinged

### ##«• #*HS- ### ###

1. Thesis Ho.75"of Cornell University by J. Paez.
2. Modern Framed Structures, Part II, p. 448.
3. Engineering news, Vol. 66, p. 379.
4. Bridge Engineering, By J. A. L. Waddell, p. 182,
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arch and ha$9 found it entirely satisfactory. Two more improvements

have been made by the writer-*- and they deserve special attention

here: (1) As is evident from Eqs. (3) and (6) the coefficients of

the unknowns T and B are functions of the truss dimensions and

are therefore constant. As the truss dimensions are usually symme-

trical about the centre line the unknowns for symmetrical joints

will likewise have the same coefficients. This means that the

reduction of the equations from one end of the truss toward the

centre is the same as that from the other end of the truss toward the

centre and the number of simultaneous equations could then be reduced

to one half with one mote set of constant terms. This saves much

time for a truss havsing a great number of panels. (2) The

solution of the equations is accomplished by means of a specially

constructed table in which every operation is reduced to a mechani-

cal basis and no memory work is required. To illustrate this method

there are reproduced the tables which the writer used in computing

the secondary stresses of the two hinged arch referred to above.

In Plate I are shown the coefficients of the 54 unknowns which are

characteristic of the arch. It will be seen that there are two
arrangements

symmetrical of these coefficients: (a) about the diagaonal line AB,

which fact, first noted by Paez, renders it possible to use Gauss1

method for the solution of "Normal Equations", (b) about the two

horizontal rows marked by two crossing dotted lines. This fact,

noted by the writer, renders it possible to reduce the coefficients

of only 18 equations instead of 34 . It should be remarked here

that this result is obtained only by a special convention of nota-

tions, i.e., symmetrical joints should be denoted by symmetrical

figures or the sum of the numerals denoting the symmetrical joints

1. Transactions of Am. So. of civil Eng. Vol. 82, p. 1102.
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should be one more than the total number of joints. By this

arrangement one figure in the table serves to denote the coefficients

of the two symmetfical joints referred to two "Remark " columns^

one at the top and the other at the bottom of the table. The cons-

tant or absolute terms of the equations of which there are ten sets

are not shown in Plate I but are found in the next drav/ing, Plate:;II.

The solution of the 10 sets of equations is accomplished

6n only one sheet of drawing, Plate II. In this drawing there is

constructed a table which has as many vertical and horizontal columns

as may be needed in the solution. These are bounded by heavy black

lines. All the horizontal columns are next divided into longitudi-

nal rectangles, the number of which in each column is to be determined

as follows: For equations (1) and (34) one line; (2) and (33)

two lines; (3) and (32) and all the remaining equations four lines

except in those equations where the unknowns are not for uninterrupted

successive joints as equation (8), in which case five lines should

be allowed. The coefficients of unknowns, absolute terms and •

check terms, marked by numerals without primes, are next entered

into those rectangles which are next to the bottom rectangles in

each of the horizontal columns. The check term is found by taking

the sum of the coeffidients of the unkncnws and the absolute term

and is to be treated just as an absolute term in the solution.

This eheck term:: should be tested at every step of the solution by

taking the same sum after some arithmetic operations havaing been

perfommed.

A step line, shown by double black lines, is next cons-

tructed in the table beginning with the first horizontal column at

the extreme left as shown. The figures in the first column to the
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right of the step lines will be hereafter known as the first column

figure^ those in the second colu&n to the right, the second column

figure, etc.

To begin with the solution of theequations multiply
2nd - A

(1) by the ration of columns of (1) with reversed signs, and
{he product l B t

put 3rfeA xn the first line of the horizontal column below in the same

vertical columns. Mark this linevV£$ the numeral (1"). Multiply

(1) by 5£<L columns of (1), calling it (lflt),and put it in the first
lst and

line of the third horizontal column below, also in the same vertical
•the

columns. The sign of (l"5)is always^opposite of (1) but that of

(ltTt) is not yet determined. In the second horizontal column

there will be only one lin^tleft at the bottom which is to be filled

by the sum. of (2) and (1*). This line will be designated by the

letter (II). It is to be noticed that the first unknown of (2)

is now eliminated in (II),

Multiply (II) by the ratio of %E<L columns of (II) with
ih& product ls"k

signs reversed, and put i% in the second line of the third horizontal

column, in which the first line has already been occupied by (1"!)»

These figures, in the same vertical columns as (II) are to be

denoted by the letter (IIT<). Multiply (II) by ^ — columns of (IIK
lst ^

calling it (II"* ) and put it In the first line of the 4th horizontal

column in the same vertical columns. Similarly if there is a 4th

column in (II) multiply it by columns of (II), calling it (II1V),
> lst /

ana
and put it in the first line of the 5th horizontal column, also in

A

the same vertical columns as (II).

Now in the third horizontal columns all the lines are

filled up except the last one which is to be occupied by the sum of
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(rff)> (II") and (3). The signs for (ltft) should be so fixed that

its first term would cancel out that of (3). The last line thus

obtained will not contain the first two unknowns of (3), anctiiwill

be designated by the letter (III). Equation (III) is to be treated

in the same manner as (II) as described above.

It should be noted that the above statements apply equally

well to equations (34), (XXXIII), etc.

The check term should be satisfied at every step of the

process $,o as to ensure correctness at every stage of the solution.

Repeating the same process as described above the bottom

line is eventually rgocckod when the 34 equtaAions will be reduced to

six equations involving six unknowns; i.e., Eqs. (XV), (XVI), (XVII),

(XVIII), (XIX) and (XX) involving <f> 1$, <fil6> 017* <PlQ> <fi 19- a n d

<p20* t^^ie solution of these 6 equations, simultaneously, gives

the values of the six unknowns A which when substituted successively

in the equations marked by Roman capitals will give all the unknowns

required. These six equations should also be treated systemmatically

in arranging them in tabular form and reduci^the coefficients in

some such manner as described before.

The above method of arranging the coefficients in

symmetrical positions is very useful in structures having a large

Me
number of joints asAone illustrated above. For ordinary structures

having 10 or 12 joints its use It not advisable.
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CH1ETER V, THE METHOD OF TRIANGLE.

This method is due to Muller Breslau. Before taking
a of explanation are

up the principle of this metiiod few worcb i^ necessary in regard to

the signs. To secure uniformity in the treatment an assumption

is made that all the members bend with a single curvature and that

all the members composing a triangle have only one kind of curvature,

either inward or outward, as shown in jFy£gWL& below. This assumption ,

it should be noted, does not

influence the final results

of the solution as a reversed

curvature could always be taken

care of by a negative sign of

the moment. As a matter of fact the bending of truss members is
a

in most cases opposite to that assumed, being generally double
A

curvature in form.

Take a triangle as shown. 1, 2, and 3 are tne- displaced

positions of the triangle 123 after loading. The original angles

between the members are Aj, Ag, and Ag which

are preserved by the rigidity of joints. From

the fignre,

T 12

Ffg.G. 32

Substitute the values of T from Eq. (3) Part I, noting that the

moments at the two ends of the member are opposite in sign,

( 2 M 1 2 -f M 2 1 )
 L l g + ( • 2

4mq 6BI13•Xmq , 12
Put- M L/I = V, there are then obtained for the triangle 123,
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V21+ S < V1S + V13 > + V31 = 6E

V12 + 2 ( V21 + VS3 ) •+ V32 = 6E

V23 + S < V32 + V31 > * V13 = 6 E

Since the sum of dATs in a triangle must be zero ,

V12 + V31 + V23 + V32 + V31 + V13 =

If tnree of the V's are known, say V12,
 V2i> and- V13

three may be found from Eqs. (8) and (9) as follows:

Prom Eq. (8), V 3 1 = 6E 6A1 - 2 ( V ^ -*• V 1 S ) - V21j

From Eqs. (8)<W(9), V23 = 6E dAg •+ V13 - Vgl -f Vgl 1

V32 = 6E dA3+ V12 + V 2 1^V 5 1 y

(10)

The moment Eq. (4) of î art I is here expressed in terms of

V as follows:

M = 2 ^ — around any joint = 0 (11)
L

The solution of secondary stresses by the above method

applied to a truss as shown in the previous page is essentially as

follows: In the first triangle I assume V^2and V2^ to have been

known and find V]_3 from V 1 2 by Eq. (11). These three V
!s when

substituted in Eq. (10) will give trie three remaing VBa in the

triangle. Two of thase V's so found, Vgg and V32* also belong to

the adjacent triangle II and a third value of V, V35, may be found

from Eq. (11). There are therefore three values of V known in

triangle II, the other Vfs may then be found from Eq. (10). This

process is continued throughout the series of triangles until the

last one is reached where two extra moment equations become available

to determine the two assumed values v^g and V2j» After V-̂ 2 and

a r e k n o w n a^1 t n e other Vfs are known by substitution and the
arc

secondary stresses found by the equation

L (12)
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The solution of the whole problem is possible because for any framed

structure composed of triangular elements if there are m members there

will be i ( m - 1 ) triangles and i ( m + 3 ) joints. For each
2 S

triangle there are three equations like Eq. (10) and for each joint

there is one like Eq. (11) so that the total number of equations

3 1
availkable is — ( m - 1 ) + - ( i -t 5 ) = 2m which is just the

& • ~

number <Sf unknowns required.

In applying the above method to the solution of secondary

stresses the following points should be noted:

(1). The directions ®f bending of members are assumed

and should sbe corrected by the computed results which give both

the magnitude and the sign.

(2). In computing the change of angles by Eq. (2), Part

I, the signs of the <£A!sthus obtained should be reversed for those
are

triangles whose membersAassumed to have bent outward like triangles

II and IV of the previous figure.
stress

(3). The sign of the secondaryAand the fibre to which

the stress belongs should be determined from the form of the bending.

(4). The eccentric connections of the joints should

be taken care of in Eq. (11).

For details of procedure of the method of Muller Breslau

see Molitor!s Kinetic Theory of Engineering Structures, p. 235.
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CHAPTER VI. THE METHOD OF MEMBERS.

This method is due to Ritter. Here a new system of

notations is essential for further considerations. Consider any

joint 5 of a truss as shown^ where four members intersect forming

three angles. Each of the angles inclusded between tteo adjacent

straight axes of the members ^ill be denoted by the numerals indica-tma
a

the opposite member in the triangle. Thus the angle 554 will be

denoted by feap A34, angle 456 by A46, etc. The two moments of any

4 • 6

5 7
member like 35 will be designated by Mg at joint 5 and Mgt at joint

3. For member 45, the moments shall be M 4 at joint 5 and M4t

at joint 4. But in case Joint 4 is considered instead of 5 the

same moments of the member 45 will be designated by Mg at joint 4

and Mgt at joint 5, That is,

M 4 for Joint 5 = Mgt for Joint 4

M4t for Joint 5 = Mg for Joint 4

The sign of the moment is made positive if the moment is counter

clockwise.

-ma
Apply-isq,. (S) in Manderlafs method to members 53 and 54,

SubstitutV^the values of T from Eq. (3) of Part I,

2 Mg - M«t ) Z£ - ( 2 % - M4t ) ii = 6E
T T

3 4
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and
g .

Similarly for
-ting

Put-M L/l = V, there iB obtained for joint 5, including the moment

equation (11),

6E dA34

6E SA^Q

6E &AQ7

= (

= (

2

2

2

v3

v4 - v4t

- V

)
)
)

-. (
- (
- (

2

2

2

V 4

V6

V7

" V 4 J

- V6t

- V7i

V L 3 V 6 6

L 0

(13)

For every joint there are as many equations as there are members

intersecting at the joint, or two equations fxor each member, so that

the total number of equations equals the total number of unknown:

moments. In this method, therefore, the number of simultaneous
of

equations is very much in excess than those required in the method

of joints and an expedient method fKor the solution is absolutely

essential. The following graphic method has been used by Ritter.

Lay off 4 vertical lines spaced at 6E 8.A apart as

This applies to the same joint as the above equation (13). Assuming

^. 5.

the values of Vf as having been known draw the vertical lines

spaced at V* apart from the lines already dra?/n. These lines will be
assumed ffie

red as the lines of action of^I/L's considered as forces.

Lay off the values of I/L on a vertical load line and with pole
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distanc

34

draw the rays as shown, Parallel to these rays construct

an equilibrium polygon for the forces i/L. Find the the position

of the resultant of these vertical forces and measure the distances

of the fBorces I/L spaced therefrom. These will then give the

corresponding values of 2V. The proof of this fact comes directly

from Eq. (13).

Now in actual solutions Vf is as unknown as V itself and

must be found in some other way. For practical purposes ifc~.:is, 3

obtained by trials. Considering the fact that any change in the

values of Vf has only half the effect on the values of V the first

trial could make V1 =0# The following figure shows the positions

of the und&Bplaced forces i/L for the joints (4) and (5) the equili-

brium polygons being omitted.

76
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% Joint 5.
Let the distances between an umdisplaced force and the

resultant be designated by W, then,

2 Yr = V.-f -J- W-

2 V 4 = V4i + %

But in compliance with the adopted notations,

Vgf = V4, and V4, = V5

Therefore, Vgf = V4 = ( V4, + W4)/2 = V5 /2 + f 4 /S

Or, GVgt = ( W 5 + 2 W4 ) / 3

Similarly, V4i = ( W4 + 2 W5 ) / 3 = V5
•«• • • •

(14)
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fo be
The above equations enable the offset V.t known for joint 5 if the

value© Vg is known ie known for joint 4.

To analyse a truss by this method first assume Vf for

all the joints ap-e zero and wiiih this understanding construct the
polygons

force and equilibrium^ of l/L for every panel point of the truss.

Next give a displacement to the forces l/L until the above Eqs.

(14) are satisfied for every joint of the truss. After the forces

are definitely located the values of V are measured off and the•

secondary stresses calculated from Eq.. (12) •

The following.points should be noted in the above

constructions;:

(1). Negative values of <§A are to be laid off on the

left side of the undisplaced forces when going over the joints

in a clockwise direction.

(2). In transferring the offsets Vf from V they should

be laid off in the same direction as V.

(3). The equilibrium polygon -should be redrawn for each

change of offsets..

CHAPTER VII* COMPARISON OF THE DIFFERENT- METHODS.

A comparison of the different methods described above

could not be made unless they are actually tested by examples. It

will be found that Hitter's method is the least practical of all

as any method based on trials is always inferior to those which

have definite means of prodedure. The method of muller Breslau

is superior in that it does not involve a large set of simultaneous

equations. On the other hand it requires a greater amount of work
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in the computations, as V being a large multiple of f, the secondary

stress, it is a large number and great accuracy must be exercised in
computing.

the JtLgui aiiî * In ^ n e example mentioned above, in Molitor!s book,

the computations had to be made correct to seven places which is oat to

b& considered -^ in practise. Therefore the only method that is

suitable for practical engineers is the method of joints, in spite

of the presence of the simultaneous equations. The merits of the

methods of Manderla and Mohr are practically equal and each has its

disadvantages. They will be dealt with in detail in the following

articles.

Article 1. Features of the Method of Manderla,

(1). It is entirely analytical and gives more accurate

results,

(2). No graphical constructions required with the result

that there is no inteference in work.

(3). The values of M are found by taking the algebraic

sum of only two terms containing T, which is more convenient than

fce handling three terms as required in Mohr's method.

(4). It takes much less time to find the change of

angles than to construct the displacement diagrams for the slope

deflections in Mohr's method.

Article. 3» Features of the Method of Mohr.

(l). The simultaneous equations are more easily formed.

(2). The conception of the rotation of joints is as far
to

more superior than that of the reference angle as the values of B

etitti.d be actually measured.
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(3). The values of B being nearly equal for all the

joints^an approximate solution of the simultaneous equations is

possible. (See Chapter II of Part IV). This feature is very

important and it alone may offset all the other disadvantages of -

the method.
are require^

(4), Thore ape- Less operations to find f after the

equations are solved, thus greatly reducing the chances of making

mistakes, as the solution of the equations c&tld be checked.

(5)« The absolute terms in the equations can be found

more directly than those in Manderla!s method.

(6), The values of B's have the same sign at each

side of a certain point which affords a good check.
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P A R T III ,. N E W M E T H O D S F O R C O M , P U T I N S

S E C O N D A R Y S T R E S S E S D U E

T 0 R I G-I P I T Y 0 F J O I N T S ,

CHAPTER I, FUNDAMENTAL PRINCIPLES.

Article 1_. The Fundamental Conception,

Secondary stresses are fibre stresses produced in the

members due to bending moments developed around the joints. There are

many sources from which the moments are derived but the principal one

is the rigidity of connections. If M = the bending moment, I = the

moment of inertia of the member, y = the distance from neutral axis to

the fibre whose stress is required and f = the secondary stresses; then

f = M y/l = M / S, where S = Section Modulus = i/y.

Therefore, M = S • f (1)

In other words, "If S be assumed as a force and M be the moment it

produces about a point, then the offset of the force from the point

gives the value of the secondary stress."

Let AB be a member connecting the joints A and B, and
Fig. 10. . •

S its section modulus^ If S be assumed as a force acting in this

member, like the primary stre-ss, it will

produce moments at A and B if its line of

• action is displaced from the axis of AB, and

the offsets f a and f-̂  will then be the stresses produced at A and B,

by (1). , Particularly, if the moments about A and B are those due to

rigidity of joints.the offsets fa and fb will be the secondary stresses.

The line of action of S will be called hereafter the "Secondary

Stress Line" or briefly "Stress Line", no confusion being
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cntortainod thereby as the primary stress line is not shown or

understood to be the axis of the member.

It is now evident that the values fef f depend only upon

the location of the stress line S while the moment IK will also depend

on its magnitude. As the magnitude of S is constant, being the

section modulus, the position and direction of S and consequently,

f, will depend solely upon M.

Let the aboae conception be extended to every member of

the truss. There will then be as many stress lines as there are
proportionate.

members. Each stress line will be displaced to an extent

p
\aAth the bending moments produced. To utilize this fact

by reverting the prox&esŝ  it is at once evident that if the stress

lines are so located as to satisfy various imposed conditions the

offsets of the stress lines will give directly the secondary stresses

This conGe+ption is fundamental.
io which

The first condition tfesct the various stress lines are

subject#to fcis that the total resulting moments around every joint
are

must be zero. (Eccentric momentsAexcluded here, but could be taken

care At very readily, see p. 59). Graphically this means that if

a force diagram be drawn of all fetfee stress lines in the truss and

an t equilibrium polygon be likewise constructed on the truss

diagram these two polygons must respectively close. This, however,

is impossible for the stress lines adopted above because the values

of S being constant they could fee not be made to balance each other.

Thus, in the figure, the stress lines S-. and So could not balance

each other unless they are on the same straight line which is impossi-

ble. To overcome this difficulty an& external ideal force will be
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applied to the joint, with such magnitude add

direction that the § equilibrium is maintained

around the joint. Thus in tfee figaa*© a

force R may be introduced which will balance

the forces S-̂  and Sg. In general, the
hq. If,

value and direction of R is equal to the

but
resultant of the stress lines acting on the joint, with opposite

/\
sense..in dirootion.

It is important to notice that the position of R must

be such that its line of action passesthrough the joint in considera-

tion, so that there will be no external moment. In case of eccen-

tric connections the position of R may be so adjusted that its value

and the offset from the joint will give the eccentric moment.

As a convenience in terminology the term stress line will

be understood to be the internal"secondary stress line S while the

external force will be understood as the balancing force R.

With the conceptions of S and R thus established it is

now possible to draw a force diagram around every joint £ a*wL
\> fo

(from which construct an*? equilibrium-polygon. If these two
given case

t polygons are made to close && any mat ones the first condition that

the sum of internal moments must be zero around any joint is every-

where satisfied. Further, from the condition that the total ex-

ternal moment is zero % for all the joints of the truss it may be

inferred that both the force and equilibrium polygons of the exter-

nal ideal forces R must respectively close.
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Article 2, The Fundamental Equation*

As noted before the secondary stresses are due to moments

developed principally by the rigidity of joints. In a frictionless

pin joint the deformations of the members can be taken care of by the

change.) of angles, which 4» not possible in a rigid joint, where the

deformations must be provided for in some other way. As the members

are elastic the simplest and easiest way would be to bend and twist
tke*n to o refer

fee 4a@ffifeâ s—BQ that the joints may be so displaced that the deformations

along the axes of the members may fee just as well provided for as if

the joint were frictionless pins* But the members cannot bend or

twist without being subject to some outside influence, this outaido

whf) ft - pr Qduc-ee- the internal stress. In other words some

work must be performed ON the member to produce thi&s bending and

twisting and as a consequence thereof some internal work must be
Ffg IZ,

set up to respond. Take, for illustration, the beam 12 subject to the
.A

influence of moment M which increases from

0 at 1 to Mg at 2* (This is equivalent to

a force P = MQ / L placed at the free end 1

when the end 2 is fixed.) The effect of M2

on the beam is to rotate the end 2 through anFfrlZ.
angle TO1 and the end 1, an angle T^g. These rotations are brought

about at the expense of an external work in amount equal to l/2 Mg

This induces an internal work in the beam equal to

dx

E I 2 E I

T.Z\ 5 E I
That is, the end 2 of beam 12 rotates through an angle

(2)

expense of an external moment
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Similarly, the bending and twisting of truss members due

to rigidity of joints are also brought about at the expense of

external moments which become internal moments when the joint is

considered as a whole. The8® bending and twisting are the results

of two different rotations* the first is due to the deformation of

truss members and the second Is due to the rigidity of joints. Let
Fig. 13,

12, 13, 14 and lj^b© four members meeting at joint 1, which is rigid
3 13' SL

\ y After loading, on account of deformations

^ I //' " of members the axis lines 12, 13, etc.,

would have been displaced eto 12*, 13*, etc.

£ 2 """""**"—Py* t&A ^ n e joints been frintionless pins.

The angles 212* = H;j_2> 313* = H^g/ etc., are functions of deforma-

tions of the members,and are different for& different members.

Therefore, they could not be actually realized in rigid joints

where a member is prevented from rotating relativelyto the others.

On the Mother hand all the members must rotate through the same

angle and the total ratations of the members 12, 13, etc., are not

&12> Hi^> etc., but H-jp-f- B]_, H-j ̂  -f B-j, etc., where B^ is tne
rotation of the joint 1, all- tho mombor-s the • same^ This s-steiar •

result may also bfc obtained by considering, first, the sesfeep&

axes 12f, 13f, etc., brought back to their respective original

positions 12, 13, etc,, and then, simultaneously, all the axes

turnafthDOUgh the common angle B-̂ .

These rotations as mentioned before, must be produced at

the expense of moments vaaa& the works thus performed ON the members

12, 13, etc., would be
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Since B is the same for all the members at joint 1,
1 Wz VV/3 X

_ VVW

H12 " H13 is equal to the chang of angle betwean the members

12 and IS. » Jl 06Z/3?

_ j.
-'.S

T f ~
__ 1
- a

In order to express the work W12, Wig, ets., it is necessary to
expressions for the work for

findAMioae at the other end, i. e., W21, Wgl, etc. By similar

reasoning as for equation (2), the total internal work in beam 12

due to moment M-2 at enfi 1 and M21
 at en(^ 2 is

w =

It will be seen from this equation that the first two

terms are the works done on ends- 1 and 2 of beam 12 by moments

M-̂ 2 and M-̂ g respectively, see Eq. (2), while the third term is the
the.

sum ofAworks done by M^g
 on ©n^ 2 a n& ^oi on end S 1. But by

Max#well !s theorem the work* done ^ "bf M _ on end 1 and that by M-,g

on end 2 are equal and therefore the difference of Wig and W21 * is

simply the difference of the first two terms in the above equation.



Or, W 1 2 - W 2 1

a.
Solving simultaneously,
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i i M?2 L Mll L

w - 1 1 - 1 - / 3 ul2L M l s M81 L
W

1 2 - 2 2 E I ( - ^ — - r g

1 M12 -L ;
= 2 n r ( 2 Mis - %i ) *

Similarly,

wi3 = 2 eTiTT ( 2 Mi3 - M3i

Substitutswthese values in Eq. (3), there results

^ 2 1 ^

Replacing M by f x S, where S = i /y,

( 2 f 12 - f21 ) - — • ( 2 f 1 5 - f51 ) = 6!
y15

Or, in general,

Llm (o-p, -p , ^ - L l n f ? -P-, - -f ,-) =v ̂  1 l m (
 r m l f ^ a rln rnl /

l m l n •....• (4)

where ,f &and A&j carry their own signs.

This is the Fundamental Equation which forms & the basis

for both the theory of Deformation Contour and the process of Successive

Deduction.
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CHAPTER II* ANALYTIC EQUATIONS*

Before proceeding further a few word^^B necessary

regarding the signs of the quantities in the fundamental equation:

where f is the secondary stress and^OOis the change of angle. To

secure a uniform system a positive f will be understood to bfe due

to positive moment which is assumed to be counter cloekwise. This

would mean that the value of f, together with its sign, applies to

that fibre of the member which is first met with in passing around

Thus

-fM Fiq. 15

the joint in a cleckwaise direction.

Fro-is,
in tfee fiigur©, positive f reefers to the

F,g. upper fibre, i, e., it is tension when

the moment is positive. Similarly, in 1»ho following diagram, if

is positive and M-,g negative, the top fibre of 12 at 1 will be

tension and that of 15 at 1 will be compres-

iiori. iMext, consider the sign o±A&*

it is positive if the angle W is changed to a larger

angle, i.e., if the angle of rotation of 12 = H^ is greater than
jt

that of 13 = Hg* Adopting the sign of the

moment it may be inferred that if the dotted

lines in tee ffiguro are positions of the

members after loading, both Hg and H

are positive, being counter clockwise in

direction. Therefore, i f ^ carries itsfr9.17
own sign, Hg .- Hp = A$ • Comparing this with the equation

from which the fundamental equation is derived, it is seen that the

sign of JQ(j in the fundamental equation is negative for the present
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convention of signs.and that

if. the member lm is met with before member Oj,n when passing around

the joint 1 in a clockwise direction.

Or,

Let;L/'y = U and = K
n i m

Um (2fin ~ fni) = ZJim (2fim ~fmi) ~t Kmm
Uirn f?r r > , Kn/rp

This modified form of the fundamental equation will be used
memorize

throughout the rest of the discussion. To pw£ this form %

it is only necessary to remember that the quantity

( 2f-j_m - f ) U of a member lm when added to K ̂ m in a clockwise

direction is* gives the value of ( 2f, - f

next member met with in the same direction.

) U-,n of the

Or, in general,

Galling Sflm - f
m l

and

2f _, - f = r .,
ml lm ml

Then, in Fig. 18>
u24

U,
= r

u
25'

25

In
u

U

lm

In

nlm
lm ... (6)

uIn
From Eq. (5) when the stress f is known the stress at

ln

the other end, f -., may be found if the stresses f-^ and f -̂  a r e

known. Thus, suppose the stressesin the first triangle 123 or

Fig. 13,

V /

/

J

triangle Aj are known. The stress f55

of member 35 in triangle B can be found from
by

the equilibrium of joint 3 jgeeaa the "Moment

Equation

Fig. Id. S = 0 ... (7).
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|,for all the members meeting at the same joint. In this particular

' ° a S S , Fl3 f31 + SS3f32^ S35f35 = °

where fgl and f3g are known from the triangle A. Substituting-

the value of fg5 obtained from this equation in Eq. (5),

#>- f Zfss.
where

Or in general, from (5), ^j

im = 2 fin -r UJn
The stresses in meinber 25 are found from the following

two simultaneous equations:

Solving, -fZ3 = | f ^ ( f e f c ^ i ^ ^ ^ : ^ . ^

Or, in general, using the notation r, Fig£0

c. p fnm - I M rn, / f e j
Ftq.cO. r _ If i+MiJ imn ~ 3 L " * J i 3L

By Eq. (6),

nm ~~ fmn ~

From fee abovo equations-, /ll50 ; i/vn Uri/r) Llrn/J Unm J

Henra r = 3f - 2r. . . . (10)
/ '£(/<+&} nm mn mn

This equation shows that the value of i» = 21" - f may be
^ nm nm mn

obtained from the values of f and r at the other end of the member

without knowing the value of

Applying Eq. (10) to any member mn, chord or web members

there is obtained

I
f*n - 3 ( 2 r * n + rnto } "• •" *• (11)

where r ' s carry their own signs. This equation shows that the

stresses at the two ends of a member are known if the values of r

at those ends are known.
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CHAPTER IIL., GRAPHICAL CONSTRUCTIONS.

This Chapter intends t-e describe some of tlB graphical

constructions that are common to both of the methods of Deformation
Successive Dec/ucJrbn*

Contour and "fete* mot hod of fiUaarcno t ori !Lt± c Inoromonts> It is

advisable in reading this chapter to <sonf«or frequently.the
out A

examples workddAin Chapters V and VII.

Article 1. Preliminary Considerations.

(a). Scales.

For graphical constructions the scales? of f is evidently

dependent on that of EA0( . From the fundamental equation (5)

it is seen that the scale of f is &£ the same dimensional degree

as that of nnim or of (6Ê |̂rJj / ( L/y ), . Since L is always

expressed in Peet dlxi y^in inches^ L and y may be represented by '

the same unit if 6E«̂ W(/ is changed into l/2 EA0( • Hence,

hereafter K is to be understood as EAOO /2 with the understanding

that y. is expressed in inches but represented as if it were in feet.

As the values of EAQh are found from the primary stresses, by graphic

or analytic methods, it is convenient to consider only one half of

the primary stresses. In graphic methods the scale of primary

stresses may be made only one half as large as that used for

measuring the values of EAoL . This will give the value of K

directly.

The scale of S, the section mudulus, used, in constructing

the force diagrams may be anyttiing independent of f as it is only

the direction that is ̂ required.

The scale used for r must be the same as for K or f.
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(b). Signs.

In the present paper there are two instances where a

conception of signs is necessary. One is rotational and the other is

linear. The first applies to moments, angles, circular sections and

directions of contours while the second applies to the 3tress lines,

their offsets, representations of f and r, and the co-ordinates

of variables. The rotational direction will always be considered

positive if it is COUNTER CLOCKWISE. For linear directions there
convenfions >

are many conoidorationo, but tfee principle is, with the exception of

the stress lines, that if ab is the base of
a dC A

1̂. i_ I a straight line through a and b witta a as

FlCj^ 27. origin, the distance from a to x is positive

if x is laid off from a toward b and negative if ®way from b. That

is, it is positive if it is between a and b and negative if it is on

the opposite side of a from b.
convention

For stress lines the following consideration is necessary,

It has been shown that a positive moment is that which will rotate

a member in a counter clockwise direction. As the moment is re^~

jrresented by the product of f and S the direction of is should be

such that a counter clockwise moment would give a positive stress f.

_4 For the sake of uniformity all the stress

lines S will be considered as compressive

stresses in the members. Under this con-

vention, if the stress lines in 12 and 13

are as shown, f-io a n& fgi will be negative, (moment is clockwise about

1 and also about 2) and f13 and fsl will be positive* (moments

counter clockwise about 1 and -3. )• Hence, when the position of the

stress lines a»e known both the sign and the magnitude of f are at

once obtained. B'urther, by this convention the force diagram



50

of stress lines S assumes a definite form which twnds to facilitate
Fi'g. £3.

its construction. Consider the simple truss as snown, The

\

letters A, B, and C corresponds to a, b, and c of the force

diagram. It will be seen that the forces da, ab, be, and cf

may be considered, for illustration, as the trunk of a tree while

the forces ah, be, and eg are to its branches. This makes it

easy to remember that ail the stress lines in web members and

end posts formthe trunk of a tree while those of the chord members

form the spreading branches.

(c) Truss Diagrams.

Two or three truss diagrams are necessary # in the graphic

methods presented in this paper. One of the diagrams will be

used to record given information^ and to construct the values of

K. The use of this diagram will be described here and also in the

next articles ?/hile the construction© on the remaining diagrams

will be considered later on.

The quantities S and primary stresses in lbs. per sq. in.

are first marked on ail the members of the truss. There are then

next constructed the "y-clrcles". These are the circles with radii

equal to y of the member drawn at one of its ends. Let L be

the lngth of the member in feet and y in inches. At one end e£
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of the member draw a circle with radius equal to y, expressed in inches.

The scale used is the same as that for L which is in feet, the valae

of y is thus magnified 12 times. From the other end of the membefc

dravf a line tangent to this circle. This

y line will be known as the MU-lineatf. To

K T ,'" find the ratio of K/U = K/(L/y) lay off

a segment equial to K from the end of the member from which the U line

is drawn. At the end of segment K draw a circletangent to the U line.
A

The radius of this circle then gives the &fe ratio required.

Article 2. Change of Angles.

In Part II there are discussed the various methods used

to find the change of angles in a triangle when the sides of the
For

latter are deformed. S© adopt te the use of graphic methods the
-ing +he

following construction is the most convenient • Except*-a systematic
ore

arrangement the principles of this method ie due to Hitter. It has

been found that in a triangle 123,

Ê oi2i3 = (P23 - P13) Cot 152 4- (P23 - P12) Cot 125

E AL32 = (P12 " F25) °Ot i§2- + (P12 "" Pl3) Got —

_ = (P_ - P,rt) Cot 213 + (P-.*- - PnJ Oot 132

Or, E ^ 2 1 3 = P23 (°ot l s s + Got 123) - P 1 3 Cot 152 - Plg Cot

. „ = P_o (Cot 125 -fr Cot 215) - PO0, Cot 125 - P,,, Oot 213_

= p (cot 213 + Cot 132) - P1O Cot 213_ - Po_ Cot 132.
Fig. Zb,

pose In triangle 123,^ through 1 draw a line perpendicular to 23 with
2 of length

p3 an amount equal to P23 and through its end draw a line

parallel to 23, giving segments a and b. Similarly

find the segments c, d* e, and f• Then,

'3
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« ( c -f d ) - ( a -t e )

= ( © -f- f ) - ( G > b )
f_5

Or, the change of angle of any angle 213 is equal to the segments a
and t> minus *

4 ft-H^ "fe ̂  belonging to this angle aubetract the sura of the segments

of the other two angles f and d which are not adjacent to the segments

of the angle under consideration, a and b.

To secure a systematic arrangement -both in sign and mag-

nitude the following scheme is advisable. The example is for a

triangle with ane right angle but the method could be easily extended

to any kind/of triangles. Lay off the primary stresses per sq. in.
/ • *

as shown. Draw the lines papallel to the sides and obtain the seg-

c and d., c and d. These segments will be of the same signas
A

3>

fciie corresponding stresses. Further, there

is obtained the small triangles, similar to

the large triangle 123, 12-, 5 , 21P3O, and

31g2g. Next adopt a sign of contour in

following the consecutive sides of the

different triangles. Let this be counter

clockwise, to secure unfeiformity. Then

to find the change in angle 213, proceed as follows. At the

end 2-, of segment a, met with in a counter clockwise direction
along £,3, extended equal fb

after 3-, when following the contour 13121, measure off 2 A * the

segment c which is that segment of the side 1 2 of the triangle

31 2 that is adjacent to the side 23, tee- -e&e- parallel t© Sr^v
3 3 -1-

If the sign of c is the same as that of a it is laid off awe,j from
toward 3j

8^Abut if it is the negative of a it is laid off away from 3X, as
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shown. Then the distance e 3^A, the segment from the initial point

3.-j£ to the end point A, gives the value of EAD(ll3 . The sign of

3-̂ A is the same as that of a because A is reached from 3-,$. in a
'the. same

counter clockwise direction. In case c and a ape have difforent
c

signs and titoA g is greater thn a, then

Fig. Zl.

fche point A is found as follows. Lay off

' segment c from 2n toward 3n, the point A
A

will then be found below the point 3.,. The distance 3-̂ A giving

to £

^0(2.13' i s n o w °PP°s^-^e ^ n sign from that of a because the point A

is reached from 3 in a negative direction, clockwise, with refer-

ence to the contour 13-2 • Similarly the change in angle 123

may be found fey from the segments b and d, the latter being that

part of s£ the sidel 1*2^ of triangle 31^2^ which is adjacent to

the side parallel to l232*

To find.E40( . lay off the segments a and b from the end

1 of side 1^2^, care being taken of the signs. If a and b are

different in sign#, one should be laid off toward 2^. Similarly
o

if both a and b are of the same sign* as c and d they should be

laid off in the opposite direction as shown, wnich is for a and b

having differnt signs from c and d. As a check the sum of the

E A &L !s should be zero.
magnified

It should be noted that since y is -frntoaa. 12 times^ as- fe*=g

the primary stresses should be laid off with a scale one half as large

as used in measuring the segments 3-j_A, etc.
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Article Deformation and Property Lines,

Consider Eq. (6) which is the abbreviated for^of the

fundamental equation,

fin ~ Urn 'im Um
As this is a linear equation connecting i»in and r it may be

represented by a straight line ab if the side im and In be considered

Ffq.Z8.
as the co-ordinate axes of riTn and rn . Positive r will be

r -LU- m A l m

laid off toward m from 1 while negative r-,
and away from m.

will be laid off away e-f m from -\A Similarly

ln. To locate this straight line abfor r

the simplest method would be to find the

intercepts on the*© two axes.

If rlm = 0,
ln

if r
in

that is,the intercepts on the two adjacent sides are respectively

equal to the values of K n l m divided by the values of U for the

corresponding sides. The scaleHf for K/u should be the same as

that used for r% and f. Regarding 1s® the signs of the intercepts
a ••

it will be seen that positive value of K/U belongs to the side

which is first met with by passing round the joint 1 in a counter-

clockwise direction (if K is positive), and the negative value of

•K/u belongs to the side next met with in the same direction.

Accordingly, the value of K^im/Uin
 is laid off toward n while that

of Knl /Ulm is laid off away from m, as shown. This is for
-hg

positive K, if it is negative the sign is reversed. Join- the
fend points of the intercepts the straight line ab is obtained.

For any value of r to find the corresponding value of r_ it is
lm ln
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only necessary to draw a line from rlm parallel to the sine In, the
n

legth of this line intercepted "between the side lm and ab will

give the value of r-j_ .

In each triangle of the truss there are three of these

lines ab and they completely express the fundamental equation (5).

These lines will "be known as the "Deformation Lines" meaning that

they are derived from the fundamental equation involving the

deformation of the members. They will be designated by a letter

denoting the triangle and a numeral denoting tne joint. Thus, .
the

the line Al would designate thak line which & belongs to triangle

A and joint 1.

It will be seen from Eq. (6) that if K^m = 0 these

deformation lines will pass through the origin, that is, the joint

1 in this case. These lines will then be known as the

"Property Lines" of the truss, since they represent the ratios of

U which is the ppcoperty of the truss. They are the same for

any kind of loading.

There are two features of the property lines which de^serve

notice. (1) In any triangle the three property lines must meet

in one point. (2) The values of r may be laid off in any scale.

(For deformation^ fck lines trie scale for r must be the same as for

K/U). The first feature furnishes a good check of the deformation

lines since they are parallel to the property lines.

For details of construction of the deformation and

property lines the following methods are recommended. First let

the property lines be constructed. Use will be made of the

U-lines discussed in (c), Art. 1 of this chapter. To draw the
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property line Al in triangle A draw any arc with joint 1 as centra

on the truss diagram used for constructing the values of K. It

is preferable to make the radius as large as possible to seizure

accuracy. Let this arc cut the sides 12 and 13 at a andfe b.
With a and baas centres draw the arcs tangent to the U-lines. Let

the radius having a as centre be called

u and that having b as cent be called

U 1S# Second diagram, in triangle
v\ ihe

A, lay off the segmet u-io on* side 13,
A. ^

not side 12, letting the end point be c.

With c as centre draw an arc with radius =

u • Through c draw a line parallel to
1 3 Z

the side 1$ cutting the arc at d. Join

Id. This is the property line Al.

Similarly all the other property lines in

triangle A may be obtained. As a check, the three property lines

in the triangle should meet in one point. The same process may he

extended to every triangle of thetruss.
A

l-Tor deformation lines since the values of K have already

been found the ratio of K/U should- next be constructed. Take the

Fig. do.

joint 1 for illustration, From 1 lay off

lb and la equal 3. A = 1/2 E40(2/3. With

a and b as centres draw arcs tangent to the

0 lines, the radii of which will give the

the values of KA1 / U 1 2 and K^ / U-̂ g

&§spectively. On the truss diagram where

the property lines are drawn lay off the»#

values of KAi / U 1 3 on side 15. The sign

of the segment is determined by passing
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around the joint 1 in a counter clockwise direction. Since 13

is the side first met, the segment on it has theAsign as that of

' off
KA1 / U13 itself. If it is positive it is laid from 1 toward 3.

This gives the point c. Since the side 12 is met after the side

13 in the counter clockwise direction, the segement on it has the

negative Hign of KA1 / U l g and is therefore laid £off away foom 2.

The sign of K is assumed to be posititre here. This gives the

point d. Then the line joining c and d gives the deformation line

Al for joint 1 of the triangle A. This line should be parallel

to the property line Al found in the previous paragraph. Similarly

all the deformation lines of the truss could be constructed.

Article 4• The Equilibrium Contour.

It has bsen shown in Chap. I, Part III, that the stress

lines S could be made to balance each other around any joint &H

by the introduction tit an ideal external force R. In the process

of construction, however, the conception of stress lines as there

adopted is not convenient as it would involve a different force

diagram for each change of the stress lines, which is unavoidable

in the graphical construction*• A speedy method demands that

one force diagram -fc© serve the whole process; that is, the direction

of the stress lines be kept constant. This fixed direction of

the stress lines is best chosen perpendicular to the axis of the

member for then the offset_{= f) would be found along the axis of the
in tfq-31

member. For example, let S-,Q cut the member 12 at c. The stress
equal to A

f12
 is then * lc, positive if c is between 1 and 2 and negative if

on the opposite side of 2 from 1. For the

*2
end 2 the same force S1O should be shifted

Fig- 31.
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to a point whose distance from the end 2 gives the stress fo-j.

By this modification the direction and of stress lines S £&-j made

constant for the members and one force diagram is sufficient

for different values of f at the same end of the same member.

Here, these S lines are no longer the "Stress Lines" in the correct

use of the term, but they will be known as the "Equilibrium Lines"

The direction of the equilibrium lines should be such

that they give a counter clockwise moment around the joint when

the values of f are positive; i.e., when the lines cut the members

somewhere between the joints. Thus, the direction of S-^,2 c°nsi(3.ered

above should be upward whether it is on the right or left hand side

of joint 1. If on the left side of a the moment is clockwise and

f is then negative.

Consider a joint of the truss as shownir?̂  The force
been

diagram Is assumed to have^constructed here. If the1 stresses in

/•J members 12, 13, 14, and 15 are known, the

position of the equilibrium lines &$z

known. Then the moment of 12 equals the

fDrc9 .af multiplied by the perpendicular

distance f,o. If f1o is negative it should

be laid off on the opposite side of 12,

i.e., on side 16. The closing line fa

furnishes the external force R at the joint.

The direction of the force is constant and

R may be drawn on the diagram as a part of

of the truss.
or

' Suppose that thJPfe stress in 16 ̂  f16 is required, i.e.,
the location of the force de whoa9 direction is upward, found by
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passing around the Joint in a counter clockwise direction. In the

force diagram take f as the pole and draw the rqys fb, fc,-and fd.

At the intersection of r of the forces FA and AB, draw a line
He

parallel to fb meeting^force BC at s. From s draw line parallel
fh<z.

to fc meeting^force CD at t . From t draw a line parallel to fd
H)4

meeting^fores FE at v. Then the force DE must passfe through v.

Therefore drop a perpendicular from v on^lde IS The distance' lw
Avrould give the value of It is negative here as it is on

the opposite side of 6 from 1. Thus it will be seen that only
•' • a ^J

three lines are necessary forAjoint of 5 membfrs^uT determine

the stress in 16. For joints with less number of members
A,

only one or two lines are necessary.

If there are eccentric connections at the joints the
e, . M care -,

eccentric moment can be taken^of by dispacing the force R a distance

= M/R.

By a similar process the stress in any member may be

found if the stresses in all the other members meeting at the

joint are known. The Contour formed by the force R and the

equilibrium lines of the different members will be known as the

"Equilibrium Contour".

To cultivate sppeed and accuracy in drawing the fores

diagram for the equilibrium lines the following scheme will be found

*̂ r Fia 33
use fu l , 3te-1»ogin w4*fe fcfee diagram fc» a t r u s s as shown, f i r s t "

H

Fis.33.
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a
draw line perpendicular to 12 and measure ha = S_o. Then from

j 1<5and
a draw a line pendicular to 25; measure off be = Spg« From b

A
 and Continue

draw a line perpendicular to 25^ measure off be = S?g. Koog

for all the web members of the truss the points e and f are

obtained. CDnly one half of the truss will be considered as the

other half will be symmetrical. Prom u draw a line perpendicular
and below

to 13* measure off ag = S- • The point g should be i« -fcrke under
1 6 from

oido &f a so that the force ag will be downward. SirailarlyAall

the points b, c, d, and e draw lines perpendicular to the

respective chord members and measure off the segments bk, cj, etc*,

equal to S35, S , etc. All the values of the equilibrium

lines are then constructed. Next join the end points 1, j,h,etc,

with dotted lines as shown. These will give the directions of

the external forces R, which are to be transferred to the

truss diagram, as shown. Lastly the rays hb, he etc., are

completeiyd. They are the lines which join the left end of the

external force R to the inner points of the diagram.
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CHAPTER IV. THE THEORY OF DEFORMATION CONTOUR.

mFig.34,
Consider a joint of the truss as shownA say 5, and apply

Eq. (6) successively to the triangles B, C, D and E.

Z 4-

T*hen,

r57 = --1"

By successive substitution,

r57
U

KB5

57

I" K D 5+ KE5

U57

Or, r 5 ? = a W*# + b. ,,, (12)

where a and b are constants. F/>m this equation it is seen that

when the value of r frr one member'is known^ it is known for all

the othermembers meeting at the same joint. This fact is analogous
A

to the relation existing between the deflection angles of members

around a joint, as found in the method of Manderla. As it

stands, thisequation does not offer much advantage in the discussion

but when applied to the graphical construction of the deformation

lines there, is obtained a remarkably simple and useful figure
is known as

&e which ewes ttae- *=baaae -e# the Deformation Contour.
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-th*

By the method of Article 3 in previous chapter

suppose the deformation lines are constructed for all the

in Fig. 35.

triangles of the truss, as showrfjj For any joint 5, if the

value of iv™ is known that of rR may be obtained by drawing a
// ®& / LJ- " *

rne ana obtaining
line parallel to side 52,
the deformation line,

p g
givoa *}»y the intereept on

Next, transfer this intercept

to member 25 by a line parallel to member 35. Prom r^p*

r may be similarly obtained by parallel lines. Repeating
5 4 a.

the process the value of r5y is finally obtained by successive

parallelograms. In order to check the results and also to
deformation

close the polygon aAline Kg is drawn for joint 5 which gives

the relation between remand r R 7 considering the ehange in

angle that is outside of the truss/ or the negative of the

total changes in, angles 3S52, 254, 456, and 657. Since both

rcrz and rg« are on the same straight line this deformation

line Kc could not be obtained by the usual Cartesian co-ordi-

nates but must be found as follows, (See Â tiel-e* Article 1,

Chapter V ) . Find a pair of corresponding values of r53 and
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r̂ r? and at the end of each segment draw a 45° line directed

each toward the other. These two lines will determine a point.

Similarly^ find another point;,these two points will then give

the deformation $ine,designated as K5, for joint 5. For

a joint like 2, where the outside members do not lie on the

same straight line, the deformation line Kg may be obtained

in the usual way, by referring r and rg4_ to members 21 and

24 as axes. Here, as before, the valuefee of K would be the

negative of the sum of KAg •+• K B S +
 Kc2*

ou

These continues broken lines (including the two

45° lines) drawn for each joint and parallel to the members,

with their intersention points meet on the deformations lines,

together form a figure known as the "Deformation Contour".

Thus, in the figure on^last page, abedefghjk is the Deforma-

tion Contour for joint 5. There is evidently one deformation

contour for each value of r5^, but they are all parallel to s

each other. The Deformation Contour that is to give the

actual secondary stresses is known as the "Correct Deformation

Contour", its location being dependent on the relations exist-

ing between the different deformation contours for the different

joints. Obviously these relations are derived from the. con-

fhe
siderations of equilibrium of^joints. As there are as many
contours as there are joints the probelem is always solvable-

To fix the idea of the deformation contour it is

necessary to give it a value designated by the value of r of one

of the members meeting at the joint. For reasons stated in Afct. 2
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the

in next chapter this member will be chosen to be the chord member

which is at the left of the joint in consideration. These

members will be known as "Reference Members for the Deformation
Me

Contour'.1 Thus the value of countour fpor joint 5 just considered
and

will be designated by r , that of joint 2 by rPi« The members
53 >\ *±

53 and 21 are reference members for the joints 5 and £ 2.

Suppose the correct deformation contours for the joints

1 and 2 are known. The contour for joint 3 could then be found

by the relation between r 1 3 and r 3 1 from Eq. (10); that is,

where r 1 3 is known from the given contour. Since f13 = *-S13 y

- SIS |ri2-T r21 by
S13 3 J

and v = a r 1 3 -f- b where a and bane constant.

Therefore, r = - S1S (2 a r 1 3 + 2b + r 2 i ) - 2 r 1 5 •
3i g *

that is, the value of r3i msy oe found from r 1 3 and rgi by a

linear equation, or
r31 = m r13+ n r21 + Py

where m, n, and p are constants. Since r^ guapL- r^i are known

from the given deformation contours around the joints 1 and 2

r_. may be found m a very pp© simple process.
31 J

Next, consider the relation between r & 3 and r35. By
f

Eq. (10), r 5 3 = 3 ̂ 3 5 * 2 r 3 5

Since f35 = - (

S35 3 Sij I T ->

it is seen that rR^ is linear function of r^ and rPT because the

relations between r 3 1 and r 1 3 , r 3 2 and r 3 1 9^^-
 r 2 3

 and- r21 a r e

and
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all linear. Therefore,

Since r3g can be found from r 3 1 and r*^ is known, r 5 3 may be computed.

Similarly consider the relation between r^2 and r 2 4 •

r42 = 3 f24 - 2 r24

f 24 = " - ^ S25 f 25 + S23 f 23 •+ S21
S24

2 5 ^ + § 2 3

S24 2 5 3 3
2 ^

3 ;

Now the following relations are linear: rg^ and r2^ ;

r 5 2 and r 5 3 | r 2 3 and r 2 4 ; r 3 2 and r35 (and hence r32 and r53 ).$

r 2 1 and rg4_ ; r^2 and r 1 3 (and hence r 1 2 and r31 , r 1 2 and r35 ,

and finally ri2 and r53 ). Hence the relationsbetwesn r^42and r^

§B$ r^ and r24 are also linear, and it follows that

r42 = m" rS4+ n" r 5 S + P "

Since rc>3 and r 2 4 are known, r^g may be obtained.

By a similar process it d-eH can be shown that for every

triangle of the truss a linear relation can always be expressed be-
the {Fig. 361

tween the values ofAr's at the three vertices. In general, for
•A

every triangle lmn of a truss, where Ip

is the reference member,

rm = s r m n + hrlp"f" k • (13
nft f, K

Iihere ĵ , g and ^ are constants. By

successive application of this equation the value of any contour

of the truss may be found from the given contours around the joints

1 and 2.

Squationo (12) and (13) together form the basis for
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the Theory of Deformation Contour, which may be stated as follows:

f!In any framed structure composed of triangular elements

the valuesof the deformation contours for the joints of the
A

structure are related to each other by a linear equation." If

the least number of members entering into a joint of the structure

is "n" the value of each of the deformation contours may be expressed
n .

linearly in terms of fat others. In a bridge truss n is generally

equal to 2 so that the deformation contours of any 3 joints of the

truss are connected by a linear equation and, by the process of

successive substitution, all the deformation contours of the truss

can be made to depend, by linear expressions, on only two other

deformation contours. These two contours may be chosen at random

but for practical purposes they are best taken to be the deformation

contours for the two joints at the end of the truss.

By the use of the above theory there is overcome the

necessity of solving a large set of simultaneous equations which is

always considered as the most laborious part in the solution of

secondary stresses. While the truth of this theory is simple and

almost evident (in fact it could be derived from any set of the

simultaneous equations involving T in Manderla!s method of B in

Mohr!s method, as r in this paper is linearly related to T and B)

it has never fcaen taken cognizance of in the solution of secondary

stressesr so far as the writer is aware. The advantage iof cons&i-

Bering the existence of such a "theory" will be apparent in the

next chapter, although in the strict sense of the word "theory"

it may be questionable whether its use is correct as the present

method, like all others, a is not a mathematically exact solution

of secondary stresses.
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CHAPTER V. GRAPHIC METHOD BY THE THEORY OF. DEFORMATION COHTOUR.

Article 1« Graphic Representation of_ a_ Linear Equation

inv(plying Three Variables*

In the previous chapter the values of deformation

contours for any three joints in a truss are shown to have been

connected by a linear equation. If r53, rg5 and r 2 1 are the
in ft'g. 37j.

contours at the vertices of a trmangle 235, as shov/nA then

by Eq. (15),

If one of the variables, r21, be assumed fixed or arbitrarily

assigned, the other two variables r3g and r^g can be graphically

represented by a straight line. This, however, implies that

the two variables are referred to tswoaxes which are not in the

the.
same straight line, as they are in present case, both rg5 and

A

being referred to line 55. To overcome this difficulty and

facilitate the construction the follov/ing device has been eviolved.

Find a pair of values of r35 and r55 connected by

the above equation, with r^i arbitrarily assigned, and locate
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the points a and af by making 3a = and 5a! = From a

draw a line at 45° with 55 and directed toward the right of joint
from af

5 and "below the truss. SimilarlyAdraw a line at 45° with 53

and directed toward the left of joint 3, also below the truss.

These two lines will intersect at a point A, Next find another

pair of values of r g 5 and r5g with^same r 2 1 and locate the points

b and bf. From b and bf draw lines at 45° with 35 and directed

toward each other, intersecting at B. Draw a straight line

through A and B. This line will then give the relations between

r35 anc3- r53 f o r tiie a8siS&©<3- value of r21. For any value of

Fgg., say 3c, to find the corresponding vaUme of r53 draw a line

from c inclined at 45° from 35 and directed toward the opposite

end 5# Let this line intercept line AB at 0. From 0

draw a line at 45 with 35 and directed also toward 5. Let

this intercept 35 and c'« Then r§g is given by the segment

5c'• The above construction^ could be easily proved by

analytic geometry, as follows;

Let the equation between and

an
with arbitrarily assigned value of rol be

•̂  (OX

X53

where f = b
ex.
constant

Ft? 38.

c = constant. Let
A

P, fhe point obtained by the above construe

tion with any two corresponding values of

4 r 3 5 and r5g, be'refSerred to 35 and 3Y as

X and Y axes, so that its coordinates are

x and y. From the figure,
y s I ( - r55 - r53

) (b)
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where r and r carry their own signs. Also,

x r__ -7 y ••• ... ... \C)

Substituting the value of r__ from (a) in (b) and eliminatOr^
•y oo 35

between the resulting equation and (c) there is obtained a rela-

tion between x and y:
a -f 1 d f

a -

a +
a -
a +

1

1

1

1

x- -^_ +
a - 1 a - 1

•;• L " ( d " o ) ( a )

a - 1 a - 1

As this is a linear equation the locus of P is a straight line.

It is evident from equation (d) that the slope of the

line is a function of a alone and independent of r?.• That

is, the slope of the line is constant for all the assigned values

of r and may be most readily obtained by making r^^ = 0.

This line will be known as the "Base Line" for triangle 235,

-the
for the reason that it expresses the relation between^r's of
base 35 with r at vertex of triangle = 0.

When the value of r 2 1 &v0 different thon zero the
occupy a new position

straight line given "by equation (d) will sweeî pe—«-•efci-â i&eeffiOB*
with the y-intercept

p parallel to itselfAgiven by the equation

b d, - c
p m **» r 2 1 • - ... (e)

a - 1 a - 1 *?.

which is also linear and may be represented by a straight line.

To construct this line proceed as follows: Prolong the member

23 until it intersects the base line at 0. (See p. 66). Assume

a value for r2i = 2e, preferably as large as possible, and by the
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above method find line EP representing the relations of rg5 and

•̂ 53 ^ov r>21 = ^e• This line, as proved above, must be parallel

to the base line. AB,. Prom e draw a line parallel to member

23 and intersent--EF at E. Join OE, This line OE
y-intereept a

then gives the das&piaê ftê t- p for any v&ue of rg^. If 2g
intercept

is the value of rgl the &3r&p̂ e-e*s«.»t- is found by drawing a line

through g parallel to member 23 until it meets OE at G and

through G drawing a line parallel to fease line AB, This line

GH then gives the relation between r and r with r = 2g.
. I GO O 5 lOl

rne
Th&b line OE giving relations betv/een p and r at the vertex

) ° °A 21
of the triangle, will be known as the "Vertex Line"•

To utilize the base and vertex lines in finding rg^

from r and r proceed as follows. Let rgi = 2g (negative)
35 21

and r^5 = 3h, Through g draw a vertical line cutting the vertex

line at G. Through G draw a line GH parallel to the base line
o

AB. Through h draw a downward-, 45 line cutting GH at H.

Prom H draw an upward: 45° line directed toward joint 5 cutting

35 at hf. Then rgg for the above values of r35 and r 2 1 is given
and (5

by 5hf ̂  negative. - Similarly the values of r^g for any other v

combination of r and r may be found.
o O ' (-J JL

5

By a simple reverting process the value of rg^ may

be found from any given values of r^g and r^* For these two

values, say 3h and 5hf respectively, determine a point H by

45° lines and through H draw a line parallel to the base line,

cutting the vertex line at G. Through G draw a vertical line

cutting member 21 at g. Then 2g is the value of r21 required

By the same method the base and vertex lines may be
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constructed for any other satriangle of the truss if two of the

r's are known. In case the triangle has a "base on the top chord

of the truss it is advisable to draw the 45° lines directed upward

instead of downward as for e member 35.

As a means of standardization all the base lines will

be shown by full heavy lines and the vertex lines by dashed

heavy lines.

Wfc&iAadvantages of representing relations of. r by the

above method are essentially as follows:

(1). It gives tl3 values of r both in magnitude and

in sign,

(2). The value of r is found right on the mBber, no

attention, therefore, need be paid to the signs,

(3). It is much easiper and more accurate to draw

45° lines with the aid of a triangle and T square than parallel

lines required in Cartesian coordinates.

(4), This method takes much less time than to

represent the relation by Cartesian coordinates where the

values of r have to be transferred to the members from a set of

axes.

Article 2« Construction of Base and Vertex Lines.

Since the base line is a straight line it can be com-

pletely determined by two points. A point for tfcB vertex line

is given by the intersection of the base line and the vertical

member produced, so that only one more point is necessary for

the vertex line. Therefore, theoretically three points are
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sufficient for constructing both the base and the vertex lines.

For practical purposes, however, it is advisable to find one more

point for each of the two lines, both as a check agnd a means 06

improv/njthe accuracy of the results. These points may be so

chosen as to require the least amount of work.

Let the base and vertex lines be constructed for a
in Fi'q33.

truss as shown This is a Warren truss with verticals but the

method is applicable feo all kinds of trusses, the only difference
d

being found in the order of proceflure. This is governed by the

number of members entering into the joints. It is well to remark

here that the base of a triangle is always chosen as the member

which forms the outline of the truss.
A.

T&3 Triangle -

Tnangle A}

~~^\

(1). Base and Vertex Lines for Triangle A.

Here both members 12 and 15 may be chosen as the

base. While only one base line is necessary in the solution of

the truss it is advisable to have one more in order to check

the final results.
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a). Member 13 as Base.

Since the vertex for triangle A is joint 2 the base

line is obtained by taking r2-| = 0, as 21 is the reference member

for joint 2. To construct this base line three points are

necessary which are determined by corresponding values of r1K, and

r-, connected by Eq. (10)« The detailed process is as follows.

Assume a value for r 1 2 and complete the devformation contour

fpor joint 1, giving r__. Also, for r o 1 = 0 complete the deformation

contour for joint 2, giving r21>:~ft23? r 2 5 a n d r 2 4 * From the values

o f r 1 2 a n d r 2 1 t;tie s"tress f i o m a y b e found by Eq. (11). Since

Eq. (10) calls for 5f it must be found from.f 1 0. This is best
13 •>-&

done by laying off 2 r,g-t- r g l from joint 1, care being taken of

the signs, and completing the equilibrium contour for joint 1,

o b t a i n i n g Sf-.^. From 3 f 1 3 subtract 2 r 1 3 the difference will be

r 3 1 * •Lo P @ r f ° r m this subtraction graphically proceed as follows:

Find segment 2r^g by adding to r,,, a segment equal to itself and

in the same direction. Since both rn' and f n „ are referred to
15 lojoint 1 as origin the difference Sf^g - 2ris i s th©*! given by

the segment from the end of segment 2r13 to the end of segment

3fnr? ( this is given by the intersection of equilibrium line 1313

and member 13 ) , both in magnitude and in sign. " The difference

is positive ief the segment is in the direction #£ from 1 to 3,

negative if from 3 to 1.

The value of r^n thus obtained together with the assumed

value of r 1 3 determine a point for the base line, use being made

of the 45° lines as described in the previous article. By a
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similar process, still keeping rgi = 0, two more points may be

obtained which, together with the one previously found, must

lie on the same straight line. This gives the base line ab

required.

To find the vertex line corresponding to the base line

just found, keep one of the assumed values of r]_g as constant
corresponding

and find a pair of values of r and r . which aâ e eorroopondin-g.
* 21 31

To do this, first give a value to r which is fairly large and
& l

complete the deformation contour for joint 2 with this value of
r21* Tiie contour for r-̂ g has already been drawn for constructing

the base, line so that r-̂ g and r-̂ g are known. Prom these

contours obtain 2r^g -f rg-̂  = 3fi2 and from 3f12 obtain 3f-j_g.

Subtract 2r__ from 3f-.v- r_- is obtained. This r*-, together

with the assumed r l s determine a point. Keeping the value of

rp, constant find another pair of values of r]_g and r^, determin-

ing another point. These two pcbints must lie on a straight line

c

sd that is parallel to the base line. Through the end of segment

r21 'tnus assumed draw a vertical line cutting cd at c. Let the

base line ab cut member 23 produced at a. Join ac. '̂ his is

then the vertex line required.

These base and vertex lines are indicated in the figure

as "Triangle A, Base 18".

(b), Member 12 as Base.

Here joint 3 is the vertex of the triangle and the base

line is obtained by taking r g l = 0, as 31 is the reference member
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for joint 3, To find a pair of values of r and ro1 first

assume a value for r^g. For this r^ complete the deformation
«3

contour for joint 1, obtaining r^. Find 3f13 = 2r13-h r31 =

Construct an equilibrium contour for joint 1, 3f^g is found from

Sf-̂ g. Ffcome3fYg anduSr-jo, T9.\ *-s obtained* This r^^ and the

assumed r determine a point on the base line, use being made

of the lines inclined at 45 with member 12. Similarly two more

points may be obtained and the base line ef is completely known.

Find the intersection of this line with a line drawn through

joint 3 and perpendicular to member 12 at e.

To locate the vertex line, assign a fairly large value

to r 3 1 and keeping it constant, obtain two pairs of corresponding

values of r?_ and r.g. These two points must leie on a line

gh parallel to ef. Find the intersection g of this line gh and

a perpendicular to member 12 through the end of segsment i»

assumed. The vertex line is then given by a line drar/n through

points e and g.

These base and vertex lines are indicated in the

figure as "Triangle A, Base 12".

To find the corresponding values of r12 ^d-
 r21 f o r

assumed P value of r^ drop a perpendicular to 12 from the end of

segment r 3 1 and find the intersection g of this perpendicular

with -&h& vertex line eg. Draw a line through g parallel to the base

line ef. This line then gives the relation© between r^ and

r21 f o r t:he assume(3- rgi> ttie corresponding values being given by

45° lines.
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(2)« Base and Vertex Lines for Triangle B.

The base for triangle B is member 35 and the vertex,

joint 2, so that the base line is obtained by making r 2 1 = 0,

the deformation contour for which has already been drawn. As

before, assume a value for r and find the corresponding value

for r5g. These two values will determine a point on the base line.

On account of the greater number of members entering into joint 3
a.

the process is^little more complicated than for triangle A but

the principle will be the same.

For the assumed value of v^r, construct a deformation
oo

Contour for joint 3, giving r and r . Since the value of
32 51r53 ^ePen(3-s on that of F fgg and whiofe, in turn, depends on

frzo aiind fg]* or indirectly, on r̂ 2> r23> r3i an( -̂ rl3> ^ ^-

necessary to find the values of rn a for the corresponding values

of r̂ -, and ĝ]_> as r23* r32 an(i r21 a r e a1^ k n o w n* To obtain

this rln, use is to be made of the base and vertex lines for tri-

angle A, l?Ese 13, precisely as explained a in the previous article.

For this reason it is advisable to choose ro = 0 instead of r
. di. did

= 0 for this triangle, for then the base line for triangle A could

be used. Now that the values of r for members 13 and 23 are

known, the sums Sr32 + r = 3f32 and 2r31-H r13 = 3f31 may be obtained
do

by graphic addition and the value of 3f5g obtained from anequilik-

fcrium contour for joint 3. Then, by graphic subtraction,

v = 3f - 2i* is obtained' as explained in (1) for triangle A.
DO 35 OO

These corresponding values of r and r 5 3 determine a point on

the base line for triangle B. Similarly two more points may be

obtained and the base line is completely known. For the vertex
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line give r s i a value which is fairly large, preferably the same

one as used in constructing the vertex line for triangle A, base

13. This changed value of r 2 1 affects r 2 3 directly and r 1 3 in-

directly, for then the base line for triangle A could not be used

in finding r 1 3 from rg, and z^l' Instead, the vertex line for

triangle A should be used for the assumed value of r • With
remainder 2

this exception aii- the roct^of the method is the same as described

before.

(5). Base and Vertex Lines for -Triangle C.

The. base & for triangle C is member 24 and the vertex,

joint 5. The base line is therefore obtained by makinggr- = 0.

Since the value of r^g depends on 3fg4 and 2rg^, the latter being

arbitrarily assigned, it H is necessary to find fĝ .* or indirect-

ly, f£c> ^03' an(3- ̂ 91* Tllese v-alueaof f are found from T%Q and

r5Q, rg(7 and r^g, and r g l and r^g* The deformation contour for

joint 2 for the assumed r gives r__, r and r , whieMle that
<>4b 25 <do /ol

for joint 5 for r§g = 0 gives r . The only rfs unknwown

are therefore* r^ and r . To find r , first obtain r R from
o<i 1 2 «52 wO

the base and vertex lines for triangle B from rg]_ and r§£ = 0,

then complete the deformation contour for joint 3 for this value

of r^. The contour will then give zVp* Lastly, the va-lue of
r is found from r-̂ g, which in turn is found from the fease ad

a4nd vertex lines fpor triangle A, where rg-j_ and r^ are known.

With these values of r known, 3fOg, 3f gg' and 3fg-i may be obtained

-6 by addition and 3fg4 by an equilibrium contour for joint 2.
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The resultant 3fQ> then furnishes r4O for the assumed
 2rpA> E(i*

_(_10)» These two values of r determine a point on the "base line

for triangle © 0. By a similar method, two more points may

be obtained, still keeping r^g = 0, and the base line is then

completely located* As a means fcoffacilitatiijythe construction

it is well to have one value of r w&ife which will give r = 0.

The vertex line for triangle 0 is obtained in much the

same way as for triangles A and B»

By a similar process the base and vertex lines could be

located for all the triangles of the truss. For a triangle like

E where five members enter into Joint 5 the process is necessarily

complicated but that is about the extreme case that is likely to

occur in ordinary trusses.

It will be found in actual cases that with, the exception

of the triangles at the two ends of the truss, the base and vertex

lines are always very close together and in many cases the vertex

lines could be omitted, entirely. In this case the base line is

to be used for all values of r at the vertex.

For a symmetrical truss with symmetrical loading the

base and vertex lines need be constructed for only one half of the

truss, as for the other half, the$r are identical in form: If the

truss or the loading or both are not,symmetrical the base and .ver-

tex lines must be obtained for- every triangle of the truss.

A few words are now necessary re&garding the selection of

;-rig t>
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reference members. They are seen to be the chord members, end

posts included, that are at the left side of the joints in con-

sideration. This is due to the fact that the above process of

E constructing base and vertex lines advancers from left to right

and only a part of the deformation contour that is on the left

side of the joint need be constructed.

Article 3. Solution of the Problem,

Let the base and vertex lines for all the triangles of the
•the

truss be constructed by the methods of previous article. At the
b

right end of the truss there are then drawn the tease and vertex

lines for triangles B f, Cf, etc. For triangle A! three sets of

base and vertex lines are drawn; first, for side l*3f as base;

for
second, side 1!2' as base considering equilibrium about joint 1*;

for side
and thpird, also^l'S* as base but considering equilibrium about

joint 2 1. These three sets of lines are indicated as l'S1,

lf2*2t and l'2'o» in the figure. Since they all represent the

same relation*? taong ^*i*f* ri J2* an<^ r2'l* tiley m ay ^ e u s e & for

solving the three unknoHwns as analytically they represent three

equations. To do this, first assume a value for r^i^t and apply

it to sets 1*2* 2» &nd l'S'gt, giving two lines parallel to

their respective base lines. These two lines intersect at a

point which will give a pair of values of r-̂ tgt and ^t^i for the

assumed r,,,.,. Next apply the values of r l f Q, and ro,-,f thus

-Hie
found to set l f3 f and find the corresponding value of r^»Tt.

A ' - ' O X

•This value should check with "kh&t assumed before, if not, another

trial may be made. Repeat the process until the values of ^g»i»
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r2»gt a n& r2 tl t a^ sa"kisfy the three sets of base and vertex lines.

They are then the values that will give the correct secondary

stresses. From the value of rpf,|, that of Fot^t may be found

from a deformation contour for joint 2f. Similarly the value of

r7tc-i may be found from rnf1, by a deformation contour for jointo o o i

5*. These two contours are the correct deformation contours

for the problem since from them the correct secondary stresses

may be obtained. Prom the values of r^t^s and Fgigt, that of r^tgi

may be obtained from the base and vertex lines for triangle B1,

and consequently, the correct deformation contour fpor joint 51.
c

Repeating the process the correct dontours are obtained for all the

joints of the truss. To check the accuracy of the results the

values of rC-i> r*12 arid r̂ i must satisfy the base and vertex lines

for triangle A with member 12 as base, as this set of lines has

not been used in constructing the correct deformation contours.

This ensures the correctness of every step of the pro&cedure and

is -one of the important features of the method of deformation

contour.

Prom the correct deformation contours the actual second-

ary stresses may be found by Eq. (11). Graphically this may be

accomplished by adding to segment r^n of member In a distance

equal to r^n plus rn-j_, with proper signs, and measuring off the re-

sulting segment with a scale three times as large as that used for

r. This gives fln directly. Same for f -,. It will be seen

that on account of the large scale used for measuring f, the result

could be read to. three significant figures which dste accurate
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enough for all practmcal purposes.

When the loading and truss are symmetrical the stresses

at the two ends of the member of symmetry will be zero, hence

the values of r at these two ends are also zero. This locates

two correct deformation contours for the two joints of symmetry,

from which the problem may be solved as before.

To obtain a clearer view of the distribution of second-

stresses in the truss and also the way they affect each other,

is advisable to draw in the stress lines for the different

members and their force diagrams, as mentioned in the first chapi-

ter. As a final check of] the values of f, the equilibrium polygons
S

drawn around each joint for the stress lines A and ideal external

force R, applied at the joint, must p©&peefc£vely close.

Article 4. Checks.

There are the following checks found in this method of

Deformation Contour.

t +k

(1). In construcmg the values of K, the sum of K's

in each triangle must be zero.

(2), All the property lines in a triangle must meet

in one point.

(3). All the defFormation lines must be parallel to
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the property lines in the same triangle.

(4). All deformation contours must close for any

assigned value of r.

(5), All equilibrium contours must close.

(6). The base and vertex lines for any triangle are

checked by constructing one extra point for each line. These

extra points must lie on the respective lines.

(7). The correct deformation contours are checked

by the base and vertex lines for the end triangle of the truss
•the

with end post as base.

(8), For any joint of the fcrtuss the equilibrium

polygon for the stress lines S and external forces R must close.

Article 5» Exmample. Details of Procedure.

To illustrate the graphic method as presented in this

chapter an «3E»a ©a example will be work&d out and compared with

that analysed by the ordinary methods. The truss and loading

taken are the same, as those used in illustrating the methods of

landerla and Motor, in Engineering Hews. Refer to Drawing Plate III•

On the drawing two truss diagrams are shown. The one at

right is for the change of angles and for the construction of Uslines
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It is also used for recording useful informations. M tfee &4&e &£

the two diagrams a force diagram of the equilibrium lirs s iB~

drawn, data being taken from the section moduli of the members.

On the second diagram are drawn the property lines, the deformation

lines, the external forces R and the co-ordinate axes for the base

and vertex lines. From the method given in the previous article

the base* and vertex lines area located for all triangles of the

tnuss* Since the leading is symmetrical with the centre of the

truss the stress in member 67 la zero and therefore rg7 and r?6

are each equal to zero. From thesefc -two values all the other

rfs are found sua£ from which the stress lines may be located.

To avoid confusion all the construction lines for the x base and

vertex lines will be omitted and &k only the correct deformation

contours are shown, A force diagram for the correct position of

stressH lines atfe also shown*

obtained
It will be found that the values of f found by this

graphic method check very closely with those obtained by the

methods of Mohr and Manderla. The total time consumed in the

solution, from beginning to end is about 6 l/2 hours, distributed

as follows: 2 hours for the construction of change of angles and

the deformation lines, 5 l/2 hours for the construction t ofall
the

the bass and vertex lines, and 1 hour for the location of stress
A-

lines and the force diagram.

Article 6. Oonstruction of Influence Lines.

It will be seen from the derivation of Eq. (12),

rlm a rln~ D

that the v±alue of a depends on the values of U while fchat of

'b* depends also upon the values of & which are different fKor different
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loading. Also, from the derivation of El Eq. (15),

rnm-= h

the values of h and g are constant for the truss while that of k.

varies with the loading. Hence, the frase and vertex lines

discussed in the previous articles will be parallel to ea&h other

for different kinds of loading. If they are drawn for one kind
will be

of loading the slopes of the lines sass fixed and for each extra
A

loading only one point will be suffidient for the corresponding

lines. The method of Muller-Breslau for influence lines

is especially addpted to this graphic method for then the base

andac vertex lines will be the same for one half of the truss

for the different loadings.
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CHAPTER VI. THE PROCESS OF SUCCESSIVE DEDUCTION.

Analogous i bo the relations between deformation contours

there is also a linear law existing between secondary stresses P f.

Consider a structure e composed of triangular elements. In each

triangle there are then six values of f, a one at each end of the

member. But the trianglesa are connected together and for every

pair of adjacenttriangles there is ones side in common. One of
A

tiriangles may be considered as added to th© other by the introduc-

tion of two sides, and therefore has only £our values of f. If

the structure isfe built up of triangles by successive addfeition
of

to a "base triangle" all the added triangles will then £ have
A

only four unknowns while the tease triangle will have six. To
is ,

find these unknowns there requires an equal number of equations

which must be found from the nature of thep problem. Let the

number of triangles in the structure be n. If one of the triangles

be considered as the base triangle and the other (n - {j| triangles
at

be added to this triangle by successive introduction of two sides,,

a time, there will be 6+ 4(n - 1) = 4 n f 2 unknowns. For each

triangle there are three angles giving three fundamental equations.

This furnishes 3 n equations and only n + 2 more are required.

But this is equal to the number of joints in n triangles and for

each such jioint there is also a moments equation (7), A solution

is therefore always possible. Since both the fundamental and

memnent equations are linear in form, it follows that all the

secondary stresses are connected by equations linear in form.

Since the base triangle has six values of f and there are



80

only four equations available, three f£gm the fundamental equations

and one from the moment equation for the joint that is free from
me value5 of f

other triangles, two of̂ t̂eem could not be found until two more

equations are introduced. This base triangle therefore has two

unknowns at the outset of the solution. As the stresses mother
A

triangles depend on those in the bass triangle all of them will be

expressed in terms of two unJmown quantities. Hence if f be the

stress in any member and fx and f are the two unlmowns in the base
triangle,

f = a fx+ b f -f c,
y (14)

where a, b, and c are constants. To determine f and f it is
x y

simply necessary to notice that the very last triangle added to the

structure has three joints but only one is used^for the moment

equation. There are therefore two more equations expressing the

moments at these two joints. It is now evident that the value of

fx and fy cannot be obtained until the above equation (14) has been

applied to every member of the structure. Conversely i&f f and

f are kmown all the other stresses are known.

To illustrate the process consider a truss as ahomhFig.4-0.

L e t f12 = fx a n d f21 = fy b e **Hknowne« From tihese values find

2 .
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r i s and r 2^ and construct the deformationcontouts around the joints
-ing A

1 and 2. Apply-an equilibrium contour to joint 1 stress f-j* is
obtained from f 1 2. By Eq. (10) r 3i is found from f^g and

and hence fgsi by Eq, (11). From r construct acdeformation
Q JL

contour around joint 3. B'rom this contour and the one around

•fefee joint 2 stresses fg^ and fgg are known. How at joint 3

f51 and fgg are known fjg may therefore be found by an equilibrium
•A

contour. From f35 and .Fggjrgg is obtained from Eq. (10) and

^53 ^ r o m Ecl* (11)- Construct the deformation contour around
joint 5. This gives r^2 which toagether with r25 furnishes

since
f 2 5 and fgg* At the joint 2^stresses fgi, fgg, and f25are known

m ay then be found from an % equilibrium contour. From

and f24>r42 an^- ̂ 42 m ay ^ 8 obtained from Eq. (10) and (11).

By repeating the above process the stresses f in all the members

may be obtained for the known values of fig and

It is now evident from the above that when f and f

are known the solution of the problem may be effected in a very
ah

short time. But inAactual cases they cauld not be found until

at the end of the process wheeeby two moment equations furnish

the unknowns required. For this reason four methods have been

suggested by which % and f may be obtained either by trial or

by exact constructions• These metimods will be taken up in the

following paragraphsI

Article 1. Empirical Formulas for f and fv.

It has been found from a large number of trusses aaain

analyzed for secondary stresses that if:

(1). The type of the truss is Pratt or Warren with Verticals,
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(2) The loading is uniform,HK

(3) The connections are concentric, and

(4) The proportions of the truss ±x conform* wi'fah the principles

of ©conomical design, i.e., when the inclination of the
is

diagonal members ape about 45°,

then the secondary stresses at the ends of the hip vertiaals are

approximately equal, both in magnitude and in sign. Further,

the stress at the two ends of the end post are proportional to each
the

other as the algebraic sumsof sHM-e change of angles at the correspond
A

ing joints connecting the member. These two stresses are also

equal in sign. In other words if the truss be as shown, then

f 2 1 KA2 + KB2 •+ K 02
where f ^ and fgg* f^g fgi have th© same signs.

-ing
Apply-"the fundamental equation (5) to the above triangle A,

( P -P _ -P ^ TT -t TT - f o f _ f » ^ TT

* ** *12 *21 ' U12 t KA1 ^ 1 1 3 1 3 1 ; U13
/ o -P „. -p ^ TT -t- TC ~ f 5? ' "P •• *P ^ 1 1

( 2 f o i "• f 1 O ) U i o K A Q ^ ( 2 fprz — fnzo ) Uprz

and the moment equation to joint 1,

f 13 = " «i2- f12
13 '

there is obtained,
" KA1

— , (15),

< a. -ing

where the ratio^of K's is jtn absolute fealue. Apply-the above

aquations to the example worked in the previous chapter it wm found

that f a 2 =-.14 and f21 = -.06. From the above values it was
found that f„„ = -.16 and f«--=+l-00, while they should b© zero.

67 7o
By a careful consideration of the effect of one stress upon the

-hhe by
othsr tne correct values of ffs may be obtained several trials.

A A
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Article 2̂ . Mathematical Formulas for f and f .

— — — — — X

Thftsemay be obtained from the fundamental and moment
-from

equations instead of the deformation and equilibrium contours in

the graphic method. Undoubtedly the formulas will be extremely
fi

long but there are the following simplications which must be

considered: (1) All bottom chords have the same length and some-

times the same y, (2) for parallel chords the values of 0 for

ana vertical*
top chords^ are equal, aieo -£ea* verticals, (3) the values of

S in some web mSbers may b© neglected, (4) the truss elements are

symmetrical about the centre line,, (5) thesum of.change of angles
A *

in eabh triangleequate -fee zero,

The distinct advantage of ©a? a mathematical formula

lies in the fact that once it is derived it is good for ail others

and hec© has a permanent value. It is hoped that this will

prove useful in bridage offices where th© designs for structures
a

are largely standardized and only few sets of formulas arefneeded.

Article 3>. The Process of CharacteristjgEic Increments.

It has been shown in Eq. (14) that the stress f in any

member is connected with that in member 12 by a linear equation,

f = a f ̂ -h b f -b c

where a, b, and c are constants. An examination of the methods

by which this equation is derived will show that the constants
a

a Had and b are functions of U only while c is trk&4> fundtion of

both U and K • Hence a and b depend only on the truss

dimensions and th© sections of members, (U = L/y) while c depends
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injiaddition on the loading, as K is a function of the change

of angles which depends on the loading. This fact shows that

a and b are constant for the^truss and may be found without any

knowledge of the actual loading. Further, by differentiating

Eq. (14) the rate of change of f with respect to fx or f SEX

will be found to be a constant being equal to a and b respectively.

When fj^ receives an increment equal to c-̂ g and fg-j_ anJr increment

02I9 the stress f receives an increment equal to d c^ -f g §21 jv>4/c/i 15

independent of the loading. In other words, if c is the increment

of the stress f,

c =: d Cis"^" & C21 •*• •** •••'• **•

whatever the value of K may be. These increments c will be known

as the "Characteristic Increments" meaning that they depend on
c

the truss dimensions only which are characteristic. These

characteristic increments may now be applied to the correction & of

stresses f 1 ? and f21 which weres assumed and found to b© incorrect.
Suppose for the assumed values of flo and f there are external^ 12 21

mements around the two joints 1* and 2! in the last triangle Af

zero moment which f would be follow a correct a s f p
instead of being fre**& ew3 thoy ohould 2r# fee aaoumption is oorroot*

Let these moments be Mi« = Ri» x hi' and M2f = Es! x h2f, Since

these moments are* linearly connected with the stresses f^ an<^ ^21

as they are linear functions of the stresses of the members meeting

at the joints, they may be expressed in the form:

Ml» = ul» f 1 2 + vl» f2l"t* wl»

4—-X* 2 2 12t V 2 ^ f21"t W2»

where u, v, and w are constants, A ByAsimilarreasoning as for
A

Eq,(16) the increments of M are also dependent on &, u and v only

and are independent of w. Thatis,
A
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M°ol = u O

Vjt

21
Now the consideration of equilibrium of joints 2'and 2* requires

and
that m M^t = 0 ,,M2t = 0. That is, an increment must be given

to M so that it will be zero, or

Hence,

2

°12

°12

+ 1

Mc21 =

r l - ©21

r 2 ' °21

Fuorn these two equations q12
 a n d °21 m ay b® found and the correct

are
stresses f^2 and fg^ obtained by adding these increments to the

assumed values. After the correct values of f^2 and f2x
 a r e

known all the other stresses may be solved.

For fc a truss under symmetrical loading themoments are

symmetrical about -Mae plane of symmetry, say member 67, and*

M64 = a n d
68' 65 69* 75

This shows that Mg7=M76 = 0 and hence

and f7fi = 0. If from the assumed values of

fl2 and f21 they are not equi.1 to zero but

Fig. 4Z.
increments for

By Eq. (16),

equal to
= -P • Qand f*76 respectively, then the

and f2i must be such that

and

67 : d67 S 67

- ff
76 = d76 O12-f-

Prom these two equations ci2 and cgi niay be found and the assumed

an(i f*21 corrected as before.

Article 4. The Method of Substitution.

Consider the same equation (14),
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f = a f x -+• b f -+• c

If the values of a, b, and c are known the values of fx and fy may

be found when the value of f is subject to eertain conditions. To

find a and b the previous articles made use of c = 0, but in some

oases it might be well to include the value of c. Then, if f and

f are assumed or found by empirical formulas of Art. 1 in this chapter

there is a chance of having the values correct and thus savw"iuoh time

in finding the increments although the process of characteristic incre-

ments is mathematically correct. If the assumed values ars not

correct a second trial may be made or even a third one. But there

is no need for a fourth trial even if the third trial is not correct,
not apt to be

which is hagdly the case, for the correct values of f and f,T can then
x y

be found from the three trial values, as follows; Let fxi, fX2>
let

be the three trial values for f swad fyi> ^y2> anc -̂ ^yg "ke ^1@ same

for fv, and f
!, fw, and ffw be the corresponding values for f. Then

if _

substitut®^these three sets of values in Eq. (14) there &e obtained

three simultaneous equations for the solution of the three coefficients,

a, b, and c. From these coefficients and the correct values of f

which are known from imposed conditions the correct values of f^ and

fy may be found. It should be noted that it is not the intention

of this article to be of servide in any actual caee as it applies only

when the three trial values of fjjg and f^ have failed to give the correct

resuit, which is not believed possible.
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CHAPTER VII. GRAPHIC METHOD BY THE PRQDESS OF SUCCESSIVE

DEDUCTION.

The graphic method by the prodess of successive substitu-

tion differs froto that of deformation contour in the order of

proceduee. Instead of expressing the relations between rfs

by graphs and finding thea correct stresses from the correct rfs,

this method handles the stresses directly. The general prodedure

has been given in the previous chapter while the various details

have been tnken up in connection with the method of deformation

contours. Therefore, only the particulars involved in the finding

of f-̂ g and fg-̂  are necessary here.

For the empirical formulas^ of fls and fg-i there is no

further discussion except to mentions^ the methods of correction

to be applied after each trial. It has been found from analytic

expressions that in a Pratt or Warren truss with Verticals the

effects of f^2 a n& ^21 o n th® member of symmetry are different in
The effect

signs and widely different in magnitudes. Sfeart̂  of f̂ g is generally

m$tch greater than that of fsi a**& rang**7 from 2 to 4 times for
-from

the upper end of the member £e- and > 4 to 8 times for the lower

end of the member. Further it will be found that both igsasL the

effects due to fls and fgi* individually, ar© very large compared

with the stressefsa f themselves, amounting to 50 - 400 times in

a 3 panel truss. Based on these facts £3xg a judicial correction

may b» applied to fis and fgi after one or two trials. It is

believed, however, that under the conditions the empirical formula

is derived the values of f12 and fg, should be more than au

rough approximation*
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In the method of characteristic increments the coefficients

of ĉ g arid Cg^ ssss. for any c are derived from two processes; first

for C12 = 1, and cgi = 0 and then cig = 0, and 2 c^l = 1 . In

each of these processes the method is the same as for the general

solution described in previous chapter, except that the property

lines should b© used instead of the deformation lines in drawing

the deformation contours. These contours then become the

"Characteristic Contours". It will be found in this method that

Me
the values of^c's increase very rapidly toward the othsr end of
.. •. _ . , . . ., ^ +h> throughout
the truss and it is necessary to change the scales force's along

ihe
the whole process. This is immaterial forA property lines, see
Art. 3, Chap, 3£ . For the assumed values of fijig a n& £"21 i n this

method it is bwtter to so choose them that they axe nearly

correct, in order to get rid of undujtly large scales for f toward

the other Bnd of the truss. This, however, is not very serious

as the scale for f may also be changed by. changing the scale sffor

the deformation lines. To obtain the correcting -increments for

^12 an<3- ̂ 21 after the whole truss is analysed the simplest method

would be to draw two lines representing the linear equations

referred to the samex axes and find their intersecting points.

With regard to the method of substitution no further

statement is necessary excepti&H to not© that the third trial

should give afx a fairly correct solution and the necessity for

solving the three simultaneous equations does not exist in fact,

if the assumptions are properly made. The empirical formula will

be of value here.
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Article 1. Checks

The principal source of mistakes that may occur in this

graphic method comes from the wrong use of the deformation lines.

To check this, let Eq. (5) be applied to any triangle lmn, Fig. 4

m then,

(2 f
In U ln f lm " fml^ Ulm+Kmln

n

(2 f - f ) U - (2
nm ran ni

(2 f -, - f, ) U, = (2
ml lm lm

nl In- In'x Inm

hm' "nmT^nml

Adding together and noting that the sum of the K1 s should be zero

in a triangle,

U, (;*i - f , ) + U (f - f ) +
In In nl ' nm nm mn

(flm ^ ml lm'
- 0,

in nl U- nm mn' n, s ml lmu 1 n In
This test may be applied aa follows: Passing around the sides of

the triangle in a counter clockwise direction, find the difference

of the stresses in each side by subtracting the oni at the end.

next met with from the one at the end first met with, multiply

each by its corresponding U and the total sum of the differences

shoud laero. Making use4 of the property lines the test may

be greatly simplified. Fig. 44. Choose any

convenient side as a base, aay In, and find

the difference, f,,, - f n l . On the si£e nm find

f i n d fnm " fmn arld o n t h e s i d e m l > fml ~ flm*

Lay off these two values with proper signs on

the corresponding sides of the triangle and at

the ends of the segments, a and b, draw lines

parallel to' the side,In meeting the property lines at c and d.

the algebraic sum of ac and bd should be the negative of the difference

In " fnl*

The only other source of mistakes comes from the
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equilibrium of joints. But in the method of equilibrium contour

th© construction is mad© so simple that this is hardly possible

iS a little caret is exercised. This is far immuno from mistakes

than the analytic expression 2 M =0.

After the stress lines ar© completely located for the

truss and the fore© diagram drawn for th©s© lines a very unique

check is provided by the fact that in any section cutting the

truss members th© stress lines in these members and all th©

external forces R in one side of the said section must balance

each other. That is, th© force and equilibrium polygons for

these forces must respectively clos©. This furnishes a check

which insures th© equilibrium at all the joints.

Article 2j> Example. Details of Procedure.

Th© same drawing mad© in connection with th© method of

deformation contours may b© used to illustrate this method if

(1) the bas© and vertex lines'and th©ir axes be omitted, and (2)

if th© stress lines as shown b© regarded as the final solution for

flg and fg,after correction. The other constructions needed in

this method d& self evident and doemot need a separate drawing.

Article 3^ Construction of Influence Lines.

Sine© th© coefficients of f and f in Eq.(14) ar©
x y

independent of the loading they only construction required vsiTor the

influence li^es would bw the values of c for each case of loading.

The characteristic increments therefore remain the same as before.

Th© same assumed values of fi2 and fgl may be used for all the

cases requiring different sets of correcting increments. Each

position of load has a set of stress lines of its own.
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CHAPTER VIJJLa. THE SO/IENTIPIO ARRANGEMENT OP COMPUTATIONS*

<
It is evident that both"the methods of deformation

contour and successive deduction admit of analytic solutions. As

is well known an analytic method, while it gains accuracy in resxilu ,

is generally accomplished at great expense of time. It therefore

•behooves us to devise some such methods which will reduce the amount

of work to a gainimum. .The computations for secondary stresses by

the ordinary methods have'been systematized to a great extent in

recent years but still there is room for improvement, mainly in

the arrangement of computations. Among the many items which are

inefficient and are found in all of the ordinary methods may be

mentioned the following?

(1) All these analytic methods need some graphic

construction to show the proper location of certain computed

quantiti es.

(2) In all ordinary methods the computations are
»

arranged in tabular form in which at least two or three columns

of figures are copied from the previous tuples. This not only wastes

time and energy but also invites error.

(5) Only the final results are shown in the

tables, the rough computations like addition and subtraction being

made on separate pieces of/paper which are not file<3. Such compu-

tations are most liable to be performed in an unsystematic way.

(4) Time is wa8,ed in transferring the results

of the rough computations to the tables and the practice also is

apt to introduce mistakes.
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(5). There are no means of checking the computa-

tions except by repeating the numerical work which not only wastes

time but also requires a different computer.

(6) The figures arranged in a table do not convey

as much idea as when marked on the truss diagram in a semi-graphical

way. To transfer the results from the tables to the truss diagram

again wastes time.

To get rid of the above objections, which are very

gommon, a simple and self-evident scheme would be to dispense with

the idea of the tables entirely and to record all the results direct-

ly on the truss diagram. Second thought makes it plain that to

save time it is also advisable to include all the rough computations

on the diagram. By this arrangement it is possible to so record

the figures that each one is written only once and so that the

computation could be most easily performed. Further, by arranging

the computations so that each' figure has a definite space on the

diagram, the chances of using wrong figures are entirely eliminated.

The writer acquired this idea of arrangement when
the

he attempted the solution of/eleven sets of ^ simultaneous equations

each in connection with the secondary stresses in a 16-panel two-

hinged arch. It was his good fortune to spend some time latter

on the subject of scientific management which not only convinced him

of the necessity for such an arrangement but also added much to his

knowledge in achieving the end.
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CHAPTER IX. ANALYTIC SOLUTION gy THE SCIENTIFIC ARRANGEMENT

221 COMPUTATIONS

Article 1_. General Considerations.

A careful comparison of the two graphic methods discussed
while

in the previous chapters will disclose thatAthey are is different

in form and construction they are nevertheless deduceable one

from the other. In the method of deformation contour the unknown

quantity is r(= 2 f^n - f ) while in the method of successive

&g deduction the unknowns are the stresses f themselves. Since

the deformation contours are the same in "both methods the only
the

difference will be found in the relations between rfs and those
the A

between ffs. But these relations are equal, differing only

by a constant factor. For,

rln = 2 fln "_ fnl>

By Eq. (10) rnl « 3 fln - 2 rln,

Subtracting, rin + rnl = fln+ fnl>

Also by Eq. (11), 3 flri'= 2 rln-f- rnl

3 fnl = 2 rnl-f" rln

Subtracting 3 ( fin - fnl ) =

Hence, analytically, the quantities used in the two methods are

either the same or differ by a constant factor. The two methods

could therefore bex reduced to the same basis by suitable combinaa

tions.

It should be noted here that by the same reasoning as

above the method of Muller Breslau and those of Manderla and

Mohr are equally deduceable one from the other andjbroadly speaking,

are practically the same. The method of Muller Breslau, however,



94

has the advantage of expressing the unknowns in simple linear equations

which are not connedted fcogothdr simultaneously. The existence

of the simultaneous equations in the bther two methods sxs is

indeed unnatural and unnecessary.

Article 2. General Prodedurss.

In the analytic method the features of the two graphid

methods will be combined to the best advantage. The unknown

quantities will be made the stresses f themselves as this is more

direct than the use of r in the method of deformation contour.

The deformation contours will be applied to the different members

around a joint by Eq. (12) which states that "the value of r of

any member In at joint 1 is equal to that

of r for any member 2$ lp, multiplied by

the ratio of UT /u l n and increased vt by

summation of Kfs from lp to In dividedp
by That is,

ri = 3-P r
in TTIn

/17\

The relation between thefc two f!s fcat the ends of each member is

given by Eq. (8), i.e.,

m " rm
From the values of r at the* two ends of a member tlie stresses at

those two ends may be expressed by Eq. (11),

inin rjo f(e>
Let the truss as shown beJanaly#ed by the analytic method

Let stress fi2 in member 12 be x, and f21 Then,

2 x - y, and r 2 1 = 2 y - x From these two values of r find
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those of all the members meeting at the joints 1 and 2 by Eq. (17)
-inq

Apply-the moment equation (7) to joint 1 f-̂ 3 is obtained from x.

from ri3, obtaining fig -To find f31 first subtract

2 f
1 3

* and- t n e n subtract f13 - f31from f13 giving

Subtract-again f13 - f31 from f31,
 r3i = 2 f3l " f13 l s obtained.

Prom r 3 1 find r3g and r35 by Eq. (17). If « U13 = U35,r35 will

be simply r31 increased by £, K/U35 . Now for member 23, rgs and

r32 have been found from r21 and r3i and therefore the stresses

f23 and f32 could be found from E\. (11). Around joint 3 the

stresses in all members are known except that of 35. By the moment

equation around joint 3,

S31 f 3 1 + S32 ^32-f- S35

is therefore known. By a similar process ^© for member 13y
•the

3 is obtained a»€L from which the values of^r's foE all the members
are determined. r~ ^ ,

meeting at joint 5* The stresses in member 25 may then be found

from r25 and r 5 3 and this makes all the stresses around joint 2

known, except that of member 24 which may be found from the moment
equation. From the value of r24 that of r42 may be found by the

' remainder
same method as for member 13 and the pe&* of the process repeated.

Eventually the stresses in^members around joints 2f and 1*,are found

from wfeiek the moments around the joints 2f and lf *&£. fee found
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Up to this poifcnt the quantities K.,., and

K.tgf have not been used and it is necessary

to test the fundamental equations involving
-inq

these two quantities. Apply-Eq. (8) to

these two joints^ two equations are obtained

which furnish the means feo/solv®7-^: and y.

After they are obtained all the other stresses can be found by

substitution.

If the loading is symmetrical about ssuaa a

member at the centre of the truss^ the stresses at the two ends of

that member will be zero. Since these stresses are expressed by

linear equations in terms of x and y the latter can be found

from the two equations equated to zero.

In

should be noted.

Kjgptxi the above method the following points

(1). In applying Eq. (17) to members it should be
-the o

remembered that the signs of K !s in Z K should be changed for all

those members In which are reached from the reference member lp

in a counter clockwise direction around the joint in consideration.

See Chap. II.

(3). The moment equation could not be applied to any
around the joint

joint until the stresses ina all members/except one^-re known.
(3). The check in Art. 1, Chap.VII,i.e.,

' nm * nm mn
Ulm < fml lm > ~ u

... (18)

must be satisfied as soon as the stresses in one triangle are

completely determined.

(4). Particular attention should be paid i*i the solution
to "^e

of the moment equation and also isa the correct substitution of U fs.
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Mistakes made here could not be detected by Eq. (18).

(5). The values of f from Eq. (11),

2 rm + r hfln = | nl
could be obtained in a simpler way as follows: First find r l n /5

from r of the reference member by using 5 U l n instead of Uln.
Sr

This gives

, add the sum of\

Similarly find rnl /3. Then £ea»» &&e s**m e# rln /3 and rnl /3 which,,

when added to r l n /z gives flnand to rnl /3 gives fnl. Since only

the stresses in web members are found from the rfs at the end of the

members only the web members need be computed for 3

Article 5« Change of Angles.

The equations for the change of angles ses previously

discussed could be arranged in a more H useful form as shown in the

glguro, which is constructed as follows: First write down the values
the

of^P's on the sides of the triangle and then fill the spaces inside

"the \ being
the triangle with^P's as shown, each primary stress entered twice.
Next form the differences P

lg
= a and = b

ftz
06 Coir Cot 8 Co fee Coir z3.

h-c
-o = 3

m13
P P

P,z
m PZ3

cri

-d

•A8.

3
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& Multiply each by the cotangents of the corresponding angles>-

which are written afeoye the columns for the stresses P. The

sum of these products, c and d, gives Af. Nest find P 2 3 - P 1 3 =
-/VT̂  the

e, and e Cot f = f. Add-f to, negative of d <4/$ is foundj

Jimilarly f or Z}G[ . If f is a right angle f and h = 0 a&& ̂ >fi

= -d a,n&A(\= -c. This is the case shown in the example .below.

Article 4« Example. Details of Procedure.

Let the truss analysed in the previous chapters be

used to illustrate this analytic method. See ika Drawing, PlateIV".

On the upper portion of the drawing construct a small

tnuss diagram to record the given data and tws. solve for the values

of K. Construct another diagram with a scale as large as the

drawing will permit* This diagram will be used for the analytic

method. On each of the web members construct two small tables

one with 7 rows and the other 3 rows, all having 3 columns and
A ' J

placed one above the other. In the first table extend the

third and fifth i&R rows one 'space to the right, as shown. For

each of the chord members construct a small table of 3 columns and

6 rows with the second row extended one space to the right.

For each of the joints construct two tables with one adjacent to

the truss. The size of the table adajacent to the truss is

The equah
determined as follows: Number of vertical columns *= the number
of members entering the joint, number of horizontal rows * WBB.equals

ihe • A

number of vertical columns. The other table forthe joint has 4 k vertical columns and as many horizontal rows

as may be needed in the process. The tables drawn on the chord

and web members will be known as P tables. The two tables for

the joints will be known as K- and M tables^ respectively, the for-
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mer applying to the one adjacent to the truss. The small tables

below the F-tables for the web members will be known as the C-

tables. Mark all the vertical columns with letters as shown in

the first horizontal rows. For the F-tabfees these will be x, y

and k and for the M-tables, S, x, y and k, For the K-tables the

identification marks for all the members entering the Qoint should

be noted except the reference member*

Next fill the K-tables with the values of K found in the

small truss diagram. For example, at joint 5, the value of

Kgc is put in the 2nd row and 2nd column, that of KQ^ in the $rd,

row and 2nd column, that of Kj)« in the 4th row and ^>rd column, and

'finally that of Kg« in the Jth row and 4th column. There will then

be one column vacant at the right of Kg^. At joint 2, the value

of K^p with the sign changed is put in the 2nd row and 2nd column,

that of K«2 With the sign changed in the ;5rd aa- row and 2nd column,

and finally that of KQ2 with the sign changed in the 4th row and

the 3rd column. One column is vacant at the right of KQ2* Similarly,

all the K-tables may be filled with the values of K transferred

from the truss diagram at the top of the drawing. Next there

are performed the summations of the various K's as follows: Find

the algebraic sum of the amounts in the second column and write

the results in the $rd column and .3rd row. This sum. is next

added algebraically to the amount below, the result being;put in

the 4th column and the 4th row. Similarly, this result* may again

be added to the amount below if there is any, and finally the space

at the lower right hand corner of the table is filled. Thus,

at joint 5, the sum of -.55 and -2,10 is -2.65, that of -2.65 and -.75

is -3.40and that of -?.4O and .94 is -2.46. Similarly, for the joint
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at the top chords. It will be seen that the first figure in the

2nd column is the value of ZK for the first member met with in

a clockwise direction around the joint from the reference mem-

ber if the joint is at the bottom chord and in a counter clockwise

direction if the joint is at the top chord. Similarly, the

first figure in the ^rd column is the value of £ K for the 2nd

member met with in the proper directions around the jointsj the

first figure in the 4th column is that for the 3rd member, etc.

The proper member's to which these sums apply are written down

in the first row* Thus, at joint 5, the' figure -.55 is for

member 5-2, -2.65 is for member 5-4, etc.

Above and below the tables constructed on the members,

marked as F and G, there are recorded the values of U s L/y where

L is in feet and y in inches,' and S = l/y. For the web members tke

values of 5 U should be put down at the sid.e of U.

If the various sums in the K-tables are divided hy

U, the constant term in Eq. (17) will be obtained for the res-

pective members. As mentioned, before the values of r/5 are to be

used for the web members and the summations of the K's should then

be divided by 5 U of the web members. These values of £ K/U and

Z K/ 2U are next recorded in the F-tables at the extended portions

provided at the right. Thus for memberb2-5 the value of Z K/^U

from the reference member 5-2 is -.55/15*2l-5 = -.0?<5, and is put in

the extended portion of the 5th row in the F-table for 2-5. fh:

This is the increment for r^2. Similarly, for r2<j the value

of TJ K/ 3U from the reference member 1-2 is -2.04/15.43 •

-.125 and is put in the extended portion at
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the right of the ?rd row of the F-table for member 2-5. As another

example the value of£K/tJ for chord member 5-7 from the reference

member 5-5 is -2,56/2^?»-»874« B y t h e s a m e p r o c e s G al ± t h e entend-

ed portions of the F-tables will be filled up withgK/U's.

Now the solution of the problem begins. Let f|2 « x,

and f21 * y and put the proper figures in the P-table for member 1-2.

Subtracting the coefficiei ts of x and y of f21 from those of f12,

f12 " f21 i s o b t a i n e d - Reverse the sign of the difference and put

it above the original sign. By using this reversed sign the dif-

ference f21 - f|2 is obtained. When f12 is added to I°12 - f21,

r12 i s o b t a i n e d J if fg-j is a-ctaed. to fg* - fj ?, r^. is obtained

In other words r^2
 i s obtained by adding f-j 2

 a n d f 12 ~ f2i w i t h

the lower signs, while rg1 is obtained by adding f2j and f<|2 - f2i

usin;v; the upper signs. Prom the value of r^. complete the defor-

mation contour around joint 2 as follows: Multiply the coefficient

of x, -1, for ?2\> kv U - ^.^^> giving -4.^8. Divide this by 2 U

= 15.55 and put the quotient T^24 ^ the column for x and row for

1/5 r 2 ^ i n t h e F-table for member 2-^. Divide -4.^8 by 5 U = i5*-̂ 5

put the quotient -,284 in the proper space in the F-table for

2-5. Similarly, divide -4.^8 by U • J.OJ giving -1.45 and put the

result in the proper space for memtefer 2-4. Since the rows for

r's have an extended portion at the right there is no chance of

recording the figures in the wrong places. It is only necessary

to notice that for chord members these r!s are put in the 2nd row

and for the web members they put in either the.3rd or 5th row

depending on whether the i joint is at the top chord or the bottom

chord. By similar, processes fill the columns for y in the

F-tables for the members around joint 2. For values of the constant
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Ic the same process is to be pursued except that the figures are put

directly on the top of the extended portions of the respective

horizpntal rows. Thus, k for 2-5 • k for 2-1 x 4,58/15.45 = 0,

because k for member 1-2 is equal to zero. This figure 0 is theu

put on the top of the extended portion of the 3rd row.. Now add the

figures in the extended portion to the one above and write the

algebraic sum in the 5rd row in column k. Thus 0 - .1$? • -.155

for member 2-5. Similarly, the constant term k is obtained for

all the members around the joint and the contour for the joint is

then completely determined by analytic expressions. By the same

process complete the contour 4fe« around joint 1.

To find f*:« from f-jp apply the moment equation to joint

1. Multiply the coefficients of x and y and k of f^2 by S^2 and

enter the product which equals the moment due to f<|2> ^n ^^e M-table

at joint 1. This part is believed to be self-evident. Reverse

the sign of the momenta and enter the results in the row for member

1-5 who£e S • 155* Dividing the moment^ of 1-5 by S^,, f^, is ob-

tained. Enter the result? in the Jrd row of the F-table for mem-

ber 1-5. There are already in this table figures in the 2nd row

representing r^z. Subtract f^, from r^*, giving 2fj« - f,̂  - f ^

« f,_ - f,4. Thus, for coefficient of- x, 2.995 - (-2.405) m 5^00.15 51

Mext reverse the sign of f ^ - fjj and put the new sign below the

old one. Thus for the coefficient of x, £5.400.is obtained. KText

subtract f 1 * - f^f from f ^ or, using the lower signs, add f ^ - f^1

to f1x. Thus for the coefficient of x, -2.405 - 5-^00 = -7.305.1 5

This gives the value of f^. Again subtract f ^ - f^1 from fj T,

giving 2 f,1 - f^z ~ r^|, or, using the lower signs of f ^ - f^^,

add f to it. Thus for the coefficient of x, r , - -5.4OO-7»8O5
51 J

i -15.205.
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From the value of r^i thus obtained a deformation contour around-

joint 5 may be obtained by analytic expressions as explained for

joint 2, obtaining thereby 1/5 r^2 and r ̂ . , Now for member 25 there

are already filled the values of 1/5 rP* and 1/5 r*2 in the F-table,

the difference of these two quantities may bext be obtained. This,

as explained in Art, 1 of this chapter, is equal to fgz - f*2*

These figures are to be filled in the 6th row, Next find the sum

of 1/5 r25 a n d V? r32 a n d p u t t h e r e s ult ia the 4th row. This

quantity when added to that in the 5rd row gives fg- in the | 2nd

row and whan added to that in the 5th row gives f*2 ^n the 7th

|pw« All the stresses in the first triangle are now completely

determined it is necessary to apply the test of Eq. (18), Noting

the direction of the contour bjs which the differences of the f's

are takenm it will be seen that the figures in the 6th row of the
-for

F-table 2-5> plus the figures in the 4th row of the F-table for 1-5>

using the lower signs, plus those in the 4th row of the F-table for

1-2, using the lower signs, each multiplied hy the corresponding

value of U, should be zero. These-results are recorded in the

C-table under the F-table for member 2-5*

Now around joint 5 the stresses in all members are

known except that of 5-5 which can be found from the moment equation.

This summation is performed in the' M-table for Jjoint 5. From

f* = thus obtained and r•,« already found, the F-table for member

5-5 may be filled as for member 1~5» From r̂ jj as obtained, complete

the deformation contour around joint 5»

'In the F-table for 25, 1/5 r2^ and 1/5r^2 are known and

it can then be filled as for member %-*>.ya As before the figures
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in the 6th row of. the F-table for 2-5, and those In the 4th row of

the F-table for 3-5, using the lower signs, each multiplied by the

proper U's are next put in the first two rows of the 0-table.

Note that U for member 2-5 should be used instead of 5 U. The

last row in the t&fele is copied from the 1st row of the 0-table for

member 5-2 with the signs reversed. The sum'of the figures in

each column of the 0-table should then be zero.

By the same process the stresses in all members are

obtained in terms of x and y in a linear equation. The two simul-

taneous equations derived from the fact that f^-j and fy^ should be

zero then furnish the values of x and y required. . From these

values of x and y the stress f in any member may be found in the #

following manner. Fig. 49. On the side of the member where the

fc <%X fibre stress is obtained, that is, on the

^-> f~ tfX-hby by side first met with in passing around the

^ . ^ ̂  , end in a clockwise direction, tke value s

Fig* 43.
of the terms containing x and y are written one above the other after

after substitution. The constant k is next written on the side

of these two figures toward the end of the member. Find the

algebraic sum of the terms of x and y and write the result below k«

'Adding this to k algebraically the value of f is obtained, which

is to be written at the end of the member.

As mentioned before the coefficients of x and y are

characteristic of the truss and do not undergo' changes with the

loading. Therefore for influence lines, trie only/change in the

above method is to extend the various tables so that there

will be room for each change of loading which means a shange of k.
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2M215S £• MATURES OF THE NEW METHODS AND COMPARISON.

Article V. Features Common .to all. Methods*

(1) No simultaneous equations involving more than two unknowns

are required.

(2) All the methods deal with a quantity which is of the same

dimensional degree as the secondary .stress itself. This gives

more accurate results than when a quantity involving large

multiples of f is used,

(2) AJ. 1 the methods take less time than the ordinary methods*

For a..six-panel truss with uniform loading they require only six

to seven hours for the complete solution.

(4) There is at least one chieck for every method which insures

against mistakes and errors.

(5) All the methods are reduced to a mechanical basis and no

personal equation can affect the results.

(6) All the methods can be easily applied to influence lines of

secondary stresses.

(7) All the methods are accomplished in a continuous process

from one end of the truss to the other.

(8) In all the methods the complete information is contained on

only one sheet of paper, including the rough computations, figuring,

formulas and data.

(9) All the results can be easily duplicated by taking blue

prints, which is not possible or at least inpracti cabl e in ordinary

computations made in tabular forms.
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2. Hĵ tur̂ jes of the

(1) They give a.complete representation of secondary stresses

in every member of the-truss and convey the complete information

in the least amount of time.

(2) The methods not only show stresses at the ends of the memb«r5,

but also the variation of the stresses along their whole length.

(5) They give the points of inflexion and show the general

form of bending of the different members.

(4) With the aid of the force diagram for the stress lines they

show how the secondary stresses are affected by changing the sec7

tion moduli of the members.

(5) The secondary stresses obtained by the graphic methods are

never seriously in error although they may not be exact.

Article J5. Feature^ oj? the graphic Mejjhojd ojf

(1) It is strictly graphical. Prom beginning to end no

computations are required. No slide rules are necessary.

(2) It is the most accurate of the three methods if in the

aanalytic methods slide rules are used with which o-nly three sig-

nificant figures can be obtained. This is due to the fact that in

analytic expressions the secondary stress is found from the

difference of two large quantities. These quantities must be

accurate since the difference is small. See equation 1, p»23.

The errors made in locating the base lines and vertex lines

are not cumulative as the effect of one line upon the other is

comparatively small.

(4) The method is perfectly general and applies to any kind of



truss without any knowledge of the distribution of the stresses.

(5) Only a few construction lines heed be retained on the drawim,

(6) It has the most unique checks,

J ©£ £f the Graphic Method of Successive

(1) It is the quickest method of the three if the assumed

values of f^? and f^ are nearly correct.

It can be used to check the stresses computed by other

methods with the least amount of time.

(5) It is good for experienced computers who can make close

estimates at the start.

(4) It is the most direct method in that it gives the stresses

in various members from the very beginning of the solution.

(5) The method is easy to remember.

l.̂ . 2.* Ej^&^lif-L3 9JL jtlve Ansil^ti^ Method wvth the

(1) In bridge offices where a large number of standardized

structures is to be analyzed for secondary stresses, the truss

diagram together with the small tables can be blue printed,

this saving fully one- sixth =fek of the time.-

(2) This method is semi-graphical in that it shows the stresses

in the proper places &.nc. the effects of one upon the other.

(2) The process is very mechanical• Every figure has a definite

spe.ce in the table? every procedure has a definite order.

(4) No figures are 4 recorded twice and no necessary figures

are omitted.

('•)) All the rough computations are shown on the diagram thus

rendering a possible a check at any future time.
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(6) The figures on the diagram are so arranged that all the

i-dditions and subtractions do not involve more 4&a than two lines

of figures and such computations can be made without the use of

e^tra sheets of paper. All other computations can be made with

the slide rule.

(7) The method is capable of affording any degree of acuuracy

that may be desired.

(8) Practically all back references are eliminated.

(9) It gives a check of the secondary stresses as soon as they

are found.

A r t i e 1 e &» Q£L££2J^£hs£JQ9JL tji.e ^hree Metho/Is^

Briefly speaking, the graphic method of deformation

contour and the analytic method are about equal in merit as

r as the amount 0$ work and accuracy of reault are concerned.

For ordinary routine work in bridge offices the analytic method

may appear bes't to the draftsmen while the graphic method will

be preferred by experienced designers.b The graphic method of

successive deduction is very satisfactory for ordinary trusses

where an empirical formula can be «y. used; if this is possible

biiis method takes the least amount of work.
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P_A R T I V. O T H E R C O N S I D E R A T I O N S 0 F

S E C O N D A R Y S T R E S S E S D U E

T O R I G I D I T Y O F J O I N T S

CHAPTER I. EXACT METHODS.

Article 1. The Exact Method ojf Manderls, including the Effects

of Primary Stresses.

In the methods of analysis discussed in the previous

chapters the influence of the primary stresses has been neglected

in deriving the deflection equations which applr as© Eq. (3) of

Part I and Eq. (4) of Part III. As a matter of a» fact these stresses

produce bending moments along the axis of the member proportional to

the deflection of the elastic curve^and strictly speaking should be

considered as a part of the moments producing the flaxure. Analyses

made on this basis form the so called exact methods which are more

accurate than the seven methods mentioned before. It is surprising

to note that while Manderla*s method, published in 1880,was the first

adequate treatment of secondary stresses it was also the exact

method in the above sense.

To begin with the exact method it is necessary to modify

-they

the deflection equations so that it will include the effects of the di-

rect primary, stresses.

V,

Fig. 50.
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**» aboTO figupo the momenta at any point N of the beam distant

x from 1 is

M = M-, - P y - V1 x

where P is considered as tension but may also be considered as com-

pression with reversed sign.

The differential equation of the elastic line is

+ P_y_ Vi x
d x2 El El El El '-

-f'nS P P
Let- ~~T = Q , a constant,

• E l

d x2 El El

a
This is^linear differential equation with constant coefficients and

men
may be solved readily by finding (1) the complê tary function with

y h- emx, and (2) the particular integral by the method of undetermined

coefficients. This gives

Q x , , -Qx M ly = 0± e + G2 e + —

where 0-, and Cg are constants of integration and are to be determined

by th© conditions that for both x = 0 and x = L, y = 0. This gives

0, - - Ml ,2 ^
~P «

°2 =

The slope of the ealstic ltoe at any point I is

• y- = Q 0]_ e - Q Gg e
d x

But T1 =
 d 7 for x = 0, and T2 = -~^- for x = L
d x . d x
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Hence, Tx = Q Ci - Q Co - Ii
P

•P— = n n dQL r\ /i
X2 ^ u l e " y w,

Substituting the values of 01 and C2 in the above equations,

o e - l
P

1 p * v QL p B - e

T2 = -

The above may be transformed in terms of hyperbolic functions, thas,

Mi AT V i

T = — Q tan h — -f- -i. ( — QL - 1)
x P 2 p Si n h Q L

Mi m. v, cos hQL2 | + (

Eliminating Vj from the above two equations a relation is found

between M-, and the deflection angle T. This gives

2 E I

U ± = — ^ — ( S a T j + b l g ) ,

where,

a = - ( - — rr— -f- QL cot h St ).
8 QL cot h ^ - 2 2

« S L S QL ,

Replacing M-̂  by Mg arid in terchanging T-j_ and Tg,

2 E I
M 2 = " I T " ( 2 a T 2 + b T l '

The above values of a and b may be expressed in the forma of series
A

by develop.ing
1 x x3 2 x5

cot h x = J + 3 - 45*945



112

Thus,

11 (QL)4

a = 1 + —i s , .
30 25 000

b = 1 - ( O P 2 , 15 (QL)4

60 25 000

If P is compression instead of tension for which the above series6are

derived^ Q2 will be negative and the signs ehould be reversed for all

the even terms in the above series:

(QL) 11 (QL)
" 3 0 " 2 5 000

\ (QL)2 13 (QL)4

t> = 1 -+ — - + •*——
60 25 000

Summarising, the fundamental deflection formulas in the exact methods

of solution ase as follows:

O Tjl T

M12 = — — ( 3 a T12 + b T21 )

M —B ( O Q *P | T-\ rp \

where , o , A
a = i + 1QLT_ , 11 (QLr, 4

~ 30 25 000 —

. 15
15 -1 + 60 + 25 000 +••••••*

am used in /„
the upper signs for P # tension and the lower signs for P ;* compression.

By a similar method it can be found that

*1B = F ¥ T ( 2 c M12 -
 d M21 )

T21 = F T T ( 2 ° M21~ d M12
where

a o — 15
6

= i- 7 (̂ L) I g-(QfL.) ^ l2^ (QL)
" ^ ' 6 0 ""*" 2520 + 100 800

, areujea m ^ in
the upper signs for P # tension and the lower signs for P # compression.

A
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Comparing Eqp. (1) and (2) with Eq. (3) of Part 1 and

Eq. (4) of Part III^ it is seen that the effects of the primany stresses

on the deflection equation is to introduce two infinite series as the

coefficients of M, in which the the primary stresses enter in higher
QS

powers. If the primary stresses are assumed zero, i . e . , if the

effect of the primary stresses -&B neglected, all the terms in the series

after the f i rs t one will be omitted and fcfee Eqs. (1) and (2) reduce

by

to those derived iaa the previous methods. This assumption, it

should be noted, introduces more errors in tension members than in

| compression members. But the bending moments along the elastic line

is not necessarily a maximum at the two ends of a compression member

due to its form of bending. The resulting moments found by the

ordinary methods are therefore of the same degree of accuracy for

all the members, compression or tension.

The method of computing secondary stresses by the exact

analysis does not differ much from those described before, except that

all the graphical methods could -hot be used to advantage. The

additional labor required is of course very great but the increased

accuracy secured by the process does not give sufficient justification

for itsgeneral use. As far as practical engineers are concerned
A

the exact method will never come into vogue, although its nature of

analysis should be fully grasped for a better understanding of the

generally accepted correct methods.
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Article 2. The Exact Method including the Weight of. the Member*

preceeding :
In «*i the abovo analyses of secondary stresses the members

are not supposed to bear transverse loads distributed between their two

ends. This, in fact, is not true because the weight of the& member

itself and also the applied loads are a not concentrated at the

joints as assumed. These transverse loads produce additional moments

along the axis of the member and may be considred in the differential

equations just as are the primary stresses. Let this moment at any

point 1M of the aemfeer be M! and let its effects be included in the

flexure equations (3) rfjf Part I. For the sake of simplicity the

effect of primary stresses will not be considered here.

By a similar mathematical process it can be shown that

^ ^ ( 2 T + T ) 2 Mf (L - 3x) dx
o

where Mf is computed on the assumption that the members are simply

supported. If the integrals containing Mf are performed tha last

terms of the above equations will be reduced to the moments which the

transverse loads would pcoduce if the members are fixed at both ends.

Let these momets for fixed ends be Mf
f. Then

M12

21

If Mxi1 is due to the weight of the member it would be

1/12 wLs, where w = the weight of the member per unit length. To

include the effect of the primary stresses in (5) a oimilar process as
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similar to that
in the previous article may also be used but it is so cumbersome and

impractical that its use is not at all advisable

CHAPTER II. APPROXIMATE METHODS•

Strictly &peaki#g all the methods described in Parts II

and III are approximate mothode in that the effects of the primary

stresses are not considered. As these influence* a^e generally

small the said methods are not far from correct and are generally

T with
accepted as exact methods. -t-t is upon this understanding that the

methods to be described in this chap&ter are cl&assified, that is,
with f7

they are approximate only 331 reference w4£ii the methods described

in Parts II and III.

There are four groups into which the approximate methods

may be divided:

(1). Those in which the effects of the wel) members

are neglected.

(2). Those in which the effects of the joints beyond a

certain range are neglected.

(3). Those in which the solution of the simultaneous

equations is approximated, and finally

(4). Those in which empirical formulas are used.

To the first class belomg the graphic methods of Muller

Breslau a«d of Engresser and Landsberg and »£#t> their analytic

solutions. The seoonefe class is described by Turneaure in his book

om Modern Framed Structures. The thitfd class is proposed by Mohr

while the last one is suggested by the writer. On account of its
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of material and also of its importance the first class will be

treated in separate chapter while the remaining classes will be
A *

taken up.

Article 1. The Approximate Methods of Turneaure•

This method is useful in case the secondary stresses are

required in only certain partsa of the structure or in certain members

only. ^t is here assumed that the effect of the joints that are

remote from the joint or joints in question is negligible in
can

magnitude and oouM be disregarded entirely.

Fig.5/.

For instance if the stresses at joint 5 only are desired^
Fig.51.

the joints beyond 2, 3, 4 and 7 may be neglected. In other words,

only the members which meet t at joint 5 are considered to have rigid

connections at thexir ends, all the joints beyond the reach of these

members being consicfred to have friationless pins. This makes the

moments around the last named joints te equal zero and greatly simpli-

fies the solution of ^he simultaneous equations* This method gives

results very nearly correct but ifes advantage is not obvious in

small structures.

Article 2. The Approximate, Method of

It will be noticed from the simultaneous equations in

Mohr's method that in each equation the coefficient of B for the
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joint for which the equation is formulated is very large compared"

with the other coefficients. It is further found from experience

that the valuese of B for different joints of a structure are not

widely different from each other and may be assumed equal for approx-

imate solutions. These two facts furnish a solution which is re-

markably simply and correct, as follows. Prom Eq. (6) Part II,

the general form of the simultaneous equations is as follows:

2 B i 2 Dm + 2 c l n B n - 3 Z

If in each equation B is assumed to equal "bo B-,, as the ¥ effect

of variation of Bn is small compared with that of B-. ; due to the

magnitudep of the coefficients,

2 S D ln -f Z D ln ) = 3 2 Dln

B1 = —":" '" = w^ (4)
In

where TT is the weighted mean of the slope deflections of the mem-
- made fo

bers meeting at joint 1, reference being fe4 wttk the value of

D = I/L.

By Eq. (4) the values, of B for any joint may be found as

soon as the values of H for the joints are known* This reduces the

analysis of secondary stresses to a simple arithmetical process

and greatly enhances the practical value of Molarts Mthod. The writer

has tested this equation in various occasions and has found it to be

entirely dependable. See also Bulletin #1, Studies in Engineering,

University of Miftesota, by G, A. Maney.

Article 5. The Approximate Method involving Empirical

Formulas.

This method if perfected would be the quickest of all-.
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Unfortunately these is not much information available upon which to

mfor a definite process. The one suggested by the writer in Chapter

VI, Part Ill^is very useful for Pratt and Warren trusses but is not

applicable to other structures
may

It is hoped that more light be

thrown on this subject by further investigations.

It is interesting to mention here the so called Patton's

curve. This curve, deduced by Patton, shows the relations of the

ratio of h/j and that of (P -f- f )/P where P and f are the primary and

secondary stresses. From a large number of trusses Eatton found

by both calculations and measurements that the equation connecting

these two ratios is a hyperbola of the form

a
n = m - D •+ c

where m = L/y, n = (P •+• f )/P, and a, b, c are constants.

p+f •Pafhn'5 Curve

Fig. 52.

m = y
CHAPTER III. THE APPROXIMATE METHODS BY THE THEORY

OP CONTINUOUSBEAMS.

It has been found that for any member the secondary

stresses are directly proportional to the moments of inertia. If

the moments of inertia in the web members of a truss are considerably

smaller than those in the chords, as they are in fact, the bending
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moments developed in & web member*may be neglected while considering

those in the chords. This is the basis upon which the approximate

methods in the present chapter are derived and has been found gusti-
A

fiable in ma$y practical cases. Consider a truss as shown in FtQ.33,
and J

^m-1* "̂ rn+1 ̂ e ̂ k© deflection angles of the members having lengths/*
respectively. From Eq. (2) in Part II,

where dAm is the change of angle of A or

I and

m

Fi5.53.

the sum of the angular changes of the vertices

of the triangles meeting at m. Substitut®/W
as determined

the values of T in terms of M .by Eq. (3),

Part I, there is obtained

-t

•m
•W6

Multiply-by a constant I and put- z2-

•m+1

m

6 E

m+1

•mtl
then,

M
m-1

S
m

( 5 )

\ where N = 6 E I &A ,
m c m

This equation has the form of the Squation of Three Moments, The

solution of the secondary stresses is then reduced to that for the

lbbments in aft continuous beam. There are three methods based on this

equation:

(1) The graphical method of Muller Breslau,

(2) The graphical method of Engresser and Landsberg,

(3) The analytic solution.
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Article 1. The Graphical Method of Mullsr Breslau.

Muller Breslau considered three cases for the solution:

(1) where there is at least one joint where M = 0, (2) where there

is not joint where M = 0 but the truss and loading are symmetrical,

and (5) where there is no joint with 1 = 0 and the truss is not

symmetircal. As the second case is the most general the following

discussion^ will he limited to that feted ©£ troatmont only. Let the

in Ffq.54-
truss as shown be analysed for secondary stresses by this method.

A

First consider the two lei joints of symmetry, 7 and 6.

3 % 5 55 7 5i 8 Ss to
5, 5,to

By Eq. (5),

Since M
'•9

3 M5 3 7

by symmetry

H7

^ s 5

where Xr m 2 E I

S5

Similarly for joint 6,

44 + £ M6 =
2 E

^6.

% X be computed for all the joints of the truss,

the process is then to so determine M that the above equations and

Eq. (5) are satisfied by all the joints. To accomplish this
. /

graphically MullerjiBreslau made use of a moment diagram* as shown//?Fij.55
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Fig. 55.
in which the a ordinates to the broken lines give the moments at the

various points. The joints from 7 to 6, following the outline of

the chords, are here considered are to lie on a straight line and

spaced at S apart.

To draw these broken lines the 34 points Jf are first

located by trial starting with joint 7, and then points Kf are located

by trial starting from joint 6. Then if the broken lines connecting

the points Kf coincide with those connecting the points 5\ these

broken lines will -fe£*e» give the moment diagram required. The method

£©* constructing the J1 and Kf polygons are the same} the following

descriptions for Jf polygon serves at the same time for the K1 polygon.

The point J7 is first located by taking its distance

1 2
from 7 equal to l/3 Sg, for then J7J7

f would equal - M5 + - M?.

Since that sum^equal to X? and is known,the point J7
1 is then fixed.

If the moment line for 53 is known, M? could be determined from J,-,
1.

But the moment line 53 is not known unless J5
! and^moment line 31 are

known, it is therefore necessary to find J5
f and J3*# The latter

-the.
determines the moment line 31 a«in conjunction with moment line 212.

are unknown one must be assumed and corrected
- example

by the Kf polygon. The following shows how to find J

Since both JK
f and5
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known ng.dv.
1 from Jgf, which is assumed^ Since JJf is always equal to X

and X is known, J* is located as soon as J is known. The problem

therefore amounts to finding J3 from JR. Trisect the spans S*

and Sn obtaining points B
theDraw verticals AB
A

Fig. 56 %

and F.<

and FD. Interchange the

trisected segments and draw Hie

verticals VgE. From the

assumed position of J5 draw
Hieany line JgC cutting vertical

AB at A and V^&E at C.

Join CD.

Through A and 3 draw a line cutting FD at D.

This line then gives the point J3.

By a similar process the points Jf on each side of the

joints are found and a J' polygon could be drawn through theBe

points,raB-e ali-fcfee *ay& -hRkê &eekiiag-ak with the adjacent sides

intersecting on the verticals through the supports. Similarly

a Kf polygon could be drawn beginning with joint 6. These two

polygons are next made to coincide by correcting the assumed positions

of J and K, the resulting polygon then gives the moment diagram

from which the moments at various points may be determined.

Article 2, The Graphical Method of Engrosser and Landsberg.

This method is based on Mohr's construction of elastic

curves by considering the moment diagram as load. Consider

the chord members'as being cut at the joints and laid out with their

end points touching a straight line. By EJJ. (2) of Part II the

end tangents of -tike two consecutive lines at any joint would then
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intersect at an angle equal to'<$A for the joint. In tt*e figupoc ̂ '$

Ffg.51.
above the consecutive chord members 12, 23,A34 are shown with their

ends cut. The moment diagram for each of the spans is showns-

in i?ig. (hi. These diagrams are of course assumed as the moments

are yet unknown. Divide each diagram into two parts and through

the center of gravity of ea&h draw the vertical lines representing
-for

the load lines of ML/21. Let a force diagram be drawn o£ these loads

and construct the equilibrium polygon a b c e, etc. with a pole dis-

tance equal to d. The lines e c and e f then represent the directions
the.

of the end tangents for elastic curves 12 and 21 at joint 2. The#&

angle included between these two lines is therefore a measure a

of the change of angle &A2> in fact it equals £ A £ , Draw a line
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pG at distance d from joint 2 cutting the lines e c and e f at F and G.

Then,

PG = d < £ A 2 | = E <£A 2 ( 6 )

Next divide the horizontal distance between the vertical lines

through e and f into two segments m and n, such that

m s n = £§_ : Ii ,
L2 Ll

At the point of division draw the vertical line VEg. The moments

produced by the loads MpLn / 2E1 and MQLO /2IO are then equal at

this section and

D1E1 = D2E2 ( 7 )

Eqs. (6) and (7) are the two conditions which must be satisfied by

the construction lines.

To find the moments M by this graphic method the
Fi$.57c

polygons (figi—e) are first constructed which require two points

for each span. To find these points a method is devised, based

on Eqs. (6) and (7), by which if one point is known for one

polygon the corresponding points are known for all the polygons.
the

Thus a point may be assumed for^first span from which the corresponding

point is found for the last span which, in the truss, is adjacent to

the the first span. From the point in the last span a corresponding

point could be found for the first span a«*i which should coincide with

the point assumed if the assumed point actually lies on the polygon.

If not several' trials may be made until they coincide. By a similar

process two sets of points may be found which completely determine

the polygon of £4rg*—f^).

The following method shows how to locate Pg in one span
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Fiq58.
when P]_ in an adjacent span is known^ . It is here assumed that the

line VEg and FG have already been drawn.

Through P_, the given point, draw any arbitrary line

P1 C1 E1 # Join and prolong

it to cut VEg at D, and FG

at F. Measure off FG = E dAg,

thus determining point G. Join

AgG cutting VEg at Dg. Find

point Eg on VE ? by making

B1E1 = DgEg. Join EgCg.

Through P1 draw a line through Ag cutting FG at F
!. Lay off F!G* =

I FG. Join AgG1 cutting the line CgEg at Pg. The point Pg is then

the point required corresponding to P, in span II

It will be seen.that if C^E^ revolves about P^, CgEg

will revolve about P . Pg is therefore fixed if P-̂  is fixed.

any Ffg.SS,
To find &ke moment M, say Mo, it is simply necessary to

A

draw a vertical line at a distance d from Cg and consider KL as the

static moment of the force % ^ acting

at C-j_. Since the pole distance is d,

d = KL x d,

g
2 I-

2

x KL ,

x KL .

Article 5> The Analytic Solution

aHHum*-'^ = 0 for all the web members

in the usual methods described in Parts II and III. Since the

zonshfc
This are
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4k of
simultaneous equations take the form ofAEquationAThree Moments

Olapeyeron's method of solution may be applied to advantage in

preference to the method of Gauss,

CHAPTER IV, SECONDARY STRESSES IN SPECIAL FORMS OF

BRIDGE TRUSSES.

Bridge trusses of SHsnal- unusual types require special

consideration* in the analysis of secondary stresses. They offer

difficulties both in the methods and details of computations, which

Take, for
OldS
iaLmust be removed by judici-arl changes in the procedure*

in Ffa
example, a bridge truss having sub-panels as shown* The figure 4698

is a triangle when the bridge

is unloaded but it reduces to

a 4-sided figure as soon as

the members are under stress as

then the members 46 and 69 are

no longer on the same straight

line. To find the change

a . ̂
of angle in such a figure, therefore, requires^ special procedures,

v can be used _ . ^

as Eq. (2) of Part I Ui g»©d. only for a triangle. In this case

assume a member which would divide this figure into trian-gles, as

shown by dotted line, 68. The figure is then reduced sato two

triangles each of which, may then be submitted to the usual formulas.

To find the change in length in this imaginary member 68 it is only

necessary to compute the deflection of one point as 6, relative to the

13
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other as 8, the sectional area of the member being assumed zero.

Further, in analysing this kind of truss by the method

of Muller-Breslau :or that of Chapter IX, Part III, difficulties will

be encountered in finding the moments in members 46 and d6 from that

in 45. In this case let one of the moments be represented by an un-

sown x and proceed by the above methods until the moments in all the

members in panel 59 are computed. The moment equation around joint

6 would then furnish the unknown x required.

There may be other instances of the same or similar

nature but in every case there is always a solution. So long as the

truss is composed of triangular elements there is no indeterminateness

in the field within which the methods considered before are confined.

CHAPTER V. SECONDARY STRESSES IN PIN CONNECTED TRUSSES,

It is usually assumed that in a pin connected structure

the members are free to turm around their joints. This fact, as shown

by experience, is not generally true. On the other hand the friction

developed around a pin is often sufficient to prevent the free move-

in Fig.

ment of the members. Take, for example, the pin and eye bar as shown^

When the stress P is of such a magnitude as to cause turning around

the pin its displacement would be r and moment

P x r. This moment is also equal to that

developed by the friction F, which equals the

normal pressure on the pin multiplied by the

coefficient of friction. If A is the angle

of friction, F = P 5in A. Therefore,

P x r = P sin A x R,
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r = R sin A. •
radius

equation shows that if the danamotior of the pin is greater than

the quantity r/sin A, the friction moment would be greater than

the applied moment and the member connedted to the pin could not turn

at all. In such a case the pin joint would be about as rigid as

a rivetdjoint and the secondary stresses developed in such members

could not be much less than those calculated by the assumption of

rigid joints. In fact if the diameter of the pin is made 3/4 the

width of the bar, as is usually required, the secondary stress

cannot be less than 45^ of the primary if the coefficient of friction

is taken as 0.2, which is a fair value.

In case the members are built up of sections instead of

eye-bars the ratio of diameter of pin to the width of member is much

smaller than for the eye bars and the friction moment developed around
i s 3Ltf-ficient~

the pins SCKK genet?a|:ly to make the members turn. ±n this case the
an

friction moment could be treated asAeccentric moment in the analysis

of secondary stresses. If any member is supposed to turn freely

around a pin, its effect on other members is then null and it may be

considered ae to have zero moment of inertia.
A

CHAPTER VI, ANALYSIS OF SECONDARY STRESSES IN STRUCTURES OTHER

THAN BRIDGE TRUSSES.

In structures other than bridge trusses the secondary

stresses due to rigidity of joints are generally of a different

nature. As these structures are mostly of rectangular former the

secondary stresses are essential for the stability of the structure.
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a rectangular portal frame," for instance. If loads are applied

on the top AB the whole frame will deform until the joints A and B

come into some such positions that

equilibrium is maintained throughout the frame

without, at the same time, altering the angles

at the corners. The stresses thus developed

in the posts and struts are necessary to sup-

Fief. QZ. port the loads because if they are absent,

A

c D

u
i.e.* if the joints are pin connected, the frame would collapse with

the application of the load. This kind of stress«as is therefore more

important than those in structures composed of triangular forms as an

exact knowledge of the stresses is necessary to design the frame*

As it is not the intent of this paper to give « more

a

than passing note of structures other than iJaa bridge trusses^ only

the general method for the solution of Rectangular frames will be

given. Fig. G3,
b tLet this frame, be cut at a convenient point as E and

s A

replace the insternal forces by the thrust Ho, shear VQ and moment

Mo. Assuming one end of the broken

frame as fixed the deflection of the other

end due to the load with respect to this end

may be found as follows %

Let Mf = moment at any point E of the frame

due to.external load,

M = same due to all the forces,

L, = vertical and horizontal deflections

of E with respect to Ef
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<j> = Angular rotation of tangent at E with respect to

tangent at Ef,

Then, £>

I M x dx

f£fM y dxa J °El
0> M dx

£

The solution of the above simultaneous equations furnishes the three

unknowns required, from which the moment M at'any point N may be deter

mined.

a.
For structures with multiple number of rectangles the

above method becomes very cumbersome and the need of some simpler

method is very evident. The following is a solution based

on the method of Mohr and developed by G, A. Maney in Bulletin #1,

University of Minnesota,

It has been shown that if a feeam 12^ beside's being

jhe moments at the two ends^ has also concentrated load P at

kL
• * p Fig.64: o

M = LJLi ( SBl ̂  B2 - 5 H

kL from 1 and uniform loads at w per unit

length, then

2 Co - OT

3

Where 01 = P ( 2k - 3k2 + k3 ) L + ^LiL.
J 4

C2 = P ( k - k3 ) L -f 2 j — 9

APPly- this equation to all the members meeting at a joint there will
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be obtained as many p equations as the number of joints and the
solving ihe equations.

unknowns M may be found by ao-lution> In buildings the axial defor-
iy

of the members are general^ small and may be neglected compared

with the deflections of the joints due to applied forces: as wind.

The slope deflectionsof the horizontal members are then equal to zero
-for

and of all the vertical members in one story are equal to each other,
in order

This requires one equation for each story^ to find the common tfalue

of H, which i& •: furnished by equating the moments in each story

to external and internal forces.
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All the discussions in the previous chapters are limited

to only one kind of secondary stresses which, of course, is the most

important. There are, however, other sources of secondary stresses

prove of if not more
which may oxhib i t ju&% as much importance. i# « e i -mes^e. Of the manya.
kinds of stresses mentioned in the following chapters only few are

susceptible of mathematical analysis and even then they are not as
analyzed

completely as are the stresses due to rigidity of joints. Further

investigations in this field, both theoretically and experimentally,

are therefore very welcome.! The stresses to be discussed in this
and are

paper are divided into four classes^ as follows:

(1), Bending stresses in a transverse frame due to

primary stresses in the Posts,

(2)# Stresses in a horizontal plane due to unequal

deformations in chords and stringers,

(5). Bending stresses due to variation of axial stresses

in different elements of # members, and

(4), Torsional stresses due to various combinations

of secondary stresses both from known and unknown sources.
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CHAPTER I, BENDING STRESSES IN A TRANSVERSE FRAME DUE T0_

PRIMARY STRESSES IN THE POSTS.

Properly speaking^ these stresses being due to rigidity

iof joints may also be classified as such under some headings in Parts

I-IV. It is found advisable, however, to adopt the pEesent form

of arrangement as the method of procedure in this case differs entirely

from ̂ those considered before*

The exact solution of the problem requires the use of

the three equations considered in the last chapter, but as the ILabor

tfeor-ofor is generally unwarranted an approximate solution may be made

by assuming the posts to have been connected by hinges to the transverse

overhead bracing. The following formulas are then obtained:

A i

h
h

w

I,

w

I
I

P
b

Fi.g.65. -)ng
is very deep and tak«-a = ,3 b,

Mo =s Moment at a,

- w 5 a (b - a) %2
2 h Ix -f- 3 b Ig

If f-. and fg are the secondary stresses in

the beam CD and post CA at C and o-, and op

are their respective widths,

fo - . ¥ g, » < *> - *.) 08 ,
a 3 h Ii + 3 b Ig
Considering Io as negligible if the beam

W
3 x . x .7 eg W

2 h h

If fw is the working stress in the floor beam, fw = W,
 a cl = W

.5 b oi

II
•1

Therefore, £§. b
— x
h
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that is, the stresses in the feae»aMe beam and posts of a transverse

frame in a bridge truss are directly proportional to their widthsand
A

indirectly proportional to their lengths.

CHAPTER II. STRESSES IN_ A HORIZONTAL PLANE DUE T0_ UNEQUAL

DEFORMATIONS 0£ CHORDS AND STRINGERS.

The floor system of a truss bridge generally consists of

stringers riveted to the webs of the floorbeams. When such a span is

loaded the chord members of the truss deform longitudianally but the

axial length of the stringers undergoesclittle or no change. If the

stringers are riveted continuously from end to end of the span the

floor beam must bend horizontally thereby producing secondary stresses.

Consider a floor beam situated at a distance d from another beam aHsumed

to remain fixed. Then the horizontal deflection of this beam due to

the deformation of the chords is

D » S-J-L , where P = average unit stress in
E

the chord, provided,

(1) the axis of the stringer does not elongate,

(2) the stringer connections are unyielding, and

(3) the ends of the floor beams remain verically over

the joint centers of the chords.

-the
Now the deflection in beam, assuming the ends hinged, is

A

ilso equal to
M a

3

flie tk
where a is the distance from centre of a truss to the nearer stringer/W

A •A

b the length of the beam;
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M a p d
. . 6EI ( 3 b - 4 a ) " 9

Replacing M by fy/I, where y=A half width of the flange,

-p - 6 c d
a ( 3 b - 4 a )

p

The values of a and b are generally constant so that the value of f
th

is proportional to the width of the flange of the beam and also its
A

location from the centre of the spail. On account of the various

assumptions made in the formula the actual a stress is probably not

as great as computed but the importance of this source of secondary

stress cannot be overlooked, espe^cally in bridges of unusual spans.

CHAPTER III. BENDING STRESSES DUE T0_ VARIATION 03? AXIAL

STRESSES IN DIFFERENT ELEMENTS OF A MEMBER.

If the primary stresses in different elements of a member

are unevenly distributed the difference of the stresses will cause

bending moments in either a horizontal or a vertical plane. These are
the

largely due to improper design* of connections and errors m shop

length in manufacture. To analyse these stresses, theoretical

considerations are of little avail as the data required in these

computations would never be complete* Turneaure in his book on

Modern Framed Structures noted that a variation of stress«jg of 5 to
is

10 <f0 in riveted member and 10 to 20 fo in eye-bars ape not uncommon.

As these variations generally occur in a horizontal plane the bending
-ma in addition to ._.

stresses result; therefrom will give torsional stresses togothor witfa

the bending stresses in the vertical plane of the truss.
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CHAPTER IV, TORSIONAL STRESSES DUE TO VARIOUS COMBINATIONS

O£ SECONDARY STRESSES.

If any of the previously mentioned secondary stresses

occur at the same time and ;Ln different planses torsional stresses will

be produced. These stresses will be very difficult to compute if

momenfa
the effects of the several bendingA are to be considered simultaneously,

iion
to say nothing of the comp^-icae^ involved in ascertaining the nature

moments.
of the bending* Some of the bending stresses may corns from unknown

sources while there are others which act in planes of unknown directions

The mathematical solution of thid problem is therefore almost impossible,
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While the importance of secondary stresses is still a

moot question at the present time, it cannot be denied that great

improvements have been made in the design of structures as a result,

of the studies and observations made on the subject during recent

years. The achievements so far attained are very beneficial and

convincing although it is not uncommon to hear it said that

secondary stresses accompany good design, agd. it makes the structure

rigid and stiff which is highly desirable. To be sure, a good

design does aim at a rigid structure but certainly not at the expense

of its strength. Structures may be of different types; some are

rigid, others are strong, and still others are both right and

strong. A bridge may be designed and detailed in various ways;

some make the structure rigid, others make it strong, and still

others make it both rigid and strong. Would it be logical to
of

consider only rigidity in a structure—in the selection types,

propertioning of memebers, and designing of details—and neglect

its effects on the most vital factor in the design-~the strength?

The consideration of secondary stresses in a design

tends to make the structure both rigid and strong, not only in type

and design but also in details. Eventually the design is also eco-

nomical as the uncertain "factors of safety" may be greatly reduced.
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It is for this reason that the secondary stress is so important

in design and has been so widely considered. It must be admitted,

however, that the subject is a difficult one-not in the thgoreti

ical analysis of course, but in its practical application.

Oftentimes a design made to satisfy secondary stresses violates

very decidedly other good principles which must be respected.

In other cases, the gain in reduced secondary stresses does not

ba&lance the iosa of impaired rigidity. Here good judgement must

be exercised to determine which course to pursue.

Before going into the details of design some general

conclusions about the secondary stresses will be given.

(1) The secondary stresses are, in general, propor-

tional to the primary stresses and,ttherefore, are conveniently

expressed in percentages of primary stresses.

(2) Other things being equal, the percentages of

secondary stresses are proportional to the distance from the

gravity axis to the outer fibre in the plane of bending, and in-

versely proportional to the lengths of the members.

(5) The secondary stresses in any member depend on

the distortion of all the members of the truss, but primarily upon

the distortion of members of the triangles of which this member

is a part•

(4) A design in any individual member cannot be

Jlianged without affecting the secondary stresses in the other mem-

ber s .

In the following eteapters are given some principles of

desicm which must be observed in reducing secondary stresses.



These are largely derived from theoretical studies and practical

observations and are very valuable on that account* During the

past few years as increasing attention was paid to secondary stress-

es considerable space in books and periodicals has been devoted

to the design of structures from this point of view. This valuable

information, however, is not within easy reach, as the literature

is scattered and the subject has never been systematically treated.

As one of the purposes of the present paper is to present the facts

about secondary stresses which must be understood by the designer,

these principles of design will be listed under proper headings

and discussed and disgested in a logical order. For each principle

stated the source of information is accredited by using a letter

(explained in the following key) &o indicate the title of the work.

This is followed by a number referring to the page. These

principles are next followed by a chapter on the correction of
t

secondary stresses—a matter which is receiving increased attenion.

a 4 m proceedings of the American Railway Eng. Ass'n, 19^4, p.

a 5 B i' . » " " " n u 1916, p. 129 ,

e = Engineering News Eecord.

g = Grimm1a Secondary Stresses in Bridge Trusses

j = Merriman and Jacoby's Roofs and Bridges, Part III,

k - Kunz's Design of Steel Bridges

M • Thesis by T. E.Mao presented*to Cornell University

m « Molitor1* Kinetic Theory of Engineering Structures

p * Secondary Stresses in Framed Structures by Pitman in Proceedings

of Engineers1 Society of Western Penna., Vol. 25•
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