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A b s t r a c t . Logics of programs, while they have contributed significantly 
to our understanding of individual programs and to our knowledge of pro
gramming language design, have had disappointingly little influence on the 
methods by which programs are constructed and documented in practice. 
The reason for this, we suspect, is tha t the understanding embodied in 
these systems deals with individual programs and does not directly address 
the process by which programs are constructed. By focusing attention 
on this process, at tempting to discern the fundamental steps in the evolu
tion of programs, we propose tha t it may be possible to develop a logical 
system—supported by an appropriate machine environment—that will be 
more directly applicable to programming practice. The benefits of such a 
point of view will be discussed. 
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Our basic premise is that the ability to construct and modify programs will not improve 
without a new and comprehensive look at the entire programming process. Past theoretical 
research, say, in the logics of programs, has tended to focus on methods for reasoning about 
individual programs; little has been done, it seems to us, to develop a sound understanding 
of the process of programming—the process by which programs evolve in concept and in 
practice. At present, we lack the means to describe the techniques of program construction 
and improvement in ways that properly link verification, documentation and adaptability. 

The at t i tude that takes these factors and their dynamics into account we propose to 
call "inferential programming." The problem of developing this a t t i tude and the tools 
required is far from easy and needs extensive investigation, and in this paper we are only 
going to be able to discuss it in rather broad terms. We wish to suggest, in particular, two 
goals for research tha t can build on past experience but tha t enter at what we feel is the 
right level of generality. This is the topic of Section 1. In Section 2 we set forth our views 
on the conceptualization of the notion of program derivation and the reasons why we think 
it is needed. The discussion inevitably brings up the question of the role of formalization, 
which is the subject of Section 3. In Section 4 we try to lay out the difficulties of the 
inferential programming problem; while in Section 5 we speculate briefly on the future of 
programming. 

1. A Research P r o g r a m m e . 

The initial goal of research must be to discern the basic structural elements of the 
process of programming and to cast them into a precise framework for expressing them and 
reasoning about them. This understanding must be embodied in a logic of programming—a 
mathematical system tha t allows us not only to reason about individual programs, but also 
to carry out operations (or transformations) on programs and, most importantly, to reason 
about the operations. It can be argued—not without controversy—that logicians did this 
service for mathematical proof, and we will discuss the pros and cons presently when we 
argue that programming is even more in need of this kind of attention. The development 
of such a logic of programming will of course require a practical understanding of the 
semantics of programming concepts. There is no reason to suppose tha t the formalization 
of this logic will look like standard existing systems, since the principles must be adapted 
to the motivating problem and the appropriate concepts. 

The second goal for research is to build the experimental environment. The logic 
of programming is intended to be a "systematized" one, codifying our competence about 
programming in a way that can be used as the basis for an implemented computer system. 
It will be necessary to construct prototype interactive systems to facilitate the exploration 
of logics of programming and, eventually, to lead us to the natural development of practical 
semantically-based programming tools. In particalar, it is important tha t such systems 
will permit study of the dynamics of programming: the relation between the way in which 
derivations of programs from specifications are structured conceptually and the process, 
over time, by which they actually evolve and are maintained and modified. This dynamical 
aspect we find lacking in current proposals. 

This programme of research is aimed at discovering the principles that we feel can be 
embodied in the programming tools of the future. Such principles must be independent of 
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individual programs—or even programming languages—if they are going to have reasonably 
universal significance. By developing conceptual and mechanical tools for expressing these 
principles and for reasoning with them, we hope to demonstrate tha t programming can be 
made a more straightforward and exact process and that the power of the programmer to 
think directly about the problems he has to solve can be significantly increased. 

In thinking about the problem, we have found that it is important to distinguish pro
gram derivation—the conceptual history of a program—from what we have called inferen
tial programming, by which we mean the collection of methods (and associated tools) for 
constructing, modifying, and reasoning about such derivations over time. Let us discuss 
this distinction in more detail. 

P r o g r a m Derivat ion. Contemporary programming languages and methodologies, 
we claim, encourage programmers to try to capture an entire process of program devel
opment in the text of a single program; programmers find they are at tempting to write 
programs that—in themselves—can be easily understood and modified and yet have ac
ceptable performance properties. Inevitably, there must be sacrifices in order to obtain the 
right balance between clarity and efficiency; often, perhaps more often than not, the greater 
sacrifice is from clarity, and the resulting programs become so complex and interconnected 
tha t eventual modification becomes prohibitively costly. 

Many programmers feel it is more natural to describe a program in terms of its deriva
tion or evolution—the sequence of insights tha t is required to derive the implementation 
from straightforward specifications. By representing the process of program development 
as a sequence of programs, arranged as if the final implementation were developed from an 
initial specification by a series of refinement steps, we can maintain a structure in which 
clarity and efficiency coexist. Separations between program abstractions (such as abstract 
data types or generic procedures) and their representations do not exist within individual 
programs in derivations, but rather are spread over a sequence of program derivation steps. 
Abstractions introduced in early derivation steps are replaced, in later steps, by their in
tended representations, allowing more specialized and, hence, faster code to be ultimately 
obtained. The programmer need never confront the possibility of having to maintain the 
abstraction and an efficient implementation simultaneously in a single program. 

Programming, even more so than mathematics, is a highly stylized affair, in which 
certain patterns of activity are shared in large numbers of applications. This, indeed, is an 
argument that programming is largely a skill; the good programmers are not only smarter, 
but they have command of a larger collection of standard programming pat terns. Although 

.at tempts have been made to describe these pat terns in terms of the program text through 
which they are made manifest, we believe tha t the pat terns are really pat terns of derivation, 
and the textual similarities are only superficial. 

Inferential P r o g r a m m i n g . Inferential programming, on the other hand, is like the 
process of building mathematical proofs: Mathematicians do not develop proofs by start ing 
at line one and considering their possible moves from there. Rather , they formulate a 
strategy and fill in gaps until they have enough detail to make a convincing argument. The 
proof text that emerges is a highly structured justification for a mathematical fact—even 
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if it is written in ordinary language. The process of building the proof, on the other hand, 
is a somewhat undisciplined and exploratory activity, in which insights are gained and 
expressed and finally woven together to form a mathematical argument. By analogy, then, 
we prefer to separate program derivations—highly structured justifications for programs— 
from inferential programming—the process of building, manipulating, and reasoning about 
program derivations. 

It follows that in proposing structure for program derivations, we are in no way 
at tempting to coerce programmers to follow a specific temporal discipline in building 
their programs. We intend, rather, tha t they be provided with inferential programming 
tools—conceptual and mechanical aids—to facilitate the expression of the program and 
its justification and to help in the process of program development. In an inferential 
programming framework programmers can focus their thoughts less on expressing actual 
programs, and more on expressing how the programs come about. As a consequence, 
we claim, programming language design ceases to be the critical issue in programming 
methodology. It is likely that ultimately conventional programming languages will be 
required only for the very last refinement steps—and only because these steps precede a 
conventional compilation step. 

As regards verification, inferential programming will offer a more natural method for 
proving correctness of complicated programs than do conventional techniques. The common 
approach to program proof has been to develop program and specification first, and then 
prove correctness as a separate step. The tediousness and difficulty of these proofs has 
prompted much of the software engineering community to abandon hope for the economic 
development of provably correct programs. Indeed, this style of proof requires programmers 
to rediscover the insights that went into the original development of the program and 
express them in a formal logical language. Unlike conventional approaches to correctness, 
inferential programming techniques—particularly when embodied in mechanical tools—will 
effectively allow programs and proofs to be developed simultaneously. By representing 
programs as sequences of derivation steps and using systematic techniques to move from 
one step to the next, correctness of the final program follows directly from the correctness 
of the derivation techniques. With cleverly- constructed mechanical tools, the business of 
proof could be so effectively hidden from users tha t the development of correctness proofs 
seems to be automatic. Of course, those steps in a derivation whose correctness has not 
been proven can be isolated to facilitate debugging and testing. 

We must emphasize that the idea of controlling program derivation is by no means new, 
and there has already been considerable activity (take [Balzer81, Bauer82, Cheatham72, 
Cheatham79, Feather82, Green81, Schwartz77, Wile81], just to name a few). These groups 
have found that , in the process of trying to build advanced program development tools 
and heuristic systems for reasoning about programs, it was very difficult to reason about 
the structure and meaning of programs within a purely program-oriented framework and, 
instead, some sort of evolutionary transformational paradigm must be used. A variety of 
systems have emerged, but they all seem to have this aspect in common. The experience 
has taught us much about the structure of programs and the methods by which they 
are developed, though much of this work has been misinterpreted, we feel. There is still 
confusion on certain important points, and it is our aim here to correct some misconceptions 
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we have perceived about where this research is going and to suggest some directions for 
future work. 

2. The N a t u r e of P r o g r a m Der ivat ions . 

The traditional "correctness" proof—that a program is consistent with its specifica
tions—does not constitute a derivation of the program. Conventional proofs, as currently 
presented in the literature, do little to justify the structure of the program being proved, 
and they do even less to aid in the development of new programs tha t may be similar to 
the program tha t was proved. Tha t is, they neither explicate existing programs nor aid in 
their modification and adaptation. 

We intend tha t program derivations serve as conceptual or idealized histories of the de
velopment of programs. That is, a program derivation can be considered an idealized record 
of the sequence of design decisions tha t led to a particular realization of a specification. It is 
not a true history of the discovery of the program in that it does not include the usual blind 
alleys and false starts, and it does not reveal how the initial specifications were actually 
arrived at. But it does, nevertheless, show how the shape of the final implementation is 
determined by a combination of design decisions and commitments. The importance of 
choosing the right level of abstraction is substantiated by consideration of the necessary 
changes that have to be made in programs when new needs are imposed. 

Modif icat ion a n d Adaptabi l i ty . The constructive quality of program derivations is 
exactly what makes them particularly useful in environments in which programs eventually 
must be adapted to other uses. Indeed, a very important advantage tha t we see coming 
from the inferential programming technique will concern program modification—an activity 
which reportedly demands the largest proportion of available programmer time in industry 
and government today. 

It is common wisdom that in many circumstances it is better to modify an old program 
than to develop an entirely new program. This is clearly appropriate when the developments 
of the old and new programs would have much in common—in our terms, when there 
would be significant sharing in the program derivations. This can be the case even if the 
resulting target programs have little in common. Modification is difficult in a conventional 
framework because, like a posteriori verification, it requires rediscovery of concepts used 
during development of an implementation. Simple conceptual changes to a specification 
often require complicated and extensive changes to code. In an inferential programming 
system, not only can the conceptual changes be made directly at the appropriate places 
in program derivations, but the supporting system can be used to help propagate these 
changes correctly into implementations. 

This kind of adaptability is important not only in the broad "software engineering" 
context, but in the development of localized fragments of code as well. Much of current pro
gramming practice consists of adapting general algorithms and techniques from textbooks 
or other programs to particular applications. Abstraction mechanisms in languages can 
alleviate much of this problem, by permitting a single generalized template of an algo
rithm or other programming abstraction to serve in many contexts. There are many cases, 
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however, in which the application required does not match a true instance of the template 
developed. In these cases, the connection between original algorithm and intended use is 
one of analogy, and a much more sophisticated mechanism than simple instantiation is 
required to establish the connection. Because the program derivation reveals so much more 
about the structure of programs, we believe tha t pat terns of analogy are more likely to 
be apprehended and expressed when derivations are made objects of study. An example is 
mentioned below. 

It is clear, in fact, that a vast portion of the development of new programs is carried out 
by programmers on the basis of their prior experience in similar situations. Programming 
consists largely of choosing appropriate known techniques and adapting them to the prob
lem at hand. Tha t ordinary programming language is insufficient to express these tech
niques has been widely suggested by researchers interested in automating programming and 
program understanding. Our hypothesis (shared by others) is tha t derivation structure is 
the appropriate vehicle for expression; unlike programming language, derivation structure 
provides a way of making explicit the rationale for program structure. 

Programming language designers have long sought to provide language constructs that 
reflect as closely as possible our thinking about the structure of algorithms. For example, 
some years ago Dijkstra and Knuth showed that nearly all uses of goto ' s in programs were 
actually parts of higher control abstractions such as whi le loops, case analysis, and so on 
[Dijkstra71, Knuth74]. The number of distinct control constructs turned out to be small 
enough tha t they could be—and were—included as primitive in programming languages, 
even though they brought no additional real expressive power. The point here is that 
program derivations allow us to express our thinking about the correctness and modification 
of programs in a much more natural—and useful—way than do conventional proofs. 

In this regard we mention the "Programmer's Apprentice" automatic programming 
system designed by Rich, Shrobe, and Waters at MIT [Rich78, Waters81]. One of the 
key notions in this system is the programming cliche, which is a programming-language 
syntactic manifestation of a program derivation pat tern. It was found tha t it is not adequate 
to describe cliches purely in terms of program text; some external structuring must also be 
specified. For this purpose, the notion of "plan" was introduced. A plan is an abstraction 
based on program structure; it provides a much richer way of describing relationships in 
programs than ordinary program text. The primary limitations on this enterprise derive 
from the fact that plans are basically abstractions from program structure; they do not 
express evolution or rationale in any direct way. The connections with the progressive 
commitments to implementation are also not easy to formulate in this way. Therefore, we 
feel we have to re-examine completely the idea of derivation in order to have a notion that 
captures the right features of the programming process. 

Conceptua l i z ing P r o g r a m Der ivat ion . Specifications differ from programs in that 
they describe aspects or restrictions on the functionality of a desired algorithm without 
imposing constraints on how tha t functionality is to be achieved. Tha t is, from the 
point of view of specification (by our definition), the means by which the desired func
tionality is obtained is not relevant. In this sense, specifications for programs are static] 
they constrain implementations by constraining the relationship between input and output 
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parameters. But even this distinction between input and output can be regarded as 
a temporal, implementation-based notion (as is seen in the example of P R O L O G ) , so 
specifications that appear fully abstract often are not [Clocksin81]. Implementations, 
similarly, are not usually fully constrained either; programmers frequently leave many 
crucial representational decisions to their compilers, involving themselves in sticky details 
only when performance is exceptionally poor. 

Thus, following [Bauer81, Schwartz73], we can be led to view this difference between 
specification and implementation simply as one of degree. But let us note here tha t 
the "wide-spectrum" languages tha t have been proposed are only a partial solution; it is 
sometimes—perhaps usually—necessary tha t semantic meanings of programming language 
constructs change as derivation proceeds. This, as is remarked below, is a form of commit
ment, and we feel it is a sensitive issue. 

In achieving a specification by programming, then, many decisions have to be made 
about how abstractions used in a specification are to be realized in a limited language of 
actual or virtual machine operations. This involves representing abstract objects in the 
form of data or control structures or by a combination of both. For example, a function 
could become manifest as an array (in which indices are mapped to cell contents), or as a 
procedure calculating output values from input values, or as a list of inpu t /ou tpu t pairs 
tha t must be searched. The range of possibilities is vast, and a great variety are used in 
practice. 

Indeed, programmers are so familiar with the many techniques for representation tha t 
they often jump directly from informal specification to realization without ever being too 
conscious of the act of choice made for the abstraction being realized. The choice of 
representation, however, can depend on many factors, and in practice trial and error is 
required to obtain the right structure, which makes the programmer more conscious of what 
he is doing. Of course, much backtracking and revision is required to obtain a workable 
specification in the first place, but let us remember that at this point in the discussion we are 
concerned only with the structural relationship between specification and implementation. 

We thus move, in a program derivation, along the near continuum from specification 
to implementation by means of a sequence of representational decisions, or commitments— 
whether entirely consciously or not. We use the term "commitment" to refer to the process 
of introduction of structure tha t goes along with realizing or representing an abstraction. 
In this sense, commitment and abstraction, as processes, are inverse notions. 

The commitments that allow.passage from specification to implementation are linked 
together and, indeed, advantage is realized from them, by means of the simplification 
steps they permit us to make. That is, commitments introduce structure, which in turn 
facilitates simplification, which then suggests further commitments, and so on. In this 
way, the problem of implementation becomes one of selecting an appropriate sequence of 
commitments. 

What is simplification? Any such notion must necessarily be based on some idea of 
cost or complexity, since otherwise the term "simplification" is meaningless! At specification 
time, the only cost is conceptual cost, and simplifications made to "improve" specifications 

- 7 -



are intended to lower conceptual cost. But if we are to move towards implementation, 
this notion of conceptual cost must give way to the more usual (and better understood) 
notion of computational cost. If we could minimize conceptual cost and computational cost 
simultaneously, then there would be no need for this notion of program derivation at all. 
Practice, unfortunately, has shown this to be impossible, so we must develop s tructure in 
which movement can be made along the cost axis depending on the needs of the "reader" 
(human or mechanical). Program derivations are thus directional in this sense, but their 
orientation depends on whether conceptual cost or computational cost is being minimized. 
(Actually, we should be speaking of a cost space, whose axes include not only computational 
and conceptual costs, but also costs such as numerical accuracy.) 

Thus, representational commitments increase conceptual cost, but they are necessary 
if computational cost is to be decreased and because execution of programs requires us to 
realize the abstractions of the specification in the limited, concrete terms that computers 
can accept and manipulate. Thus, our program derivation structure emerges: a progres
sion of increasingly committed representations of programs leading from specification to 
implementation. 

Let us recall, however, tha t a program derivation describes a structural relationship 
only; we can use it as a setting for discussion not only of the traditional problem of obtaining 
useful implementations from specifications, but of the inverse problem as well. We obtain 
a useful specification for a program by selectively ignoring implementation details—"by a 
sequence of abstraction steps. In this scenario, the cost being minimized in simplification 
steps becomes conceptual cost. Although non-effective specifications are often the most 
natural ones, it is usually inappropriate (as we remarked above) to find maximally abstract 
specifications. In fact, for certain applications such as editors and operating systems 
the most useful specifications tend to be less abstract (and much larger) than for other 
applications. There is, of course, nothing inherent in program derivation structure tha t 
forces a certain level of abstraction in specifications. But as we understand more about 
how to write useful specifications, the distance between specification and implementation 
in program derivations will increase and the derivations will become correspondingly more 
useful. 

Although it is not structurally necessary, it will simplify our discussion if we consider 
separately the business of deducing facts in derivations—facts about the situation a t a 
particular point in a derivation or simply imported from outside bodies of knowledge. Of 
course, these observation steps don't affect cost in the same way that simplification or 
commitment/abstract ion steps do, but they do provide a mechanism by which the business 
of establishing a precondition for some other step can be separated from the step itself. 

We remark here that an essential goal in this development is to find a repertoire 
of program derivation steps that fairly closely reflect the way we think about program 
development informally [Floyd79]. For this reason, we have justified our division of program 
derivation steps into the categories of commitment/abstract ion and simplification on purely 
philosophical grounds. This is the same kind of necessarily informal argument tha t some 
logicians use to argue that, say, Gentzen-style formal proofs are more natural than Hilbert-
style formal proofs, and are therefore more suited to informal application. In this case, 
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however, it is still a bit early to tell if the proposed structure is exactly the right one. 
(Comparison with a number of informal and formal derivations in the literature suggests 
that while in some cases the structure we suggest is indeed directly apparent, in most it 
becomes apparent only when aggregates of steps are considered. For example derivations, 
see [Burstall77, Clark80, Green78, Paige82, Reif82].) 

E x a m p l e s from Pract ice . We have just argued tha t commitments and simplifica
tions, along with observations, are the fundamental steps of program derivations. We 
wish now to show that , while this categorization is still perhaps a bit speculative, many 
conventional programming techniques fall very nicely into these classes of steps. We 
mention several specific forms that these steps can take on. 

Perhaps the most immediate form of commitment is the representation of abstract 
structures such as functions (as discussed above), or sets, or graphs. Graphs, for example, 
can be represented as adjacency matrices, as linked physical structure, as relation sub
programs, and so on. There are, however, other kinds of commitments tha t are made 
when passing from specification to implementation. Specifications describe relations, while 
executions of programs are inherently sequential activities. In order to develop implemen
tations, then, we must determine an order of computation—not necessarily total, as for 
concurrent or nondeterministic computations. Once ordering commitments are made, then 
simplifications can be made that allow sections of code to take advantage of results com
puted earlier. For example, traversing the nodes of a graph after making a commitment 
to an order of computation tha t is consistent with a depth-first traversal allows for a very 
efficient implementation. It might be the case, however, tha t for certain applications this 
order of enumeration of nodes is not appropriate, and less efficient methods must be used. 

A much simpler example concerning order of computation arises, say, in the usual 
iterative integer square root program. In this trivial program, the integer square root i 
of a positive number n is found by initializing i to 0 and incrementing its value until i2 < 
n < (i + l ) 2 . By making this commitment to testing values of i in ascending order, the 
value of (i + l ) 2 from a previous iteration can be used directly as the value of i2 on the 
next. Further, the next value of i2 can be computed directly from the preceding value by 
a simple addition. But note these algebraic simplifications are possible only because of the 
commitment to incrementing the value of i. 

A less obvious form of commitment is commitment to order of presentation. To 
illustrate this kind of commitment, we mention briefly an example of a programming 
language that permits avoidance- of commitment to order of presentation. In P R O L O G , 

one defines relations and is permitted to access the relations in many ways. If, for example, 
a relation i?(x, y, z) is defined (possibly recursively), then the definition could be used in a 
straightforward way to test if a given triple is in the relation. But, in certain circumstances, 
it could also be used when given, say, particular values for x and z only, leaving the system 
to search for values of y for which the relation holds. It is a specific language design 
decision to discourage explicit commitments on how defined relations are used. For many 
applications, this avoidance of commitment has a distinct cognitive advantage and can be 
realized fairly efficiently using a parameter binding mechanism based on unification. This 
notion, on the other hand, is so foreign to users of conventional languages tha t it rarely 
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appears in published specifications. The lesson, then, is tha t many commitments are made 
in specification concerning input variables and output variables that often unnecessarily 
constrain the range of possible implementations (in a program derivation setting). 

On the other hand, some languages such as P O P - 2 provide a limited explicit mechanism 
for introducing such commitments. Partial application, called by Ershov mixed computa
tion, is an example of such a mechanism [Beckman76, Ershov78j. Indeed, as Ershov points 
out, compilation is itself just the simplification tha t results naturally from an order-of-pres-
entation commitment. In this case, procedure text and perhaps certain actual arguments 
are provided before others [i.e., at compile time), and then the natural simplifications are 
made. Note tha t these "natural" simplifications may depend on deep outside theorems 
introduced as observations. 

Language design that permits explicit commitments to be made or avoided certainly 
broadens the range of applicability of tha t language. In the program derivation framework, 
however, we seek language features for specifications tha t permit avoidance of the various 
kinds of commitments whenever possible. Machine language programs, in which very few 
such decisions are left unresolved, are at the other extreme of the spectrum. 

Commitments are made not only to eliminate from specifications those abstractions 
not directly realized by computers, but also to permit simplifications. Let us consider, 
by way of example, the use of the divide-and-conquer paradigm to obtain the usual binary 
array search algorithm. The problem is to determine if a key k appears in an array segment 

The essential assumption is that the array elements are given in increasing order. 
We can then take advantage of this assumption after a commitment is made to testing 
a particular array element, say A[m]. (This is the "divide" step.) If the test fails, we 
want to test recursively the remainder of the array. A simplification allows us to use 
additional information about the outcome of the test to exclude more than just that single 
element A[m] from consideration; indeed, the entire initial portion of the array segment 
from position m to the beginning can be excluded if A[m] < k. We are then left with a 
considerably smaller segment for the recursive call (which means much less to "conquer"). 

Another form of simplification is the elimination of simple redundancy, and this is the 
basis for the so-called dynamic programming paradigm for algorithm design. The Cocke-
Kasami-Younger parsing algorithm, for example, results from a simple recursive definition 
of the derives relation for Chomsky-Normal-Form context-free grammars. By making an 
appropriate order-of-computation commitment—which in this case is really only a partial 
commitment—and eliminating redundancy in the resulting definitions, an exponential-time 
algorithm is transformed into a polynomial-time algorithm. 

3 . T h e Role of Formal izat ion . 

If we are to succeed at building semantically based tools that will have any significance 
for programming methodology, our conceptualization of program derivation, which we have 
just discussed in general terms, must lead to some of the same kinds of understanding tha t 
logic brought to the perception of the structure of mathematical proof. The parallel must 
not be regarded as perfect, however. Formalization in logic is the means by which proofs 
are introduced as legitimate objects of mathematical attention; that is, a formal proof itself 
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becomes a mathematical structure tha t can be reasoned about. Our conceptualization of 
program derivations, similarly, must lead us to a point where program derivations are 
considered as formal structure representing the evolutions of programs. As we remarked, 
we are still far from being able to propose the exact details of the required formalization; 
but even the suggestion that it is possible to find such a definition raises many questions— 
and generally raises blood pressure as well!—since the significance of formalization in 
mathematics remains hotly debated. 

W h o deals w i t h formal s tructures? We do not mean to suggest tha t programmers 
must deal directly with the minute formal s tructure of a derivation—say, the filling in of 
the names of the principles employed at each step. Indeed, it will be asked: do we need to 
formalize program derivations at all? Mathematicians do not really build formal proofs in 
practice; why should programmers? Real programming, like the proving of real theorems, is 
a process unhampered by the observance of niggling little rules, a process requiring, rather, 
insight and creativity. How can formalization help? Perhaps formal logic improved our 
understanding of the structure of mathematical proof, but it hasn' t helped us prove new 
theorems, has it? Well then, neither will formalization help us find new programs. 

The tenor of this objection is common, and it sounds very reasonable at face value. We 
find a basic fallacy here, however. In a way, formalization plays an even more important 
role in computer science than in mathematics because—as is obvious to all programmers— 
programming languages are by necessity formal languages. The programming process is a 
process of building and reasoning about formal program structures; people can consume 
informal proofs (indeed more easily than their formal counterparts), but computers do 
not run "informal" programs. To run, programs must be syntactically absolutely correct. 
Much of the good advice of program methodology is aimed at keeping the complexity of 
the formal programs under control, and much systems building is devoted to constructing 
aids for providing a programming environment allowing the programmer to rise far above 
the counting of parentheses and the filling.in of semicolons. Tha t is not all there is to 
formalization, of course. 

To be fair to classical mathematics, its level of precision has improved by leaps and 
bounds since the turn of the century. The field of algebraic geometry is an outstanding 
example, and this improvement has almost nothing to do with the history of mathematical 
logic and logical formalization. To cite a trivial example of precision ( that has been around 
for a very long time but required clear thinking when it was originated), consider proving, 
say, the convergence of some infinite series. Many manipulations must be done, and every 
student has experienced the problem of getting some signs wrong. Going back over the 
formulae until the missing minus sign is located is just exactly the same as debugging a 
program. Much of the language of algebra, calculus, and more advanced analysis is a formal 
language, and people prove things by learning the rules of the formalization. Today, the 
M A C S Y M A system is able to deal with these manipulations in a pretty direct way. And, 
much, much more of mathematics has been formalized in this sense: take large portions of 
algebraic topology, for example, which require heavy formal machinery now often expressed 
in category theory. Mathematicians are able to prove important theorems with the aid of 
these formalizations tha t were unthinkable 100 years ago. The point is that the difficulty 
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of the abstractions has forced real mathematicians to introduce what can only be called 
formal methods. The argument tha t mathematicians have with logicians, on the other 
hand, is over the further question of whether there is any sense in looking at a complete 
formalization of a whole proof. Often there is not. 

Returning to the domain of programming, we think tha t there is a difference in scale 
and a difference in kind between programming and mathematics. It will be agreed tha t 
much of programming deals with systems: languages, compilers, interfaces. All these topics 
are formal by nature, as structured messages have to be interpreted and either executed or 
turned into something else. Tha t is, computation is a symbol manipulation activity, and 
so formalization lies at the basis of all automated systems. This is the difference in kind. 

But, even relatively elementary programs tend to be more complicated than elementary 
theorems. Why? Because in a certain sense more of their structure has to be made 
explicit. In mathematical literature, it is often sufficient to do one precise calculation, 
and for the other cases say "similarly". A proof is often more a genteel tourist guide than 
instructions for a treasure hunt. Programs, on the other hand, not only operate on very 
highly structured data, but they must do so in unobvious ways in order to be efficient. All 
this pressure requires a high degree of formal t reatment . But, just as before, we ask: even 
if programming is more concerned with formalization than mathematics, must the whole 
process be formalized? This leads us directly to the next question. 

H o w t o go: formal or informal? Like proofs, program derivations can certainly 
be presented both formally and informally. Formal derivations, like any formal proof or 
other structure, are not intended for everyday consumption. Much misunderstanding has 
resulted when this important distinction has not been recognized. For example, David 
Gries has this pessimistic quotation on program transformation in his new book [Gries81] 
(p. 235). 

It is extremely difficult to understand a program by studying a long sequence of trans
formations; one quickly becomes lost in details or bored with the process. 

We do not intend here to ascribe this misunderstanding to Gries. We suspect, rather, tha t 
his remark is a natural response to the way in which transformation sequences have some
times been presented in the literature, not to their structure. It is just as inappropriate—to 
understanding—to use a sequence of formal transformation steps to describe a program as 
it is to justify a theorem by giving a full formal proof. We are quite comfortable with in
formal mathematical proofs; we must learn better, however, how to present transformation 
sequences (which are really program derivations) in an informal way so tha t they will be a 
useful tool for explaining programs. 

It should not be forgotten tha t we have never had useful informal ways of justify
ing the correctness and s tructure of programs until recently! Indeed, most of our ex
perience in this area is with formal proofs; the historical development of programming 
methodology has been completely unlike tha t of ordinary mathematics in this regard. The 
point of most of the early program-transformation papers, for example, was to expose new 
program-transformation techniques, not to give accounts of algorithms [Broy81, Burstall77, 
Manna79, Paige82, Wand80]. More recently, papers have appeared in which the trans
formational method is used to explicate existing algorithms—and occasionally even new 
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algorithms—but we have still not yet developed concise informal language for describing 
the transformation sequences [Clark80, Green78, Reif82]. 

Gries went so far as to suggest t ha t programs subject to transformation should be 
proved afresh at every stage of development. We suggest, contrariwise, tha t the transfor
mation process, properly presented, constitutes a much more useful proof than the usual 
sort of static program proof. Of course, transformations can transform proof along with 
program, so this requirement could always be satisfied trivially—but this is not the point. 

Here is the key design problem: we must conceptualize program derivation in such a 
way tha t both informal and formal .presentations will be (appropriately) useful! Tha t is, 
formal program derivations will be useful only if the structure they make manifest is in 
some way a reflection of the way we think (intuitively) about the evolution of programs. 
We must build formal structures tha t will permit not only the presentation of arguments 
(in the form of program derivations) but also the development of new arguments and the 
adaptation and modification of old ones—by means of inferential programming techniques. 

An alternative approach to formalizing our reasoning about the evolution of programs 
is based, rather directly, on the evolution of formal proofs in mathematics, combined with 
rules for generating an algorithm from the proof [Bates79, Bates82, Goad82, Kriesel82, 
Martin-Lof79]. Improvements to the algorithm are made either by restructuring the formal 
proof or through the use of automatic optimization tools. Commitment steps, in this 
approach, correspond to proof-development steps. The inferential programming approach, 
on the other hand, is based on the thesis tha t the passage from informal to formal can 
bring us directly into a program-oriented language, even if the "programs" are nothing 
more than abstract—even noneffective—specifications. 

When we think again about who deals with formal structures, the answer that we hope 
will emerge is tha t the programmer deals with them on one level (just as mathematicians 
have to) while manipulating them in informal ways in his head or in his documentation, 
and the system deals with them on quite another level interacting with the programmer(s). 
The kind of system we would like to see built will keep track of all the little syntactical 
niceties as a matter of course, but at a different stage of interaction will dovetail steps of 
the derivation under direction of the programmer. This view gives us a chance to suggest 
a new answer to the next question. 

A t w h a t po int do we find verif ication? It is commonly argued tha t formalization 
inhibits the social process of acceptance of proofs. Indeed, why should we believe formal 
proofs—even if they are produced by a machine—since they are almost immune to the usual 
kind of social process of having friends, enemies, referees, students, and others check the 
details in their heads or with pencil and paper. In objecting specifically to the suggestions 
for methods of (automatic) program verification, De Millo, Lipton, and Perlis say at the 
s tar t of their well-known paper [DeMillo79] (p. 271): 

We believe that, in the end, it is a social process that determines whether mathematicians 
feel confident about a theorem—and we believe that, because no comparable social process 
can take place among program verifiers, program verification is bound to fail. We can't 
see how it's going to be able to affect anyone's confidence about programs. 

Further on they are even more outspoken and say (p. 275): 
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The proof by itself is nothing; only when it has been subjected to the social processes of 
the mathematical community does it become believable. 

In this regard—though they mention the early muddy history of the "solutions" to the 
Four-color Conjecture—De Millo, Lipton and Perlis do not discuss the subsequent machine-
aided proof of this world-famous conjecture. (Their paper was received by the editors in 
October 1978 and probably written much earlier. The first announcement by Haken, Appel, 
and Koch of the solution of the conjecture was made in September 1976, and the paper was 
published in September 1977, see [Haken77j.) As this example fits exactly into the area of 
methods of proof that they are criticizing, we would like to go more into the circumstances 
of the proof and its believability. 

Fortunately, the computer proof—a checking of a large number of cases—of the Four-
color Theorem (hereafter, 4CT) has caused considerable comment, so we shall not have to 
be too explicit here about mathematical details and can refer to the published literature. 
Everyone has surely heard the statement of the problem: Does every finite planar map 
require only four colors to color all regions so that no two adjacent regions have the same 
color? The conjecture received many inadequate proofs over the years. In February 1979, 
in an article The Jour-color problem and its philosophical significance, Thomas Tymoczko 
published a long broadside [Tymoczko79] against the claimed solution in which he asserted 
(p. 58): 

What reason is there for saying that the 4CT is not really a theorem or that mathe
maticians have not really produced a proof of it? Just this: no mathematician has seen 
a proof of the 4CT, nor has any seen a proof that it has a proof. Moreover, it is very 
unlikely that any mathematician will ever see a proof of the 4CT. 

What reason is there, then to accept the 4CT as proved? Mathematicians know that 
it has a proof according to the most rigorous standards of formal proof—a computer 
told them! Modern high-speed computers were used to verify some crucial steps in an 
otherwise mathematically acceptable argument for the 4CT, and other computers were 
used to verify the work of the first. 

Thus, the answer to whether the 4CT has been proved turns on an account of the role of 
computers in mathematics. Even the most natural account leads to serious philosophical 
problems. According to that account, such use of computers in mathematics, as in the 
4CT, introduces empirical experiments into mathematics. Whether or not we choose to 
regard the 4CT as proved, we must admit that the current proof is no traditional proof, 
no a priori deduction of a statement from premises. It is a traditional proof with a lacuna, 
or gap, which is filled by the results of a well-thought-out experiment. This makes the 
4CT the first mathematical proposition to be known a posteriori and raises again for the 
philosophy the problem of distinguishing mathematics from natural sciences. 

Subsequent commentators are far from agreeing with Tymoczko that "we are com
mitted to changing the sense of ' theorem', or more to the point, to changing the sense 
of the underlying concept of 'proof.'" In the same journal in December 1980 in a reply, 
Computer proof, Paul Teller argues cogently against all Tymoczko's conclusions [Teller80]. 
In the very same number of the journal, Michael Detlefsen and Mark Luker in another long 
reply, The four-color theorem and mathematical proof, point out that computer checking of 
certain proof steps is hardly a novelty (they give several telling references and quotations) 
and they discuss rather fully the question of 'empiricism 7 [Detlefsen80]. They say (p. 804): 

We do not disagree with Tymoczko's claim that evidence of an empirical sort is utilized 
in the proof of the 4CT. What we find unacceptable is the claim that this is in any sense 
novel. 
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It is best for the reader to read the original paper and the replies himself to judge the 
issues. They make interesting reading. 

Another author, however, who touches on the points closest to our present discussion 
is E. R. Swart in yet another reply to Tymoczko in November 1980 in an article The 
philosophical implications of the four-color theorem [Swart80]. Swart—owing to his detailed 
and professional knowledge of the field—points out tha t in fact Tymoczko fails to recognize 
the actual weak point of the Haken-Appel proof. Moreover, he suggests a cure. He also 
points out tha t other machine-aided proofs of the 4CT are now available, referring to 
extensive work of F . Allaire. He says (p. 698): 

... Allaire's proof also involves a discharging/reducibility approach but only requires some 
50 hours of computer time. It is moreover, based on an entirely different discharging 
procedure and a completely independently developed reducibility testing program. At 
the very least Allaire's proof must rank as an independent corroboration of the truth 
of the four-color conjecture, and there* can be little doubt that even if the Haken/Appel 
proof is flawed the theorem is nevertheless true. 

Swart goes on convincingly to support the thesis that computers are more reliable than 
humans in checking details and says (p. 700): 

Human beings get tired, and their attention wanders, and they are all too prone to slips 
of various kinds: a hand-checked proof may justifiably be said to involve a "complex set 
of empirical factors." Computers do not get tired and almost never introduce errors into 
a valid implementation of a logically impeccable algorithm. 

He understands, of course, that the original algorithm design is the important point here. 

In our view what Swart demonstrates in a fully documented way is just how computer-
aided proof can be subjected to the "social process"—which is just what De Millo, Lipton 
and Pedis denied was going to happen. In the case of the 4CT, Swart criticizes the original 
method, he points out how it can be strengthened, he discusses an alternative approach, and 
he comments on the general reliability of algorithms. This is more attention to particulars 
than many results get, and in any case he has gone into the mathematical details elsewhere 
and clearly knows what he has been talking about. A particularly encouraging statement 
about the "social" nature of the activity occurs on p. 704 of his paper: 

It is perhaps appropriate to begin to draw this section to a close with some discussion 
of the obvious first requirement of mathematical proofs—namely, that they should be 
convincing. At this juncture in history the 4CT has not been properly integrated into 
graph theory as a whole and stands to some extent as a monument on its own, but there 
is little doubt that this is not its permanent lot. 

Indeed, it already has strong connections with at least some branches of graph theory 
that have no direct reliance on computer programs. Several mathematicians, such as 
Walter Stromquist, Frank Bernhart, and Frank Allaire, who did research on the question 
of reducibility also developed a coherent theory of irreducibility that is in complete 
agreement with the reducibility results that have been obtained thus far on the computer. 
Moreover, in the light of such irreducibility theory, it became possible to determine anti-
configurations for all planar configurations that are not freely reducible. And Frank 
Allaire was able to make excellent use of such anti-configurations in finding reducers 
for intractable reducible configurations. Such developments can surely only serve to 
strengthen the confidence that mathematicians have in the truth of the 4CT. 

And in the years to come, when the theorem is even more inextricably intertwined with 
graph theory as a whole, it will seem not a little quaint to even suggest that it is not 
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a priori theorem with a surveyabie proof. The four-color conjecture served as an 
excellent stimulus to graph-theoretic research, and the 4CT may continue to exert a 
benign influence on graph theory until such time as it has been brought into "the body 
of the kirk." 

We think this answers De Millo, Lipton, and Perlis pretty fully. To be fair to them, 
they did not have very good paradigms in mind: at the time that they wrote their paper the 
suggestions for computer-aided verification were low-level. But Swart describes very well 
what happens to this kind of work when there is actual content involved. He shows that , 
since people are involved in formulating the problems and in evaluating the results, thoughts 
tend to occur to them. No one is going to be satisfied with the answer "VERIFIED"—they 
will want to know how and why and what the context is. Though the 4CT is a highly 
specialized problem, the algorithms developed have wider significance beyond the proof 
of one theorem. This is the typical direction of problem solving into generalization, as 
everyone knows. 

Our contention is that the difficulty with the question of program verification—which 
has almost become a dirty word—is tha t the question was asked at the wrong level of 
abstraction. Our approach is to replace this question by the aim of correct program 
development with correctness being checked at each stage. This puts the emphasis on 
verification in a different light. De Millo, Lipton, and Perlis say (p. 279): 

The concept of verifiable software has been with us too long to be easily displaced. 
For the practice of programming, however, verifiability must not be allowed to over
shadow reliability. Scientists should not confuse mathematical models with reality—and 
verification is nothing but a model of believabiiity. Verifiability is not and cannot be 
a dominating concern in software design. Economics, deadlines, cost-benefit ratios, per
sonal and group style, the limits of acceptable error—all these carry immensely much 
more weight in design than verifiability or nonverifiability. 

So far, there has been little philosophical discussion of making software reliable rather 
than verifiable. If verification adherents could redefine their efforts and reorient them
selves to this goal, or if another view of software could arise that would draw on social 
processes of mathematics and the modest expectations of engineering, the interests of N 

real-life programming and theoretical computer science might both be better served. 

We agree with them that reliability is the key driving force and. that verifiability at some 
time after a giant program has been completely written by different hands is virtually 
impossible. But we cannot let this be an excuse for not producing provably correct software, 
even if "correct" only means that documentation is generated concerning the extent to 
which a program is reliable. We ourselves would not be satisfied with such a weak notion 
of correctness, but informative documentation would be a step forward. The emphasis 
in our minds is on "proof"—meaning tha t the right observations from allowable ones are 
made at the right points in the derivation. 

Once we accept the proposition that individual program derivation steps preserve cor
rectness, then it is implicit in derivation structure that implementations are consistent with 
specifications. The confidence of users arises from their knowledge of how the implemen
tation is linked to the specification, and no formal proofs need ever change hands. That 
is, confidence is based on the assured existence of the proof and not on its content or 
structure. It is exactly this kind of reasoning tha t justifies our confidence tha t the object 
code produced by programming language compilers is faithful to the source code. Once we 
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accept the correctness of a compiler—an acceptance which is almost always effected by a 
social process—we necessarily accept the correctness of the results; this is what compiler 
correctness means. In practice, we rarely bother even to inspect the results of compilations. 
Our t reatment of transformations is going to be like our t reatment of compilers--and indeed 
like arbitrary programs—for, once we accept their correctness, then we necessarily accept 
the correctness of their results. 

W h a t are the proper analogies? De Millo, Lipton, and Perils contrast two analogies 
in their paper (p. 275): 

T h e Verifiers' Original A n a l o g y 

Mathematics Programming 

theorem . . . program 
proof . . . verification 

The D e Mil lo-Lip ton-Per lis A n a l o g y 

Mathematics Programming 

theorem . . . specification 
proof . . . program 

imaginary formal 
demonstration . . . verification 

We just do not agree with this picture of the activity. We would like to revise the analogy 
in the light of all the foregoing discussion, since we feel that , if left in the above form, it 
does a disservice to the concept of formalization and its correct role. 

T h e R e v i s e d A n a l o g y 

Mathematics Programming 

problem . . . specification 
theorem . . . program 

proof . . . program derivation 

All of this has to be taken with a big grain of salt, since all these words can mean many 
things. We prefer to put "problem" in parallel with "specification," because the statement 
of a (mathematical) problem formulates a goal without saying how to solve the problem. 
Neither does a specification determine an algorithm—nor need a specification be satisfiable 
at all. In both cases the answer must be found, and it need not be unique. 

Now theorems come in many flavors. If De Millo, Lipton, and Perlis understand by 
"theorem" a statement like "The problem has a solution," then we agree there is not much 
to choose between problem and theorem—and their analogy can stand. But many more 
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theorems are stated "The solution to the problem is given by this formula: . . . ," and 
this is much more like a program. There is no hint in the statement of the theorem why 
the formula gives the answer; one must look to the proof. As we have remarked before, 
programs tend to be pretty explicit, so let us understand by "theorem" something more 
like "theorem cum construction" which is parallel to "program for a given specification." 
But if we agree tha t the lines of the analogy table are not meant to be read in isolation, 
then we can take it that each line follows on from the previous one and that our suggestions 
can remain in the more abbreviated form. 

The word "proof," admittedly, is much harder to pin down; proofs, too, come in all 
flavors, and they are all too often half baked. A good proof should contain some discussion 
to let the poor reader know how the solution to the problem was arrived at. There are lots 
of tedious steps tha t have to be checked, but the author of the proof should have supplied 
some organization to the way the steps have been assembled. We are back at our conflict 
between formal and informal methods. De Millo, Lipton, and Perlis say (p. 275): 

There is a fundamental logical objection to verification, an objection on its own ground 
of formalistic rigor. Since the requirement for a program is informal and the program is 
formal, there must be a transition, and the transition itself must be necessarily informal. 
We have been distressed to learn that this proposition, which seems self-evident to us, 
is controversial. So we should emphasize that as antiformalists, we would not object to 
verification on these grounds; we only wonder how this inherently informal step fits into 
the formalist view. Have the adherents of verification lost sight of the informal origins 
of the formal objects they deal with? Is it their assertion that their formalizations are 
somehow incontrovertible? We must confess our confusion and dismay. 

Confession is always regarded as good for the soul, but somehow we cannot accept 
tha t the authors are too sincere in this passage. They must have felt tha t they had dealt 
a death blow to the project of verification, and they did not want to gloat too much. But 
our whole argument in this paper is tha t the place for verification is within a program 
derivation. Formalization is much concerned with the way the steps of the derivation fit 
together; while the informal understanding of how the solution to the original problem 
is emerging is in the choice of the sequence of steps. (Granted, an informal reader of a 
program derivation may need some comments to help him remember where he is and which 
subgoal is in need of attention, but a mathematical proof needs some commentary also—if 
one is ever going to learn anything beyond an ability to recite the proof verbatim.) There 
is plenty of room here for the interplay between formal and informal strategy without 
relegating formal methods to the madhouse. 

It is no argument that some mathematicians give vague proofs—so vague that one 
often wonders how they solve their problems at all. There are excellent authors that craft 
proofs that can be checked even by undergraduates. There are also proofs tha t have thorny 
steps that require machine-aided checks. As we learn to take advantage of the power of 
the computer, there will be many more of these proofs. Students will soon learn to use the 
necessary machines (perhaps before their teachers), and proofs will become more complex. 
There is no conflict between the formal and the informal in this way of telling the story, 
however, as each has its place. 

In making these analogies, one must take care to assess goals. There are problems that 
must be faced by the computer scientist tha t mathematicians might regard as unutterably 
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boring. As far as the latter is concerned the problem is solved, and the choice of a particular 
computation method or a particular representation of the data is of no concern. The 
programmer will have to slog through many thickets in which the mathematician can see 
no game. The subjects are different, the interests are different, and the aims are different, 
but the two hunters after solutions of problems can learn from each other. Just as logic has 
something to tell us about proofs, we feel inferential programming can provide a framework 
for presenting and justifying the structure of algorithms and programs. 

4. T h e Inferential P r o g r a m m i n g P r o b l e m . 

The success of the inferential programming approach to program development will 
depend on the design and implementation of the supporting mechanical systems. There is 
no denying tha t constructing an adequate design tha t can be made to work in practice is 
a truly challenging problem! A major difficulty in building such a system is that there are 
many, many ways in which we can deal with derivations: extending them in one direction 
or another, reasoning about them, using them as a basis for constructing new derivations, 
and so on. 

It is not our intention here to champion any particular philosophy of practical pro
gram development, nor do we intend for inferential programming systems to embody any 
preconceived approach to programming methodology or management. We believe, in fact, 
tha t programming, like other areas of creative endeavor, should not be too heavily shackled 
by form or method. Tools or vehicles for programming, therefore, must be constructed in 
such a way tha t programmers will still feel the freedom to explore in unfettered fashion. 
They must be given, however, the added confidence tha t the paths they explore are all 
safe ones—leading to correct implementations and faithful specifications. Awareness, in 
addition, has to be maintained of the various possible directions still open, and advice must 
be forthcoming when "navigation" decisions are to be made. The journeys may still involve 
experimentation and backtracking and, rarely, unprotected forays, but the experiences ul
timately gained have to be captured in the form of "maps" tha t others can use to stay safely 
on course when in similar situations. Thus, as experience accumulates, programmers will 
find themselves more often in known—or at least easily charted—terri tory in which they 
can defer decisions to their guides, interfering only when necessity (or curiosity) demands. 

It must be emphasized here tha t we do not regard programming as an intellectually 
shallow activity tha t can be automated simply by finding the right set of "tricks." No one in. 
the near future will succeed in fully automating the programming process, and we must not 
waste our efforts in such an a t tempt . Instead, we feel we should focus on building powerful 
interactive tools. As our understanding of the process of programming improves, it is 
true tha t more aspects of it will be pubject to complete systematization and automation— 
but the completely mechanical programmer is a will-o-the-wisp. For this reason, we are 
concentrating our investigations on finding the sorts of components a powerful interactive 
inferential programming system should have, and on understanding how they could aid iii 
both the formal and heuristic aspects of programming. 

Integrat ing deduct ion . There must be, first of all, a mechanism for carrying out 
the fundamental program-derivation steps. In its most primitive form, this mechanism 
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will apply syntactic transformations in order to make or remove commitments, to carry 
out simplifications, and to make straightforward observations. More advanced capabilities 
would include tools for manipulating and reasoning about entire derivations. All of these 
symbol-manipulation activities can be regarded as forms of deduction, and a powerful single 
general-purpose deductive mechanism such as tha t already used in LCF [Gordon79] could 
go a long way towards realizing them. 

Whatever the deductive facility is, it must at the very least have sufficient capability 
tha t users are not bothered with having to make trivial algebraic simplifications and trans
formations. It goes without saying tha t the more difficult simplification and observation 
steps may require considerable activity in formal reasoning with many heuristic decisions— 
and perhaps with interaction from the user. Although we feel able to address the heuristic 
issues in a meaningful way, much thought is still required before the right style of interac
tion between user and system can be arrived at. More will be said on these points below, but 
it should be clear that the heart of an inferential programming system will be its deductive 
mechanism. 

It seems to be a valid point to make that an effective approach to theorem proving 
is first to start with a suitably implemented proof-checker technology and then to add 
heuristic features. The success of LCF is largely due to this correct philosophical a t t i tude. 
In LCF a clear distinction is made between metalanguage and object language, permitting 
users to focus separately on facts and the strategies that control the process of inference. 
A really general programming language (for LCF it is called ML) for controlling inference 
was also used in the AI languages P L A N N E R and C O N N I V E R . The novelty of LCF is the 
use of the ML type mechanism to maintain important distinctions in the object language, 
such as between theorems and other formulas. This permits users to experiment with proof 
strategies and be confident of not disturbing the underlying logic. 

As the formal reasoning mechanism will be operating primarily on program-derivation 
structure, we have to ask what the actual shape of this structure will be. Since our 
project is not yet at the stage of implementation, we can only anticipate now the kinds of 
problems that will probably arise when we set out to formalize the informal understanding 
of derivations discussed earlier. At a first approximation, a program derivation is likely to be 
a directed graph in which nodes are programs and arcs are fundamental program derivation 
steps (i.e., commitment and simplification). The simplest sort of program derivation yields 
a linear graph; more complex structure emerges when alternative commitments are pursued 
and different implementations of the same specification (or multiple specifications for the 
same implementation) are obtained. 

Program derivations are themselves objects, and it is often easiest to obtain a new 
program derivation by a transformation on an existing derivation. A mechanism of this sort 
(and a language for expressing relationships among derivations) will have to be developed 
if, for example, users are to be able to create new derivations by analogy with existing* 
ones. This question also leads us to thinking about derivation strategies and heuristics and 
their realizations as higher-level derivations. Much experimentation remains to be done, 
especially in obtaining a feeling of how deduction is to be combined with the more prosaic 
steps of program construction. 
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A d a p t i n g convent ional too l s . Many groups are currently ai work building and 
using program-development tools. We cannot survey the whole vast field here, but we do 
wish to discuss some useful aspects of present efforts in order to be able to explain how 
the additional features we hope to add to a system will qualify it for use in what we call 
inferential programming. The existing programming aids help programmers operate on the 
syntax of their programs, but they generally do little to help when the effects of programs 
must be considered. It is an essential par t of our thesis that powerful semantically based 
programming tools will utterly change the way in which programs are created and modified. 
It is not simply a mat ter of adding these new features to our standard tools but, rather, of 
creating an entirely new at t i tude towards the programming process. 

Consider structured editors, for example. With these tools, programmers are allowed 
to explore alternative syntactic constructions as they manipulate the text of their programs. 
They are thus freed from concerns relating to the syntactical correctness of their programs. 
We assert, similarly, tha t programming tools tha t operate on derivation structure will 
help programmers explore a range of implementations while essentially freeing them from 
semantical correctness concerns. The change in a t t i tude here makes programming move 
closer to problem solving. 

The first "automatic programming" tools were of course the compilers. Incremental 
compilers and associated programming environments—as seen, for example, in modern 
LISP systems—are among our most powerful contemporary programming tools. Perhaps 
the principal reason the LISP environment is so at tract ive is tha t users have tremendous 
freedom to modify the text of programs and sample their executions without having to 
follow the rigid discipline of edi t /compile/ test associated with traditional compilers. In 
such an environment, users can respond to problems by investigating the execution context 
of the problem, then, perhaps, by making a local change (while still in the context), and 
finally by continuing execution. Immediate response and adaptat ion to small problems 
is possible, and radical context switches are not required except in unusual cases. An 
inferential programming environment, similarly, should not force general retreat when small 
problems develop. Rather, it must allow an incremental approach to the manipulation of 
program derivations, which is again a change of a t t i tude. 

Very little success has been experienced in applying formal techniques from program
ming logics to reasoning about very large programs, and indeed a very natural worry about 
the inferential programming paradigm is its ability to scale up. Will inferential program
ming systems ever be sold other than in the toy shops? The answer lies partly in the de
velopment and use of powerful modularization techniques for both programs and program 
derivations. Modularization is an important concern of systems builders, and such a facility 
for inferential programming would allow individual parts of a large program to be derived 
independently and then combined together in such a way that all possible interactions can 
be anticipated. Here is a case where the right at t i tudes are already familiar, except they 
have not been applied sufficiently to deduction. 

By anticipating interactions, version control becomes a much more precise activity— 
another very critical concern in large-scale programming. Current systems for version con
trol, as seen in G A N D A L F and MasterScope, must apply a necessarily conservative strategy 
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to the task. Because they are unable to make inferences about the effects of changes, any 
change must be treated as a major change, and analysis and perhaps recornpilation is 
necessary for those modules tha t might possibly be affected. If a semantic component were 
added to these systems, then changes would need to be propagated only to those modules 
tha t were truly affected. We feel this would encourage more extensive experimentation. 

Type checking, both at compile time (static checking) and at run time (dynamic 
checking), is among the essential mechanisms tha t programming languages have provided 
to help programmers protect lines of abstraction in their programs. The trend towards 
self-documenting programs has brought a variety of new kinds of abstraction facilities in 
programming language designs, along with correspondingly complex languages of types 
and type-inference algorithms. In program derivations, the lines of abstraction are drawn 
between programs rather than within them, so the need for complex typing mechanisms may 
diminish appreciably. But, we will still have to devote considerable effort to the design of the 
typing mechanisms used in the formal language in which the program derivations themselves 
are expressed. Like formal proofs—and indeed any formal objects (even programs)— 
program derivations have many, many internal consistency requirements, and a suitably 
rich typing mechanism can make the process of checking and maintaining these consistency 
requirements largely mechanical. Programmers who want to study and use strongly typed 
languages can still be accomodated, in any case, even if we feel we can shift part of the 
burden of type checking in program development to other phases of the process. 

D e v e l o p i n g h e u r i s t i c s . An understanding of meaning does not necessarily imply 
a command of technique. Students can develop a reasonably deep understanding of the 
foundations of calculus without developing any skill at solving integrals. Similarly, many 
students are quite adept at integration, but have little understanding of the fundamentals, 
so we must conclude conversely tha t a command of technique does not imply a deep 
understanding of meaning. Though these remarks are truisms, they suggest tha t if we 
are to design a useful deductive facility, we must provide methods for introducing not only 
new knowledge to the database, but also information regarding how the facts are to be 
used. 

Inferential programming tools will become more applicable as the heuristic knowledge 
they embody increases. Programmers will be tinkering constantly with their personal 
stores of heuristic knowledge in order to make them more powerful and flexible. It is 
necessary, however, to protect the database of facts from this constant tinkering, so our 
deductive mechanisms must be designed to keep correctness issues separate from the 
heuristic mechanism. 

As we remarked in Section 2, the bul*k of programming activity—whether in the 
modification of existing programs or in the creation of new programs—is carried out, often 
consciously, by analogy with past experience. Analogical inference is a fundamentally 
heuristic activity, involving search and pat tern recognition. A system tha t supports it 
must store representations of past experience, aid programmers in finding useful analogies 
with derivation pat terns in the store, help them select the most fruitful analogies, and 
finally allow them to adapt the store of knowledge as needs and understanding change 
[Carbonell82]. As our grasp of this kind of heuristic reasoning improves, our tools will 
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become better at helping programmers find not only new analogies but also new kinds of 
analogies. The heuristic mechanism of an inferential programming system must facilitate 
this kind of reasoning. 

A simple example will illustrate the sort of reasoning tha t might go on. Consider the 
derivation of a program for numbering the nodes of a tree in preorder. A specification, 
say for generalized tree traversal, is committed to visit tree nodes in preorder. From 
this preorder enumeration algorithm, an algorithm for explicit preorder numbering is then 
derived. Now, the most natural way to derive the postorder numbering program is to follow 
this derivation, but with a slightly different commitment. These derivations are closely 
related because, although the commitments are different, the pat tern of simplification steps 
is essentially the same. Tha t is, at some level of abstraction, the same simplification activity 
is being performed. This could be the case even if the new program structure tha t results 
may not have any obvious resemblance with the original program. 

Roughly, an analogy exists between two phenomena if there is a "close" general 
phenomenon tha t captures essential qualities of both. If we are to reason effectively by 
analogy, then we will need to develop a language for program derivations tha t has an 
abstraction mechanism that is rich enough to express these generalizations. Thus, we 
must not only introduce conceptualizations concerning the fundamental program derivation 
steps, but about common patterns of their usage. Present programming languages do not, 
in general, have sufficiently rich abstraction mechanisms even to express directly the various 
kinds of analogies tha t can exist among programs. Were these analogies expressible, they 
still would not be nearly as useful (and would not reflect our intuitive thinking nearly as 
closely) as the sorts of analogies tha t exist among derivations. The issue boils down to 
this: Can we find program derivation abstractions tha t can capture the common pat terns 
of programming activity? 

5. P r o g r a m s of t h e Future . 

Just as twenty years ago we learned to move away from the details of object code 
by thinking about control and da ta structures more abstractly, we are learning now to 
move away from the details of algorithm, representation, and implementation by thinking 
instead about the qualities we desire of them and how they might be chosen. Thus, rather 
than leading to programs we can no longer understand, the use of inferential programming 
techniques will lead to a different view of how programs are to be presented. 

Stripped down to essentials, our claim is t ha t the "programs" of the future will in 
fact be descriptions of program derivations. Documentation methods based on stepwise-
refinement methodologies are already strong evidence tha t there is movement toward this 
approach. These documentation methods also provide support for the hypothesis tha t 
program derivations offer a more intuitive and revealing way of explaining programs than 
do conventional proofs of correctness. The conventional proofs may succeed in convincing 
the reader of the correctness of an algorithm without giving him any hint of why the 
algorithm works or how it came about . On the other hand, a derivation may be thought 
of as an especially well-structured "constructive" proof of correctness of the algorithm, 
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taking the reader step by step from an initial abstract algorithm he accepts as meeting the 
specifications of the problem to a highly connected and efficient implementation of it. 

We shall not arrive at inferential programming overnight, however, because the very act 
of producing a complete derivation requires a programmer to express some of his previously 
unexpressed intuitions. Thus, it may often be harder to produce a complete program 
derivation than simply to write code for an implementation. The additional effort is justified 
by the fact tha t the explicit representation of the derivation sequence facilitates analysis, 
proof, and, most importantly, eventual modification of the programs derived. Many tools 
remain to be built to make this kind of programming possible. We believe, nevertheless, 
t ha t the first comprehensive steps are becoming feasible, and we hope, further, tha t the 
arguments we have put forward in this paper will make the outcome seem worth the effort. 
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