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BoR-ELEEACCIE S

The purpose of this paper is two-fold: First,
to present an adequate treatnent of secondary stresses,
and second, to introduce-three new nethods evol ved by

the witer.

During recent years when the inportance of
secondary stresses has exhibited itself a |arge anount of
literature has been witten on the subject for advancing
the science of structural design* & critical study nmade
of these papers will at once reveal that they are subject
to one or nore defects which greatly inpair their practica
val ue. In the first place, too nuch attention has been
paid to the mat hematical theories, which could be greatly
shortened for the benefit of practical engineers. Second-
ly, the treatnment of the subject is generally limted to
a narrow field, in which only a few nmethods are applied
to only a certain class of structure. Thirdly, the
treatnment of the four existing nethods is entirely too
I ndividual, in that the nethods are generally consi dered
as being separate from each ot her”notw thstandi ng the fact

that they are nore or |ess equivalent. Castly, but not
3
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the least, the effect of secondary stresses on the design

is not adequately considered and sometimes sadly neglected.

With a view to avoid the above defects it has
been the writer's endeavor that the subject be treated in
an entirely different way---that it beAmore practical,
more comprehensive, and more logical; so that it could be
easily understood and appreciated by those for whom the
secondary stress has the most direct bearing---the practical
engineers. The writer 1s aware that not all of these ob-
jeets are attained in this paper, on account of limited
amount of time, but it is believed that the. scope of the
work and the arrangement of materials are sufficiently

o A
effectivefas to produce the desired results,

The methods for computing secondary stresses
have been greatly improved in recent years. Two objections,
however, still stand in the way s First, the amount of

: oxeessire

time involved is often exorbitemt, and second,the lack
of a checking device by which the correctness of the
various steps of procedure may be ensured. While there
aré numerous other defects these two alone are generally
sufficient to reducse their practical utilitye. Ever since
the beginning of 1917, when the writer undertook the ana-

lysis of secondary stresses in a two hinged arch, the

results of which have been published in the Transactions
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the
ofAAmerican Soeiety of Civil Enginsers, Vol. 82, p. 1104,

it always occufed to him that there must be some method
which is not only ghorter and less cumbersome than the
current ones butfﬁfgo admits of a unique check. For two
andfhalf years he has worked on the subject almost inces-
santly,vstriving to find some new method that will accom-
plish both. At last, much to his satisfaction, the
graphic method of deformation contour was obtained; which
not only takes less time, furnishesiﬁnique check, but also
glves remarkably accurats results. Along with this method,
almost contemporaneously, two more methods were evolved--
the graphio method of suecessive deduction and the analy-
tie solueion of the graphic methods. All of thse thres
methods are desoribed in detail in Part III, page '38,
which,being treatsd more or less independently, could be
read without reference to other parts of the paper. A
perusal bf Chapter 10, page 105, is hsrebyAreoommended.rb
As these methods are new in their field it is hoped that

may v =
their usefulnessAbe actually tested by further investigators.

vBesides the two purposéé of ﬁhe paper as hereto-
fore mentioned the following points deserve special :
attention: (1) The method for the solution of simulia—
neous equations, p. 25. (2) The approximate methods in
Chapters 2 and 3, pages 115-125. (3) The well digestsd

principles of design in Chapters 1 to 6, pages 140-151.



In conclusion the witer w shes to express
hi s i ndebt edness to Professor H R Thayer, under whosB

direction the present work was undertaken.

Respectfully submtted,

Cct ober, 19109.
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CHAPTER | . GENERAL AND HI STORI CAL _NOTES.

Bef ore proceeding Wth the subject of secondary stresses
it is proper to define exactly what "secondary" neans. Accor di ng
to German witers the stresses in a framed structure are divided
Into two cl asses—the prinmary and the secondary. By "primary" is
meant all those stresses which pass through, the centre of gravity of
the sections and act along the axes of the nenber, producing either
an el ongation or a shortening. The prinmary stresseé caused by
the dead ioad or live load are called the "principal" stresses while
those due to inpact, wnd, centrifugal, yielding of support, tenpera-
ture, etc.jare called the "additional" stresses. The "secondary"
stresses include all. tfoose stresses that are not axial whatever

their nature nmay be: bending, shearing, torsional, etc.

An English authority limts the secondary stresses to those
which will be autonmatically reduced Men an incipient failure of the
parts stressed occurs.l This is very hypothetical and not so clear
~as the follow ng definition evolved by an Anerican witer. - "Secondary
stresses are those which nmake up the difference between the ppinary
stresses and the actual stresses which the assuned static |oad-would
pr oduce". Fronipractical point of viewthe followi ng is representa-

e et 63050 ede3t dede ¥

115 Londfton Engi neering, Jan. 7, 1916.
2% Proceedings of Eng. Society of Western Penn., Vol. 25.
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tivs:1 "The secondary stress in any nenber at any section is equa
to one half the difference of the two extrenme fibre stresses neasured
at the sane section. The primary stress is then equal to one hal f

_the sum of the sane extrene fibre stresses"e

As a distinction between the secondary and additiona
stresses is advisable the present paper wll define secondary
stresses as those which arise frombending, tw sting, and shearing”

what ever nmay be their source.

The subject of secondary stresses was |argely devel oped
by German witers. In the year of 1877 the fblytechnic School in
NUnich.offered a prize Hap the solution of the followi ng problem
formul ated by Asinont. "Wat stresses arise in the nenbers of a
bridge truss owng to the fact that the angles of the tnuss triangles
do not undergo any change?". | This prize was awarded to H Manderl a
who gave his solution in a paper published in 1880, in Al geneine
Bauzei tung, under the title "The cal cul ation of secondary stresses

whi ch occur in sinple trusses as a consequence of rigid joints.

In 1879 Engresser published an approximate nethod in
Zei tschrist fur Baukunde.

5 hfesj
The first detailed conputations of'secondaryhare found in

| "i nkl er’s Theorie der Brucken published in 1881. In 1885 Landsberg
contributed a graphical solution under the assunption that the chords
al oneaare riveted; in 1886 mnuller Breslan nade an anal ytic contri bution.
Ritter, in 1890, gave a graphical solution and Engresser in 1892-93
publ i shed a book on secondary and additional stresses. The | ast

g earde Jeded Gedede EIERE

1. Transactions' of Am Soc. of Eng., Vol. 82



.analytic method was contributed by Mohr in 1892.

The first direct measurement of secondary stresses was
made by Frankel in 1883. In 1899 Mesnager published an account of
the measurement of stresses in a Pratt tramss of 180 foot span on the
Orleans Railway in France. In 1901 M.Rabut described a series
of stress measurements which had been made on the bridges of the
Orleans Railway. In 1905—Oé W. Goehler conducted a series of tests
and measurements on a railway bridge of 128 foot span at Elsterwerda,
saxony. In 1907-09 the American Rallway Engineering Association
conducted & series ofvtasts on a large number of plate girders and
truss bridges, ranging in span from 30 to 440 feet. The latest
and most extensive measurement Waé made by Steinman on the Hell Gatbe

. Arch in New York in 1915.



GHAPTER | 1. NATURE OF PROBLEM

According to the conmttee report presented to the Anerican
Rai | way Engi neering Association in 1914 and printed in Volune 15 of
its Proceedings the secondary stresses in a bridge are divided into
five cl asses, as foll ows:

K Bending stresses in the plane of the main truss due to
rigidity of joints, eccentricity of joints and weight of nenbers.

2 Bendi ng stresses in nenbers of a transverse frane due
to the deflection of floor beans and to primary stresses in posts.

$. Stresses in horizontal plane due to |ongitudinal
deformati on of chords, especially the stresses in floor beans and
in their connections.

4. Vari ati on of axiél stresses in different elenents of a
- menbsr.

5 Stresses due to vibration of individual nenbers.

The stresses under Nos. 1, 2, and 3 can be anal ysed nors
or less conpletely but those under Mbs. 4 and 5 cannotb%s accuratel y
det er m ned. It should be noticed that the 5th class does not conform
t6.7 "the definition for secondary stresses adopted in this papsr.
Anong the first thpee classes No. 1 is the nost inportant and is the

one whi ch has receives nost of the attention in the present paper.

By "rigidity of joints" is neant the incapability of the
nel abers neeting at a joint to rotate relatively one with respect to li
t he ot her. This occurs in structureawhere the nenbers are connected
toget her by gusset plates and rivets and also to sone extent in
structures connected by pins. MNowif a structure is under |oad the

various nmenbers will undergo deformations as a result of the elasticity
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of the material of which the members ars built. These deformations
tend to change the angles Eetween the various members but are prevented
;g:;;g'sc by the rigidity of joints. A restraint is therefore impossd
oni the members and must be relieved by bending thé members. The
stresses produced in the members by this bending form the principal
source of secondary stresses and &re designated by class No. 1 above.
It will be notasd that if the joint is made of frictionless pins so
that any member can rotate freely inmrespective of the ethers the
deformations in the members could be taken care of by the change of
angles and the so called secondary stresses would disappéar. This

is, of course, not true in practiece but is the assumption upon which

all the primary stresses are computed.

Here, it is necessary to differentiate between secondary
gtresses which are attributive'iknizthose which are essential.
The former applies to all structures composed of triangular elsments
while the latler belongs to those structures with rectangular frames.
In triangular structure the secondary stress is produced»asfbesult of
certain conditions imposed on the structures and is removed as soon
as those conditions are relieved. It is not essential for the sta-
bility of the structure, i.e., the structure can stand without the
existence of secondary stresses, In a rectangular frame, on the
other hand, the secondary stress is not attributive butessential,
without which the structure cannot stand. Here, the secondary stress

cannot be removed without having the structure collapse: .

Furthermore, even in a structure of triangular formss
the pressnéeof secondary stressees is very necessary although not
essential. It has been found that rigidity of joints is the very %

stiffens
thing that staiis

13

the structure and is highly desirable.in an

¢

economic design. Hence it is important to note that ths object in
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I nvestigating secondary stresses is not to renove such stresses

to ar e.
wher ever possi bl e but yeducet$teinonly Mere tH<onbj ectional bl e.

CHAPTER I |1 . FI ELD OF APPLI CATI O\

Until recently the subject of secondary stresses has not

- been received wth favor by practical engineers. Per haps the
strongest argunent agai nst the consideration of secondary stress®in
structures was advanced by the Engi sh witers who contended t hat

“we have never heard or known of a case in which the failure of a
roof or a bridge nmenber not subject to altering forces has been
traced to the existence of secondary stresses"e They even went so
far as to declare that it is "doubtful whether an exact anal ysi s of
secondary stresses in ordinary bridge structures will lead to any

mar ked i nprovenents in design." Oppos&i to this viewis that of
sone Anerican engi neers who stated that ® "the fact that these struc-
tures stand up does not warrant a total disregard of secondary stress.
In structures with good details a much higher unit stresses could have
been enployed in the design if the secondary stresses had been consi -
dered" . "For a design to be good it nust be well bal anced. Al -
though a structure nust be safe it also shoul dfee economcal, .Good

engi neering is that best insurance against failure and wasted

material is a tribute to ignorance,"” "Further in trusses designed

. : : one
for lighter loads thain actual it behooves o kno\¥ the dangerous
Iiﬂitsﬂgf |"hile both views seemto approach the extrenes-"::" fhet
fact remains that actual observations of secondary stresses VLTC
relied upon as the best gui dance. So £ar as the avail able data
of past experinsnts are concerned the inportance of secondary stresses

EELH gkt ettt et ks

1 London Engi neering, Jan. 7, 1916.

Engi neeri ng News, Nov. 11, 1915

.
3. Proceedings of Eng. Soc. of Eng., Vol. 21.
4 imm Secondarv Stresses P 136
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cannot be minimized and should be considered at least in thse
important and unusual structnres. In buildings where the primary
stresses are largely statically indeterminate and nevsr in practice
accurately computed it 228 not worth # while to consider the
secondary streéses which depend on the primary. But in briggés,
railway or highway, the primary stresses are generally computed
'from_a method which is fairly correct and is altogether dependable.
Based on this considar%ﬁion it is entirely advisable to consgider the
sséondary stresses in the design which would mean an increase in the
- safety of the structure and é decrease of waste in the material.
It should be notsd that the objeot is not so mudh td'finditbe amount
Q{aj'secondary stresses in every individual structure as to determine
thé!distribution of secondary stresses in every type of structure.
It canhot be dénied that such a knowledge would help comsiderably

in choosing the type of the structure and also in improving the design.

: has  staled
Summarizing from what beent above it may be concluded that

the secondary stresses should be considered in all types of bridges
where the distribution of secondary stresses haé not been known for
' any kind of loading. Fdr the same type of bridge it is also advia-
able to investigate the effects of secondary stresses on the change

‘of dimensions.



PART l_. ANALYSI S = i SECONDARY
SEReEIEOIESS DUE T 0 R G L) TN

oP JOI NTS.

CHAPTER | | NTRODUCTCRY NOTES,

If a truss, the nenbers of which are connected at the panel
points by frictionless pins, be |oaded in any manner, the various
nmenbers w Il change in length slightly, the various panel points wl|
defl ect, and the angles nade with each other by the various nenbers
neeting at each point will alter. The nmenbers will remain straight
bet ween panel points, however, as they can rotate freely oh the pins.
If nowa simlar truss having rigid joints be consflered, the changes
in length in the nenbers and the deflections of the panel points wll
be substantial l y as before, but the angles between the various rrenbers_
neeting at a panel point will be forced to renmai n unchanged. As a
result, each joint will rotate as a whole into sone such positions
that equilibriumthroughout the truss will be maintained and each
nmenber will thereby be bent to sonme extent. Sendi ng nonents are thus
pdeuced ith the nenbers reaching a naxi mumnearing the joints. (This
IS not the general case in conpression nenbers where the maxi mum
nonent may occur sonewhere between the two ends) The fibre
stresses result- Therefromconstitute the secondary stresses due to

rigidity of joints.

Wiile .it is inproper it is usual to consider the secondary

stress as that due to rigidity of joints al one. This is in fact
whf ch
the only kind T&J the current methods for secondary stresses apply
wht'ch has

and is the oneareceived the greatest attention ever since the nature
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of the problemwas formulated by Asé&nont. There are at present
four nethods for conputing this kind of secondary stresses and each
haéx?gkeived withirrak or |ess favor. The fundanental principles
of these nethods are exactly the sanme and it does not seem natural
to consider each of the nethods separately as this woul d invFgVe much
repetition of material* |In the present paper, therefore, the treat-
nment of the subject begins with the fundanental principles which
apply to all of the different nethods. The four existing nethods

are next taken up followed by the three new nmet hods proposed by the

witer."" The latfer treatnent, however, is noreor |ess independent
A

so that its perusal does not require constant references t& the pre-
vi ous di scussi ons. Lastly sone palJpSs will be taken in the treatnent
of the so called approxi mate and exact methods for the solution of
this kind of stresses.
Just as there are assunptions made for the

_ _ so |i'kewse are. assunptions made for
conputation of primary stresses”"the secondary stresses. a#e aet
exceptions tr© %ee rule* The following is list of the nore inportant

assunpti ons whi ch nust be renenbered.

(1), The axes of all the nenbers are situated
In the sane plane and bent in the sane pl ane. It will be understood
that the expression "rigidity of joints" always applies to the joints

in "the same pl ane.
(2), Al the external |oads are applied in the

sane pl ane.

(3). The prinmary stresses renai n unchanged

after the panel points are deflected.
(4), The dBflectinn of the truss with rigid

joints is the same as if the joints were nade of frictionless. pins.



10

(5) The effects of shear upon the flexure

is neglected.
(6) All assumptions made in deriving the

flexure formulas Hold true for all the members of ths truss.

CHAPTER II. CHANGE OF LENGTH DUE TO PRIMARY STRESSES.

- The primary stresses to be used in computing the change in
length of members are assumed to be the same as for the truss with
frictionless pin joints.

Let 1

primary stress per unit area of the section

L = the length of the member

E = the Hkodulus of Elasticity
8t = the change in length L, or the axial deformation,
Then,
| dL=P.L /&,
or, E*§L = P.L e o L e i

This equation will be used in the method of Mohr.

CHAPTER III. CHANGE IN ANGLES DUE TO PRIMARY STRESSES.

By the "change in angles" is meant the alteration of the
- angle formed by any two members meeting at a point connected by a
“friotionleés pin. Since the triangle is an elementary figure in a
ftruss the change in angles in a triangle when the three sides are

stressed will be first considered.

Let Py, Pps P, be the unit
primary stresses in sides a, b,
¢ and éA, 5B, §C be the changes

of :
in angles A, B, and C,Iﬁg.l.




did

From tri gononetry,
b + o8 - a

Cos A ==
2 b c

2

AR =losa ! (6 b et =ad) 26, €

Find the derivative of A with respect to a and substitute the expres-

fur\cfion5 of
sions involving a, b, and c by Cot B and cot G from trigonometry
A

there is obtained

SIALT ot B+ = - C
aa a
Similarly, 3A _ _ _fot .
dhs = b
G AL cot B
aC — n c
now _ &A = r—3a+ 22 o+ 255
3a <5b 3cC
= (Cot Bf cot 0)& - (fot c¢) i*. - t"ot B) fiSL
a b (o)
: IA =(ls=~1a)cotB+ (52 -5%. ) cot c
But by (1), sst = £a, I5.- Pb, 8o = Pg,
a = b E =4 =
Therefore, ESA = (Pay-Py) tot B +( P; - Py) cot C ?
Similarly*: ESB = (P*-P) 40t 0 £ (P,-P)gotA \.*. (2
ESoz(Po—Pb)CtdA+(Po—Pa)GCIBJ
The above nethod is due to Manderl a. QG her authorities
anci

i ke Mul l er Breslau, .band, Wnkler, R tter have al so derived the sane
fornmulas by either analytic or graphic nethods.

Three features should be noted in the above Eq. (2):
(1) The change in angles are linear functions of the prinmary stresses*
(2) They are linear functions of the angles included between the
sides of the triangle, not the actual |engths of the sides® (3) The

sum of the changes in angles of all the angles of any triangle is

Bqual to zero.
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CHAPTER IV. THE TWO FUNDAMENTAL EQUATIONS

Article 1. The Deflection Equation.

Frg.2,
Consider a beam l—zksu%jected to the moments My and lig
énd shéars Vi and Vg, but sustaining no intermediate loads. Assume

a counter clockwise moment to be positive.
e L
)

| | —Me :
e P

From squilibrium of the member as a whole,

V1= Vo=V, My + Mg -V L=0, V = (M + Mg)/L
loment at any section distant x from point 1 =
- = x
Mx-—Ml—VX = Ml—-(ivll+ Mz)f,
Now the equation of the elastic curve referred to X and Y as axes is
2
B ] i.lz = -
d x -
= = Mq + (Mg + Mo) T’
a y = , X2
EIdX Mlx-f-(Ml-f-Mz)é_—f—Cl,
B I ¥ = == M]_Ez—[— (Ml + Mg) Xg/ 6L + Cix + Co,
5 ,

Since y = 0 for x = 0, Cyz= 0,

y=0 for x = L, Ce1= Eﬁﬁ_:"@E.L,
6 7
2 =B
: a = < x- Rl =lig
Thereforse, E I a._:% = -Mix + (M; + M,) 1 + == i,

Let T; be the valus of %ﬁ% at 1 = the deflection angle of

the end tangent at 1 and Ty be g—%,at 2, then T; is obtained from the

above equation by making x = 0, and T, Py making x = L. Hence,

= 2N =M =
EIT = L= 1. e
6 .
Or, Ml = g_...g__l_ ( 2 Tl+ Tg); Mz =
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This is the fundanmental equation expressing the relations
bet ween the defl ection angles and nonents at the two ends of the

beam and is applicable to any nenber of the truss.

Article 2« The Mnent Equati on*

Since the truss is in static equilibriumthe resulting
nonent s about any panel point nust be zero as otherw se the truss
woul d be in notion which is inpossible. Hence if the nenbers
12, 13, 14, etc., of atruss neet at the joint 1 and M,, M3,
N14* Cto. are the nonents of the respective nenbers about joint 1,
t hen,

MRS M A Y B L e o 50
O, in general,
2 Maround any joint = QO eee ¢ - o (D)
Since Mis a function of T by Eq. (5) this equation would give the
relations of T which nust be satisfied by all the menbers neeting

at the joint.

I n case the axes of nmenbers do not neet at the sane point
there is introduced an eccentric nonment M which may be taken care
of in the above equation by expressing M under the summation sign,
or, |
2 M f¢ « Mparound any joint =0  ...... et 2 Az
It is interesting to note here that the stresses of eccentricity
due to prinmary and secondary stresses are usually opposite in sign

and counter bal ance each ot her. Tnis fact was first noted by Htter*
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CHAPTER V. DEFLECTION ANGLES AND THE RIGIDITY OF JOINTS.

If two members meetins at a joint that is rigid the deflec-
tion angles of the two members at the joint will not be indepgndent
of each other but will be connected by en equation which ¥s sZﬁings
with expressions depending on the primary stresses and the properties
of the truss. To put this into algebraic form let T;, and Tlp
be the deflection angles of twé members 1ln and 1p meeting at joint 1,
then, T1n = F ( Tlp ) S 0o oo coe (5)
where F is a known function depending on the property of the truss
and the conditions of the loading. This equation is very

- important in that it forms the basis for all the methods used

for analyaing secondary stresses.

CHAPTER VI. SOLUTION OF THE PROBLEM.

To analyBe secondary stresses in a structure amounts to
nothing more than the solution of mbmehtsvwhioh the members of the
étruoture must be subjected to as a resulﬁ of the rigidity of the
joints. In Eq. (8) it has been found that the moments at the ends
éf any member are dependent on the deflection anglés at the same ends.
If these deflection angles or their relations are known for every
member of the truss the membnts can then be derived by a simple
procedure. In this connection use must be made of Egs. (4) and (5)
as they express the relations which the deflection angles of different
members must hold. It will be fouhd later that Eq. (4) and (5) are
vnot only necessary conditions for the solution but they are also
sﬁfficient. To utilize Eq. (4) and (5) three methods have been in

use at the present time: (1) The method of joints; (2) The method of
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triangles; and (3) The met hod*“nenbers. To the first nme&hdd bel ong
the jnethod of Manderla and the nethod of Mxbr; to the second, the
pewenodaof; Mil-Ler isreslau;; and to the | ast, the Serthod-of Ritter.
These wi Il be cohsiderediy separately in Part I1I. In Part 111

wi |l be given three new nethods proposed by the witer intﬂgkch a
newffi ©f ct ee&~aR&principleisuseddifferingslightly from

~ given before.



PART |1, EExX 1sSTTd1 W& METHODS _FOR
COmMPUTING SECONDARY
SIREESSTSTES st DIUE TO RIGI1DITY

BIF ARG S5l & =T

CHAPTER 1. THE METHOD OF JOI NTS.

By applying Eq. (5) of Part | successively to the members
meeting at a joint it will be found that all the deflection angles
at the joint are deduci*ble one from the other and may be expressed
as a function in terms of a quantity that is a constant for the joint.
If this constant "be G then forcany member In at the joint the

deflection angle

10 e . I \o
where P! is a known function of the property of ike truss and the
-|rg
condition of the |oading. Apply-Eqg. (1) to every joint of the

truss it is seen that the total number of unknowns is simply equal
to the total number of joints, as each joint has only one unknown C.
How for every joint of the truss there is a moment”equation (4)
of Part | connecting the quantities T of the members meeting at
the joint and consequently connecting the unknowns C. There are
therefore as many moment equations for C as the number of Ctand
the problem is always solvable. These equations, it should be
remembered, are simultaneous.

The quantity C forms the basis of the two methods into which
the method of joints is divided. In one method C is the deflection
angl e of one of the members meeting ai. the joint and in the other it

Is the rotation of the joint which is a constant for every member
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meeting at the joint on account of thse joiﬁt: being rigidl; connsct
This first method due to Manderla and improved analytically by

Winkler, is known as the Manderla's Method while the second is known
as the Mohr's Method. As the guantity C ussd in Mohr's method is

a linear function of that used in Manderla's these two methods are
‘essentially equivalent altnough they differ widely in procedurse.

For a combination of théss two methods see Waddell's Bridge Engineering,

page 181, and Thayer's Structural Design, Vol. 2, page 230.

CHAPTER II. THE WETHOD OF MANDERLA.

Article 1. The Reference Deflection Angle

Consider any joint n of any structure and let the straight
iines n;l, n-2, etc., represent the lines ﬁéining‘the gseveral joints
after distortion.F}'%he heavy lines show the bent forms of the
several members. The angles T,1, Thos Tpzs and Ty represent the
the deflection angles of the several members at joint n. Let Aj

Ag, Aﬁ be the original angles between the members 1n2, 2n3, and 3n4.

After distortion the angles betwsen the straight lines joining the
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apexes will be respectively A -+ 4A;, Ag - SAg, and A3 -f SAg as shown.

Then if one of the deflection angles, T, , be selected as a "Reference
Angl e" the other values of T at the joint n nay be expressed in
terns of the change of angles &A, as foll ows:

Tn2 = Tn[-+ik|9

™3 " Tnl + 241 +3. A,

™Tm4 = T, + &A + $A, + 5A3,
and so on for any nunber of nenbers. O, in general, for any
joint n,

nm R T s g ol : . % ooe =20

where T,,represents any value of f, T, iIs the reference angle

sel ected and AT && 'S t''e sumof anl angular changes tip .to the

menber nmin consideration.

The reference angle nay be selected at randombfit for the
purpose of arrangement

systematic purbbbé it Is convenient to select it as thO© deflection
angle of the first nmenber encountered in passing around a joint in
a counter clockw se direction, beginning on the outside of the truss.

Thi s deflection angle being the base for all the deflection angles

- _ ~whichisthe
at the joint, will be denoted by a subscript,sane as that for the
joint, i.e., T. wll be the reference angle for joint 1, etc.

Conparing Eq. (2) with Egq. (1) ef Papk-£ it will be seen

ghat C= T " a3- F* is alinear function in ternms of the angul ar changes .

Article 2, Mnent Equations in Terns of tiie Reference Angles.

Substitut Byt he values of Mof Eq. (3) in Eq. (4) of Part
IJ.there I's obtained the followi ng equation for the figure in the

previous article:



EEl -7, <EIng
In1 Ln2 OEI
SBInzs(2 Tz + Tap) + B B Tg) =0
n4

Ins

p/jga'syx/L = D and dividing by 2E,

Dnl(zTnl'+ Tln) 0 Dnz(zTn2'+ Tzn) +'Dn3(2Tn5'+ TSn)'+ Dn4(2Tn4"* Tén)=q
SubstitutinT intterms of the reference angles,

e L Do Dt ) )

2 [DngéAl+ Dps(841 + 845) + Dpg(8a; + &ap + éAB-)]—f—

( D3pTy + Dip -';V‘SA) + ( DgnTs + Don 27 84 )1

(%ﬂ5+Mng&M+(D%M+D%ZgéA) =
in which Zaigdﬁ.represents the sum of all angular changes from
member 2n up to To, the reference member. Expressed in a general
form the above may be written as

2 [( Zis D (§oaa]t

[( . Lt B, Z‘;: dA )+ (similar terms for otheamembersﬂ =§
cer  eee  ee. (B)
The above eguation may be written out for each of the

joints of the structure and there are therefore as many eguations as
there are joints. Since the total number of unknowns, the reference
angle, is also equal to the number of joinis the number of the equations
is just sufficient to solve all the unknowns. These equations will,
of course, be simultaneous but the number of uhknowns in eabh equation
is far less than the total number of unknowns. A consideration of
Eq. (3) will show that the number of terms in each eguation is only

One more than the number of members entering into the jointm for

which the equation is formed.

After the reference angles are obtained by solving the

simultaneous equations the deflection angles for all the members may
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.be obtained fromEq. (2) and the nonments in the nenbers fromEg. (3)

of Part I. The fibre stresses are then conputed fromthe flexure
formula f = My / 1I. O nere directly fromthe formul a
T *\nm = _2 X-( A _/\rrm—f~ Am ) N e eoe A
L
Article 3. Detai | s of Procedure.

By this nmethod there are the follow ng steps required
in the conplete solution of the secondary stresses: (1) Calculation
of the changes of angles dA fromEq, (2) of Part |, the prinary
stressss bei ng assuned to have been known, (2) tabulation of the
val ues of 2?8A for expressing T's in termof the reference angle,
(SRef ormul ati on of equations, one for each joint, (4) solution of
the equations, and finally (5) thé cal cul ati on of the severa

i ndi vi dual values of T and of the secondarytstresses.

I n a.procedure such as here considered it is highly

Inportant to reduce the work to a nmechani cal basis and arrange the
conputations in a nost systemmatic way. This has been largely
acconpl i shed by Turneaure in his book of "Mdern Franmed Structures”,
Fart |1, and also in an article in Engineering News, Vol. 68, p. 438.
As it is not the intent of this paper to advocate this nethod the
details of the nunerical conputations will not be given here.
Attention, however, should be directed to the exanplé wor ked out
I3y this method in the article in Engineering Hews just referred to

as the sane truss used there will be anal ysed by the new nethods in

ettt 111 For working details of Manderla's Method see Johnson,

and
_Bryan, Tur neaur e's Mbdern Framed structures, Part |1, p. 440, and

al so the Proceedings of the Arerican Railway Engineering Association,

Vol . 15.
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CHAPTER III. THE METHOD OF MOHR.

Articls 1. The Rotation of Joints and the Slope Deflection.

In mohr's method the quantity C in Eq. (1) is made the
through
angle which the joint as a whole rotates as a result of the truss
Fig. 4

deformation. Let lins 1%Abe tﬁe original position of member 12 and

/ 2 1' and 2' the displaced positions
’ of the panel poimts 1 and 2,
after the truss is under load.

The bent form of the truss is

shown by the curved line comnecting 1' and 2'. Draw lines 1'2"
and 2'1" parallel to the original positions of 12. From the figurse,
Bl’ B2 = the angles of rotation of the end tangents of
the‘elastio lines from the original position=x
1-2,
T12’ Toq1 = the deflection angles 6fcm the edastic lines
from-axis 1'3!',
Hqo, j‘ = the slope deflsction of the axis 1'2' from
the original position 12.

Also, T12 = B3 - Hips fon: = Bs = Fips

Since all the members at joint 1 are rigidly~oonnected'
togéﬁheg the end tangents of the elastic lines of these zmembers
are fixed at constant angles apart and the rotation of one tangsnt
must bring about the same rotation of all the others. Hence B;
for member 1-2 is the same for any member 1n entsring into the same
fleint, and

-

2 n
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where H| , is the slope deflection In fromits original position
Conparing Eqs. (1) and (5) it will be seenthat C=Band F is

a linear function of H the slope deflection.

The slope deflections H are geonetrical functions of the
axial deformations of the truss and can be found graphically as
fol | ows: Fromthe changes in length conputed by Eq. (l) of Part |
a WIlliot or displacenent diagram can be drawn fromwhich the displ ace-
nents of the panel points are obtained. It will be found that the
di spl acenent of each point is brought about in two notions, one
Is parallel to the nenber of which the point is one end and the ot her
I S perpendicul ar thereto. The last naned is therefore approxinately
the arc described by the nenber during the distortsion and is
a- neasure of the rotation of the nenber. This quantity divided
by the length of the nenber gives the slope deflection required-
The Mohr novenent of the WIliot diagramis not necessary here as
it is only the relative notion of the straight axis of the nenber
that is required and not the absol ute val ue. For each aaai aned
condition of fixity of the truss there corresponds a different set
of BsinEq. (5 but the value of T is not influenced by the
asaunption as the variation in B is taken care of by the correspond-
ing variation in H In case the values of B are to be tested by
experi nent, however, the Mohr novenenet is necessary and the condi -

tions of the fixity of the truss should be determ ned bef or ehand,

Article 2. Monent Equations in terns of the Hofeation of Joinfrs.

Subsititut £I5 the values of Tin (5) in Egq. (3) of Fart ﬁ)

there is obtained
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2ET1

M> = -i—* ( 2Bx4 By - 5 Hi,)
A12
2El 10

BEe s Fos =l (O R Bl S35 H 2;3)
i 2

_ Let the above equation be forned for all the nenbers
rr]eeting at any joint |~then by Eq. (4) of Part I,
L s 2 e D B S DS =2 DB =<3 DiyHi )= 0
frtiereD as before =1/L. Hence,
e =D, ¥ZD By = 32, DiHin= 0. .n (6)

where Z/ includes all the nmenbers at the joint.

Since this equation could be forned for every joint of the
truss and for each joint there is only one unknown B, the solution
of the problem can al ways be effected by solving the sinultaneous

equat i ons. After the values of B are obtained the secondary stress

iIs then found fromthe foll ow ng equations

Article 5. Details of Procedure.

The necessary steps réquired in the nethod of Mohr are as
follows: (1) Cbnputatfon of the changes of length by Eq. (1) of
Part I, (2) construction of the displacenent diagramand the cal cu-
| ati on of the slope deflection, (é) fornmul ati on of the equati ons,
(4) sol ution of the equations and (5) the calculation of -B and the

secondar y stresses.

Li ke the method of Manderla the systemmatic arrangenent
of conputations is essential in this nethod. This is largely
acconpl i shed by Kunz as illustrated in an article in Engineering

.News, Vol. 66, p. 3197« The exanple used in this article was
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taken later by Turneaure in illustrating the method of landerla and
also taken by the writer in iilustrating the three new methods in
Part I1I1. A comparision of the results obtainegithe various
methods is not only instructive but also determines the rslative
merits of the £ different methods. 1t is hoped, therefore, that

this article in Engineering News be familiar with the reader of

this papér.'

CHAPTER IV. THE SOLUTION OF SIMULTANEOUS EQUATIONS

It has been shown in the previous chapters that the method
of jbints requires the solution of a set of simultaneous eguations
involving'as.many unknowns as there are joints in the structure.

This part of the Wérk has long been considered the most laborious
in the solution of secondary stresses and is the one that taxes
fo the wtmost.

wesl of the patience of the computer, At the present there are
no less than four methods which have been used for the solution:
1), The method of Gaussl, proposed by Paez, formerly of Corneil
Univérsity, (2) the method of elimih&tion®” proposed by Turnesure,
(8) the method of approzimation? proposed by Mohr and (4) the
method of trial4 proposed by Waddsell. Among the four methods the
first seems to be the most expedient and practical. The writer
has used this method in the solution of 10 sets of 34 simultaneous
equations each in connection with the seoondary stresses in a 2 hinged

i dtss L LH dede et 4648
. Thesis No.75"of Cornell University by J. Paez.
24 Modern Framed Structures, Part II, p. 448.

3 Engineering News, Vol. 66, p. 379.
4, Bridge kngineering, By J. A. L. Waddell, p. 182.
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arch and hag® found it entirely satisfactory. Two more improvements
have been made by the writer! and they deserve special attention
flere: (1) As is évident from Egs. (3) and (6) the coefficients of
the unknowns T and B are functions of the truss dimensions and
are therefore constant. As the truss dimensions are usually symme-
trical about the centre line the unknowns for symmetrical joints
will Lkikewise have the same coefficients. This means that the
- reduction of the equations from one end of the truss toward the
centre is the same as that from the other end of the truss toward the
centre and the number of simultansous equations could then be reduced
to one half with one mete set of constant terms. This saves much
time for a truss haveing a grsat number of panels. (2) The
solution of the equations is accbmplished by means of & specially
constructed table in which svery operation is reduced to a mechani-
: cal bagis and no memory work is requirsd. To iliustrate this method
there are reproduced the tables which the writer used in computing
the secondary stresses of the two hinged arch referred to above.
In Plate I are shown the coefficilents of the 34 unknowns which are
cheracteristic of the arch. It will be seen that there are two

arrangements , '
symmetricakpf these coefficients: (a) about the diagmomal line AB,
which fact, first noted by Paez, renders it possibze to use Gauss'
method for the solution of "Normal Equations”, (b) about the two
horizontal rows marked by two ctossing dotted lLines. This fact,
noted by the writer, renders it possible to‘reduce the coefficients
of only 18 eguations instead of 34 . It should be remarked herse
that this result is obtained only by a special convention of nota-
tioné, i.e., symmetiical joints should be demoted by symmetrical

figures or the sum of the numerals denoting the symmetrical joints

l. Transactions of Am. So. of ¢ivil Eng. Vol. 82, p. 1102.
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shoul d be one nore than the total nunber of joints. By this
arrangenent one figure in the table serves to denote the coefficients
of the two symmetfical joints referred to two "Remark " col utms?
one at the top and the other at the bottomof the table. The cons-
tant or absolute ternms of the equations of which there are ten sets

are not shown in Plate | but are found in the next drav/ing, Pate:;ll.

The solution of the 10 sets of equations is acconplished
6n only one sheet of drawing, Plate II. In this drawing there is
constructed a table which has as nmany vertical and hori zont al coIUnné
as may be needed in the solution. These are bounded by heavy bl ack
l'i nes. Al the horizontal columms are next divided into |ongitudi-
nal rectangles, the nunber of which in each colum is to be determ ned
as follows: For equations (1) and (34) one line; (2) and (33)
two lines; (3) and (32) and all the renai ning equations four |ines
except in those equations where the unknowns are not for uninterrupted
successive joints as equation (8), in which case five |lines should
be al | owed. The coefficients of unknowns, absolute terns and -
check terns, marked by nunerals without prinmes, are next entered
into those rectangles which are next to the bottomrectangles in
each of the horizontal col umms. The check termis found by taking
the sumof the coeffidients of the unkncnws and the absolute term
and is to be treated just as an absolute termin the sol ution.

Thi s eheck term:: should be tested at every step of the solution by
t aki ng the same sumafter sone arithnetic oper ati ons havai ng been

per f onmred.

A step |ine, shown by double black lines, is next cons-
tructed in the table beginning wwth the first horizontal col umn at

the extrene |eft as shown. The figures in the first colum to the
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right of the step lines will be hereafter known as the first column

figurejs those in the second colulin to the right, the second column

figure, etc.

To begin with the solution of theequations multiply

2nd : A
(1) by the ratiom of e columns of (1) with reversed signs, and
7‘%/6 proa’ucf 18

put & 1in the first line of the horizontal column below. in the same

%
vertical columns. Mark this line w## the numeral (1"). Multiply
1) by %E%-columns or (L), calling 1t (1"'z)and put it in the first
line of the third horizontal column below,fglso in the same vertical
columns. The eign of (1"))is alwaysf@%posite of (1) but that of
f1et) igs not»yet determined. In the second horizontal column

there will be only one limstleft at the bottom which is to be filled
8y the sum of (2) and (1%). This line will be designated by the
letter (II). It is to be noticed that‘the first unknown of (2)

is now eliminatsd in (IL),
Multiply (II) by the ratio of 214 columns of (II) with
: the producl 1st _
8igns reversed, and put 3% in the second line of the third horizontal

column, in which the first line has already been occupied by (1"').

These figures, in the same vertical columns as (II))are to be

denoted by the letter (II"). Multiply (II) by grd columns of (IIz}
1lst

calling it (II"')) and put it in the first line of the 4th horizontal

column in the same vertical columns. Similarlq}if thers is a 4th

4th

golunn 1n (II) multiply it by
e 1st

columns ot (IT), ealling it (TF'Y),
and
gnd put it in the first 1line of the &th horizontal column, also in

the same vertical columms as (II).

Now in the third horizontal columng all the lines are

£illed up except the last one which is to be occupied by the sum of
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(r'fy> (11") and (3). The signs for (I'™) should be so fixed that
Its first termwould cancel out that of (3). The last |ine thus
obtained will not contain the first two unknowns of (3), anctiiwl

be designated by the letter (I11). Equation (I11) is to be treated

In the sane manner as (Il) as described above.

It should be noted that the above statenents apply equally

well to equations (34), (XXXIll), etc.

The check term should be satisfied at every step of the

process $,0 as to ensure correctness at every stage of the solution.

Repeating the sane process as descri bed above the bottom
line is eventual |y rgocckod when the 34 equtéﬁcws wi Il be reduced to
Si X equations involving six unknowns; i.e., Es. (XV), (XVlI), (Xvil),
(XVI11), (XIX) and (XX) invol ving <f>1$, <fil 6>017* <Pl Q><fi 19- 2"
<p20* ‘'Anie golution of these 6 equations, sinultaneously, gives
the val ues of the six unknowns f\mhich when substituted successively
in the equati ons marked by Roman capitals will give all the unknowns
required. These six equations should also be treated systematically
in arranging themin tabular form and reduci “the coefficients in

some such manner as descri bed before.

The above nethod of arranging the coefficients in
symmetrical positions is very useful in structures having a |arge
nunber of joints asﬁé%e i | lustrated above. For ordinary structures

having 10 or 12 joints its use It not advisabl e.
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CHLETER V, THE METHOD OF TR ANGLE

This method is due to Miller Breslau. Before taking

up the principle of this netii odifew V\orc'bOfi KX égggts'a?@ airr(1e regard to
"~ the signs. To secure uniformty in the treatnent an assunption

Is made that all the nenbers bend with a single curvature and that

all the nenbers conposing a triangle have only one kind of curvature,

either inward or outward, as shown in jF£EGV& bel ow. Thi s assunption ,
It should be noted, does not
influence the final results

of the solution as a reversed

curvature could al ways be taken

care of by a negative sign of

the noment . As a matter of fact the bending of truss nenbers is
a

I n nost cases opposite to that assunmed, being generally double
A
curvature in form

. Fi.G. .

Take a triangle as shown. 1, 2, and 3 are tne- displ aced
positions of the triangle 123 after | oadi ng. The original angles
bet ween the nenbers are Aj, Ag, and Ag which
are preserved by the rigidity of joints. From
the fignre,

Tt T1p = 44

Tgy + Toz = GAg

Ffg.G I3t tar = dAg
Substitute the values of T fromEg. (3) Part |, noting that the
nonents at the two ends of the menber are opposite in sign,
(2 Mipf Mg )28 + (o 2uq+ Mgy )—L8_ = &y
4o 6EI |, 6BI 13

Put NIL/I =V, there are then obtained for the triangle 123,
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vty v iV, - €5 aAlz
Since the sum of dA's in a triangle must be zero ,
V12-+ V21'+ V25'+ V52'+ V51-+ V13 = 05 oo o . (9)

If three of the V's are known, say Vios V21’ and Vygz, the remaining

three may be found from Egs. (8) and (9) as follows:

Breom Eq. (8), Wz, = BE.d8; -2 ( Vigt Vg ) = Vzl(
Brom Eqs. (8)aed (9), Vo = 6E dAp+ Vyg = Vop + Vg
Vgo = 6B dAg+ Vig + Vgy = Vg /

sins taew @ (10)
The moment Eq. (4) of rPart I is here expressed in terms of
V as follows:
i = 0 ¥V Laveund any jdoimtr = 205 . s (11)
.The solution of sgcondary stresses by the above method
applied to a truss as shown in the previous page is essentially as
* follows: In the first triangle I assume Vigand Vg5 to have been
known and find Viz. from V;o-by Eq. (11). These three V's when
substituted in Egq. (10) will give the three remaing V®s in the
triangle. Two of these V's so found, Voz and Vzg, also belong to
the adjacent triangle II and a third value of V, V55, may be found
from Eq. (11). There are therefore three values of V known in
triangle 1L, the other V's may then be found from Egq. (10). This
process is continued throughdut the series of triangles until the
last one is rsached where two extra moment equations become available
to determine the two assumed values V15 and Voj. After Vo5 and

Voq are known all the other V's are known by substitution and the

are
secondary stresses found by the equation
9%

1 = VZ_ oo e s 00 es o (12)
L
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The solution of the whole problemis possibfe because for any franed
structure conposed of triangular elenents if there are mnenbers there
w il be 5 ( m- 1) triangles and g (ESNREE =) B8] [0 NS For each
triangle there are three equations like Eq. (10) and for each joint

there is one like Eq. (11) so that the total nunber of equations

3 1
avail kable is =( m- 1 ) +-2( i -t 5) =2mwhichis just the
nunber <§ unknowns required.

I n applying the above nethod to the solution of sécondary
stresses the followi ng points should be noted:

(1). The directions ®& bending of nenbers are assuned
and shoul d sbe corrected by the conputed results which give both
t he magni tude and the sign.

(2). I n conmputing the change of angfes by<Eq.- #( 2) 1% -RPart

|, the signs of the <fAsthus obtai ned should be reversed for those
are
triangl es whose nenbersjassuned to have bent outward |ike triangles

Il and IV of the previous figure.
stress
G3)m The sign of the secondarysand the fibre to which

the stress bel ongs should be determned fromthe formof the bendi ng.
(4). The eccentric connections of the joints shoul d

be taken care of in Eq. (11).

For details of procedure of the nmethod of Muller Breslau

see Mblitor's Kinetic Theory of Engineering Structures, p. 235.
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CHAPTER VI, IHE METHOD OF MEMBERS.

This method is due to Ritter. Here a new system of
notations is essential for further considerations. Consider any
joint & of a truss as shoxg‘fgﬁgre four members intersect forming
thres angles. Each of the angles incluzded between two adjacent
straight axes of the members will be denoted by the numerals indica%hj

the opposite member in the itriangle. Thus the angle 354 will be

denoted by k¥ Azy, angle 456 by Ayg, etc. The two moments of any

4 » o

Fig. T

9 7

member liké 35 will be designated by Mz at joint 5 and Mzt at joint
Sl For member 45, the moments shall be My at joint 5 ahd Myt

at joint 4. But in cése joint 4 is considered instead of 5 tiae
same moments of the member 45 will be designated by Mg at joint 4

and M at joint 5. That is,

B! :
My for Joint § = Mg for Joint 4
My+ for Joint 6 = Mg for Joint 4

The sign of the moment~ is made positive if the moment is counter

clockwise.

117
Apply}%q._(z) in Manderla's method to members 53 and 54,
_ _ Iz - Tea = dAzg,
N
Substitutegthe values of T from Eq. (3) of Part I,

(21&5-M59)£§—(2M4—M4t)£4_=_=6E&A34
IZ Iy
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Si?;%arly for dA46 and dA67.

Put-M L/I = V, there is obtained for joint 5, including the momsnt

equation (11),

gl di=, = (2 V- Wz ) - (2 Ug- Var)
6E A4 = (2Vy -Vgr ) = (2Vg - Vg1 )
6E dhgy = (2Vg=-Vgt ) = (2Vy = Vor )

W L6 )y, (1, ) vV 0./ 1)
Vo (I / Ly ) = O

oo cee cee (15)
For every joint there are as many equations as there are members
intersecting at the joint, or two equations fxor each member, so that
the total number of eguations Bquals the total number of unknown:
moments. In this method, therefore, the number of simultaneous
equations is very much in excess thgi.those reguired in the method

of joints and an expedient method fror the solution is absolutely

essential. The following graphic method has been used by Ritter.

Lay off 4 vertical lines spaced at 6E §A apart as shown)fijéi

This applies to the same joint as the above equation (13). Assumiqg
GE3z| GESAse, GEMer]

’

V7 >

L 6‘9. 8

3

e
N\

the values of V' as having been known draw the vertical lines
spaced at V' apart from the lines alreadj drawn. These lines will be
assumed . . the _
E as the lines of action ofAI/L's gonsidered as forces.

Lay off the values of I/L on a vertical load line ang’with pole Og,
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4-

ara
di stance Hg )drawthe rays as shown, Parall el to these rays construct
an equilibrium polygon for the forces i/L. Find the the position

of the resultant of these vertical forces and neasure the distances
of the fBorces |/L spaced therefrom These will then give the
correspondi ng val ues of 2V. The proof of this fact conmes directly

fromEq. (13).

Now in actual solutions V' is as unknown as V itself and
nust be found in sone other way. For practical purposes ifc-:is; 3
obtained by trials. Consi dering the fact that any change in the
val ues of V has only half the effect on the values of V the first
trial could make VA =0# The follow ng fi gureﬁshows the positions
of the und&Bpl aced forces i/L for the joints (4) and (5))the equili-

bri um pol ygons being omtted.

GERib i3 2 3 |4 e {7

4

Joint 4. e - JOIHNLS,
FIl g.9

Let the distances between an undi spl aced force and the

resul tant be designated by W then,
2Yy, = Vg3 W
2 V4 = V4| 3= %

But in conpliance with the adopted notations,

Vgt = Va, and V,, = Vs
Ther ef or e, Nt ie = Vo) 2= Vs ol:2s+ F 43S
= ( Vgi+ Wg )/4 + W, / 2,
o, GVg = ( Ws+ 2 W ) / 3
Similarly, Vi = (W +2W ) /3 = Vs

~ o )

® e o o o
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fo be
The above equations enable the offset Vey known for joint 5 if the

val ue© Vg is known ie known for joint 4.

To analyse a truss by this nethoq’first assunme V' for
all the joinfs gpre zero and wiih this understandi ng construct the
force and equilibridﬁ* g OPfL for every panel point of the truss.
Next give a displacenent to the forces I/L until the above Egs.
(14) are satisfied for every jofnt of the truss. After the forces
are definitely |located the values of V are neaéured off and t hee
secondary stresses calculated frombk.. (12) e |

The follow ng. points should be noted in the above
constructions;:

(REI8F" Negati ve val ues of <¥\afe to be laid off on the
left side of the undisplaced forces when going over the joints
in a clockw se direction

F2)s In transferring the offsets VV fromV they shoul d
be laid off in the sanme direction as V

(3. The equi li brium pol ygon -should be redrawn for each

change of offsets..

CHAPTER VI | * COVPARI SON O THE D FFERENT-  METHODS.

A conparison of the different nethods described above
coul d not be made unless they are actually tested by exanpl es. It
wll be found that Htter's nethod is the least practical of all
as any net hod based. on trials is always inferior to those which
have definite nmeans of prodedure. The met hod of muller Breslau
is superior in that it does not involve a large set of simltaneous

equat i ons. On the other hand it requires a greater anmount of work
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In the conputations, as V being a large nultiple of f, the secondary

stress, it is a large nunber and great accuracy nmust be exercised in

conp utlng
the Jtkgui=aiii

t he conputations had to be made correct to seven places which is oat to

In ~"® exanpl e nentioned above, in Mlitor's book,

b& consi dered-”~ in practi se. Therefore the only nethod that is
suitable for practical engineers is the nethod of joints, in spite
of the presence of the simltaneous equati ons. The nerits of the
nmet hods of Manderla and Mohr are practically equal and each has its
di sadvant ages. They will be dealt with in detail in the follow ng

articl es.

Article 1. Features of the Met hod of Manderl a,

() It is entirely analytical and gives nore accurate
results, |

(2). No graphi cal constructions required with the result
that there is no inteference in work.

(3)-. The val ues of Mare found by taking the al gebraic
" sum of onfy two terns containing T, which is nmore conveni ent than
fce handlingthree terns as required in Mohr's net hod.

(4). It takes much less tinme to find the change of
angl es than to construct the.displacenent di agrans for the slope

def |l ections in Mhr's nethod.

Article. 3» Features of the Method of Mhr.

El)= The simul taneous equations are nore easily forned.
(#)ie The conception of the rotation of joints is as far
nore superi or thani?hat of the reference angle as the values of B

ditti.d be actual |y neasured.



37

(3)s The values of B being nearly equal for all the
joints, an approximate solutioy of the simultaneous equations is
possible. (. See Chapter II of Part IV). This feature is very

'important and it alone may offset all the other disadvantages of =3¢

the method. :
are required

(4). Theore are Less operationsAto find £ after the
equations are soived, thus greatly reducing the chances of making

mistakes, as the solution of the equations c&®idi be checked.

(5). The absolute terms in the equations can be found

more directly than those in Manderla's method.

(&)< The values of B's have the same sign at each

gilde of a certain point which affords a good check.
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P AR IIl NEW Hel T H 6B S FOR oM PUT ING

S ECONDARY 5T RESSES DUE

T 6 REGTEDT T Y OF e 6L BTS.,

CHAPTER I, FUNDAMENTAL PRINCIPLES.

Article 1. The Fundamental Conception,

Secondary stresses are fibre stresses produced in the
members due to bendingvmoments developed around the joints. There are
maﬁy sources from which the moments are derived but the principal one
is the rigidity of connections. If M = the bending moment, I = the
- moment of inertia of the member, y = the distance from neutral axis to
" the fibre whose stress is required and £ = the secondary stresses; then

f=My/I = M /S, where S = Section Modulus = I/y.
Therefore, ML = g BE o e e e (1)
In other words, "If S be assumed as a force and M be the moment it
produces about & point, then the offset of the force from the point

gives the value of the secondary stress."

Let AB be a member connecting the joints A and B, and

. : Elg- 0% .
S its section modulus, f7If S be assumed as a foree acting in this
\;7\\*3;\\» /7@7./Cl member, like the primary stress, it will
ffa. B produce moments at A and B if its line of
. 4 ~

A S

the offsets fg and fy, will then be the stresses produced at A and B,

action is displaced from the axis of AB, and

by (1). . Particularly, if the moments about A and B are those due to
rigidity of jointg)the offsets f, and fp will be the secondary stresses.
The line of action of 8 will be called hereafter the "Secondary

Stress Line" or briefly "Stress Line", no confusion being
b4
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causes
entertained thereby as the primary stress line is not shown or

understood to be the axis of the member.

It is now evident that the values &f f depend only upon
the location of the stress line_S while the moment M will also depend
on its magnitude. As the magnitude of S is constant, being the
section modulus, the position and direction of S and consequently,

£, will depend sclely upon M.

Let the above conception be extended to every member of

the truss. There will then be as many stress lines as there are
proportionale
members. Each stress line will be displaced to an extent weasur-
fb ]

. &bh& Wik the bending momente produced. To utilize this fact
: 5
by reverting the prowess it is at once evident that if the stress
lines are so located as to satisfg various imposed conditions the
offsets of the stress lines will give directly the secondary stresses.

This ooneé%ption is fundamentsal.
o which

The firsf condition the&t the various stress lines are
subjecfé&o $is that the total resulting moments around every joint
must be zero. (Eccentric momentsfg;cluded here, bﬁt could be taken
care 4f very readily, see p.59). Graphically this means that if
a force diagram be drawn of all khthe stress lines in the truss and
an ¢ equilibrium polygon be likewiée constructed on the truss
diagram these two polygons must respectively close. This, howe#er,
is impossible for the stress lines adopted above because the values
of S being constant they could be not be made to balance each other.
" Thus, in the figure, the stress lines S1 and Sg could not balance
pach other unless they are on the same straight line which is impossi-

ble. To overcoms this difficulty and extermal ideal force will be
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applied to the joint, wth such magnitude add
direction that the § equilibriumis maintained

around the joint. Thus in tfee figaa*© a

force R nay be introduced which will bal ance

ik the forces S and Sg. In general, the
Ica . hq | f ’ magm'fua’e
value and direction of Ris equal to the
- but
resultant of. the stress lines acting on the joint, wth opposite
N

sense..in djrootion. : g
| {OP% Inportant to notice that the position of R nust

be such that its line of action passesthrough the joint in considera-
tion, so that there wll be no external monent. I n case of eccen-
tric connections the position of R may be so adjusted that its value

and the offset fromthe joint will give the eccentric noment.

As a convenience in termnology the termstress line wll
be understood to be the internal "secondary stress line S while the

external force will be understood as the balancing force R

Wth the conceptions of S and R thus established it is
now possible to draw a force diagram around every joint £ aw
(fronﬂﬁﬁichf%onstruct a? equilibrium polygon. |f these two
¢ pol ygons are made to close && any grhg?noﬁggethe first condition that
the sum of internal moments nust be zero around any joint is every-
where satisfied. Further, fromthe condition that the total ex-
ternal noment is zero %for all the joints of the truss it nay be
Inferred that both the force and equilibrium polygons of the exter-

nal ideal forces R nust respectively close.
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Article 2, The Fundanent al Equati on*

As noted before the secondary stresses are due to nonents

devel oped principally by the rigidity of joints. In a frictionless
pin joint the deformati ons of the nenbers can be taken care of by the
c*mnge)'of angl es, mhichigfnot possible inarigid joint, where the
def ormati ons nust be provided for in sone other way. As the nenbers

are elastic the sinplest and easiest way would be to bend and tw st

tke*n to orefer
feelkﬁﬂﬁfaxSABQ that the joints may be so displaced that the defornations

al ong the axes of the nenbers nay feejust as well provided for as if

the joint were frictionl ess pi ns* But the nenbers cannot bend or

tw st wi thout being subject to sone outside influence, this outaido
Pradwal"j

iwfiuenee de Whf.) £t - pr Qluc-ee- the internal stress. |n other words sone

wor k must be perforned ON the nenber to produce thi&s bendi ng and

tw sting and as a consequence thereof sone internal work nmust be

!

set up to respond. Take, for illustration, the beam 12 subject to the
/ A
/ T2 =T 71° i nfl uence of nonent M which increases from
T = Qa1 o.My ar- 2* (This is equivalent to
6——3L——+ a force P= M)/ L placed at the free end 1
M when the end 2 is fixed.) The effect of M
2
Ffrl ' on the beamis to rotate the end 2 through an
angle To; and the end 1, an angle T"g. These rotations are brought

about at the expense of an external work in amount equal to [/2 My Tgj.

This induces an internal work in the beamequal to

lj MZ dx akon 1 MBI ii
= P = —
) = = - e, = == T
Mp L >
T,2\ — 5 E I LI B ] L B ) L I B [ 3 B 1 ( )

That is, the end 2 of beam 12 rotates through an angle & Top at the

expense of an external nonent loe
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Simlarly, the bending and tw sting of truss nenbers due
torigidity of joints are also brought about at the expense of

external nonents which becone internal nonents when the joint is

~ consi dered as a whol e. The8® bending and twi sting are the results
of two different rotations* the first is due to the defornation of
truss nenbers and the second\ls due to the rigidity of joints. Let
iR 137 148 and Ij"b@f%gr menbers neeting at joint 1, whichis rigides
- 313 SL
Fral \ /&43 After |oading, on account of deformations
““'I:-.n_ _ I' ///7 : of nenbers the axis lines 12, 13, etc.,
—=a - woul d.have been di spl aced eto 12*, .13*, etc.
2 e Qe  t @A ANC joints been frintionless pins.

The angl es 212* = Hj 2> 313* = H g/ etc., are functions of deforna-
tions of the nenbers,and are different for& different nenbers.
Therefore, they could not be actually realized inTigid joints
.vx,here a menber is prevented fromrotating rel ativelilto the ot hers.
0)] fhe Mot her hand all the nenbers nust rotate through the sane

angle and/the total ratations of the nmenbers 12, 13, etc., are not

Hi - S 30 = i { m:m 2¢4, 3
ro%atlgﬁ §f S hie bjuct)i rll_#plf,_ B b oloor ) t@kt:e("El sarrg BFh'S (88a -

result may al so bfc obtai ned by considering, first, the sesfeep&
axes 127, 13", etc., brought back to their respective original
positions 12, 13, etc,, and then, sinultaneously, all the axes

turnaf t hDOh t he common angle B

These rotations as nentioned before, nust be produced at
t he expense of nonents,aaa& the works thus perforn'ed ON the nenbers

12, 13, etc., woul d be

Wiz = 2 Mz (Hzt3)
Wiz = £ Mz (Hiz +3)

-
— -
_— -
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Si nce B.1 Is the sane for all the nenbers at joint 1,

%2 - g(Hrz"HJBJ

113

Wi = =
-ﬁi —V\—J%;V < (Hz—Hw)

Now H12 " H13 'S equal to the chang of angle betwean the members
12 and 1S > ) 06433 H= Hip = 4%z, ere.,

-

=3 .J.’

Wiz Wiz J .
Ms~ s — 24%as
Hence, ~ e (3)
E ’ fvﬁg~ Ma —a 4%3m
In order to express the work W, Wg, etbs'.-, It 1S necessary to
expressions for the work for
findaM oae at the other end, i. e.,” Wy, NP -clC. = BUEsiSkar

reasoning as for equation (2), the total internal work in beam 12

5 : t en( - z
due to nonent M, at enfi 1 and M21 & €A ij’LM C/X

W— Wit Wz =z E7 -

- = where Mx= MQ“MQ =z L‘TZTX'"/‘@%
0 A L =07 ( Mz + Mz). See Fig.11.
S . 1 2 |
= My = [Ple =% (Mletrts)]
e e - = i : L~ =2 .
M@ﬁ A = W = %E%I@zﬁff/\ffz(%ﬁﬁﬂ)
e M F’_‘? /4 2 s,
| T =2 U%z‘l"/\//z.{)j C/X
M /.-»-"// —M o MZZL MZL M M
Miz o j . S Wit Wy, = _ZLE-:% i‘}' T “_%_— '—ié—gq

It will be seen fromthis equation that the first two
ternms are the works done on ends- -1 and 2 of beam 12 by nonents
M”72 and M”g respectively, see Eq. (2), while the third termis the
sum of L\R%rks done by Mg °" @~ ?2"& "oi _on end S 1. But by

Max#wel | 's theorem the work* done ~ "if Mzi on end 1 and that by M,q

- on end 2 are equal and therefore the difference of Wg and W21 * is

sinply the difference of the first two terns in the above equati on.



: =] M L M L
- e =TT = s = | % r 5:15 ’
- 4 ‘
Solving simui&gpeously,
L Mg Moy L
e~ 251 (= ~ )
1 s L
G sty THE (2 My = Mgy ) »
Similarly,
1 Miz L
Wiz = 2 G \Blgg=lg)

Substitutbythese values in Eq. (3), there results

Lig . L1z
6EI o -2 Ml@ = l5p Jes 6EI z (25 = Mgy) =4Kgg
Replacing M by £ = S, where S = I1/y,
L1z L13 -
: 2 £12 = £o9 ) = — (2 8 = %37 ) = 6EAN5q5
e Y13
Or, in general,
£ : L '
;lg'( 2 fim = fm) ) 1= §£E_( 2 f1n = fp1°) = 6E4%y,
im in
2 s e e o00 (4)

Where)f gand AX carry their own signs.

This is the Fundamental Equation which forms # the basis
for both the theory of Deformation Contour and the process of Successive

Deduction.
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CHAPTER IIk ANALYTIC EQUATIONS.

Qqre
Before proceeding further a few qudiég necessary o

regarding the signs of the quantities in the fundamental equationg
L (2 tm) - T2 (2fi-F1) = GE&AUy,,
where £ is the secondary stress andzMOié the change of angle.‘ To
secure a uniform éystem a positive f will be understood to bd® due
to positive moment which is assumed to be counter cloekwise. This
would mean that the value of f, together with its sign, applies to

that fibre of the member which is first met with in passing around

)f*\ F the joint in a cleckweise direction. Thus
o £ Frg- /5, ;
in tke "fHgure, positive f re#fers to the

37 \‘Jﬁ*.F;:' . - . c
f?-ﬁ5 upper fibre, i, ., it is tension when
F@y./é,
the moment is positive. Similiarly, in bthe—following-diagkam, if

Myoe 1s positive and Ml5 negative, the top fibre of 12 at 1 will be
it
G ™M f?éh/é
1 =~Mi3 '

As 1s customary it is positive if the angle ¥ is -chanhged to a larger

tengion and that of 13 at 1 will be compres-—

8ton. iNext, consider the sign of K.

angle, i.e., if the angle of rotation of 12 = H2 is greater than
Z zf that of 13 = Hz.  Adopting the sign of the
moment it may be inferred that if ths dotted
Fig. 17 .
lines in tke™ #£+suwwe are positions of the

§ members after loading, both Hy and H

83

are positive, being counter cloekwise in

Hy 2
fi[ /77 direction. Thereforse, ifd% carries its

own sign, Hg - H2==AW. Comparing this with the equation

o e W)

from which the fundamental equation is derived, it is seen that the

sign of 44, in the fundamental equation is negative for the preéent
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convention of signs.and that

Z Lin =

7//’,"; (277/77"'7[/-77/)" (Zf. 7(—/)"' "’GEAO(/)//??
if,the member 1m is met with beforejgember in when passing around

the joint 1 in a clockwise direction.

or, §”” (ZTin—fr) = %f(&ﬁm*ﬁx)‘/‘éfddwm
~tin

Let- L?y U and BE4Xpm= K

nlm’
Lhin (CEtn=7m) = U (2fim-fm) T Ko
| Um Vavele
Or, Z][/-/;“ﬁ?/ = U//’) (Zf//ﬂ f/)-f [///7 (5)
This modified form of the fundament¢l eguation will be used
mermorize

throughout the rest of the discussion. To 9u§‘thls form %e
meamany it is only necessary to remember that the gquantity

( 8fypy - ?ml ) Uj,, of & member lm vhen added to Knlm in a clockwise
direction ¥ gives the value of ( 28 .= b ) Uy,, of the

next member met with in the same direction.

z 44 Calling Eflm - fml = Py and
= 5% o =um
ml 1m ml
5 Then, In Fig./8,
3 ‘ Y24 _ . Kazo _
« Fia. I8, 24 = a5’
o Ugs Ugs
Or, in general, :
ln U lm '1— U LI e co oo e
in in
From Eg. (5) when the stress f - is known the stress at
1
the other end, fnl’ may be found if the stresses i1 and fml are

known. Thus, suppose the stress&ig th; first triangle 123 or
T

- triangle A are known. The stress f55

of member 85 in triangle B can be found from

2
the equilibrium of joint 3 £rem the "loment

= "

Equation

2 2.8 50 .. G (1)
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for all the nmenbers neeting at the sane joint. In this particular
e Rk L AR G 3 o T35 35 ==
where f4 and fsg are known fromthe triangle A Substi t uti ng-

the value of fys obtained fromthis equation ERGEG:E=(5) 5
#>- f Zf ss. [ujf(ff@"z ) + 222

O in general, from(5), A

i m2fin- rU]n Lt )~ 552 < (5)

The stresses in neinber 25 are found fromthe fol | owi ng

two simultaneous equati ons:
Zfi-foe = De(2fos~fre) + 222
Zhe—fon = 5;2;3.(263—@2) = %’3—?
N = s = |oof & (fofothihnnrg i A

, in general, using the notation r, Fig£0

o o foy— imn
j I,_;561301‘nrrr1 I Mr n/fej+ Um e

If
imn = 3L « 378 --]

ByEQ- (6), : !wﬁ'ﬁ?"
- Zﬁ]m" frm~ jf;ﬁ/?'—z[(.{nm m;)@
From fee abovo equations-, /1150. i/vn Uri/r) L'"™J Unm
Henra r = AORERI e eohrt A T w O = (0)
[ ' E(] <+&} - mn mn
Thi s equation shows that the value of i» = 21" - f may be
2\ nm nm m

obt ai ned from the val ues of ffand r at the other end of the nmenber
e
wi t hout knowi ng the val ue of

Applying Eq. (10) to any nenber rm, chord or web nenbers,

there is obtained

e e N S O s e i * s ~ULE]
where r's carry their om signs. This equation shows that the
stresses at the two ends of a marnba are known if the values of r

at those ends are known.
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CHAPTER _I1L., GRAPH CAL CONSTRUCT! ONS.

This Chapter intends t-e describe sonme of tIB graphica

constructions that are common to both of the nethods of Defornation

_Successi ve.  Dec/ucJrbn* :
Cont our and "fédec mot:hod of fi Uaarenet ofk lEt+c [.noromonts> It iIs

vefer” 1o
advi sable in reading this chapter to <sof«xr frequently.the
out g
exanpl es wor kddai n Chapters V and VI | .
Article 1. Prelimnary Considerations.

(a). Scal es.
For graphical constructions the scales? of f is evidently
dependent on that of EAO( . From the fundanental equation (5)

It is seen that the scale of f is & the sane di mensional degree

as that of finim or of (6EMj [ ( Uy )u11' Since L is always
U.

expr essed in‘Peet dl xi - yAin inches®L and y nay be represented by

the same unit if 6&"W/ is changed into |/2 EAO( « Hence,

hereafter K is to be understood as EAOO/2 wi th the understandi ng
’that y. is expressed in inches but represented as if it were in feet.
As the values of EAGh are found fromthe prinmary stresses, by graphic
or analytic methods, it is convenient to consider only one half of
the primry stresses. | n graphic met hods the scale of primary
stresses may be nmade only one half as large as that used for
nmeasuring the val ues of EAoL . This will give the value of K

directly.

The scale of S, the section nudul us, used, in constructing
the force diagrans nmay be anyttii:ng i ndependent of f as it is only

the direction that is “required.

The scale used for r nust be the sanme as for K or f.
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() —Signs.

In the present paper there are two instances where a
conception of signs is necessary. Ohe is rotational and the other is
l'i near. The first applies to nonents, angles, circular sections and
directions of contours while the second applies to the 3tress |ines,
their offsets, representations of f and r, and the co-ordinates
of vari abl es. The rotational direction will always be considered
positive if it .is.CILhWER CLOCKWSE. ~ For |inear directions there

convenfi ons>

are many conoi dorationo, but tfee principle is, with the exception of

g
the stress lines, that if agAig t he base of

a dC A
14 | - I a straight line through a and b wtta a as
EC827 origin, the distance froma to x is positive
if xis laid off froma toward b and negative if ®wy fromb. That

Is, It is positive if it is between a and b and negative if it is on
the opposite side of a fromb.

_ ~convention
For stress lines the follow ng consideration is necessary,

It has been shown that a positive nonent is that which wll rotate
a menber in a counter clockw se direction. As the nonment is re”~
jrresented by the product of f and S the direction of is should be

such that a counter clockw se nonment woul d give a positive stress f.

2 4' For the sake of uniformty all the stress
: lines Swll be considered as conpressive
F%;Zfﬂ
stresses in the nenbers. Under this con-
¢ vention, if the stress lines in 12 and 13

are as shomnz:fj§>a”&.fgt_mﬁll be negative, (nonent is clockw se about
1 and also about 22, and f ;3 and f5; will be positive* (nonents
counter clockw se about 1 and -3. )» Hence, when the position of the
stress lines a»e known both the sign and the nmagnitude of f are at

once obt ai ned. Burther, by this convention the force diagram
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of stress lines S assunes a definite formwhich twnds to facilitate
Fi'g.£3.
Its construction. Consider the sinple truss as snown, The

SN
/

, J
/‘}g. E

letters A, B, and C corresponds to a, b, and c of the force

di agram It will be seen that the forces da, ab, be, and cf
may be considered, for illustration, as the trunk of a tree while
the forces ah, be, and eg are to its branches. Thi s makes it

easy to renenber that ail the stress lines in web nenbers and
end posts fornthe trunk of a tree while those of the chord nenbers

form the spreadi ng branches.

(c) Truss D agrans.

Two or three truss diagrans are necessary # in the graphic
net hods presented in this paper. he of the diagrans will be
used to record given informati on® and to construct the val ues of
K. The use of this diagramwi |l be described here and also in the
next articles ?hile the constructi on© on the renaini ng di agrans

will be considered |ater on.

The quantities S and prinmary stresses in | bs. per sqg. in.

are first marked on ail the nenbers of the truss. There are then
next constructed the "y-clrcles". These are the circles with radii
equal to y of the nmenber drawn at one of its ends. Let L be

the 1&gth of the nenber in feet and y in inches. At one end ef
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of the member draw a circle with radius equal to y, expressed in inches.
The scale used is the same as that for L which is in feet, the valme

of y is thus magnified 12 times. From the other end of the membeb

: dr 1 t ent to thi ircle. This
f%?’iﬁ¥ aw a line tangen o this circle 8
4,,//,/17”$f?’§E;\\ line will be known as the "U-linex". To
L :
I — = find the ratio of K/U = K/(L/y) lay off
o~ L‘ ; =

a segmenﬁ equ*al to K from the end of the member from which the U line
is drawn. At the end of segment K draw a circlﬁ?angent to the U line.

The radius of this circle then gives the %k ratio required.

Article 2. Change of Angles.

In Part II thers are discussed the various methods used
to find the change of angles in a triangle when the sides of the

For
latter are deformed. To adopt te the use of graphic methods the
-ing +he
following construction is the most convenient. Ezceptﬁg&systematic

are
arrangement the principles of this method ¥s due to Ritter. It has

been found that in a triangle 123,

Eadg13 = (Pgz - P1z) Cot 132 + (Pgz - P1g) Cot 123
Bl on = (Plg - P25) Cot 128 + (Plz = ?15) Cot 213
By, = (P15 - P;,) Cot 213 + (P15 - P,;) Cot 133
v, EAWgyz = Pos (Cot 132 + Cot 1283) - Pyy Cot 132 - Pyo Cot 123
EA0(/152 =B (Cot 123 + Cot 213) - P,y Cot 128 - P, Cot 213
EAW o0 = Prg (c%, 22153 + Cot 132) =~ P,, Cot 218 - P,, Cot 132
| Suppose In triangle 125,f%hréugh 1l draw a line perpendicular to 23 with
2 of length

an asmounmt equal to Pgz and through its end draw a line
parallel to 23, glving segments a and b. Similarly

find the segments ¢, d, &, and f. Then,
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* Edodyy=(a+b)-(f+4a)
Edxj3p = (c+d)-(a+oe)
- o = ) - (E D)

: 5umof

Or, the change of angle of any angle 213 1s eqgual to th° segments &
and b minus

¢ &+ ¥ » belonging to this angle substraet the sum of the segments

of the other two angles f and 4 which are not adjacent to the segments

of the angle under consideration, a and b.

To secure a syatematic arrangement both in sign and mag-
nitude the following scheme is advisable. The example is for a
trlangle with ané/rlght angle but the method could be easiily extended
to any klnd/of trlangles./A dgggff the primary stresses per sq. in.
as shown. Draw the lines papallel to the sides and obtain the seg-
ments a, b, ¢ and 4. These segments will be of the same gsignas

- A
F{? i 2 the cerresponding sbéresses. Further, thers

is obtained the small triangles, similar to

22 -
cjf’ the large triangle 123, 12151, 21252, and

23

3lgez. Next adopt a sign of contour in

following the consecutive sides of the

a
1 3 E 35 different triangles. Let this be counter
e Sy
o a clockwise. to secure unsiformity. Then
7 I ,

to find the change in angle 213, proceed as follows. At the

end 24 of segment a, met with in a counter clockwise direction

along 2.3, extended equal /o

after 3. when following the contour 15121, measure off 2.A % the

3 1

segment ¢ which is that segment of the side 1325 of the triangle

31523 that is adjacent to the side 23, t&re eme pewrsellist te gi%1°

If the sign of ¢ 1s the same as that of a it is lald off away from
toward &;

ziAbut if it is the negative of a it is laid off away from 31, as

—

e s T tha diestarniecs of
S}:L: wWile L ETE: CilS QEDLaiiGo

- A
3 Yeare)
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shown. Then the distance e 3jA, the ssgment from the initial point
314 to the end point A, gives the value of EJKH3. The sign of
51A is the same as that of a because A is reached from 3.4 in a

the same
counter clockwise direction. In case ¢ and a ere have differsni

<
signs and Heet—e is greater thn a, then

fig.27 Fig. 27

bhe point A is found as follows.A Lay off

segment ¢ from 2, toward 51, the point A
will then be found bslow the point 51. The distance Slé’giving
EAXQB, is now opposite in sign £é2m that of a because the point A
is reached from 51 in a negative direction, clockwise, with refer-
ence to the contour 15121ﬂ : Similarly the change in angle 123
may be found b¥ from the segments b and d, the latter being that

part of ef tne sidex 138z of triangle 31,2, which is adjacent to

S5 5
the side parallel to 1585

To find,EA%kz lay off the segments a and b from the end
ik of cide 1

3 3
different in sign#s, one should be laid off toward 25. Similarly

Ry CAre being taken of the signs. If a and b are

if both a and b are of the same signs as ¢ and d they should be
laid off in the opposite direction-as shoWn, which is for a and b
having differnt signs from ¢ and d. As a check the sum of the
E 4ol 's should be zero.
/WGQWNQ&/
It should be noted that gince y is ween 12 tlmes as kg

the primary stresses should be laid off with a scale one half as large

as used in measuring the segments 3,4, stc.
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Article 3. Def ornati on and Property Lines,

Consider Eq. (6) which is the abbreviated for”of the

fundanent al equati on,

, = : A
s = DR S T
As this is a linear equation connecting i», and e it may be

represented by a straight line ab if the side imand In be considered

Ff.q. Z8.

as the co-ordi natepa¥Xes of rim, and r, . Positive r will be
L
r - m A I . “
laid off toward mfrom1 while negative r--

: : andawayf r oom
will be laid off anay ef mfrom=\, S mlarly

RO To locate this straight ‘line ab

the sinplest nethod would be to find the

I ntercepts on the*© two axes.

1m =_Knlm/U1m’

ifor =0,

. in
that is,the intercepts on the two adjacent sides are respectively
equal to the values of K, ndivided by the values of U for the
correspondi ng si des. The scaleH for K/ u should be the sane as

that used for r%and f. Regardi ng 1s® the signs of the intercepts

it wwll be seen that positive value of K/ U belongs to the side
which is first net with by passing round the joint 1 in a counter-
cl ockwi se direction (if Kis positive), and the negative val ue of
*Klu belongs to the side next met with in the sane direction.
Accordingly, the value of KNim' Y ,'s 1% d off toward n while that
of KnI FYI ' m's laid off away fromm as shown. TR LS or=

hgt he

positive K, if it is negative the sign is reversed. Joi n-
fend points of the intercepts the straight line ab is obtai ned.

For any value of r to find the correspondi ng val ue of sl 5 S
: | m I n
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A

only necessary to draw a line fromr,,parallel to the sige In, the
n
legth of this line intercepted "between the side Imand ab w |

give the value of rj_,.

In each triangle of the truss there are three of these
lines ab and they conpletely express the fundamental equation (5).
These lines will "be known as the "Deformati on Lines" neani ng that

they are derived fromthe fundanmental equation involving the

def ormati on of the nmenbers. They will be designated by a letter
denoting the triangle and a nuneral denoting tne joint. Thus,
t he

the line Al woul d designate thak line which & belongs to triangle

A and joint 1.

It will be seen fromEg. (6) that if K'm= Q}these
deformation lines will pass through the origin, that is, the joint
1 in this case. These lines will then be known as the
“"Property Lines" of the truss, since they represent the ratios of
U which is the ppcoperty of the truss. They are the sane for

any kind of | oading.

There are two features of the property |ines which de*serve
noti ce. (1) In any triangle the three property lines nmnust neet
In one point. (2) The values of r may be laid off in any scale.
(For deformation™fcklines trie scale for r nust be the same as for
N/EE]) The first feature furni shes a good check of the defornation

lines since they are parallel to the property |ines.

For details of construction of the defornation and
property lines the follow ng nethods are reconmmended. First |et
the property |ines be constructed. Use will be nade of the

U-lines discussed in (c), Art. 1 of this chapter. To draw the
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property line Al in triangle Adraw any arc with joint 1 as centrae
on the truss diagramused for constructing the values of K It
is preferable to nake the radius as large as possible to seizure

accuracy. Let this arc cut the sides 12 and 13 at a andfe b.
Wth a and baazs centres draw the arcs tangent to the U-lines. Let

the radius having a as centre be called

Usg and that havi'ng b as cent be called
Uqgt On the Second diagram in triangle
v\ I he
~ A, lay off the segmet u-ig on* side 13,
. A N

not side 12, letting the end point be c.
Wth ¢ as centre draw an arc with radius =
u o Through ¢ draw a line parallel to

[ =23 7
the side 1$ cutting the arc at d. Join

I d. This is the property line Al.

i £
— U 3 : Smlarly all the other property lines in
triangle A nay be obtained. As a check, the three property lines
in the triangle should neet in one point. The same process nmay he

extended to every triangle of thetruss.
= ; A

I-To deformation |ines since the values of K have already

been found the rati o of K/ U shoul d- next be constructed. Take the
Fi g. do.
2 g
A joint 1 for illustration, From1 lay off
A Ib and la equal 3. A= 1/2 E40(3 Wth

a and b as centres draw arcs tangent to the

O lines, the radii of which wll giye}the
the values of Ka; / U;, and KM / U”’g
&8spectivel y. O the trusg, di agr am wher e

/fé/ 3 the property lines are drawn lay off the»#
i fig. 30

val ues of Kai / U;3 on side 15. The sign

of the segnment is determned by passing
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around the joint 1 in a counter clockw se direction. Since 13
Is the side first net, the segnent on it has théig?an as that of

: of f
KA1 / Y13 itself. If it is positive it is laid from1 toward 3.
This gives the point c. Since the side 12 is net after the side

13 in the counter clockw se direction, the segenent on it has the
negative Hgn of Kai / U4 and is therefore laid £off away foom 2.
The sign of Kis assuned to be posititre here. This gives the

poi nt d. Then the line joining ¢ and d gives the deformation |ine
A for joint 1 of the triangle A This line should be parallel

to the property line Al found in the previous paragraph. Smlarly

all the defornation lines of the truss could be constructed.

Article 4  The Equilibrium Contour.

It has bsen shown in Chap. |, Part IIl, that the stress
lines S could be nmade to bal ance each other around any joint &H
by the introductiontit an ideal external force R In the process
of construction, however, the conception of stress lines as there
adopted is not convenient as it would involve a different force
di agram for each change of the stress |ines, which is unavoidabl e
in the graphicallconstruction*- A speedy net hod demands t hat
one force diagram-+® serve the whol e process; that is, the direction
of the stress lines be kept constant. This fixed direction of
the stress lines is best chosen perpendicular to fhe axis of the
menber for then the offset {= f) woul d be found along the axis of the
menber.  For exanple,l?é?sgiigtnn the menber 12 at c.  The stress
f1,'S then quﬂatopositive if c is between 1 and 2 and negative if

on the opposite side of 2 from 1. For the

] o )
Lﬁ end 2 the sane force Sy should be shifted

Fi g- 31.
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to a point whose distance from tne end 2 gives the stress fore

By this modification the directiocn amd of strsss lines S 3$- mads
constant for the ﬁembers and one force diagram is suffieient

for different values of f. at the same end of the same member.
Here, these S linss are no longer the "Stress Lines" in ths correct

use of the term, but they will be known as the "Equilibrium Lines"

The dirsction of the eguilibrium linses should be such >
that they give a counter clockwise moment around the joint when
the values of f are positive} i.e., when tﬁe lines cut the members
somewhere betwesn the joints. Thus, the direction of S,, considered
above should be upward whether it is on the right or left hand sidse
i Jolnt 1. If on the left side of a the moment is qlockwise and

f is then negative.

v . ‘ - fﬁ%iﬁz
Consider a Jjoint of the truss as shownin, The force
‘ : been -
diagram is assumed to have,constructed here. If the 'stresses in
3 7 D 15 members 12, 13, 14, and 15 are known, the
A } =
pogition of the equilibrium lines 318°
[)u-‘/ VG B : q 8 3
*7éf' : known. Then the moment of 12 equals the
: = ~ :
Z!w' Y 2 force .af multiplied by the perpendicular
distance f12' IF flz is negative it should
’ be laid off on the opposite side of 12,
= i.e., on side 18. The closing line fe
a ,
furnishes the external force R at the joint.
-f = The direction of the force is constant and

~
R may be drawn on the diagram as a part of

Fig.32.

of the truss.
; : or : : :
° Suppose that th&t stress in 1@)# fl6,ls required, 1i.e.,

the location of the force de whose direction is upward, found by
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passing around the joint in a counter clockwisse direction. In the

force diagram take f as the pole and draw the rgys fb, fc, "and fd.

At the intersection of r of the forces FA and AB, draw a line

parallel to fb meetinéf?&rce BC at s. From s draw line narallel

o Fc meetingf?%rce Ch at t. From t draw a line parallsl to fd
meetingﬂ?orce HE at v, Then the force DE must pass® thoaough v.

: & +he and -

Therefore drop a Perpendicular from v on side 12 tha distance 1w

would give the value of f It is negative here as it is on

16°
the oppOSite slde of 6 from 1. Thus it will be ssen that only
i a In order
three lines are necessary for,joint of 5 membsrs, to demtermine
a
the stress in 18. For joints Withkless number of members
only one or two lines are necessary.
1f there are eccentric connections at the joints the

M care
eccentric moment can be ta k=n of by dlspaclng the force R a distancs

= M/R.

By a similar process ths stress in any member may be
found if the stresses in all the oth:r members meeting at.the
joint are known. The gontour formed by the force R and the
equilibrium liries of the different membsrs will be known as the

"Equilibrium Contour".

To cultivate spmpesd and accuracy in drawing the forcs
dlagram for the equilibrium lines the following scheme will b° found

For : F?Z :
‘useful. Fo- bomin with the &daspam 8 a truss as shown, first
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a
draw line perpendicular to 12 and measure ha = Sl?' Then from
: . a :
a draw a line pendicular to 251‘measureroff bc = Soge From b
= - an COﬁfl/?Ué’
draw a line perpendicular to 25, measure off bec = Soge kee® en

_ unfil
gedng for all the web members of the truss,the points s and f are

obtained. Only one half of the btruss will be considered as the

other half will be symmetricai. From a draw a line perpsndicudar
and below
to 134 measure off ag = S;ze The point g should be ®n bhe under
from-

sido of a so0 that the force ag will be downward. Similarly,all
the points b, ¢, d, and e draw lines perpendicular to ths
respective chord members and measure off the segments bk, c¢j, etc.,

squal to Szgs S ete. All the values of the equilibrium

24’
lines are then construoted, Next join the end points 1, j,h,etc.,
with dotted lines as shown. These will give the @iirections of
the external forces R, which are to be transferred'to the

truss diagram, as shown. Lastly the fays hb, he, etc., are

complete:yd. They are the lines which join the left end of the

external fbrce R to the inner points of the diagram.
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CHAPTER | V. THE THECRY OF DEFCRVATI ON CONTQUR

nFi g. 34,
Consider a joint of the truss as shown, say 5, and apply

" Eq. (6) successively to the triangles B, C, Dand E

G
G & ) :
Fig. 34
A & E
/' =2 5
-Jugs KB5 7
T*hen, rgg = -""@ﬁ+' =
Ug5 Uz2s
U o]
r54 = —§§G2+ s
Uss §45
45 D5
Bge S Bk e
356 Ess
56 BS
gl S g
Usy Us7
By successive substitution,
CE = "'Gj"l" ““““““““““““““
7 Us7
O, s %as=ie wdl V\t#'l‘ b. o ; . ] : (12)
- Wwhere a and b are constants. FSmthis equation it is seen that

when the value of r frr one nenber'is known*it is known for all

t he ot hernmenbers neeting at the same joint. This fact is anal ogous
A

to the relation existing between the deflection angles of nenbers
around a joint, as found in the nmethod of Manderl a. As it

stands, thigequation does not offer nuch advantage in the di scussion
but when applied to the graphical construction of the deformation
lines there, is obtained a renmarkably sinple and useful figure

_ i s known as _
& whi ch ewesttae- *feeee -ett t he Def ormati on Cont our.
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-th
By the nethod of Article 3 in previous chapter

suppose the deformation lines are constructed for all the

InFig. 35.

triangles of the truss, as showfjj For anyjoint 5 if the
: _ Bedns givoa *py, th€ intereept on
value of iviMis known that of rg may bé" obtained by drawing a
// Kpge
z.Jne g
line parallel toxside H2,
t he defqggaéion I

to menber 25 by a line parallel to nenber 35. Prom rp*

r may be simlarly obtained by parallel Iines. Repeat i ng
54
a

the process the value of rsy is finally obtained by successive
par al | el ogr ans. In order to check the results and also to

def ormati on
close the polygon asine Ky is drawn for joint 5 which gives
the relation between remand rg; considering the ehange in
angle that is outside of the truss/ or the negative of the
total changes in, angles 3S52, 254, 456, and 657. Si nce both
rerz and rg« are on the sane straight line this defornation
line Kc could not be obtained by the usual Cartesian co-ordi-_

nat es but nust be found as foll ows, (See Aiel-e* Article 1,

Chapter V). Find a pair of corresponding values of rsz and
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rr? and at the end of each segnment draw a 45° line directed
each toward the ot her. These two lines will determne a point.
Smlarly® find another point;,these two points will then give
the deformation $ine, designated as Ks, for joint 5. For
ajoint like 2, where the outside nenbers do not lie on the
sane straight line, the deformation line Kg may be obtai ned

in the usual way, by referringr_. and rg to nenbers 21 and

i
24 as axes. Here, as before, the vauefee of Kwould be the

negative of the sum of Kag ** Kgs + “c2*

ou

These continues broken lines (including the two
45° lines) drawn for each joint and parallel to the nenbers,
with their intersention points neet on the deformations |ines,
together forma figure known as the "Deformati on Contour".
Thus, in the figure on”l ast page, abedefghjk is the Defornma-
tion Contour for joint 5. There is evidently one deformation
contour for each value of rs®, but they are all parallel to s
each ot her. The Deformation Contour that is to give the
actual secondary stresses is known as the "Correct Defornation
Contour", its |location being dependent on the rel ations exist-

I ng between the different deformation contours for the different

j oi nts. Qbviously these relations are derived fromthe. con-
fhe
siderations of equilibriumof”joints. As there are as nany

contours as there are joints the probelemis always sol vabl e-

To fix the idea of the deformation contour it is
necessary to give it a value designated by the value of r of one

of the nmenbers neeting at the joint. For reasons stated in Act. 2
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the
In next chapter this nenber will be chosen to be the chord nenber
which is at the left of the joint in consideration. These
menbers will be known as "Reference Menbers for the Defornation
Qntour'.*  Thus the val ue of dcount our fpor joint 5 just considered
V\;i.|| be designated by r ,art]hat of joint 2 by rpi« The members
53x% ot

53 and 21 are reference nenbers for the joints 5 and £ 2.
Suppose the correct deformation contours for the joints
1 and 2 are known. The contour for joint 3 could then be found

by the relation between r ;3 and r3; fromEq. (10); that is,

where r ;3 i s knowmn fromthe given contour. Since fi3 = *-_813 1%/
- : r
e ot I F RS Bl ; by Eq. (11);
S13 3
and Vig = @3 + b where a and bane constant.
Therefore, o Al o (A Al P T Al Y < 2 e e
3i G175 )

that is, the value of rai 'rrsy oe found fromr ;3 and rgi by a
| i near equation, or
| 2 4 i e SRS i B -
where m n, and p are constants. Srncets.2 gap_ r™i are known
fromthe given deformation contours around the joints 1 and 2

1 . ;
Mg MY be found Jna very pp© si npl e process.

Next, consider the relation between r gz and r 3s. By
f
EqEAEL0) , I's3 = 3% 85 % 2835
L . - 523 - 13
Si nce f3b = - =8 P —
Snr-y 2 P L 1

.2 rg1ltris )
S35 3 L S R N

i = o=( [E3S8 .
it 1s seen that rg® is linear function of r” and rpl because the

RElabitons EeRVEEN Bz and ‘ris . i isrand Ba i 9AAL E 9 Nand, Ling par T

5 and 135



64

all linear. 'Therefore,
1’55 = m' P55+ n' I'21 —{- p'
Since Py CaN be found from Igq and rsq is known, gz may be computed.

Similarly consider the relation betwsen ryo and rgy .

T4e = STy = 2 rog
_ L
fou = =_ ( Sop fop + 8oz foz + Sp1 21 )
24
2ros+r ,
== éé4( Sg5 e 4 $as §£§§i£§§~+
2roqtr
sy Hatlle
%

Now the following relations are linear: rgg and ro4 ;
rgso and ryz ; rop and rgg ; rzo and rzs (and hence rzg and rsg )3
rgy 8nd gy ; ryg and rig (and hence rip and rgy , ryg and rzg
and finally rig and rsg ). Hence the relationﬁPetween rgspend rgy
énﬂ»r42 and rogq %8 also linear, and it follows that v
— fl i ]

Since rgy and ro, are known, ry, may be obtained.

By & similar process it d-em can be shown that for every
triangle of the truss a linear relation can always be expressed be-
twesn the values ofﬂr's at the three vertices. In generaliﬂfor

P 'l every triangle lmn of a truss, where 1lp

is the refermnce member,

: = + h + - :
- an g rmn rlp S e (13)
% - “%@r hand Kare onstants B
/ﬁg;jﬂ; mhere R, g v c . v

successive application of this equation the value of any contour

of the truss may be found from the given contours around the joints

1 and. 2.

;,w.gquations (12) and (13) together form the basis for
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the Theory of Deformation Cbntour, which may be stated as follows:

"In any framed structure composed of triangular elements
the valueiof the deformation contours for the joints of the
structure are related to each other by a linear equation." If
- the least number of members entering into a joint of the structurs
is "n" the value of each of the deformation contours may be expressed
linearly in terms of}%;% others. In & bridge truss n is generally
equal to 2 so that the deformation contours of any 3 jbints of the
truss are connected by a linear equation and, by the process of
successive substitution, all the deformation contours of the truss
can be made to depend, by linear expressions, on only'two other
deformation contours. These two contours may be chosen at random

but for practical purposes they are best taken to be the deformation

contours for the two joints at the end of the truss.

By the use of the above iheory there is overcome the
necesgsity of solving a large set of simultaneous equatidns which is
always considered as the most laborious part in the solution ofl
secondary stresses. While the truth of this theory is simple and-
almost evident (in fact it could be derived from any set of the
simultaneous equations involving T in Manderla's'method og B in
Mohr's method, as r im this paper is linearly related to T and B)
it has never been taken cognizance of in the solution of secondary
stresses. so far as the writer is aware. The advantage iof conskd-
gering the existence of such a "theory" will be apparent in the
next chapter, although in the stridt sense of the word "theory"
it may be questionable whether its use is correct as the present

method, like all others, & is not a mathematically exact solution

of secondary stresses.
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CHAPTER V. GRAPHIC METHOD BY THE THEORY OF DEFORMATION CONTOUR.

Article 1. Graphic Representation of a Linear Equation

invelving Three Variables.

In the prewious chapter the values of deformation
contours for any three jointe in a truss are shown to have been
connected by a linear equation. It rgzs Izs and rop are the

la Eige3 [,

contours at the vertices of a triuangle 235, as shown, then

by Eq. (13),

+ 8.

Fig.57

If one of the variables, r,,, be éssumed fixed or.arbitrarily
assigned, the other two variables r55 and rgz can be graphically
repreéented_?y a straight line. This, however,-implies that
’the two variables are referred to tewoaxes which are hot in the
samelstraight line, as they are inﬁp%esent case, both rgs and rsz
being referred'to line 35. To overcome this difficulty and

facilitate the construction the following device has been eviolved.

Find a pair of values of reg and Y connected by

the above equation, with rgq arbitrarily asgigﬁed, and locate
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the points a and a' by making 3a = rz5 and 5a' = rsz. From a
draw a line at 45° wth 55 and directed ftov\ard the right of joint
5 and "bel ow t he truss. Siml arl)/fAEI?;nwaa line at 45° wth 53
and directed toward the left of joint S,Mé:(so bel ow the truss.
These two lines wll intersect at a point A Next find anot her

pair of values of rgs and rsy with"same r,; and locate the points

b and b'. Fromb and b" draw lines at 45° with 35 and directed
toward each other, intersecting at B. Draw a straight |ine
t hrough A and B. This line will then give the relations between
rgp acd rggfor tiieagsiceex3- val ue of r,,.  For any val ue of

Fgg., say 3c, to find the correspondi ng vaUre of rs3 draw a |ine
fromc inclined at 45° from 35 and directed toward the opposite
end 5# Let this line intercept . -~ line AB at O. From O
draw a line at 45° with 35 and directed al so toward 5. Let
this intercept 35 and c'« Then r8g is given by the segnent
5¢C' e The above construction™ could be easily proved by

anal yti c geonetry, as fol | OWs;

] Y & Let the equation between rzs and rgz
h
W t hagrbitrari |y assigned value of r, be
x P o (OX
3("53 = PBS 'ZX 5] e (a.)
where f = b ro;+ ¢ = gonstant. Let
- Fig. 38 A
b A5 | ap X > '
|r§§| 2y i-r;1|5 P, fhe point obtained by the above construe
f CI I tion with any two correspondi ng val ues of
v 4 r3s and rsq, be'refSerred to 35 and 3Y as
Ft 738 X and Y axes, so that its coordinates are
x and vy. From the figure,
y82I (d_ r55 - r53) 6 a8 aew® (b)
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where r_. and r . carry their own signs. Al so,

XTREEE [ e Sy see e 5 3 A O
. - - - - -. /\
SUbsUtLﬂlqg;he val ue of L from(a) in (b) and elim natOrB5
bet ween the resulting equation and (c) there is obtained a rel a-

tion between x and y:

Ao a ff 1 S d g f
oo it & =1 a -1
: _
¥y = a 1 Madas o= + bral+ c
a -1 a--1 a-1
+ b 1
yza 1}:._;! ro-
a-1 a -1

As this is a linear equation the locus of Pis a straight |ine.

It is evident fromequation (d) that the slope of the
line is a function of 'a alone and independent of ro.° That
Is, the slope of the line is constant for all the assigned val ues
of r_, and may be nost readily obtained by.naking rAs =0

This line will be known as the "Base Line" for triangle 235,

-the

for the reason that it expresses the relation betwen”r's of
base 35 with r at vertex of triangle = 0.

Wien the value of r,; &0 different thon zero the
. . . : : OEE Py new position
straight line given "by equation (d) wll swee“pe~eefci-ai &eeffi B

ith th -int t
p parallel to itseIfA\éVll ven b?/ ¥hle:ne%ru%?eon

**)) d-l-__-—-—g-

P m St Ly & 5= S (g)?',

which is also linear and may be represented by a straight |ine.
To construct this Iline proceed as foll ows: Prol ong the nenber
23 until it intersects the base line at 0. (See p. 66). Assune

a value for r,oi = 2e, preferably as |large as possible, and by the
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+ha
above nethod fi ndAIine EP representing the relations of rg4s and

RAES N0V ("1 =N This line, -as proved above, nust be parall el
to the base line. AB. Prome draw a |line parallel to menber

23 and intersent--EF at E Joi n OE, This line CE
_ y-i nt er eept 3
t hen gives the das&iaeter- p for any w&ue of rg”. I f 2g

: ; I ntercept . _ ]
Is the val ue of r g )t he &r&re-e*s«.»- is found by drawing a |line

through g parallel to nmenber 23 until it neets CE at G and

through Gdrawing a line parallel tofeaseline AB, This line

GH then gives the relation betweenr_ . and r_ withr_. = 2g.
i O 05 1a
: ANAEg L :
Th&b |ine gi vi ngAreI ations betv/een p and r o1 & the vertex

of the triangle, wll be known as the "Vertex Line"e

To utilize the base and vertex lines in finding ry"
fromr35 and r21 proceed as follows. Let rgi = 2g (negative)
and rA"5 = 3h, Through g draw a vertical line cutting the vertex

line at G Through Gdraw a line G4 parallel to the base line
0

AB. Thr ough h draw a downwar d- ,' 45 line cutting GH at H

PromH draw an upward: 45° line directed toward joint 5 cutting

35 at h. "~ Then rgg for the above values of r35 and r,; i s given
and(5
by 5h' ~ ne(gative. - S rrilarly' the val ues of r~g for any other’
conbi nation of r_,. and r_ . may be found.
0 OF: (-JJL

: 5
By a sinple reverting process the value of rg® may

be found from any given values of r*g and r"* For these two
val ues, say 3h and 5h' respectively, determne a point H by

45° lines and through Hdraw a line parallel -to the base |ine,
cutting the vertex line at G Through G draw a vertical line

cutting nenber 21 at g. Then 2g is the value of r;; required.

By the sane nethod the base and vertex lines nmay be

il
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constructed for any other satriangle of the truss if two of the
r's are known. In case the triangle has a "base on the top chord
of the trus§)it I's advisable to draw the 45° lines directed upward

I nstead of downward as for e nenber 35.

As a neans of standardization all the base lines wll
be shown by full heavy lines and the vertex |ines by dashed

heavy |i nes.

W c& Aadvant ages of représentingrelations<ﬁ.r by t he
above nethod are essentially as follows:

G D) It gives tI3 values of r both in nmagnitude and
I n sign,

2% The value of r is found right on the nBber, no
attention, therefore, need be paid to the signs,

€3 It is nmuch easiper and nore accurate to draw
45° lines wwth the aid of a triangle and T square than parall el
lines required in Cartesian coordi nates.

(4), This nmet hod takes nmuch less tine than to
represent the relation by Cartesian coordi nates where the
values of r have to be transferred to the nenbers froma set of

axes.

Article 2« Construction of Base and Vertex Lines.

Since the base line is a straight line it can be com
pletely determ ned by two points. A point for tfdB vertex line
Is given by the intersection of the base line and the vertica
nmenber produced, so that only one nore point is necessary for

the vertex line. Therefore, theoretically three points are



el

sufficient for constructing both the base and the vertex lines.
For practical purposes, however, it is advisable to find one more
" point for eaohvof the two lines, both as a check aénd a means ©f
improvhythe accuracy of the results. These points may be so
chosen as to require the lesast amount of work.

Let the base and ¥ertex lines be constructed for a

e el 39

truss as shown, This is a Warren truss with verticals but the
method 1s applicabls Bo all kinds of trusses, the only difference
being found in the order of procegure. This 18 governed by the
number of membérs entering into the joints. It is well to remark
here that the base of a triangle is always chosen as the member

/’2'1"

which forms the outline of the truss.

Wﬂg/e A, Base: /Zr‘_ =
2 XeTringe C 4 4 daeuoe %
_{rp\ : :
/ ! = X
' @ b ©» c b -
B ! : / I ~’
v \{{: E E B ‘ /229,

g 5 BTe

B s : |
a\:\\\& ><2/3,

a w8 =~
:S?ﬁ/gng/'e Aj Base /3 ﬁg 9

(D). Base and Vertex Lines for Triangle A.

¢

Here. both members 12 and 13 may be chosen as the
base. While only one base line is necessary in the solution of
the trus% it is advisable to have one more in order to check

the final results.
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(2). Member 13 as Base.

Since the vertex for triangle A is joint 2 the base
line is obtained by taking roq = 0, as 21 is the reference member
for joint 2. To construect this base line three points are
necessary which are determined by corresponding values of r and

13

r connected by Eq. (10). The detailed process is as follows.

ol
Agsume a value for iz and complete the dewformation contour

fimor joint 1, giving rlP' Also, for rop = 0 complete the deformation
contour for joint 2, giving rgl,ggza,‘r25 and Trog. From the valuss
of r,, and ry, the stress f,, may be found by Eq. i Since

Eq. (10) calls for 6f15 it must be found from. f,,. This is best

@one by laying off 2 r. -+ Toy from joint 1, care being taken of

12
the signs, and completing the equilibrium contour for joint 1,
obt#aining 3f,. From 3f,, subtract 2r,, the difference will be
rezqe To perform this subtraction graphically proceed as follows:
Find segment 2r15 by adding to ryz & segment equal to itself and
in the same direction. Since both r15 and fl6 are referred to
joint 1 as prigin)the dimfference Bfls - 2r15 is then given by
the segment from the end of segment 2r15 to the end of segment

3f 5t( this is given by the intersection of equilibrium line 13

il
and membsr 13 ), both in magnitude and in Bign. The difference

is positive isf the segment 1is in the direction e£ from 1 to 3,

- negative if from 3 to 1.

The value of rgz; thus obtained together with the assumed
value of rqgz determine a point for the base line, use being made

of the 45° lines as describved in the previous article. By a
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similar process, still keeping rgy = 0, two more points may be
obtained which, together with the one previously found, must
lie on the same straight line. This gives the base line ab

required.

To find the vertex line corresponding to the base lins

just found, keep one of the assumed values of rjz as constant
correspondrn
and find a pailr of values of r and r__. which are ecorrospondins.
A 21 31

To do this, first give a valus to r21 which is fairly large and
complete the deformation contour for joint 2 with this value of
.r21. The contour for riz has already been drawn for constructing
the base .line so that r,o and rjz are known. From these
contours obtain 2r12 + rgpy = 3f15 and from 345 obtain 3f;xz.
Subtract 2r15 from Sflz' Teq is obtailned. This Txq together
with the assumed Ty determine a point. Keeping the value of

r constant find another pair of values of rjz and rgzy, determin-

21
ing another point. These two paints must lie on a straight line
;d that is parallel to ths base line. Through the end of segment
oy thus assumed draw a vertical line cutting cd at c. Let the
base line ab cut member 23 produced at a. Join ac. lnis is

then the vertex line required.

These base and vertex lines are indicated in the figure

as “Triangle A, Basse 18",

(b). liember 12 as Base.

Hers joint 3 is the vertex of the trianglé and the base

line is obtained by taking r @, g8 81 is the refersnce member

5]
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for joint 3, To find a pair of values of r._. and rqy; first
assune a value for r”g. For this r™ conplete the deformation

= 2«3+0
contour for joint 1, obtaining r~. Find 3fi3 = 2rqs-h ra;,= ¥13°

Construct an equilibriumcontour for joint 1, 3f~g is found from
S-7g. Ffcone3fYg anduSr-jo, "9.\ *-° obtained* This r* and the
assuned r]jgdeternine a point on the base |ine, use being nade

of the lines inclined at 45° with member 12. SSmlarly two nore
poi nts may be obtained and the base line ef is conpletely known.
Find the intersection of this line with a line drawn through

joint 3 and perpendicular to nenber 12. at e.

To |locate the vertex line, assign a fairly |arge val ue

to rz; and keeping it constant, obtain two pairs of correspondi ng

values of r,, and r.gq. These two points nust leie on a line
gh parallel to ef. Find the intersection g of this line gh and
a perpendi cul ar to nenber 12 through the end of segsnent i»51
assuned. The vertex line is then given by a line drar/n through

points e and g.

These base and vertex lines are indicated in the

figure as "Triangle A Base 12".

To find the correspondi ng values of ri, ~d- '217°" any
assuned P value of r” drop a perpendicular to 12 fromthe end of
segnent r3; and find the intersection g of this perpendi cul ar
with -&h& vertex |ine eg. EXam/a.Iine through g parallel to the base
line ef. This line then gives the relation© between r* and
rpq for t:he assum(3_ rgj > ttie correspondi ng val ues being given by

45° || nes.
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(2« Base and Vertex Lines for Triangle B.

The base for triangle B is nmenber 35 and the vertex,
joint 2, so that the base line is obtained by making r ,; = O,
the defornmation contour for which has already been drawn. As
before, assune a value for r_. and find the correspondi ng val ue
for rbg. These two values will determne a point on the base |ine.

On account of the greater nunber of nenbers entering into joint 3
a.
the process is?little nore conplicated than for triangle A but

the principle will be the sane.

For the assuned val ue of v”r, construct a deformation
, 00
Contour for joint 3, giving r and r . Since the val ue of

53 nepen(3.s o that of F fgg aﬁ% mm(ﬁe?lin turn, depends on

frzo aiind fg]* or indirectly, on r22>23>"3j ®. 3> A A 8
necessary to find the values of r,. a for the correspondi ng val ues
RGO > > 23+ "gpiantl gy ar et kno Wik o 3T Tabt ain

- this rip, use is to be nade of the base and vertex lines for tri-
angle A, I7Ese 13, precisely as explained a in the previous article

For this reason it is advisable to choose rs. = 0 \nSteadaaf=naz
di . di d

= 0 for this triangle, for then the base line for triangle A could
be used. Now t hat the values of r for nenbers 13 and 23 are

known, the suns Srz, + r—= 3f3, and 2r3-H r ;3 = 3f 3; may be obtained
do

by graphic addition and the val ue of 3fsy obtained from anequilik-
feriumcontour for joint 3. Then, by graphic subtraction,

v 1= 3f - a* I s obtai ned a%sexplained in (1) for triangle A
DO 35 00)

These correspondi ng val ues of r and r 53 determne a point. on
the base line for triangle B.. Simlarly two nore points nmay be

obtained and the base line is coﬁpletely known. For the vertex
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line give rs; a Value which is fairly large, preferably the same
one as used in constructing the vertex line for triangle A base
13. Thi s changed value of r,; affects r,3 directly and r ;3 in-

directly, for then the base line for triangle A could not be used

In finding r 3 fromrg,l and zM! | nstead, the vertex line for
triangle A should be used for the assuned val ue of r 1° Wth
r emai nder 2
this exception aii- the roct”of the method is the same as descri bed
bef or e.
(5). Base and Vertex Lines for -Triangl e C

The. base & for triangle Cis nenber 24 and the vert ex,

joint 5. The base line is therefore obtained by nmakinggr-. = 0.

Since the value of r*g depends on 3fg, and 2rg”, the latter being
arbitrarily assigned, it His necessary to find fg** or indirect--
ly, ffc> ~03' ™G ngpx THlese v glyeaof f are found fromTY%Q and

FsQ (g and r*g, and r 4, and r~g* The deformati on contour for

joint 2 for the assuned r . givesr_, r__andr _, whieMe that
e b 25 <do /ol
#8» for joint 5 for r8 = 0 gives r_ . The only r's unknwown
are therefore* r» and r . To find r ., first obtain r_g from
o<i 12 «52 wO

the base and vertex lines for triangle B fromrg]_ and r8f = O,
then conplete the deformation contour for joint 3 for this val ue

Bi=T ", The contour will then give zVp* Lastlty, the va-lue of
riois found fromr-?g, which in turn is found fromthe fease ad

adnd vertex lines fpor triangle A where rgj_ and r* are known.
Wth these values of r known, 3fgg, 3fgg and 3gi nay be obtained

“6 by addition and 3fg4 by an equilibriumcontour for joint 2.
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The resul t ant 3fQi t hen furni shes r49_for t he assunedzrpA% B(j
(19» These two values of r determne a point on the "base |ine
for triangle © 0. By a simlar nethod, two nore poi nts nmay

be obtained, still keeping r*g = 0, and the base line is then
conpletely located* As a neansfcoffacilitatiijytheconstruction

., Waife which will give o = 0

-

it is well to have one value of r_,

The vertex line for triangle O is obtained in nmuch the

sanme way as for triangles A and B»

By a simlar process the base and vertex lines could be
| ocated for all the triangles of the truss. For a triangle l|ike
E where five nenbers enter into Joint 5 the process is necessarily
conplicated but that is about the extrenme case that is likely to

occur in ordinary trusses.

It will be found in actual cases that with, the exception
of the triangles at the two ends of the truss, the base and vertex
lines are always very close together and in many cases the vertex
lines could be omtted, entirely. In this case the base line is

to be used for all values of r at the vertex.

For a symetrical truss wth symetrical |oading the
base and vertex lines need be constructed for only one half of the
truss, as for the other half, ther are identical in form |If the
truss or the |oading or both are not,synnetrical t he base and . ver-

tex lines nust be obtained for- every triangle of the truss.

A few words are now necessary re&garding the sel ection of

g t>
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reference members. They are seen to be the chord members, end
posts included, that are at the left side of the joints in con-
gideration. This is due to the fact that the above process of
& constructing base and vertex lines advanceds from left to right
and only a part of the deformation comtour that is on the left

.8ide of the joint need be constructed.

Apticle &, Solution gg_the Problem.

Let the base and vertex lines for all the triangles of the
the

truss Dbe construcﬁed by the methodé oprrevious ;rtiole. < At the
right.end of the truss there are then drawn the Base and vertex
lines'for triangles B!, C', stc. For triangle A' three sets of
base and vertex lines aré drawn; first, for side 1'3' as base;
second{f%ide l'z;‘iibbase considering equilibrium about joint 1';
and theird, also 1'2' as base but coneidering equilibrium about
joint 2', These three sets of lines are indicated as 1'3!,
1'2'1+ and 1'2'2. in the figure. Since they all represent the
sams relationg among Taigts Tprgr and royqr they may be used for
solfing the three unknomwns as analytically they represent three
equations. To do this, first assume a value for rgi1t and apply
it to ths sets 172'1"and 1’2'2',ﬁ%€§ing two lines parallel to
their respective base lines. These two lines intersect at a
point which will give a pair of valﬁes of ryigr and Pzgl;” for the
assumed :F'l'. Next-apply the values of rj,5, and 52‘1' thus
found toAget 1'3' and find the corresponding value of Cxigte

This value shouid check with that assumed before, if not, another

trial may be made. Repeat the process until the values of Pgigt
: V4
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ryigtr and rgrgs all satisfy the three sets of base and vertex lines.
They are then the values that will givé the correct secondary
stresses. From the value of otqts that of Totrgt mayvbe found
from a deformation contour for joint 2°'. Similarly the value of
r5,5, may be found from Treqt by a deférmation contour for joint

Bl These two contours are the correct deformation contours

for the problem since from them the correct secondary stresses

:may be obtained. From the values of rgigr and rzigr, that of rgig:
may be obtained from the base and vertex lines for triangle B',

and consequently, the correct deformation contour fror joint 5'.
Repeating the process the correct gontours-are obtained for all the
joints of the truss. To check the accuracy of the results the
values of rSl’ rio and Toq must satisfy the base and vertex lines

f for trlangle A with member 12 as base, as this set of lines has

not bheen used in constructing the correct deformation contours.

This ensures the correctness of every step of the proécedure and

is one of the important features of the method of deformation

‘econtour.

From the correct deformation contours the actual second-
ary stresses may be found by Eq. (11). Graphically this may be
accomplished by adding tovf" segment r,,, of member In a distance
equal to rj, plus ryj, with proper.signs, and measurhgoff the re-
léulting segment’with a scale three times as large as that used for
T, This gives £, directly. Same for fnl‘" It will be seen
that on account of the large scale used for measuring f, the result

could be read fo three significant figures which 48 accurate
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enough for all practiical purposes.

When the loading and truss are symmetrical the stresses
- at the two ends of the member of symmetry willvbe zero, hence

the values of r at these two ends are also zero. This locates
two correct deformation contours for the two joints of symmetry,

from which the problem may be solved as before.

To obtain a clearer view of the distribution of second-
arty spresses in the truss and also the way they affect each otheg,
it is advisable to draw in the stress lines for the different
members and theilr force diagrams, as mentioned in the first chape-
ter. As & final check on the values of f, tge equilibrium polygons

drawn around each joint for the stress iines & and ideal external

force R, applied at the joint, must respeetiveily close.

—

’Article‘4. Checks.

There are the following checks found in this method of

Deformation Contours

+he
AP In construé&ng the values of K, the sum of K's

A
in each triangle must be zero.
(8% 21T the property lines in a triangle must mest
in one point.

&5 All the defrormation lines must be parallel to
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the property lines in the sanme triangle.

(4). Al deformation contours nust close for any

assi gned val ue of r.

(5), Al'l equilibriumcontours nust close.
(6). The base and vertex lines for any triangle are
checked by constructing one extra point for each line.  These

extra points nust lie on the respective |ines.

(T The correct deformati on contours are checked
by the base ahd vertex lines for the end triangle of the truss
mjthj@nd post as base.

() For any joint of thefcrtussthe equilibrium

pol ygon for the stress lines S and external forces R nust close.

Article 5» Exnahple. Details of Procedure.

To illustrate the graphic net hod as presented in this

chapter an «3Bva Ca exanple will be work& out and conpared with

t hat anal ysed by the ordinary nethods. The truss and | oadi ng
taken are the sane, as those used in illustrating the nmethods of
| anderl a and Motor, in Engineering Hews. Refer to Drawing Plate I11-

On the drawing two truss diagrams are shown. The one at #he

right is for the change of angles and for the construction of Uslines.
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. : . _ Belowy
It is also used for recording useful informations. M tfee &4&e &E

the two diagrans a force diagramof the equilibriumlirs s i'B=
drawn, data being taken fromthe section noduli of the nenbers.

On the second diagramare drawn the property lines, the deformation
lines, the external forces R and the co-ordinate axes for the base
and vertex |ines. Fromthe method given in the previous article
the base* and vertex lines area located for all triangles of the

t nuss* Since the leading is symmetrical with the centre of the
truss the stress in nmenber 67 |la zero and therefore ry; and r s
are each equal to zero. From thesefc -two val ues all the ot her

r's are found susE fromwhich the stress |ines may be | ocated.

‘To avoid confusion all the construction lines for the x base and
vertex lines will be omtted and & only the correct def or mat i on
contours are shown, A force diagramfor the correct position of
stressH | i nes afe al so shown*

obt ai'ned
It will be found that the values of f found by this

éraphic net hod check very closely'mﬁth t hose obtai ned by the

met hods of Mbhr and Mander| a. The total tinme consuned in the

solution, frombeginning to end is about 6 |1/2 hours, distributed
- as fol | ows: 2 hours for the construction ofj%%ange of angl es and

the deformation lines, 5 1/2 hours for the construction t ongl

the bass and vertex lines, and 1 hour for the location ofi@aress

lines and the force di agram

Article 6. Qonstruction of Influence Lines.

———- —_—

It wll be seen fromthe derivation of Eq. (12),
"Im=2a’|pn~ D
that the vxalue of 'a’ depends on the values of U while fchat of

" b* depends al so upon the values of & whichare different fKor different
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loading. Also, fromthe derivation of H Eg. (15),
‘nmr= " Tyt WP+ K
the values of h and g are constant for the truss while that of k.
varies wth the | oading. Hence, thefrase and vertex |lines
di scussed in the previous articles will be parallel to ea&h ot her

for different kinds of |oading. If they are drawn for one kind

will be
of loading the slopes of the lines sass fixed and for each extra
] A

| oading only one point will be suffidient for the correspohding
li nes. The nmethod of Muller-Breslau for influence |ines

IS especially addpted to this graphic nethod for then the base
andac vertex lines will be the sane for one half of the truss

for the different | oadings.
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CHAPTER VI . THE PROCESS Ok SUCCESS| VE DEDUCTI ON.

Anal ogous i bo the rel ati ons bet ween defornmati on contours
there is also a linear |aw existing between secondary stresses P f.
Consi der a structure e conposed of triangular elenents. I n each

triangle there are then six values of f, a one at each end of the

nmenber . But the trianglesa are connected together and for every
pair of adjacenttriangles there is ones side in comon. e of
A

tiriangl es may be considered as added to th© other by the introduc-
tion of two sides, and therefore has only £our val ues of f. | f
the structure isfe built up of triangles by successive addfeition

of
to a "base triangle" all the added triangles will then £ have
A

only four unknowns while EQg'tease triangle will have six. To
find these unknowns there require$ an equal nunber of equations

whi ch nust be found fromthe nature of thep probl em Let the
nunber of triangles in the structure be n. If one of the triangles
be considered as the base triangle and the other (n - {j| triangles
be added to this triangle by successive introduction of two sides,,at
atime, there will be 6+ 4(n - 1) =4 nf 2 unknowns. For each
triangle there are three angles giving three fundanental equati ons.
This furnishes 3 n equations and only n + 2 nore are required.

But this is equal to the nunber of joints inn triangles-and for
each such jioint there is also a nonents equation (7), A sol ution
IS therefore always possi bl e. Since both the fundanental and
memrment equations are linear in form it follows that all the

secondary stresses are connected by equations linear in form

Since the base triangle has six values of f and there are
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only four equations available, three fggm-the fundemental equations
and oné from the moment squation for the Joint that is free from
the values of F : '

. other triangles, two of4®hem could not be found until two more
equations are introduced. This base ﬁmiangle therefore has two
unknowns at the outset of the s&iution. As the stressés injb%her
triangles depend on those in the base triangle all of them will be
expressed in terﬁs of two unknown qﬁantitites. Hence if f be the
stress in any member and fX and fy are the two unknowns in the base
tp2 triangle, »

a0 f-+ b fy-+ 6, e siv e S8 (14)
where a, b;.and ¢ are constants. To determine fx angd fy it is
8imply necessary to notice that the very last triangle added to the
structure has three joints but only one is used,for the moment
equation. There are therefore two more equations expressing the
moments at these two joints. It is now evident that the value of
Ty and fy cannot be obtainéd until the above equation (14) has been

applied to every member of the structurs. Conversely i&f fy and

fy are kmown all the other stresses are known.

To illustrate the process consider a truss as shown?nf%;éQQ

Let £ =t ond. R . = f be the wrknowns. From these values find
12 X 21 y ;

o 4 G &
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rio and roq and construct the deformatiozfontoubs around the joints

1l and 2. Appl&fgh equilibrium contour to joint 1 stress fls is
obtained from f£,5. By Eq. (10) rzj is found from fiz and rjg
and hence f£z] by Eq. (11). From rSl cbnstruct addeformation
contour around joint 3. From this comtour and the one afound
the joint 2 stresses foz and fzo are known. Now at joint 3

fz1 and fzg are knownfg§5 may thersfore be found by an equilibrium
contour. From fgzp and rzs,rsz is obtained from Eq. (10) and

fgz from Eq. CEL) Construct the deformation contour around
joint 6. This gives rg, whicq toggether with roy furnishes

for and f52. At the joint 2;Z%fésses fa1, o3, and fgaﬁre_known
foq may then be found from an ¢ eqﬁilibrmum contour. From

rog and fou,rge and fyo may be obtained from Eq.- (10) aﬁd (11).
By repeating the above process the stresses f in all the members

may be obtained for the known valuss of fi1o and fgoi.

It is now evident from the above that when T, mnd fy
are known the solution of the problem may be effected in a very'
short time. But in:gztual cases they ceuld not be found until
at the end of the process whegﬁhy two moment eguations furnisi
the unknowns required. For this reason four methods have been
suggested by which ﬁx and f. may be obtained either by trial or

Y
by exact constructions. These metthods will be taken up in the

following paragraphs.

Article 1. Empirical Formulas for f, and fy,

It has been found from a large number of trusses aRa*u-

analyzed for secondary stresses that 1if:

(1). The typs of the truss is Pratt or Warren with werticals,
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(2) The loading is uniform,zw
(3) The connevtions are concentric, and
(4) The proportionsof the truss xE conforms wggh the principleé

of economical ées;gn, i.e., when the inclination of the

diagonal members ;ie about 45°,
then. the secondary stresses at the ends of the hip vertisals ars
approximately equal, both in magnitude and in sign. Further,
the streséﬁét the two ends of the end post are proportional to each
other as the algebraic suma?f sum-gm%hange of angles at the correspond-

ing Jjoints connecting the member. These two stresses are also

equal in sign. In other words if the truss be as shown, then

£
‘2 K
fmg — fzs, ;_* i K KAl

21 Az‘* i e

where fzo and fgz, f15 fg have the same signs.

Applyr%he flundamental equation (5) to the above triangle A,
( 8 £1p0 = f57 ) Upg + Ky = (B £35 - £37 ) Ugg
(2 £57 = £15 ) Uz + Ky = (BT 5o- £55 ) Ugg
(2 foy = 15 ) Ujp _ Kag = (2 fgg - £33 ) Ugg

and the moment equation to joint 1,

Pz = =912 f -
13 T 12’
13
there is obtained,
Kp1

f12 - S & s LA AN ees (15)’

12
U12 5= U13

B T "
£, = fig (ot Epot Kop) / e

fﬁe a —Hy
where the ratiogof K's is #n absolute balue. Apply-‘the above

equations to the example worked in the previous chapter it was found
that fqz ==,14 and le = -.06. From the above values it was

found that f67 = =-,16 and f76'=-Fl.OO, while they should be zero.

By a careful consideration of the effect of one stress upon the

the Ey

othsr the correct values ofxf's may be obtainedAseveral trials.
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Article 2.  Mithematical Foriulas for f and fT
— X

Thftsemay be obtained fromthe fundanental and nonent
equations instead of -tfkr1gmdef ormation and equilibriumcontours in
the graphi c net hod. Undoubtedly the fornulas will be exttfemely
long but there are the follow ng si npl?ications whi ch nust be

consi der ed: (1) Al bottom chords have the sane | ength and sone-
times the sane y, (2) for parallel chords the values of 0 for

anafertical *
top chords” are equal, aieo -fea verticals, (3) the val ues of

S in some web ntShers nay b© neglected, (4) the truss elenents are
symmetrical about the centre line,, (5) thesumof.change of angles
A *

in eabh triangl eequat e--fee zero,

The di stinct advantage of @? a mat hemati cal formul a
lies inthe fact that once it is derived it is good for ail others
and hét® has a permanent value. "It is hoped that this wll
prove useful in bridage offices where th© designs for structures

are |largely standardi zed and onlyfj} ew sets of fornulas arefneeded.

Article 3. The Process of CharacteristjgE c |ncrenents.

It has been shown in Eq. (14) that the stress f in any
menber is connected with that in nenber 12 by a |inear equation,
h BB S SEARSHESSE 3. f %
where a, b, and c are constants. An exam nation of the nethods
by which this equation is derived will show that the constants
a Had and b are functions of Uonly while c is tr?&b fundti on of

both U and K « Hence a and b depend only on the truss

di nensi ons and th© sections of nenbers, (U= L/ y)) whi | e ¢ depends
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Injiaddition- on the loading, as Kis a function of the change
of angl es which depends on the | oading. This fact shows that
a and b are constant for the”truss and may be found w thout any
know edge of the actual | oading. Further, by differentiating
Eq. (14) the rate of change of f with respect to fy or f __SEX
will be found to be a constant being equal to a and b respectively.
Wen f ]~ receives an increnent equal to ¢”g and fgj__)an]r I ncrenent
0219 the stress f receives an increnent equal to d c*-f g 821 jw4di 15
| ndependent of the | oading. In other words, if ¢ is the increnent
of the stress f,

¢ = d Os"A" &C21 e*e »x, (16)
what ever the value of K may be. These increnents ¢ wll be known

as the "Characteristic Increnents" meaning that they depend on
C

the truss dimensions only which are characteristic. These
characteristic increnents may now be applied to the correction & of

stresses fi, and f,; which weres assuned and found to b® incorrect.
Suppose for the assuned val ues of fyo and f ,q there are external

: menents around the t\/\o\,v%,oi WS 1% “and*2~ i*h t-He l-dst triangle A

- - zero moment which fwould be follow a correct ass b prrom.
I nstead of beingtre**&em8 thoy-ohould 2# fee aaounption-is oorroot*
Let these nonents be M« = R» x hi' and M" = Es' x h2",  Since
these noments are* linearly connected with the stresses f/ < 721
as they are linear functions of the stresses of the nenbers neeting

at the joints, they nmay be expressed in the form

A M» ZU» T12+ V» f2"t* Y »
e "ﬁj,g T i
>k* AT OIS T YRS

“Where u, v, and w are constants, o Byssimlarreasoning as for
A

Eq, (16) the increments of Mare also dependent on & u and v only

and are independent of w Thati s,
A
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NbQ_,I =\u Q-"Glz.t. v2| 021 1'
Now the consideration of equilibriumof joints 2'and 2* requires
an
that mMt =0.,,Mt = 0. That is, an increnment nmust be given
to Mso that it will be zero, or
Mclt = - Mlt Mcolri== le
Hence, = Mg Sy o153 b o1
=il t = Ugr °12 4 V2' °29
Fuorn these two equations i, "¢ °21 ™y "® found and the correct
are
stresses f”, and fg”" obtained by adding these increnents to the

assuned val ues. After the correct values of f~, and f,x 2"°¢

known all the other stresses may be sol ved.

For fc a truss under symmetrical |oading thenonents are

symetrical about -Me plane of symmetry, say nmenber 67;4 and*

4 2 8  M64=Meg' M5 Megr ¢ Yy5 = M yo-
This shows that Mg7=M¢e = 0 and hence fg7
5 9 and f7fi = 0. If fromthe assuned val ues of
fl2 and f21 they are not equi.1 to zero but
2 7 7  equalto |
Fi 0. 47, = 2. gy and f*76 respectively, then the

I ncrements for f3o and f2i nust be such that
cgy = = f&7 and cye = = f'76
By Eq. (16),
- £'67 Tdg7 C1o+ Sg7 Co1
- f'76 = d7s Op-f- &76 ©21
Prom these two equations ci, and cgi niay be found and the assuned

an(i

f1o f*21 corrected as before.

Article 4.  The Method of Substi tuti on.

Consi der the same equation (14),
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f = camfcea-ie b 1 y-* C

If the values of a, b, and c are known the values of f, and f, may

be found when the value of f is subject to eertain conditions. To
find a and b the previous articles nade use of ¢ = 0, but in some

oases it mght be well to include the value of c. Then, if f_ and

fy are assunmed or found by enpirical formulas of Art. 1 in this chapter
there is a chance of having the values correct and thus sadﬂﬁiuoh tinme
In finding the increments although the process of characteristic incre-
nents is mathematically correct. If the assuned val ues ars not

correct a second trial may be nmade or even a third one. But there

IS no need for a fourth trial even if the third trial is not correct,

not apt tobe
which is hagdly the case, for the correct values of f and f,r can then

X
be found fromthe three trial values, as foll ows; Let f,i, ¥X2> and
fys be the three trial values for f, Aﬁ% e Ry 2ene s Ty e N A@ sane
Rl vand f, o fY .and f™ be the correspondi ng values for f. Then

fes S o
tuf®these three sets of values in Egq. (14) there & obtai ned

subs;i
I three sinmultaneous equations for the solution of the three coefficients,
b, and c. From t hese coefficients and the correct val ues of f
whi ch are known from i nposed conditions}the correct values of f~. and
' fy may be found. It should be noted that it is not the intention
of this article to be of servide in any actual caee as it applies only

when the three trial values of fjjg and f* have failed to give the correct

' resuit, which is not believed possible.

e ——————
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CHAPTER VII. GRAPHIC METHOD BY THE PRODESS OF SUCCESSIVE

DEDUCTION,

The graphic method by the prodess of successive subsititu-
tion differs frolm that of deformation contour in the order of
procsduBe.' Instead of expressing the relations between r's
by graphs and finding thes correct stresses from the correct f’s,
this method handles the stresses directly. The general prodedure
has been given in the previious chapter while the various details
have been twken up in connection with the method of deformation
contours. Therefore, only the particiulars involved in the finding

of f15 and fgq are necessary here.

For the empirical formulasm of flz and le there is no

further discussion except to mentionrk the methods of correction

to be applied aftsr each trial. It has been found from analytic
expressions that in a Pratt or Warren fruss with Vverticals the
effects of f1o and fgy on the member of symmetry are different in

The effect
signs and widely different in magnitudes. That of fjg5 is generally
-1 '
mpch greater than that of fg;’aﬁd ranggé'from 2 to 4 times for

from
the upper end of the member %e- and 2‘4 to 8 times for the lower

end of the member. Further, 1t will be found that both the= the

effects due to f19 and fgo3, individually, are veryvlarge compared
with the stresse#sa f themselves, amounting to 50 - 400 times in
a 3 panel truss. Based on these facts kkx a judiciggscorrection
may be applied to fi1g and fg1 after one or two trials. It i
believed, however, that under the conditions the empirical formula
is derived the values of f12 and.fgl should be more than am

rough approximations
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In the method of characteristic increments the Goeffigients
of ¢y and cgy =®& for any ¢ are derived from two processes; firsg
for cjg = 1, and cg1 = O and then cjg =‘O, and £ cg1 = 1. In
each of these processes the method is the same as fér the general
gsolution described inj%gevious chapter, except that the property
lihes gshould be used instead of the deformation lines in drawing
the deformation contours. These contours then become the
"Charaéteristic Contours". It will be found in this method that
- the values of’%gs increase very rapidly toward the othsr end of
the truss and it is nezessary to change the scales for+ﬁ% a%eggamk
the whole process. This is immaterial fop?%;operty lines, see
fiet. ©, Chap. 5% . For the assumed values of fyp and fg; in this
method it is better to so choose them that they dre nearly
correct, in order to get rid of undusmly large scéles for f toward
the other B®nd of the truss. This, however, is not very serhous
as the scale for f may also be changed by changing the scale for
the deformation lines. To obtain the correcting .increments for
f12 and fo3; after the whole truss is analyaed)the,simplest method
would be to draw two lines representing the linear equations
reférred to the samez axes and find their intersecting points.

With regard to the method of substitution no further
statement is necessary exceptkmm to note that the third trial
should give afx a fairly correct solution and the necessity for
golving the three simultaneous equations does not exist in fact,

if the assumptions are properly made. The empirical formula will

be of value here.
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source of mistakes that mey occur
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e et e L e i g

in bthis

graphic method comes from the wrong use of the deformation lines.

0 check this, let Eq. (5) be applied to any triangle lmn, Fig. 43,

i

n

1 Fig 43

Pin a triangle,

-

i
shoqg be hero.

mn
F/9.44
- the
A

fam
a C b I.: ay
‘ 5 the

l h “
L1l e

F Pirallel to the side.ln

fhe algebraic sum of ac

fln % fnl’

The only other

Adding fogether and noting

be greatly simplified. PFig.

convenient side as a base, aay ln,

then,
2 2 7
(2 “in f’n]_> Uin (2 Sim fml) Y ntimin
o - P T = 2 e 7
( inm mn) Jnm ( “nl fln) U1n+{1nm
el - 8 = 2 P =P 7
( fml flm) Ulm ( *mn hm) Unm+hnml

that the sum of the K's should be zero

('f.-f ) =

Uln <fln —_fnl> t Unm (fﬂm = fmn) t Ulm ml 1m =,
: Uny Ulm
A (fln = Inl) t EI; nm fmn) 3 GI; (fml o flm) =
This test may be applied as follows: Pagsing around the sides of

e uriengle in 8 counter clockwise direction, find the difference
of the stresses in each side by subtracting the one at the end

next met with from the one at the end Ffirst met with, multiply

v

geach by its corresponding U and the total sum of the differences

Making used of the property lines the test may

W,

Choose any
and find

difference, fln - fnl' On the siée nm find

-2
if - f

nm

b

Sap
ml =l

e si r
wn 20d on ©H 431de ml,

off these two values with proper signs on
corresponding sides of the trigngle and at
draw lines

ends of the sggments, a and b,

meeting the property lines at ¢ and d. Then

and bd should be the negative of the difference

source of mistakes comes from the
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equi l i briumof joints. But in the nmethod of equilibrium contour
th© construction is nad®© so sinple that this is hardly possible
iISalittle caret is exercised. This is far rpr?nﬁn.greferommstakes

than the analytic expression 2 M =0.

After the stress lines ar© conpletely |ocated for the
truss and the fore© diagramdrawn for thC© |lines a very uni que
check is provided by the fact that in any section cutting the
truss nmenbers th© stress lines in these nenbers and all tho©
external forces Rin one side of the said section nust bal ance
each ot her. That is, th© force and equilibrium pol ygons for
- these forces nust respectively clos@© This furni shes a check

whi ch insures th© equilibriumat all the joints.

Article 2j> Exanple. Details of Procedure.

Th© sane drawi ng nad© in connection with th© nethod of
deformati on contours nmay b© used to illustrate this nethod if
(1) the bas© and vertex lines'and thGr axes be omtted, and (2)
If th© stress lines as shown b© regarded as the final sol ution for
fig and fg,after correction. The other constructions needed in

this method d& self evident and doenot need a separate drévvi ng.

Article 3* Construction of Influence Lines.

Sine®© th© coefficients of f and f in Eq.(14) ar©
: y
I ndependent of the | oading they only construction required vsi Tor t he
I nfl uence |li”es would bw the values of ¢ for each case of |oading.
The characteristic increments therefore remain the same as before.
Th© sane assuned values of fi2 and fgl may be used for all the

cases requiring different sets of correcting increnents. Each

position of |oad has a set of stress lines of its own.
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CHAPTER VIIL., THE SCLENTIFIC ARRANGEMENT OF COMPUTATIONS.

e et e et et . e

¢

It is evident that both the methods of deformatian
contour and successive deduction admit of analytic solutions. As
is well known an 'analytic method, while it gains accuraby in resdlt ,
is generally accomplished at great expense of time. Tt thergfore
behooves us to devise some such methods which Wili reduce the amount
of work to a minimum. - The computations for secondary stresses by
the ordinary methods have been systematized to a great extent in
k'reoent years but'still there is room for improvement, mainly in
the arrangement of computations. Among the many items which are
inefficient and are found in all of the ordimary methods may be
mentioned the following:

(1) All these analytic methods need some graphic
construction to show the'proper location of certain computed
quanﬁities. |

(2) In all ordinary methods the computations are

. :
arranged in tabular form in which at least two»or three columns
;of figures are copied::from the previous f@les. This not only wastes

time and energy but also invites error.

(5) Only the final results are shown in the

tables, the rough computations like addition and subtraction being

made on separate pieces offpaper which are not filed,. Such compu-

tetions are most liable to be performed in an unsystematic way.

=
. - ‘
(4) Time is wased in transferring the results

of the rough computations to the tables and the practice also is

apt to introduce mistakes.
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(5). There are no means of checking the conputa-
tions except by repeating the numerical work which not only wastes
time but also requires a different conmputer.

(6) The figures arranged in a table do not convey
as nuch idea as when marked on the truss diagramin a sem -graphi cal
way. To transfer the results fromthe tables to the truss diagram
again wastes tine.

To get rid of the above objections, which are very
gommon, a sinple and self-evident schenme would be to dispense with
the idea of the tables entirely and to record all the results direct-
ly on the truss diagram Second thought nekes it plain that to
save tinme it is also advisable to include all the rough conputations
on the diagram By this arrangenent it is possible to so record
the figures that each one is witten only once and so that the
conputation could be nost easily perforned. Further, by arranging
the conputations so that each' figure has a definite space on the
diagram the chances of using wong figures are entirely elimnated.

The witer acquired this idea of arrangenent when
he attenpted the solution ofzgﬁeven sets of ” sinultaneous equations
each in connection with the secondary stresses in a 16-panel two-
hi nged ar ch. It was his good fortune to spend sone tine |atter
on the subject of scientific nmanagenent which not only convinced him

of the necessity for such an arrangenent but also added nuch to his

knowl edge in achieving the end.
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CHAPTER IX.  ANALYTIC SOLUTION gy THE SCIENTIFIC ARRANGEMENT
OF GOMPUTATIONS

Article 1. General Considerations.

A careful comparison of the two graphic methods discussed
in the previous chapters will disclose thati?;é;-are irm different
in form and construction they are neverthsless deduogable one
from the other. In the method of deformation contour the unknown
quantity is g!= 2 iy = fnl) while in the method of successive
of deduction the unknowns are the stresseg,f)themselves. Since
the deformation contours are the same in both methods the only
differenﬁe will be found in the relations betweeﬁf?'e and thosse
betweenj;'s. But thess relations are equal, differing only

by a constant factor. For,

Pin =2 f1n = fn1s

Subtracting, rin+ i1 = fin+ fnl,
Also by Eq. (11), Hiie =2 Pint+ Pul

8 fpl = 2 Pp1+ Tin
Subtraqtingy 3(fin-fnl ) = rin - Ppie
Hence, analytically, the quantities used in the two methods aré
either the same or differ by avconstant factor. ~The two methods

could therefore ber reduced to the same basis by sulitable combinaa

tions.

It should be noted here that by the same reasoning as
above the method of Muller Breslau and those of Manderla and
V4 s
liohr are equally deducégble one from the other andjbroadly speaking,

they are practically the same. The method of Muller Breslau, howeger,
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has the advantage of expressing the unknowns in sinple linear equations
whi ch are not connedted f eoget hdr- si nmul t aneousl y. The exi stence

of the simultaneous equations in the bther two nethods sxs is

I ndeed unnatural and unnecessary.

Article 2. Ceneral Prodedurss.

In the anal ytic nethod the features of the two graphid
nethods wi || be conbined to the best advantage. The unknown
quan‘tities wi |l be nade the stresses f thenselves as this is nore
direct than the use of r in the nethod of deformation contour.
The deformati on contours will be applied to the différent nmenber s
around a joint by Eq. (12) which states that "the value of r of

any nmenber In at joint 1 is equal to that

n . 2%
Kol of r for any m;nber 2% Ip, multiplied by
KA the ratio of U'IJ'_I!u”,and I ncreased vt by

p / F}géfj' the summation of K's fromlp to In divided

by Upppe That is, Pigids,
ri - 3 —E_r l + 2 £ S i

1 U .l.l R ] o0
N 1n M

The rel ati on between thefc two f's fcat the ends of each menber is

/ 17\

given by Eq. (8), i.e.,
fﬁl = 2 fm" rm
Fromthe values of r at the* two ends of a nenber tlie stresses at
. those two ends may be expressed by Eq. (11),
£ )

-—-— (2 ry -+ r
n
Let the truss as shown E).e alglal y#ed by the anal ytic nethode

1n nl

Let stress fi2 in nmenber 12 be x, and ==& {21 bee . Then,

rp = 2 X -Y, andrs; =2 Yy - Xe From these two values of r find
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Fig.96

thosg of all the members mseting at the joints 1 and 2 By Eq. (17)
Applygthe moment equation (7) to joint 1 f13 is obtained from x.
To find fs%,first subtract f£13 from riz, obtaining £1z - fz1(riz =
R £ —.le), and then subtract fi; - fzfrom £z giving fz;.
Subtract?again fiz - fzy from fzy, rsy= 2 £31 - £1zls obtaindd.
From rzj find rzs and rzs by Eq. (17). If m U13 = U35,r35 will
be simply‘rSI increased by 2 K/U55 . Now for member 23, rgz and
r32 have been found from rgl1 and rzj and therefore the stresses
foz and fzg could be found from Ed. (11). Around joint 3 the
stresses in all members are known except that of 35. By the moment
equation around joint 3,

Sz1 £31t Szz £32 + S35 f35 = O
fzg is therefore known. By a similar process gé for member 13,
rgz 18 obtained sweé from Whioh the values ofjéqs for all the members
meeting at joint 5f”e‘¥ﬁ%”Z€?€%ses in member 25 ﬁay then be found
from rés and rgz and this makes all the stresses around joint 2
known, except that of member 24 which may be found from the moment
equation. From the value of rgg that o? r40 may be found by the
gsame method as for member 13 and tﬁé”323¥”%§ the process repeated.
Eyventually the stresses infg%mbers around joints 2' and 1l' are found

Frgtl.
aed from whdeh the moments around the joints 2' and l} way be found
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’ ‘ Up to this poixnt the quantities KA'l' and
KA'E' have not been used and it is necessary
to test the fundamental equa?ions involving

-117
these two quantities. Apply-“Eq. (3) to

these two joint% two equations are obtained

which furnish the means bof solvevx and ¥.
After they are obtainsd all the other stresses can be found by

substitution.

If the loading is symmetrical about mzm= a
member at the centre of the truss; the stresses at the two ends of
that member will be zeéro. Since these stresses are sxpressed by
linear egquations in terms of x and ¥ the latter can be found

from the two equations equated to zsro.

In apriyimg Rgxxkt the above method the following points
should be noted.

(R In applying Eq. (17) to members it should be
remembered that the signs ofjéss in 2, K should be changed for all
those members ln which are reached from the reference member 1p
in a counter clockwise direction around the joint in consideration.
; VSee Chap. II.

(2). The moment equation could not be applied to any

around the joint
joint until the stresses inz all memberg/éxcept one.@re knowne.

(8 )5 The check in Art. 1, ChapVIL,1.6.;
Upp (F1n = T3 i Unm_( T e )t P LS - Ty ) = O
. ° %0 e e ®o 0 (18)
=
must be satisfied as soon as the stresses in one triangle are
completely determined.
' : * - Is -
(4). Particular attention should be paid i the solution

5 %ﬁe
of the moment equation and also i the correct substitution of U's.
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M st akes made here could not be detected by Eq. (18).
(k)& The val ues of f fromEqg. (11),

tn= | (2'm+" yh
could be obtained in a sinpler way as foll ows: Biecsts tind  tie/5
fromr1n of the reference nenber by using 5 U, instead of U ,.
Thi s gizes
Bin. . Yplip: 2
5] Suln SUln

, : add the sum of\
Sinilarlyfind r, /3. Then feam &e s*me# r,, /3 and r, /3 %hich,,
when added to r,, /z gives f,,and tor, /3 gives f,. Since only
the stresses in web menbers are found fromthe r's a%_h’éhe end of the

nenber s’ only the web nenbers need be conputed for 3
Article 5« Change of Angl es.

The equations for the change of angles ses previously
di scussed could be arranged in a nore H useful formas shown in the

gl-guro, which is constructed as foll ows: First wite down the val ues

the
of P s on the sides of the triangle and then fill the spaces inside

"the = bei ng
the triangle with?P's as shown, each prinmary stress”entered tw ce.

Next formthe differences PIg EERSE V= g and*Pig =F35 =" "'b

] ftz

=

Coir_Cot 8 Co fee Cair Lo

h-c |93 25| Ba| Fz| Pz | P |8 Sl| 7
-0 |=31f3] Fs pz3f=€|_d |=48
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e Multiply each by the cotangents of the corresponding angles>-

which are witten afeoye the colums for the stresses P. The

sum of these products, c¢ and d, gives Af. Nest find P,3 - Py3 =
-\ the

e, and e Cot f =f. Add-f to, negative of d <)4/!$ I's foundj

Jimlarly for 2G . If fis aright angle)f and h = OJa&&’\>fi

= -d a, n&A(\ = -c. This is the case shown in the exanple.bel ow

Article 4« Exanple. Details of Procedure.

Let the truss analysed in the previous chapters be
used to illustrate this analytic method. See ika Drawing, PatelV'.

On the upper portion of the drawi ng construct a snall
tnuss diagramto record the given data and tws. solve for the val ues
of K Construct another diagramwth a scale as large as the
drawing wi Il permt* This diagramw || be used for the analytic
met hod. On each of the web rre;;oers construct two snall tables,

s

one wmth 7 rows and the other 3 rows, all having 3 colums and
A i J

pl aced one above the-other. In the first table extend the

third and fifth i & rows one 'space to the right, as shown. For
each of the chord menbers construct a small table of 3 colums and
6 rows with the second row extended one space to the right.

For each of the joints construct tw tables with one adjacent to

the truss. The size of the table adajacent to the truss is

The equah
determ ned as foll ows: Nunber- & vertical columms *= the nunber

of menbers entering the joint, number of horizontal rows * WBB. equal s
IzzexkRanx e . A

the joint has AURPGEr Of cUPr Ll AmECHANSs mafPenst NEbnt 8P! Fofie”
as may be needed in the process. The tables drawn on the chord
and web menbers will be known as P tables. The two tables for

the joints will be known as K- and M- tables® respectively, the for-
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mer applying to the one adjacent to the truss. The small tables

below the F-tables for the web members will be known as the C-

tables. Mark all the vertical columns wikh letters as shown in
the first horizontal rows. For the F-tabkes these will be x, ¥y
and k and for the M-tables, S, x, y and k. For the K-tables the

identification marks for.all the members entering the Joint should
be noted except the reference membe%.

Next £ill the K-tables with the values of K found in the
small truss diagram. For examdple, at joint 5, the value of
KB5 is put in the nd row and 2nd coiumn, that of KG5 in the 35rd
row and 2nd column, that of KD5 in the 4th row and 5rd column, and
finally that of Kgs in the 5th row and 4th column. There will Ghen
56 one column vacant at the right of KE5‘ At joint 2, the value
of KAQ with the sign changed is put in the 2nd row and 2nd column,
that of KBZ with the sign changed in the %rd sa row and 2nd colunmn,
and finally that of K5, with the sign changed in the 4th row and
‘the 5rd column. One column is vacant at.the right of KOZ' Similafly,
’ &11 the K-tables may be filled with the values of K transferred
from the truss diagram at the top of the #rawing. Next there
i;are performed the summations of the various K's 23 Pollews: Hind
;the algebraic sum of the amounts in the second column and write
the results in the 3rd column and 3rd row. This sum is nex?t
'édded algzebraically to the amount below, the result being: put in
the 4th column and the 4th row. Siﬁilarly, this result® may again
 be added to the amount below if there is any, and finally the space
‘at.the lower right hgnd corner of the table is filled. Thus;
 at joint 5, the sum of -.55 and 22,10 is -2.65, that of —2+65 and 7D

B -3.40 land that of -3.40 cnd 98 35 2. bk6. Similarly, for the joinks
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at the top chords. It will be seen that the first figure in the
2nd colum is the value of ZK for the first nenber nmet with in
a clockwi se direction around the joint fromthe reference nem
ber if the joint is at the bottom chord and in a counter clockw se
direction if the joint is at the top chord. Simlarly, the
first figure in the ~rd colum is the value of £ K for the 2nd
menber met with in the proper directions around the jointsj the
first figure in the 4th colum is that for the 3rd nmenmber, etc.
The proper nenber's to which these suns apply are witten down
in the first row Thus, at joint 5 the figure -.55 is for

nenber 5-2, -2.65 is for nenber 5-4, etc.

Above and below the tables constructed on the nmenbers,
marked as F and G there are recorded the values of U°® L/y where
Lis in feet and y in inches," and S = |/y. For the web nenbers tke

values of 5 U should be put down at the side of U

If the various suns in the K-tables are divided hy
U the constant termin Eq. (17) will be obtained for the res-
pective nenbers. As nentioned, before the values of r/5 are to be
used for the web nenbers and the summations of the K s should then
be divided by 5 U of the web menbers. These values of £ K/'U and
Z KI 2U are next recorded in the F-tables at the extended portions
provided at the right. Thus for nenberb2-5 the value of Z K "U
from the reference nember 5-2 is -.55/'6*%-5 = -.0?<5, and is put in
the extended portion of the 5th row in the F-table for 2-5. fh:
This is the increment for r”,. Simlarly, for r,<j the value
of TJ K 3U fromthe reference nember 1-2 is -2.04/15.43 -

-.125 and is put in the extended portion at
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‘the right of the 3rd row of the F-iable for member 2-5. As another
example the value of £ X/U for chord member 5-7 from the reference
member 3-5 is -2,56/2.73=_,874, By the same process all the entend-

ed portions of the F-tables will be filled up with2K/U's.

Now the solution of the problem begins, Let fes-= x,
gnd f21 = v and put the proper figures in thé F-table for member 1-2,
Subtracting'the coeffiicidqm ts of "x‘and ¥ of “To¢ Trom those 'of T4,
'f12 - f5q is obtained. Revérse the sign of the difference and put
3t above the original sign. By ﬁsing thie reversed sign the dif-
vference foy ="£49p is obtained. When f1p is added to f4p - fpq,
o is obtained; if f21 is added to f21 - f12, Toy is obtained;
In other words rqp is obtained by adding fqp and fqp - fpq Wwith
the lower signs, while rp¢ is obtained by adding fpq and fqpo - foq
Vusing the upper signs. From the value of Toy complete the defor-
metion contour around jbint 2 as follows: Multiply the coefficient
éf X, =1, for ro4, by U = 4,38, ogiving -4.38, Divide this by 3 U

[= 13.55 and put the quetient 7524 iﬁ the column for x and row for

/5 Tpz in the Fitable for member 2-3. Divide -%4.38 by 3 U = 15,43
énd put the quotient -,284 in the proper space in the F-table for
2-5. Similarly, divide -4.38 by U = 3.03 giving —1.45 and put the
result in the proper space for membbr 2-4, Since the rows for

r's have an extended portion at the right there is no chance of
recording the figures in the wrong places. It is only necessary

to notice that for chord members these r's are put in the 2nd row
and for the web members they put in either the 3rd or >th row
depending on whether the & joint is at the top chord or the bottom

chord, By similar processes fill the columns for y in the

F-tebles for the members around joint 2. For values of the constant




o :

&

2

102

k the seme process is to be pursued except that the figures are put
directly on the top of the extended portions of the respective
horizpntal rows. Thus, k for 2-5 = k for 2-1 x 4.38/15.43 = 0,
because k for member 1-2 is equal to zeré. This figure O is thean
put.on the top of the extended portion of the 3rd row.. Now add the
figures in the extended portion to the one above and write the
élgebraic sum in the 3rd row in column k. Thus @ - 135 .= _ . 153
for member 2-5. Similarly, the constant term k is obtained for
all the members around the joint and the contour for the joint is
then completely determined by analytic expressions. By the same

process complete the contour #ke around joint 1.

To Find f15 from f4, apply the moment equation to joiat
1. Multiply the coefficients of x and y and k of f4, by 84, and
enter the ?roduct which equals the moment due to fqs, in the M-taﬁle
at joint 1. This part is believed to be self-evident. Reverse
the sign of the momentg and eﬁfer the results in the row for member
1-3 whoge S = 155, Dividihg the moﬁentﬁ of 1-3 by 815; f15 is ob-

tained. Enter the resulta in the 3rd row of the F-table for mem-

ber 1-3. There are already in this table figures in the &nd row

| representing 19 Subtract f15 S50ty zn Eiyine 2f13 . f51 ot 13

gL, Thus, for coeffieient of x, 2.995 - (-2.403) = 5.400.

bk

; Mext reverse the sign of f13 - f51 and put the new sign below the

P old one. Thus for the coefficient of x, i5.400.is obtainede. Next

subtract f13 - f51 from f15 or, using the lower signs, add f15 - f51

f to £43.  Thus for the coefficient of x, 22,405 - 5.400 = -7.800«

i This gives the value of f§1. Again subtract fiz - fzq from f3qy,

Piving 2 f31 - f15 = rzq, or, using the lower signs of f15 - f51,

add £, to it. Thus for the coefficient of x, Ty = -5,400-7.805

e _15‘2050
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From t he value of r”i thus obtained a deformation contour around-
joint 5 may be obtained by analytic expressions as explained for
joint 2, obtaining thereby 1/5 r”, and r~. , Now for nenber 25 there

are already filled the values of 1/5 re* and 1/5 rjz in the F-table,

the difference of these two quantities may bext be obtained. Thi s,
as explained in Art, 1 of this chapter, is equal to fgz - f*2*
These figures are to be filled in the 6th row, Next find the sum

BRLISY 525G s s 32087 § PALENE Rt Vi s iher At (oW Thi s
quantity when added to that in the 5rd row gives fg-j in the | 2nd
row and whan added to that in the 5th row gives f'*}2' A" the 7th

| pvw< Al the stresses in the first triangle are now conpletely
determned it is necessary to apply the test of Eq. (18), Not i ng

the direction of the contour hs which the differences of the f's

are takenmit will be seen that the figures in the 6th row of the
F-table;]c29g> plus the figures in the 4th row of the F-table for 1-5>
using the |Iower signs, plus those in the 4th row of the F-table for
1-2, using the lower signs, each nultiplied hy the correspondi ng

value of U, should be zero. These-results are recorded in the

Ctable under the F-table for nenber 2-5*

Now around joint 5 the stresses in all nenbers are
known except that of 5-5 which can be found from the noment equation.
This sunmation is perfornmed in the' Mtable for Jjoint 5. From
fj.,:: t hus obt ai ned and re,« al ready found, the F-table for nenber
55 may be filled as for nmenber 1-5» From r%jj as obtained, conplete

the deformation contour around joint 5»

‘In the F-table for 25, 1/5 r,» and 1/5r”, are known and

it can then be filled as for menber %*>.ya As before the figures
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in the 6th row of. the F-table for 2-5, and those In the 4th row of
the F-table for 3-5, wusing the lower signs, each nultiplied by the
proper Us are next put in the first two rows of the O-table.
Note that U for nenber 2-5 should be used instead of 5 U  The
last row in the t&ele is copied fromthe 1st row of the O-table for
menber 5-2 with the signs reversed. The sum of the figures in

each colum of the O-table should then be zero.

By the sanme process the stresses in all menbers are
obtained in terns of x and y in a l|inear equation. The two sinul -
taneous equations derived fromthe fact that f~-j and fy® should be
zero then furnish the values of x and y required. . Fromthese

values of x and y the stress f in any nenber may be found in the #

foll owi ng manner. Fig. 49. On the side of the nmenber where the
fc <X fibre stress is obtained, that is, on the
Ne > f: t f X- hby 'b'y side first met with in passing around the

( [

o~ Srel 4 end in a clockwi se direction, tke value s

Fi g*43.

of the terns containing x and y are witten one above the other after
after substitution. The constant k is next witten on the side

of these two figures toward the end of the nenber. Find the
‘algebraic sum of the terms of x and y and wite the result bel ow k«

"Adding this to k algebraically the value of f is obtained, which

is to be witten at the end of the nenber. s
arvicle J. Construction of lnifluence Linese.

As nmentioned before the coefficients of x and y are
characteristic of the truss and do not undergo’ changes with the
| oadi ng. Therefore for influence lines, trie only/change in the
above nethod is to extend the various tables so that there

will be room for each change of |oading which neans a shange of K.
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2M215S £« MATURES G THE NEW METHODS AND COVRARI-SON,

Article V. —eat ures Common .to all. Methods*

(1) No sinultaneous equations involving nore than two unknowns
are required.

(2) Al the methods deal with a quantity which is of the same
di mensi onal degree as the secondary .stress itself. This gives
nore accurate results than when a quantity involving |arge
multiples of f is used,

(2) Al. 1 the nethods take less tinme than the ordi nary nethods*
For a..six-panel truss with uniform |oading they require only six
to seven hours for the conplete solution.

(4) There is at |east one chieck for every nethod which insures
agai nst m stakes and errors.

(5) Al the nmethods are reduced to a mechanical basis and no
personal equation can affect the results.

(6) Al the nethbds can be easily applied to influence lines of
secondary stresses.

(7) Al the nmethods are acconplished in a continuous process
from one end of the truss to the other.

(8) In all the nethods the conplete information is contained on
only one sheet of paper, including the rough conputations, figuring
formul as and dat a.

(9) Al the results can be easily duplicated by taking blue
prints, which is not possible or at |east inpracti cabl e in ordinary

conput ati ons made in tabular forns.



Article 2. Features of the Graphic Methods.

e et e

1) They give a.complete representation of secondary stresses
in every member of the truss and convey the coﬁplete information
in the least amount of time.

(2) The methods not only show stresses at the ends of the members ,
but also the variation of the stresses along their whole length.
5) They give the points of inflexion and sho% tﬂe general

form of bending of the different members.

(4) With the aid of the force diagram for the stress lines they
ghow how the secondary stresses are affected by changing the secs
BE on nmoduli of the members.

£ 5) The secondary stresses obtained by the graphic methods are
| never seriously in error although they may not be exact.

nticle 5. Features of the Graphic Method of

A e en

Deformation Contour.

e e it T e T el i St e

i1 ) It is strictly graphical. From beginning to end no
computations are reduired. No slide rules are necessary.
(2) It is the most accurate of the three methods if in the

%nanalytic methods slide rules are used with which only three sig-
nificant figures can be obtained. This is due to the fact that im
analytic expressions the secondary stress is found from the
difference of two large quantities. These quantities must be

Very accurete since the difference is small. See eguation 7, p.23.
(5) The errors made in locating the.base lines and vertex lines
are not cumulative as the effect of one line upon the other is
comparatively small.

(4) The method is perfectly general and applies to any kind of



truss without any know edge of the distribution of the stresses.
(5) Only a few construction |lines heed be retained on the draw m

(6) It has the nost unique checks,

Articleyt. Featurer £f the Gaphic Method of Successive
Deduction.

(1) It is the quickest nmethod of the three if the assumed
values of f~, and f~ are nearly correct.
(2) It can be Qsed to check the stresses conputed by other
methods with the |east amount of time.
(5) It is good for experienced conmputers who can make close
estimites at the start.
(4) It is t.he most direct method in that it gives the stresses
in various menbers from the very beginning of the solution.

(5) The method is easy to remenber.

Articl.n 2. Ej2&Mif-L° 9JL jtive AnsilAti” Method wvth the

Scientific Arrangement of Coyputations.

(1) In bridge offices where a |arge nunber of standardized
structures is to be analyzed for secondary stresses, the truss

di agram together with the small tables can be blue printed,

this saving fully one- sixth & of the tine.-

(2 This method is sem -graphical in that it shows the stresses
In the proper places & nc. the effects of one upon the other.

(2) The process is very nechanical e Every figure has a definite
spe.ce in the table? every procedure has a definite order.

(4) No figures are 4 recorded twice and no necessary figures
are omtted.

() All the rough computations are shown on the diagram thus

rendering a possible a check at any future time.
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6) The figures on the diagram are so arranged that all the

tre sheets of paper. All other computations can be made with

"e'slide rule.

) The method is capable of affording any degree of acuuracy

1at may be desired.

Practically all back references are eliminated.

It gives a check of the secondary stresses as soon as they

e found.

Article 6. Comparison of the Three Methods.

Briefly speaking, the gfaphic method of deformation
vtqur and the analytic method are about equal in merit as
it a8 the aﬁount of work and accuracy of result are concernéd.
drdinary routihe work in bridge offices the anmalytic method
v a?pear best to the draftsmen while the graphic method will
Er-ferved by experienced designers.b The graphic method of
céssi&é deduction is very satisfactory for ordindry trusses
re an empirical Fformula cah'be s used; if this is possible

g method takes the least amount of work.
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BART IV, 1T HER Ce 35 IDBDERATTIORS O F
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* -9 REGEDF T Y OF g0 I NTS

CHAPTER I, EXACT METHODS.

g Article 1. The Exact Method of Manderla. including the Effects

of Primary Stresses.

In the methods of analysis discussed in the previous
. chapters the influence of the primary stresses has been neglécted

iin deriving the deflection equations which app8r ass Eq. (3) of

lPart 8 exd Bg. (4) of Part IIT. As a matter of & fact these streosses
. produce bending momehts along the axis of the member proportional to
fthe deflection of the elastic curve,and)striotly speaking)should be

- considered as é'part of the moments producing the flexure. Analyses
imade on this basgis form the so called exact methods which are more

© accurate than the seven methods mentioned before. It is surprising
fto note that while Manderla's method, published in 1880,was the first
iadequate treatment of secondary stresses it was also the exact

' method in the above sense.

To begin with the exact method it is necessary to modify

. #he ’
| the deflection equations so that i£)%111 include the effects of the di-

jPect primapy stresses.

P,.T/éy\ M/Zd,,,o

N
1| =}

‘ A = | - Fra 50.
ML I <\jf:§:=”:LVé /:Z9’f;

=
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From xx, aphoTO figupo the nonenta at any point N of the beam di stant
x from1l is

M =M, - Py - Vi;X
where P is considered as tension but nay al so be considered as com

pression with reversed sign.

The differential equation of the elastic line is

dy £ fellx- o ML Ry VX
d x2 El El EI EI 'o-
. 1)
f %P d? a const ant,
— 08w - Ma Vi x -
d x? El El——

a _ .
This is™inear differential equation with constant coefficients and

nmen
nay be solved readily by finding (1) the conplerary function with
yh= e™, and (2) the particular integral by the nethod of undeterm ned
coefficients. Thi s gives
|V|| VlX

P
whee O, and Cy are constants of integration and are to be determined

y = 0. 2% &, 6%

by th© conditions that for both x = 0O and x = L, y = 0. This gives

B -] 2 s EI: ——-—-—1-—-—-*. )
42 p B«L = —QL ) i ( Z e..Q_L
°2= P (eQL _ o—QL s B ( QL _ o-QL )

) R G 1 V,L 1
I
|
i
[

The slope of the ealstic Itoe at awy point | is

= v
dot. =Q0_e®™® _Qege ™™ -,
d x
BLtTl—d7forx—O and T, = Sn forx=1L
d x : .




|
|
|
f
l

Hence, Tx, = QC -QCo - 1
P

n doL N e—-Q,L _ T|,1
u (= 1] (0} e
| y w,= P

Substituting the values of 0; and C, in the above equations,

2 = n
X2 N

m — Ml - ! eQ’L_:._.:!'__.__\ e V_l‘ f n'rz __-"ﬂ‘\* QL -~ 1)
1 5 Vv eQL+ 1 p B - e -

T e +E(BQL+8_QLQL-1)
L e TR A e e

The above may be transforned in terns of hyperbolic functions, thas,

M AT Vv i
= = A e f- A (e QY 52 1)
g P 2 P sinannhQ

T, == PPVI-Q tan hp, |2 +v,§:(cgs:m QL = 1)

Eliminating Vj from the above two equations a relation is found

between M; and the deflection angle T.  This gives

23
U, = LAr—(SaTj+blg),
where, 1 -
a = -(——pmng—— + Q@ cot hSt).
8" QL cotihy M2 2 2
b o~ l( - «SLS —a Q,Lc0+ QL
T 4 'Quooth* -2 :

. Replacing M* by Mg arid interchanging T{_ and Tg,

20
M2: ann (28.T2+bT||

The above values of a and b maey be expressed in the forma of series
A
by develop.ing

S St AR

oy 3' = 15*91-5 - gen0e®@e

(]

cot h-X==23
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Thus, -
{ 4
a = 1 ae SSL) {1 (QL) LI B R I B
30 25 000
boe= L oidoRe conan QOie = =

60 25 000

If P is conpression instead of tension for which the above series®are
derived® @ will be negative and the signs ehould be reversed for all

the even terns in the above series:

1 (QL) 11 (QL)

oSS ESD 25 000 o~ *eceeee

\ L)2 13 L)*

D’ = 1'+ (Q {+' #(Q )+' [ I O B O ]
60 25 000

Sunmar i si ng, the fundanental deflection fornulas in the exact nethods

of solution ase as foll ows:

)

M, = ——i( 3aTyp+b Ty )

hﬂ B cEI ( O qQ *P | T8 T \,

S L : g oI LA LRCN (l)
wher e

a : & & 5 00 8

g 2523%0
s = o S 8 ooo Feooeeox
amused in i

the upper signssfor P # tension and the |lower signs for P ;* conpression.

By a simlar nmethod it can be found that

L
*IB = F¥T(*°M,-921)
L
g2l = TFRp G M=o ) &) - e el 48

wher e - fend® . 2 tard® = ten)®
a 0 15 15 + 315 - 1575 © °°°
5 & 6
g TCEEL S gU@ R el

B 52520t 100 800
ar euj ea
the upper si gns oL B2 E tension and the |ower signs for P # conpr essi on.
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Comparing Eqg. (1) and (2) with Eq. (3) of Part 1 and

gge (4) of Part III)it 1s seen that the effect® of the primany stresses
on the deflection equation is to introduce two infinite series as the

- coofficients of M, in which the the primary stresses entsr in higher

_ powers. If the primary stresses are-assumedfééro, I.9., if the
Jeffect of the primary stresses -is neglected, all the terms in the serées
after the first one will be omitted and e Egs. (1) and (2) reducs

' - Ay o
- to those derived im the pravious methods. This assuuption, it

" gshould be noted, introduces more errors in tension members than in

%compression members. But the bending momentx along the elastic line
115 not necessaryly a maximum at the two ends of a compression member
‘due to its form of bending. The resulting moments found by the

' ordinary methods are therefore of the same degree of accuraty for

all the members, compression or tension.

The method of computing secondary stresses by the exact
immlysis does not differ much from those described before, except that
;Ml the graphical methods could hot be used to advantage. The
fadditional labor required is of course very great but the increased
iaoouracy secured by the process does not give sufficient justification
éfor itsgeneral use. As far as practical engineers are concerned

fthe ex;;t method will never come into vogue, although its nature of

‘snalysis should be fully grasped for a bstter understanding of the

ﬂmnerally accepted correct methods.
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Article 2. The Exact Method including the Wight of. the Menber*

preceeding :
In «*i the abovg anal yses of secondary stresses the nenbers

are not supposed to bear transverseloads distributed between their two
ends. This, in fact, is not true because the weight of the& nenber
Itself and also the applied |oads are a not concentrated at the

; joints as assuned. These transverse | oads produce additional nonents
- along the axis of the menber and may be considred in the differential
equations just as are the prinmary stresses. Let this nonent at any
point 1M of the aenfeer be M and let its effects be included in the
flexure equations (3)rfjfPart I. For the sake of sinplicity the

effect of primary stresses will not be considered here.

By a simlar mathematical process it can be shown that

2
Myq AL/L(Z'I'lé-Tgl)+L'2jM(L-3x) dx
: (0} i

I g ik, :
M, = (2T21+ '.1312)-1-ng0 M (BX—BL)dx)

21 L

Where M is conputed on the assunption that the nenbers are sinply
suppor t ed. If the integrals containing M are performed tha | ast
terns of the above equations will be reduced to the monents which the

transverse | oads woul d pcoduce if the nenbers are fixed at both ends.

Let these rmmtgts for fixed ends be M. Then
AR
Mpp = (_2 Tigt Tpy ) T Mp'y,

L
2 E I

If Mi' is due to the weight of the menber it would be
1/12 wL®, where w = the weight of the nenber per unit |ength. To

Include the effect of the primary stresses in (5 a oimlar process as
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- in the previous article may also be used but it is so cumbersome and
T

;impractical that its use is not at all advisable.

CHAPTER II. APPROXIMATE METHODS .

Strictly speaking,all the methods described in Parts II
Amﬂ;III are approximate metheds in that the effects of the primary
;stresses are not'consiQQned. As thésa influences é§§ generally
 small the sald methods are not far from correct and ars generally

' socepted as exact methods. It is éﬁgl this undersﬁanding that ths
' methods to be described in tgfs chapgter ??e clzassifisd, that is,
i s

- they are approximate only im reference wibth the methods described

i Parts II and III.

There are four groups into which the approximate methods
:nmy be divided: ‘

(1) Those in which the effects of the web membsrs
are neglected.

(2). Those in which the effects of the joints beyond a
certain range are neglected.

(3)e Those in which the solution of the simultaneous
:equations is approximated, and finally

(4). Those in which empirical formulas are used.

To the first class belomg the graphic methods of Muller
:Bréélau,and of Engresser and Landsberg and &iso their analytic
solutions. The seoond class is deséribed by Turneaure in his book
on liodern Framed Structures. Thé thifd class is proposed by Mohr

While the last one is suggested by the writer. On accouné of its
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ébulk of material and also of its importance the first class will be

a
now

I treated in”separate chapter while the remainiﬁg classes wil;,be

?taken up. pessendtdy.

e ST ST, T T

Article 1. The Approximate lethods of Turneaurse.

This method is useful in case the secondary stresses are
required in only certain partsa of the structure or in certain members

only. Lt islhere assumed that the effect of the joints that are

| remote from the joint or joints in queskhon is negligible in

car?
magnitude and eewsd be disregarded entirely.

- : 4 ¢ 9 !
Fig.5/
! 3 5 = 8 /0 =
For instance if the stresses at joint & only are desired}
Fig.51

' the joints beyond 2, 3, 4 and 7 may be neglected. Iﬁ other words,

only the members which mset & at joint 5 are considered'ﬁo have rigid

connections at thezir ends, all the joints beyond the reach of these

' members being consié%ed to have frigtionless pins. This makes the
momehts around the last named joints &e equal zero and greatly simpli-
' fies the solution of the gimultaneous eguationse This methgd_gives

' results very.nearly correct but ibs advantage is not obvious in

fmall structures.

Article 2. The Approximate Method of Mohr.

It will be noticed from the simultaneous eguations in

lichr's method that in each eguation the coefficient of B for the
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Ijoint for which the equation is fornulated is very |arge conpared =
bith the other coefficients. It is further found from experience
that the val uese of B for different joi nts of a structure are not
wdely different fromeach other and nmay be assuned equal for approx-
i mat e sol utions. These two facts furnish a solution V\,h.i chisre-
narkably sinply and correct, as follows. PromEq. (6),Part II,

the general formof the sinultaneous equations is as foll ows:

B2 Pn. =2 Cin B .. 3 Z Biglin = 0
If in each equation B is assuned to equal "o B, as the ¥ effect
of variation of B, is small conpared with that of B.l; due to the

nagni tudep of the coefficients,

By (2gDin fZDin) = 32D By,
2 B,
B.ts T T, P R
I n
wher e 'Ill‘; Is the weighted nmean of the slope deflections of the nem
- made fo

bas meeting at joint 1, reference being fe4 wttk the value of
D=1/L.

By Eq. (4) the values, of B for any joint may be found as
soon as the values of Hfor the joints are known*  This reduces the
‘anal ysis of secondary stresses to a sinple arithnetical process
‘ad greatly enhances the practical value of Mlarts I\?thod. The witer
hes tested this equation ?n various occasions and has found it to be
entirely dependabl e. See also Bulletin #1, Studies in Engineering,
Lhiversity of Mftesota, by G A Maney.

/
Article 5. The Approxinate Method involving Enpirical

For mul as.

This nmethod if perfected woul d be the quickest of all-.
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Unfortunately these is not much information avail abl e upon which to

for'a definite pr ocess. The one suggested by the witer in Chapter
VI, Part Ill”is very useful for Pratt and Warren trusses but is not
applicable to other structures. It is hoped that nore |ightn%¥

A

thrown on this subject by further investigations.

It is interesting to nention here the so called Patton's
curve. This curve, deduced by Patton, shows the relations of the
ratio of'h/j and that of (P -f- f )/P where P and f are the prinmary and
éecondary stresses. From a | arge nunber of trusses Eatton found
by both cal cul ati ons and neasureﬁents that the equation connecting

these two ratios is a hyperbola of the form

a

N -

— .+C

m- D

whee m = L/y, n = (P« f)/P, and a, b, c are constants.

e mpia ~Pafhn's Curve
Elut) 552,
nﬂ::
CHAPTER 11 1. THE APPROXI MATE METHCDS BY THE THECRY

OP CONTI NUOUSBEAIMS.

It has been found that for any nenber the secondary
Stresses are directly proportional to the nonments of inertia. | f
the nonents of inertia in the web nenbers of a truss are considerably

snaller than those in the chords, as they are in fact, the bending
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‘imoments develcped in & web memﬁensmay be neglected while considering
Ethose in the chords. This is the basis upon which the approximate
;methods in the present chapter are derived aanﬁas besn found justi-
?figble igﬂggyy practical caseé. Consider a tfuss as shown. /n fiszfiﬁ

éLet Tp-12 Tpiy be the deflection angles of the members having lengths
?Lm end L . respectively. From Eg. (2) in Part II, '

Lm n Lims Tped T Ty = &Am’

;:“
Am

where 5Am is the change of angle of Am or
the sum of the angular changes of the vertices
of the triangles meeting at m. Substituternys

| , as delermined
: : the values of T in terms of M by Eq. (3},

* art i Y i
f287'523 Part I, there is obﬁalned
woln r2u (B Ima ) wIna = eE by
In Iy Im+1 A+l
B 1Y e e I =
;Multlply-by a constan Ic and pup.f__Lm = sm, =8 Lm+l = Spyl
. Imrl

}then;
| Mpey Sm + 2 My ( Sp+ Spyy )+ MpgSpyg = ¥y oeee (8)
Bliere ¥ = 6E I 44,
. m C m

iThis.equation has the form of the Equation of Three Moments, The
?solution of the secondary strasses is then reduced to that for the
imhments in ae¢ continuous beamn. There are three methods based on this
_ equation:

(1) The graphical method of Muller Breslau,

() The graphical method of Engresser and Léndsberg,

(3) The analytic solution.
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Article 1. The G aphi cal Mthod of Millsr Bresl au.

Miul | er Breslau considered three cases for the sol ution:
(1) where there is at |east one joint where M= 0, (2) where there
I's not joint where M= 0 but the truss and | oading are symetrical,

and (5) where there is no joint wth 1 =0 and the truss is not

- symmetircal . As the second case is the nost general the follow ng
| ; . : = . <das
~discussion® will he limted to that feted CE troatnont only. Let the
| nFf g. 54-
truss as shown be anal ysed for secondary stresses by this nethod.
A

First consider the two le joints of symetry, 7 and 6.

BN\% 5| 5 I 8| Ss
5 2 5

0

J 52 z 54 4 56 6 5o 9 Dpait] Z oy
| Fig. 54

ByEq. (5), MeSs t+ 2 My (85 + 8y ) + Mg Sp = Ny,

Snce My = ¥, 8g = 8y by symmetry,
o 2l H7 ——
T Y R 8 (85 n g ) X‘7,

where X, M 2EIGdAZ
( 8 + 85)

Smlarly for joint 6,

°F o 2 EIe dhp _
¥4+ £M6 = st 58 T

%ﬂ.fxg%be conputed for all the joints of the truss,
the process is then to so determne Mthat the above equations and
BEg. (5) are satisfied by all the joints. To acconplish this
: %

graphically MullerjiBreslau mede use of a momait diagram* as shown'//?Fij.55



35 . e M
Vi (7
R e i b
M7,/’5?/- L R e 2

A
&

D
&ih

*_

5 ¥ 5> 54 5z
FI g. 55.
In which the a ordinates to the broken lines give the noments at the
vari ous points. The joints from7 to 6, follow ng the outline of

the chords, are here considered ae to lie on a straight |line and

Sspaced at S apart.

.To draw t hese broken lines the 34 points J' are first
located by tri al start'ing with joint 7, and then poi nts K are |ocated
by trial starting fromjoint 6. Then if the broken |ines connecting
the points K coincide with those connecting the points 5\ these
broken lines will -fege> give the noment diagramrequired. The net hod
E@fconstructi ng the J' and K polygons are the sane} the following

descriptions for J' polygon serves at the sanme tine for the K!pol ygon.

The point J; is first |ocated by taking its di stance

from 7 equal to 1/3 Sy, for then J;J;" would equal - M+ ?
S nce that sun;f‘equal to X, and is knovvn,the poi nt J?1 I S then fixed.
I'f the monent line for 353 is known, M coul d be determ ned fromJ;,*

j{,ﬁe morent line 53 is not known unl ess Jsg' and’z‘Lm)rrent l[ine 31 are
known, it is therefore necessary to find Js' and Js*s The latter
determnes the nonent |ine 31 a«in conjunction With-m‘rar'ent line 212.
Snce both J and Jz' are unknovvn one nust be assuned and corrected

exampl'e -
latter by the K pol ygon. The fol |l ow ng shows how to find J
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I known’ng. dv.
! fromJgf, which is assumed® Since J_Jf Is always equal to X

and X is known, J* is located as soon as J is known. The probl em

therefore amoynts tlg findjng Js fron Jg. Trli sect the spans S*
A c\ anggn obtaini\r}l%poinltsB
and E< Drawtygrticals AB
Fﬁﬁ_— + 5 E\N —4,, and FD.  Interchange the
: 3
.'%L __*gg D trisected segnents and drawHi e
5 verticals VgE. Fromthe
s assumed position of Js draw
- |F =
FI e 56) any line JgC cutti ngr{'/grti cal
: %0

M at A and VM&E at C. Through A and 3 draw a line cutting FD at D.
Join CD. This line then gives the point Js.

By a simlar process the points J' on each side of the
joints are found and a J' polygon coul d be drawn through theBe

points,raB-e ai-fcfee *ay& “hRke"&ekiiag-ak wi th the adjacent sides

intersecting on the verticals through the supports. SSmlarly

a K' pol ygon coul d be drawn beginning with joint 6. These two

' pol ygons are next nmade to coincide by correcting the assunmed positions

of J and K, the resulting polygon then gives the nmonent di agram

from whi ch the nonents at various points may be determ ned.

Article 2, The G aphical Mthod of Engrosser and Landsberg.

This nethod is based on Mohr's construction of elastic
curves by considering the monent di agram as Ioéd. Consi der
the chord nenbers' as being cut at the'joi nts and laid out wth their
end points touching a straight |ine. By ElJJ. (2) of Part Il the

ed tangents of -tike two consecutive lines at any joint would then
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intersect at an angle equal to dA for the joint. In bthe Simumec Fi.57

it
- Iz Is
Ml —-—-‘:L"’"”# @ ///M T ,—///’
S > 3 =
e ) ™
MaL
Ma L v hi—fh’f‘z“( - ¥ =
Yy VS d F (b) ¥
e Sl
o/ &
a - as i [
o W ,/"%{’
F|b ) <la B 0 Wy
I I {1§jf G &3
m l")\

’f
Eig O]

; a
- sbove the conmecutive chord members 12, 23,,34 are shoen with their

(c)

' ends cut. The moment diagram for each of the spans is showne-
Frz. 57b
in £is.(By). These diagrams are of course assumed as the momehts
are yet unknown. Divide each diagram into two parts and through
the center of gravity of eahh draw the vertical lines representing
. : for
the load lines of ML/2I. Let a force diagram be drawn ef these loads
and construct the equilibrium polygon ab e e, 6tc. with a pole dis-
tance equai to d. The lines e ¢ and e f then represent the directions

the.
' 0f the end tangents forﬁelastio curves 12 and 21 at joint 2. Thege

angle included between these two lines is therefors a measure &

' 0f the change of angle &Ag, in fact it equals 5A§.. Draw a line 2
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pG at distance d from joint 2 cutting the linesecaxd ef a F ad G.
Then,
TR T I % gl & = e
Next divide the horizontal distance between the vertical |ines

through e and f into two segnments mand n, such that

HSF R rot = S e
k2 =
At the point of division draw the vertical |ine VEg. The nonent s

produced by the |oads ML, / 2E; and MgLo / 21 o are then equal at
this section and

S e e N A S S R
Egs. (6) and (7) are the two conditions which nust be satisfied by

the construction |ines.

I:,él'0571‘ind the nonents Mby this graphic nmethod the
pol ygons (f-li-(j,i —eC) are first constructed which require two points
for ?ach span. To find these points a nethod is devised, based
on Egs. (6) and (7), by which if one point is known for one
pol ygon the correspondi ng points are known for all the pol ygons.
Thus a point may be assuned forE‘Pierst span fromwhi ch the correspondi ng
point is found for the last span which, in the truss, is adjacent to
the the first span. Fromthe point in the |last span a correspondi ng
point could be found for the first span a¢i which shoul d coincide wth
the point assunmed if the assuned point actually lies on the polygon.
If not several' trials may be nade until they coi ncide. By a simlar
process two sets of points may be found which conpletely determne

the pol ygon of £4rg*—+").

The foll ow ng nmet hod shows how to |ocate Pg in one span



125

Fi g58.

when Pl _ in an adjacent span is known”? Y 1t is here assumed that the

line VEg and FG have al ready been drawn.

Thr ough P__t, the given point, ‘draw any arbitrary line

mi ¥Yn . aE ‘ P{C1Eq# Join CjAs and prolong
[ /F it to cut VE
' g at D, and FG
Ag | 3 3 at F. Measure off FG = E dAg,
" &
: & ' s thus determning point G Join
[ '
_ 1 G _ - AgG cutting VEg at Dg. Fi nd
_ _ \l | poi nt Eg on VE, by nmaki ng
L Byl -
e T e v//4 . BiE1 = DgEg. Joi n EgCg.
Through P, draw a line through Ay cutting FG at F'. Lay off F'G& =

‘FG Join AgG' cutting the line CgEg at Pg. The point Pg is then

the point required corresponding to P,J_ in span Il
/

It will be seen.that if CE* revol ves about P, CgEg

wll revol ve about Pg. Py i's t-heref.ore fixed.if<RA is fixed.

any EEGLSS,
To find &e noment M say Mg, it is sinply necessary to
A

draw a vertical line at a distance d from Cg and cogsider KL as the

K——"’K static monent of the force 2d$ acting

at G"_. Si nce the pol e di stance is d,
& fﬁle

e L 2T d KL x g,l_
F;ﬂ59 Therefore, Mg = L x KT,
; =
Mzl 2 ¥1 o
21, and )i X KL .
il

y

adl

]

2

Article 5> The Anal ytic Sol utiones

zonshf ¢ aamfg i

Thi s ae ¥ = 0 for all the web nenbers

in the usual methods described in Parts Il and II1. Since the
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2 0
'Si nul taneous equations take the form ofA,:EquationAThr ee Monents
A apeyeron's net hod of solution may be applied to advantage in

preference to the nmethod of Gauss,

CHAPTER LV, SECONDARY STRESSES I N SPEA AL FORMG OF
BRI DGE TRUSSES.

Bri dge trusses of SHsnal - unusual types require special
consi derat i oh* in the analysis of secondary stresses. They of fer
difficulties both in the nethods and details of conputations, which
nust be renoved by judici -iagfschanges in the procedure* Take, for

. : inFfaso.
exanple, a bridge truss havi ng sub-panels as shown*™ The figure 4698

is a triangle when the bri dge

4 8 12 is unloaded but it reduces to
f'/ : ]
S a 4-sided figure as soon as
rd
. & 1o - t he nenbers are under stress, as,
2 then the nmenbers 46 and 69 are
, no | onger on the sane straight
3 5 7 g H L3 !
ﬁ_‘? 6 _ : l i ne. To find the change
: P A O
of angle in such a figure, therefore, requires” special procedures,
y  can be.used P g
as Eq. (2) of Part | U gs@. only for atriangle. In this case

assune aamenber which would divide this figure into trian-gles, as
shown by dotted |ine, 68. The figure is then reduced sato two
triangl es each of which, may then be submtted to the usual fornulas.
To find the change in length in this imaginary menber 68 it is only

necessary to conpute the deflection of one point as 6, relative to the
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fother &s 8, the sectional area of the member being assumed zero.

Further, in analyging this kird of truss by the mebhod
éd'Muller-Breslau br that of Chapter IX, Part III, difficulties will
be encountered in finding the moments in members 46 and 56 from that
in 45, In this case let one of the moments be represented by an un-
émmwn x and proceed by the asbove methods until the moments in all the
1mmbers in panel 59 are computed. The moment equation around joint

6 would then furnish the unknown x required.

There may be other instances of the same or similar
pature but in every case there is always a solution. So long as the
Ltruss 1s composed of triangular elemente there is no indeterminatensss

,hlthe field within which the methods considered before are confined.

CHAPTER V. SECONDARY STRESSES IN PIN CONNECTED TRUSSES.

It is usually assumed that in a pin connected structure

the members are free tc turm around their joints. This fact, as shown
by experience, is not generally true. On the other hand the friction
developed around a pin is often sufficient to prevent the free moye-_.

in Frg. 6l
ment of the members. Teke, for example, the pin and eye bar as shown,
lhen the stress P is of such a magnitude as to cause turning around

the pin its displacement would be r and moment

Pz r. This moment is also equal to that

developed by the friction F, which equals the

V_U

>~

normal pressure on the pin multipl;ed by the

-y
¥,

f“y"r

& coefficient of friction. If A is the angle

<’

of friction, F = P &in A. Therefors,

/:/96] ' Pep = P ainm A xR,
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(r, r.. = R eln A,
| ; — racdius
‘this equation shows that if the dismeser of the pin is greater than

lthe quantity r/8in A, the friction moment would be grester than

the applied moment and the member connedtéd to the pin could not turn
gt alle In such a case the pin joint would be about as rigid as

g rivetedjoint and the secondary stresses developed in such members
gould not be much less than those calculated by the assumption of
rigid joints. In fact if the dismeter of the pin is made 3/4 the
:Mdjh of the bar, as is usually required, the secondary stress

cannot be less than 45% of the primary if the coefficient of friction

igs taken as 0.2, which ig a fair valus.

In case the members are built up of sections instead of

we~bar§ the ratio of diameter of pin to the width of member is much

gmaller than for the eye bars and the friction moment developed around
is sufficient

the pinE arE generally to make the members turn. in this case the

] an

friction moment could be treated as,eccentric moment. in the analysis

of secondary stresses. If any member is supposed to turn freely

around a pin, its effect on other members is then null and it may be

: 5 a : 4 :
considered &s to haveAzero moment of inertia.

*CHAPTER VI. ANALYSES OF SECONDARY STRESSES IN STRUCTURES OTHER

THAN BRIDGE TRUSSES.

- In structures other than bridge trusses the secondary

Btreosges due to rigidity of joints are gemerally of a different
lature. As these structures are mostly of rectangular formg the

'%condary stresses are essential for the stability of the structurs.
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Fig.GZ,
fake a rectangul ar portal frane," for instance. If |oads are applied

o the top AB the whole frane will deformuntil the joints A and B

cone into some such positions that

A B equi libriumis naintained throughout the frane
wi thout, at the sane tine, altering the angles

at the corners. The stresses thus devel oped

C - D - in the posts and struts are necessary to sup-
Fief. QZ port the | oads because if they are absent,
e * if tfllje joints are pin connected, the frame would collapse with
the application of the |load. This kind of stress«as is therefore nore
Inportant than those in structures conposed of triangular forns as an

exact know edge of the stresses is necessary to design the frane*

As it is not the intent of this paper to give « nore
A :

than passing note of structures other than iJaa bridge trusses”® only

the general nethod for the solution of Rectangular frames wll be

lgiven. Fi g. GG’

' Let this frane, tbe cut at a convenient point as E and

sA
replace the insternal forces by the thrust H,, shear Vo and nonent
Vo
!I Mo ]‘ M M. Assum ng one end of the broken
e N\FEle /B _ :
5-.“‘ Ho ) l b{,,o frame as _fixed the deflection of the other
i,'- Y, end due to the load with respect to this end
i may be found as foll ows %
(! X
> Let M = noment at any point E of the frane
due to.external |oad,
M = sane due to all the forces,
:Mo-l%x+Hoy-W,
C D e vertical and horizontal deflections

f}jv@'j “of Ewith respect to FE
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a
95 = Angular rotation of tangent at E with respsct to

tangent at E',

- Then, : Ev
; M
gt sl s
v = EI
I
a . E'y Yy ox =
tEae | = 9
E' M dx
¢ = ET = 9
E

‘The solution of the above simultaneous equations furnishes the three
unknowns required, from which the moment M at’any point N may be deter-

mined.

For structures With?ﬁultiple number of rectangles the
‘above method becomes. very cumbersome and the need of some simpler
method is véry evident. The following is a solution based
on the method of Mohr and developed by G. A., Maney in Bulletin #1,

niversity of Minnesota.

: iged :
It has been shown that if a beam 12,Abes:Ldes being sub,]ected

‘to the moments at the two ends) has also concentrated load: P at

kL = .
= H_754 kL from 1 and uniform loads 8?15{W per unit

=
: L : length, then
: g0 I -
. (28 + 3, ~-58 ) .22 01
L 3
- AT | Co - 2 01
Moq = 1. (2B2+B1-5H)+——-———5——-—-
?- - ' s = w L°
?Wherej - 81 = P (8k - 3% + k) &L +
2
L
Co =P(k—k3)L+W4 i

” ‘I.n - . .
é?ﬂpply-gthis equation to all the members meeting at a ,]01nt} there will
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Hbe obtained as mawy p equations as the number of joints ad the

solvi ng ihe equations.
unknowns M mey be found by -ao-lttion> In buildings the axial defor-

iy
mations of the nenbers are general ™ snall and may be negl ect ed conpared

Wth the deflectionsof the joints due to applied forces. as w nd.

The sl ope defl ectionspf the horizontal nenbers are then equal to zero
-for

and of all the vertical nenbers in one st_orydare equal to each other,
I'n order

This requires one equation for each story*to find the comon tfal ue

of H which "i&«: furnished by equating the nonents in each story

due to external and internal forces.
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p ART V. SEQOQMDAMRRYY STRESSES DUE T 0
OTHER INBLUENOES THAN THE
RI GI DI TY OF JOINTS,

All the discussions in the previous chapters are limited
to only one kind of secondary stresses which, of course, is the most

Important. There are, however, other sources of secondary stresses

prove of  if not more
‘which may oxhibit”ju&% as much importance. i# «ei -mes'e Of the many
'kinds of stresses nmentioned in the follow ng chapters only few are

suscepti bl e of mat hematical analysis and even then they are not as
| conpl etelg(éert]gl )ézree the stresses due torigidity of joints. Fur t her

I nvestigati ons. in this field, both theoretically and experinentally,
are therefore very wel cone.! The stresses to be di scuss.ed inthis

' paper are divided into four cl asses"anggrfeol I ows:

L3, Bendi ng stresses in a transverse frane due to

" prinary stresses in the Posts,

| (2)# Stresses in a horizontal plane due to unequal

| deformations in chords and stringers,

(5). Bending stresses due to variation of axial stresses

Indifferent el enents of # nenbers, and

=t
(4), Torsional stresses due to various conbi nations

of secondary stresses both fromknown and unknown sour ces.



155

CHAPTER |, BENDI NG STRESSES | N A TRANSVERSE FRAVE DUE TO_
PR MARY STRESSES | N.THE POSTS.

Properly speaki ng™ these stresses being due to rigidity
id joints may al so be classified as such under sone headings in Parts
-1V It is found advisable, however, to adopt the pEesent form
of arrangenment as the nethod of procedure in this case differs entirely

f.rom”those consi dered bef ore*

The exact sol u‘ti on of the problemrequires the use of
the three equations considered in the |ast chapter, but as the |Labor
tfégrr-/-‘glf/‘grd Is generally unwarranted an approxi hate sol ution may be nmade
by assum ng the posts to have been connected by hinges to the transverse

over head braci ng. The follow ng formul as are then obtai ned:

A |3 5 M =s Monent at a, Fig.65,
- W5a (b = a) CVQ?
o s S R [T
If f-, and fg are the secondary stresses in

Iy

aWI Vr the beam CD and post CAat C and o-, and op

are their respective w dths,

I
Jr 2 o0 2 o Sgemale SRl IO
2 b iR A 3hili +3blg

. 4 Considering |, as negligible if the beam
FI.% 65..  -)ng K _
s very deep and tak«“a = ,3 b,

2 |
fe = WooeieBX T el _ . \waS Wlos
23h.Tr h I

.5 b o
[

I'f fy is the working stress in the floor beam f,=WZ° =W
I
o1

Ther ef or e, £8. b oo
£ X
w h C1
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@that is, the stresses in the bsemams beam aﬁd posts of a transverse

1frame in a bridge truss are directly proportional to their widthqgnd

indirectly proportional to their lengths.

CHAPTER II. STRESSES IN A HORIZONTAL PLANE DUE TO UNEQUAL

DEFORMATIONS OF CHORDS AND STRINGERS.

| The floor system of a truss bridge generally consists of
-jtringers riveted to the webs of the floorbeams. When such a spam is
Vﬂoaded the chord members of the truss deform longitudianally but the
jxial length of the stringers undergbesclittle or no change. If the
stringers are riveted continuouseély from end to end of the'span the
;ﬂoor beam must bend horizontally thereby producing secondary stresses.
honsider a floor beam situated at a distance d from another beam aﬁsumed
ito remain fixed. Then the horizontal deflection of this beam due to

’ﬁhe deformation of the chords is

p = £4 ’ where P = average unit stress in
. B
 ¢he chord, provided,
(1) the axis of the stringer does not elongate,
(2) the stringer connsctions are unyielding,' and
z
(3) the ends of the floor beams remain verically over

%he joint centers of the chords.

the _ .
Now the deflection inﬂbeam, assuming the ends hinged, 1is

lilso equal to
: M a
B =~ (8b=4a),

6EL
1 The fé ;
fthere a is the distance fromﬁcentre of a*%russ to the nearer strlngarpnd,

b the length of the beam;
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M a B od

‘;/76”C€/ “‘ GEI( b -4 g ) = —E-— ’
; ; the : '
(Replacing M by fy/I, where y=, half width of the flangs,
i == e

s {3 -2¢)

The values of a and b are generally constant so that the value of f

ﬂs proportional to the width of the flange of the beam and alsofgts

_1ooation'from the centre of the spat. On account of the various

‘assumptions made in the formula the actual & stress is probably not
a8 great as computed but the importance of this source of secondary

' gtress cannot be overlooked, espezqglly in bridges of unusual spans.

CHAPTER III. BENDING STRESSES DUE TO VARIATION OF AXIAL

STRESSES IN DIFFERENT ELEMENTS OF A MEMBER.

If the primary stresses in different elements of a member

are unevenly distributed the difference of the.stresses will cause

bending moments in either a horizontal or a vertical plane. These are
lérgely due tqff;proper design# of connections and errors in shop
1ength in manufacturse. To analyse these stresseg,thenretical
considerations are of little avail as the data required in thesse
jbomputations would never be completee. Turneaure in his book on
llodern Framedvstructures noted that a variation of gtresses of & to

?;0 % in riveted member and 10 to 20 % in eye-bars a;z not uncommon.

ng these variations generally occur in a horizontal plane thg bending
Btresses resuig?therefrom will give torsional stresses’ggégggg%négéh'

‘the bending stresses in the vertical plane of the truss.
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CHAPTER |V, TORSI ONAL  STRESSES DUE TO VAR QUS COVBI NATI ONS
OE SECONDARY STRESSES

If any of the previously nentioned secondary stresses
occur at the sane tinme and ;Ln different planses torsional stresses will
" be produced. These stresses will be very difficult to conpute if
‘the effects of the several benmIQEHEQIQO be consi dered simltaneously,
. e 0 : s
‘to say nothing of the conp“-lcaég I nvol ved in ascertaining the nature
~ nonents. _ :
of the bendi ng* Sone of the bending stresses may corns from unknown
" sources while there are others which act in pl anes of unknown directions

The mat hematical solution of thid problemis therefore al nost inpossible,.
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CHAPTER I. INTRODUCTION.

While tke importance of secondary stresses is still a
moot question at the present time, it cannot be denied that great

improvements have been made in the design of structures as a result

' of the studies and observations made on the subject during recent
years, The achievements so far attained are very beneficial and
1convincing although it is not uncommon to hear it said that

. secondary stresses accompany good design, asd it makes the structure
' rigid and stiff which is highly desirable. To be sure, a good
‘design does aim at a rigid structure but certainly not at the expense
~of its strength. Structures may be of different types; some are
Trigid, others are strong, aﬁd still others are both right and

- gtrong. A bridge may be designed and detailed in various ways;
:some make the structure rigid, others maké it strong, and still
others make it both rigid and strong. Would it be logical to

j \ of

- comnsider only(rigidity in a structure--in the‘selectionAtypes,

| propertioning of memebers, and desagning of details--and neglect

 its effects on the most vital factor in the design--the strength?

The consideration of secondary stresses in a design
B tends to make the structure both rigid and strong, not only in type
 and design but also in details. Eventually the design is also eco-

B i..1 a: the uncertain "factors of safety” may be greatly reduced.
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It is for this reason that the secondary stress is so inportant

in design and has been so w dely consi dered. It must be admtted,
however, that the subject is a difficult one-not in the thgoreti
ical analysis of course, but in its practical application
Oftentinmes a design nade to satisfy secondary stresses viol ates
very decidedly other good principles which nust be respected.

In other cases, the gain in reduced secondary stresses does not
ba& ance the iosa of inpaired rigidity. Her e good | udgenent nust

be exercised to determ ne which course to pursue.

Before going into the details of design sonme genera
concl usi ons about the secondary stresses will be given

(1) The secondary stresses are, in general, propor-
tional to the primary stresses and,ttherefore, are conveniently
expressed in percentages of primary stresses.

(2) Q her things being equal, the percentages of
secondary stresses are proportional to the distance fromthe
gravity axis to the outer fibre in the plane of bending, and in-
versely proportional to the lengths of the nenbers.

&5) The secondary stresses in any nenber depend on
the distortion of all the nmenbers of the truss, but prinmarily upon
the distortion of nenmbers of the triangles of which this nenber
IS a parte

(4) A design in any individual nenber cannot be

Jlianged without affecting the secondary stresses in the other mem

bers.

In the follow ng eteapters are given sone principles of

desicm whi ch nust be observed in reducing secondary stresses.
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These are largely derived fromtheoretical studies and practica
observations and are very valuable on that account* During the
past few years as increasing attention was paid to secondary stress-
es consi derabl e space in books and periodicals has been devoted

to the design of structures fromthis point of view Thi s val uabl e
i nformati on, however, is not within easy reach, as the literature

is scattered and the subject has never been systematically treated.
As one of the purposes of the present paper is to present the facts
about secondary stresses which nust be understood by the designer
these principles of design will be listed under proper headi ngs

and di scussed and disgested in a |ogical order. For each principle
stated the source of information is accredited by using a letter
(explained in the follow ng key) & indicate the title of the work.

This is followed by a nunber referring to the page. These

principles are next followed by a chapter on the correction of

: t
secondary stresses—a matter which is receiving increased attemion

Key

. 4 mproceedings of the American Railway Eng. Ass'n, 19724, p. %438

S I P . L A 4 5 1916, p. 129 ,
e = Engi neering News Eecord.
g = Grimma Secondary Stresses in Bridge Trusses

Merriman and Jacoby's Roofs and Bridges, Part |11,

—
1

k - Kunz's Design of Steel Bridges
M ¢ Thesis by T. E.Mao presented*to Cornell University

m « Molitor!* Kinetic Theory of Engineering Structures

p * Secondary Stresses in Franed Structures by Pitman in Proceedi ngs

of Engineers® Society of Western Penna., Vol. 25e



r - Wotst on Design by Rechmeaes In Joiin 1 o0 o0t o _.\S_i_ét 3
O Siginesrs, Vol. 17,

Til = —odsrn vonccd Stmetxares, Part np

Till = = it E =t oin,

« Tloeroete =Structural Deal g,
- Weaddsll- ridge Engineerlbg,

Pfecte of Sogondary Shresses owm design.by Wilson . in the
. g? 3Gtern Society of mgin-enc, Vole =

In Tr msactions of ft= eseric-IT. society (7., 75280, V0L Sos

(D» In olioosin® batwe™n aif'orent Gtylea ci trucsoo,
thoos of the eal.atically deterdlingie <lag: 3 should @lvagss ZiceQivs 7;.r3M-
ferenc9, G.LI O'aines Dailresesounk he prlmary strgssad will uavally
bo 3202 1o ,n Insimilar Indeten-lda&e s*sisms, ©specially
tempeFatur = strocoes ~re lueXu&edU .ot tho defoi'. upiizee co
Sty - may be leso aad fAe’nenst™y tho connect:: ‘rac=i~8 be sia:lizs “or
the indeterminate SH®© (" 268)

(2). Among thse shal 'Aoallj ladbfrt crinaste Gtructinee
inged arch i capojs-ieer jowmune,. fpoa oeconclary it rs:0& (is
- 49)7)
(L he secondcry ©toesises in contirm:u:.; tric

and
very MM 4N v a centre ani in'%& ?, Hete=———jod esea for this ps

PN -t thoes oo booson ofi#E tbecadvisable in order to re.liuc::

stre-coo.
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(4)s The best modern practice in bridge enginsering
s not countenance the building of trusses having mors than a single

ter of sancellation. (W 271). The secondary strssses in such

: : 11,
system are gemerally very high, often reach‘f-f 1006 of the primary
5 490% as the distortion in truss members due to loads &= on one

tom only is very great. {t 235, g 129).

(8)s In double triangiular trusses the secondary stresses

gld be rreatly reduced by the insertion of verticals comnecting

ry pair of upper and lowsr joints. These verticals effectively
nect the two single systems. (TII 491, g 123). 3

(6)e Trusses consisting of approximately equilateral
ancles, and without hangers or wvertical struts, present the most

iiform condition and will have, in general, the lowest secondary
f;vsses. (TIII 93, a4 )+

(7)e« A truss composed of right- angled triangles will
o somewhat higher secéndery stresses, and such stresses will be

,izw if the ratio of height to panel length is large. ‘ {1111 94, a4d).

(8)« The truss systems should be as simple as possible

d all members which make the stress distribution uncertain should bs
folded. (k 169).

the elimmation of .
{(9). Ag far as, seocondary stress 1s mencarnedythe Pratt
E the
Uss,amd tho Warren truss with verticals, and\K-truss ars very

able. (W 200).

i

(10). The amount of secondary stress in ordinary Pratt
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{17)« ‘The use of collisicn struts cannot be recommend-

‘because they divide the sond posts into twe fragméﬁts, éécrsasing
he ratic between length and width of these members, pulling the post
4t of line and increasing the secondary stresses. The collision
ts are as a rule rather weak members and it is a % guestion whether
f&ulé not be better to uss the material on the end posts instead of
%haaa strnis;fgggva&s1ﬁg their suwangzh in the direction of the
e of the truss ag Well as aise at right anglea to their plans.

‘133; TII 458;- . g =

(18)s The double triangular truss with sub-pemsls is
factorsdy so far as the action of the secondary stress is con~-

d. (TIT 495).

{19)« A truss with polygonal chord as the psrabolic
or the schwedler truag’is a good selesction. (g 129).

{20} In a truss aim to make the ééﬁv& of deflsction
pproximate circle with vertical members radials. This means uni-
n stress in chords and low sirosses sisewhsrs. {t 235},

(21}. Curved mewbers whose neutral axis is not straight
! 1h

re the application c;afbaﬁ,ﬁhould never be tolerated under any
metences. (W 272, g 129, k 170)« ‘ '

CHAPTER III.  ARRANGEMERT OF SPAN.

(22). Skew bridges snd bridges on curves should never

1t except in very rare cases where no other disposition i:



o

LS. 18e types tiioulcl be regardsd as msapurs:
(M267, W 371).

(23)* ‘:OPover possible tiie losds chould bs applied

pt the panel points only. (1

{ 17

(24)»  The pline or the lateral syster claould coincide
:With faa%t off the chorcis® €therwlae the stro:sses in viebn sod chord
blill produce bendteg ruoinents in tiie piosts. (r 102, m go& k 185Y»

(aft-)* he plane of the floor should b 18 cloes

seible to that of the latesPal. s sooei® (m 208).

{20)« The gravity azes &f 511 Ljg Hain memberd of
Ftru;ooen and lot-ral sy;3t8ms corninp; ;..o zobior at ass® apex of a tr';.
commaern

intersect at aspotet uiesjrsvsr a»ch on Lhampnz3nent is 3ractic blo.

In oth8r woirds the pansel point:, of ‘too A..racing aliould coincido :1th

(S7). If horizontal trusses are uaed in the floor
system to resist traction dro.- saeie, bfag& meno id, be elzae-d noar the

geritre of a span or midway between eirDuiioion joints*  (Till 105, &6k

(S8)» ‘he doubila intepsection Warren truss with veritl

Dd: i: very suitable for ';.;otoral bro<zing. (Til 48&U

(S0)»  Brafekste on posts~sh'.cid be < o::a: dgrhgpose=

nozsible. tg 1.7).

°). e nedas|al piss in rivoted tru;.;;oc chould
not be placed bolou the feottozs chorJda but on the centre linoo* his
9lirin-tes the bending r-omento that may be dmelopdd i« the a:;:: o&%

énd the on anele of t" bottoin chords by trio train thrash* . {> ~“54).
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CHAPTER IVe DESIGN OF FLOOR SYSTIM.

(81)« The floor system should be so designed that it
rigid in itself with respect to its main duty, but independent so

as practicable of the action of the chord system of the main trussos.

(32). Peloor.beams should be ma'e desp to recuce

ondary stresses in the cross frames. {m 268, r 101)

{35}« The flanges of the floor beams should be made
elatively narrow. (TII 508).

- 188). The floorbeamsshould be centrally connected

0 the post and mot too far bslow the plane of chords. (r 101).

(85)s Flexible connectlons between floprbeams and
e members are advisable. These should be so arranged that the -
connections are rigid in a vertical plene but flexible in a horizontal

{m 268, g 130).

(36). Floor beams should be provided with brackets
any other suitable constructions to prewent the‘bandiag of the

izontal flanges. (g 132).

(3?5; The stringsrs k should be made heavy and contin-
s and should bé designed to trensmit the tractive forces to the
o1 points of the loaded chord instead of to the floor beams by

erting proper tie membe?s,betwaan the stringers. {W 400, m 268).

{58), Vhen the floorbsams extend considerably below
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Bhe bottom of ths steringers thsy should have stiffsnevs at or near
to
ghe strixiiger connection,trancait ths bendlsg caused by ths deflsctiaon

of the stringers to the flanges of til? floorboard

(32).- In long span bridges stringor” should bs provided

Mitlh expansion joints et inetervals of a few panele. (TII 506- r 101 .-

40)s  The comnsction of lower laterals bo =tringers is
of doubtful bvalusc. Owing to the.rrelatiVe movement beowtween the

ighords and the floor system Such. a connection would cause considerable
jateral bending in the styingers. The laterals are thersfore bstler

eroly supoorted on the urirss&* (TOI 104, ac).

CHRBTER V. PROPORTIONING OF MEMBIRS.

pa——

(41)*  “he wmore uniform ths prooortiongpd o trucs, Lhe

: 3 fhf
ass, i N fonsral, will D8 98conday strzsses. Sudden changes in

B U o i Tememt of fRanitse oig (g to result 1n
relotively larfe “econdax™y otro,:!',0Gy  (Till &5).

(42). 4 raduction of moment of |nertia of any member
tends to incrpase the deflection of that member and reduce that of
u%hars. To mainBein & balance in the fibre stressesc themselves it is
Mecescary to hake the width of a wmenber corrsspond in a measure with its
"-'.-:* ments of inertia. iide membors of small moment of insrtia are
'fikely to have high secondary sirssses; narrow and compact msmbors
-"Zill have low secondary stresseg. This stateoment doss not take

lBecount of thee long column sction in compression members, the efrw b

l0f which tend in the opposijs dirsctione (TII 487).

(43) « It is advisable tc keep the moments off in:rtia



re as smail as

possibis*

(t g& ).

(.-_-i--), he azos of all mambers & truss should be in
3 SR o s s e common
the ¢ ene and should interseet at a po yint at all conneetd »
0 267, 273 ) -
(45) In &y Eruss no torsion or v mambsr shoul 3
2 b1 o *Ha
fRllowed 1T . can possibly avoldsc ythsprwiss, gr ; an ust
5 be " E 8 ‘isc WAL SE AEE ;5 Carx uDs
B I g Tt P T _—— - 2 4 = 4 2
ha Lalken Povid Ble i xth ax 10183t SVEry portion of

the structm:- -~

fa

(w 272).

(46)« L the axes of memberi3 do net IsbhE@EsHzt at ons
point the ssocond-2ry airsgsss veloped due to soc entrlc cmmections

- =

mey b= as high

(47).

(v
sub-divic'..o

495),
sadlB (a6),

glends» 28 inpApir ec dnere;
gffectivene of ths riveted

(48). go

nembe

01

(49) -
A
‘modes
atreoses

Yend:

iﬁr

lisir 105, g 129)..

x:0esat\rely
sooglally infeefisSonen ras an

Howov sy, th

corme

securs

nay foepdi3d Trom the centre

ap@ laksly to be as

A 7 - PR " S e - -
1 o 1 AT ¥} ¢ T = Rl -
[FRigdw P AMar N BLT9BE285 i’ T .) "
s T g Y e [ - - $ 3~
SHIDEI'S B840ULG DB BVOiLiGSso

nd 3,11 cAbrgls "WLDiZo5 with
the membesrs choulél not S be so

of Aesipn (1= 177} or to roducs

chbiong. (& )7

> g

Zigd at the

compresalon

TR i S T, - - OO
toward bocth snds. (}_{ bl t’) "

ahtressss

Sxease: hearnding
SRCUYSSve bencing

wi-lich flooivoeams are r*iv:;t@d} the roMG should be made ¥ ¢
+-Tldtii in a fcrsmaverse dirscti ‘16 best design these

+0 whe posts ar
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<1 boprovi

S2C LN arcas

i

[or the sscondary stresses due to thes & flaction «of the floorbsanipm
(j 401).

{51)s rus iembers and portions of truss members cshould
pglwvays be arranged in pair ijji.fé"..llﬂ'tflcwi%fﬁ about ths plane of the truses.
{. 173). his will tem] to gnplize ths strse: ):dhqu by the
gomponent parts: of ths member.

he

R
Cross

ige cOwambrs

the

ted

gachtions of } be& s0 chossan

= £% 1, e

from the n

th t as for gutral axis ag
possible, thnzs aocnriing thse dallgest moments of inertia for the smallest
~vy o . N a5 oo o e . e T i e .
ovor 211 dimen”s:lon0, »% 129)s The orosa forr; is thus the least
advant;ageous vhile «a mguers box form is the most desirable. Howavar
consideratioic mogtie zivem to the fact that when the secondary stresse
A

occur Gioultcneously in thi© pUmie

.theBl;I":DDuS
vith crces “F3dt  Cm 267).

=

&l

=

addltlvs in ==

(53).

fed
o

suspender:.; in truss is to pull
e provided with liberal &zo:s

Sines “he

(54).

A

ar

£y
= B ]

the truss and in a2 ero frame

o ¥
L

tber™ o:7 4ha, box type "but not in lihoss

gffect of the hip rticals and

ve

chord renbers cut of Iine} tjpey should

(TII 487, a8).

Lr.~ctloncu

«3dsrs8 gre of considerable leng

L

ind attached to the lower chord it is desirable to make them slightly
Shortor than ttis caleulated length. (28).

(55) . ¥he top chord in a sub-divided trviss 1is
fupported by means of secondery me-bers theps should be made slightly
longGr thon tnecalculoted Loy it {aB)

(56).

mnd.’l"ff sti*esB©O©s

ls gtiond members may be
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educed by the proper selection of cross sections for the diagémals

1 thelr attachments to the chords. {(r 101)

(57)s In case a member is made up of a singls part,
e an angle, the gauge lines for riveBs should bs as close to the

avity axis as poaaible. ip )

(68). Fo:‘truss with built-up, continuous chords and
it-up diagonals, pin commocted throughout, the sscondary stresses
1l be very low if the chords are made sufficiently shallow and the
sonals sufficienfly wide in the plane of the truss, so as to

ercome the pin friction. (r 96).

{69}  In eye-harﬁtrusass}the gye bars should be nads
;:wiés'as permisgible in the plane of the truss. {r 97).

e —

CEAPTER VI DESIGNING OF DETATILS.

(60)s. Riveted connectéons must be made conceniric by
grouping the rivets that they will balance about centre linss and

intre planes to as great an extent as possible. (W 274, g 129).

{61)« The engd lateral connections should be as con-—
tric as practicable. This is very important in the case of ths
id panel of the lower ahord’as occentric commections at this point

t in heavy secondary stresses in end posts and lower chcrao.

105).

(62). The use of thick gusset plates and large diameter

s is advisable as it would materially reduce the numbsr of rivets -
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the size of the plates. fm 267, ¥ 491}«

{63)s In case two gussst plates are used at each
t these should be firmly comected togethsr by the use of diaphragn
ten. ' ‘

{64)s In a pin-comnected truss the diameters of the
should not be so larpe that the friction developed around the
ints will virtuslly make the cormections #igid. Thsy ghould there-
r® be made as small as is consistent with the design. {m 268,
B , ‘

(656%. vaﬂths diemster of the pin is made thrse guarters
width of the eye bar, as is usually @mé&ggéﬁ, the secondary siressos
resses developed will be cbout 45% of the primary stresses with the
ficient of fricz£§§7;ﬂ§,z, g 773

{36}* A déﬁhie pin arrﬁngament has bsen svolved for
tering the pin beerings in cantilpver spens whersby a second pin
placed side by side with the bearing in the bottom chord. The
ect is to believs the bending strosses in the bottom chord which
d result from the simultaneous deflsetlons of the two adjacent
(v 1067). |

{87)s For lacing of comprossion membsrs the arrangement

double lacing with transverse cross bars is advisable. {TII 498).

{68). Long diagonales which are subject to the bending
to deflection of floorbeams should preferably be provided with
188 {3 40}-)&
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distribuiiic

of Gecondoufy stroasss in various members in a truss is by no means
unifor - Tfe secondary strssss: '“[:.::-’L;j theret re, be eithsr properly
gared 1 WS 28 or jJudicieusly corrsctad by appropriate
iethod 3, ht l:7.tcjt develerrifsments in bridge design sssm to indicate
ihe tondency of the swpend iresprt, th.at Lo correset the .:-e'.-‘.o_‘nﬂie;ry
tressse by menufacturing and erection methods.

In al:=mt mil briclze “boolf fentbions thors ars clouss
dealing with tlie cevYoa of trio trusoc. otiis is probably ths sjmplest
ad easiset melkod for oorrectimg sscondary stresses although IG7
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en
—tnifornm lengthing and shortening of various members could not be

pective sheortening and lengtheoning under dead load plus one half

* the live pius impect load, drilling or reaming the chord splices

88 members into thsir propsr piésitions for comnsction to each

er before drilling or reaning the koles in the joints."

Perhaps the most important work along this line was
on the Sciotovilie Bfidgeg in which the secondary sirssses wers
rseted by efaating the members with a bond exacily ithe opposite
';ﬁha.bends wﬁiéh'they would normally experience at a given stage of
ja&izxg-«daaa piué one half live load. ﬂfhagg;iage thus has high
conda: v stresses wmder dead load aldn%‘but the ssocondary stressa;
i as the 1lvs load somes on and are Pully neutralized under
friivs 1cad' The bending wés done as Tollows: Every member was
iginally built to such a ilength that when srscted and under the
lusnce of one half full iivs load the briﬁge would bs of its
am size. The mombers, when laid togsther umstressed would
<éfnrs not have the diagranm angles at the joints. The joint
wactions were rsamed tc the diagram angles'hy fitting two cornsrs
bime of sach trisngle. AfPter these wers rsamed one corner was
scommected and the member shifted to make possible the reaming of

+he
third position. To commect these members inAfisld}thsy had to

Gl kis i e L] R

. Usadell's Bridge Engineering, p. 203.
Enginesring News-Record, Jan. 10, 1918, p. 62.




To prewide for the aseondary stressses in posts dus to
ections of the 1 oorbcamgi the follo-si ng method mey bs used-l
uppor lateral and transverse bracing are made of lengths slightly
hortor than normale In erection, the trusses ars sprung inward one
I inch at the top to connsct to the bracing, thus causing soms
ing mowigsel: in the verticsis, w1 loiae telieved when the floor

T Tlest under the live load Sraffl:

Th ‘ary ehressese 18 the posts may also be

rocted by giving i Ficor-veam w auknward samber.
ghdedd Shgags b= s H Eisel Had Ll e =2

s 1St phman and Jacoby's Roofs and Bridges, Part I1Il, pe. 401.
s  Crimm's Secondary Stresses in Bridge Trusses, p. 130.



