
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-142

First Steps Towards Inferential Programming

William L. SCHERLIS and Dana S. SCOTT

Department of Computer Science, Carnegie-Mellon University
Pi t tsburgh, Pennsylvania 15213, USA

July 1983

A b s t r a c t . Logics of programs, while they have contributed significantly
to our understanding of individual programs and to our knowledge of pro
gramming language design, have had disappointingly little influence on the
methods by which programs are constructed and documented in practice.
The reason for this, we suspect, is tha t the understanding embodied in
these systems deals with individual programs and does not directly address
the process by which programs are constructed. By focusing attention
on this process, at tempting to discern the fundamental steps in the evolu
tion of programs, we propose tha t it may be possible to develop a logical
system—supported by an appropriate machine environment—that will be
more directly applicable to programming practice. The benefits of such a
point of view will be discussed.

This is a slightly revised version of a paper to appear in the proceedings of the IFIP 83 Congress.

This research was supported in part by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539, and
in part by the U.S. Army Communications R&D Command under Contract DAAK80-81-K-0074. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

- 1 -

Our basic premise is that the ability to construct and modify programs will not improve
without a new and comprehensive look at the entire programming process. Past theoretical
research, say, in the logics of programs, has tended to focus on methods for reasoning about
individual programs; little has been done, it seems to us, to develop a sound understanding
of the process of programming—the process by which programs evolve in concept and in
practice. At present, we lack the means to describe the techniques of program construction
and improvement in ways that properly link verification, documentation and adaptability.

The at t i tude that takes these factors and their dynamics into account we propose to
call "inferential programming." The problem of developing this a t t i tude and the tools
required is far from easy and needs extensive investigation, and in this paper we are only
going to be able to discuss it in rather broad terms. We wish to suggest, in particular, two
goals for research tha t can build on past experience but tha t enter at what we feel is the
right level of generality. This is the topic of Section 1. In Section 2 we set forth our views
on the conceptualization of the notion of program derivation and the reasons why we think
it is needed. The discussion inevitably brings up the question of the role of formalization,
which is the subject of Section 3. In Section 4 we try to lay out the difficulties of the
inferential programming problem; while in Section 5 we speculate briefly on the future of
programming.

1. A Research P r o g r a m m e .

The initial goal of research must be to discern the basic structural elements of the
process of programming and to cast them into a precise framework for expressing them and
reasoning about them. This understanding must be embodied in a logic of programming—a
mathematical system tha t allows us not only to reason about individual programs, but also
to carry out operations (or transformations) on programs and, most importantly, to reason
about the operations. It can be argued—not without controversy—that logicians did this
service for mathematical proof, and we will discuss the pros and cons presently when we
argue that programming is even more in need of this kind of attention. The development
of such a logic of programming will of course require a practical understanding of the
semantics of programming concepts. There is no reason to suppose tha t the formalization
of this logic will look like standard existing systems, since the principles must be adapted
to the motivating problem and the appropriate concepts.

The second goal for research is to build the experimental environment. The logic
of programming is intended to be a "systematized" one, codifying our competence about
programming in a way that can be used as the basis for an implemented computer system.
It will be necessary to construct prototype interactive systems to facilitate the exploration
of logics of programming and, eventually, to lead us to the natural development of practical
semantically-based programming tools. In particalar, it is important tha t such systems
will permit study of the dynamics of programming: the relation between the way in which
derivations of programs from specifications are structured conceptually and the process,
over time, by which they actually evolve and are maintained and modified. This dynamical
aspect we find lacking in current proposals.

This programme of research is aimed at discovering the principles that we feel can be
embodied in the programming tools of the future. Such principles must be independent of

- 2 -

individual programs—or even programming languages—if they are going to have reasonably
universal significance. By developing conceptual and mechanical tools for expressing these
principles and for reasoning with them, we hope to demonstrate tha t programming can be
made a more straightforward and exact process and that the power of the programmer to
think directly about the problems he has to solve can be significantly increased.

In thinking about the problem, we have found that it is important to distinguish pro
gram derivation—the conceptual history of a program—from what we have called inferen
tial programming, by which we mean the collection of methods (and associated tools) for
constructing, modifying, and reasoning about such derivations over time. Let us discuss
this distinction in more detail.

P r o g r a m Derivat ion. Contemporary programming languages and methodologies,
we claim, encourage programmers to try to capture an entire process of program devel
opment in the text of a single program; programmers find they are at tempting to write
programs that—in themselves—can be easily understood and modified and yet have ac
ceptable performance properties. Inevitably, there must be sacrifices in order to obtain the
right balance between clarity and efficiency; often, perhaps more often than not, the greater
sacrifice is from clarity, and the resulting programs become so complex and interconnected
tha t eventual modification becomes prohibitively costly.

Many programmers feel it is more natural to describe a program in terms of its deriva
tion or evolution—the sequence of insights tha t is required to derive the implementation
from straightforward specifications. By representing the process of program development
as a sequence of programs, arranged as if the final implementation were developed from an
initial specification by a series of refinement steps, we can maintain a structure in which
clarity and efficiency coexist. Separations between program abstractions (such as abstract
data types or generic procedures) and their representations do not exist within individual
programs in derivations, but rather are spread over a sequence of program derivation steps.
Abstractions introduced in early derivation steps are replaced, in later steps, by their in
tended representations, allowing more specialized and, hence, faster code to be ultimately
obtained. The programmer need never confront the possibility of having to maintain the
abstraction and an efficient implementation simultaneously in a single program.

Programming, even more so than mathematics, is a highly stylized affair, in which
certain patterns of activity are shared in large numbers of applications. This, indeed, is an
argument that programming is largely a skill; the good programmers are not only smarter,
but they have command of a larger collection of standard programming pat terns. Although

.at tempts have been made to describe these pat terns in terms of the program text through
which they are made manifest, we believe tha t the pat terns are really pat terns of derivation,
and the textual similarities are only superficial.

Inferential P r o g r a m m i n g . Inferential programming, on the other hand, is like the
process of building mathematical proofs: Mathematicians do not develop proofs by start ing
at line one and considering their possible moves from there. Rather , they formulate a
strategy and fill in gaps until they have enough detail to make a convincing argument. The
proof text that emerges is a highly structured justification for a mathematical fact—even

- 3 -

if it is written in ordinary language. The process of building the proof, on the other hand,
is a somewhat undisciplined and exploratory activity, in which insights are gained and
expressed and finally woven together to form a mathematical argument. By analogy, then,
we prefer to separate program derivations—highly structured justifications for programs—
from inferential programming—the process of building, manipulating, and reasoning about
program derivations.

It follows that in proposing structure for program derivations, we are in no way
at tempting to coerce programmers to follow a specific temporal discipline in building
their programs. We intend, rather, tha t they be provided with inferential programming
tools—conceptual and mechanical aids—to facilitate the expression of the program and
its justification and to help in the process of program development. In an inferential
programming framework programmers can focus their thoughts less on expressing actual
programs, and more on expressing how the programs come about. As a consequence,
we claim, programming language design ceases to be the critical issue in programming
methodology. It is likely that ultimately conventional programming languages will be
required only for the very last refinement steps—and only because these steps precede a
conventional compilation step.

As regards verification, inferential programming will offer a more natural method for
proving correctness of complicated programs than do conventional techniques. The common
approach to program proof has been to develop program and specification first, and then
prove correctness as a separate step. The tediousness and difficulty of these proofs has
prompted much of the software engineering community to abandon hope for the economic
development of provably correct programs. Indeed, this style of proof requires programmers
to rediscover the insights that went into the original development of the program and
express them in a formal logical language. Unlike conventional approaches to correctness,
inferential programming techniques—particularly when embodied in mechanical tools—will
effectively allow programs and proofs to be developed simultaneously. By representing
programs as sequences of derivation steps and using systematic techniques to move from
one step to the next, correctness of the final program follows directly from the correctness
of the derivation techniques. With cleverly- constructed mechanical tools, the business of
proof could be so effectively hidden from users tha t the development of correctness proofs
seems to be automatic. Of course, those steps in a derivation whose correctness has not
been proven can be isolated to facilitate debugging and testing.

We must emphasize that the idea of controlling program derivation is by no means new,
and there has already been considerable activity (take [Balzer81, Bauer82, Cheatham72,
Cheatham79, Feather82, Green81, Schwartz77, Wile81], just to name a few). These groups
have found that , in the process of trying to build advanced program development tools
and heuristic systems for reasoning about programs, it was very difficult to reason about
the structure and meaning of programs within a purely program-oriented framework and,
instead, some sort of evolutionary transformational paradigm must be used. A variety of
systems have emerged, but they all seem to have this aspect in common. The experience
has taught us much about the structure of programs and the methods by which they
are developed, though much of this work has been misinterpreted, we feel. There is still
confusion on certain important points, and it is our aim here to correct some misconceptions

- 4 -

we have perceived about where this research is going and to suggest some directions for
future work.

2. The N a t u r e of P r o g r a m Der ivat ions .

The traditional "correctness" proof—that a program is consistent with its specifica
tions—does not constitute a derivation of the program. Conventional proofs, as currently
presented in the literature, do little to justify the structure of the program being proved,
and they do even less to aid in the development of new programs tha t may be similar to
the program tha t was proved. Tha t is, they neither explicate existing programs nor aid in
their modification and adaptation.

We intend tha t program derivations serve as conceptual or idealized histories of the de
velopment of programs. That is, a program derivation can be considered an idealized record
of the sequence of design decisions tha t led to a particular realization of a specification. It is
not a true history of the discovery of the program in that it does not include the usual blind
alleys and false starts, and it does not reveal how the initial specifications were actually
arrived at. But it does, nevertheless, show how the shape of the final implementation is
determined by a combination of design decisions and commitments. The importance of
choosing the right level of abstraction is substantiated by consideration of the necessary
changes that have to be made in programs when new needs are imposed.

Modif icat ion a n d Adaptabi l i ty . The constructive quality of program derivations is
exactly what makes them particularly useful in environments in which programs eventually
must be adapted to other uses. Indeed, a very important advantage tha t we see coming
from the inferential programming technique will concern program modification—an activity
which reportedly demands the largest proportion of available programmer time in industry
and government today.

It is common wisdom that in many circumstances it is better to modify an old program
than to develop an entirely new program. This is clearly appropriate when the developments
of the old and new programs would have much in common—in our terms, when there
would be significant sharing in the program derivations. This can be the case even if the
resulting target programs have little in common. Modification is difficult in a conventional
framework because, like a posteriori verification, it requires rediscovery of concepts used
during development of an implementation. Simple conceptual changes to a specification
often require complicated and extensive changes to code. In an inferential programming
system, not only can the conceptual changes be made directly at the appropriate places
in program derivations, but the supporting system can be used to help propagate these
changes correctly into implementations.

This kind of adaptability is important not only in the broad "software engineering"
context, but in the development of localized fragments of code as well. Much of current pro
gramming practice consists of adapting general algorithms and techniques from textbooks
or other programs to particular applications. Abstraction mechanisms in languages can
alleviate much of this problem, by permitting a single generalized template of an algo
rithm or other programming abstraction to serve in many contexts. There are many cases,

- 5 -

however, in which the application required does not match a true instance of the template
developed. In these cases, the connection between original algorithm and intended use is
one of analogy, and a much more sophisticated mechanism than simple instantiation is
required to establish the connection. Because the program derivation reveals so much more
about the structure of programs, we believe tha t pat terns of analogy are more likely to
be apprehended and expressed when derivations are made objects of study. An example is
mentioned below.

It is clear, in fact, that a vast portion of the development of new programs is carried out
by programmers on the basis of their prior experience in similar situations. Programming
consists largely of choosing appropriate known techniques and adapting them to the prob
lem at hand. Tha t ordinary programming language is insufficient to express these tech
niques has been widely suggested by researchers interested in automating programming and
program understanding. Our hypothesis (shared by others) is tha t derivation structure is
the appropriate vehicle for expression; unlike programming language, derivation structure
provides a way of making explicit the rationale for program structure.

Programming language designers have long sought to provide language constructs that
reflect as closely as possible our thinking about the structure of algorithms. For example,
some years ago Dijkstra and Knuth showed that nearly all uses of goto ' s in programs were
actually parts of higher control abstractions such as whi le loops, case analysis, and so on
[Dijkstra71, Knuth74]. The number of distinct control constructs turned out to be small
enough tha t they could be—and were—included as primitive in programming languages,
even though they brought no additional real expressive power. The point here is that
program derivations allow us to express our thinking about the correctness and modification
of programs in a much more natural—and useful—way than do conventional proofs.

In this regard we mention the "Programmer's Apprentice" automatic programming
system designed by Rich, Shrobe, and Waters at MIT [Rich78, Waters81]. One of the
key notions in this system is the programming cliche, which is a programming-language
syntactic manifestation of a program derivation pat tern. It was found tha t it is not adequate
to describe cliches purely in terms of program text; some external structuring must also be
specified. For this purpose, the notion of "plan" was introduced. A plan is an abstraction
based on program structure; it provides a much richer way of describing relationships in
programs than ordinary program text. The primary limitations on this enterprise derive
from the fact that plans are basically abstractions from program structure; they do not
express evolution or rationale in any direct way. The connections with the progressive
commitments to implementation are also not easy to formulate in this way. Therefore, we
feel we have to re-examine completely the idea of derivation in order to have a notion that
captures the right features of the programming process.

Conceptua l i z ing P r o g r a m Der ivat ion . Specifications differ from programs in that
they describe aspects or restrictions on the functionality of a desired algorithm without
imposing constraints on how tha t functionality is to be achieved. Tha t is, from the
point of view of specification (by our definition), the means by which the desired func
tionality is obtained is not relevant. In this sense, specifications for programs are static]
they constrain implementations by constraining the relationship between input and output

- 6 -

parameters. But even this distinction between input and output can be regarded as
a temporal, implementation-based notion (as is seen in the example of P R O L O G) , so
specifications that appear fully abstract often are not [Clocksin81]. Implementations,
similarly, are not usually fully constrained either; programmers frequently leave many
crucial representational decisions to their compilers, involving themselves in sticky details
only when performance is exceptionally poor.

Thus, following [Bauer81, Schwartz73], we can be led to view this difference between
specification and implementation simply as one of degree. But let us note here tha t
the "wide-spectrum" languages tha t have been proposed are only a partial solution; it is
sometimes—perhaps usually—necessary tha t semantic meanings of programming language
constructs change as derivation proceeds. This, as is remarked below, is a form of commit
ment, and we feel it is a sensitive issue.

In achieving a specification by programming, then, many decisions have to be made
about how abstractions used in a specification are to be realized in a limited language of
actual or virtual machine operations. This involves representing abstract objects in the
form of data or control structures or by a combination of both. For example, a function
could become manifest as an array (in which indices are mapped to cell contents), or as a
procedure calculating output values from input values, or as a list of inpu t /ou tpu t pairs
tha t must be searched. The range of possibilities is vast, and a great variety are used in
practice.

Indeed, programmers are so familiar with the many techniques for representation tha t
they often jump directly from informal specification to realization without ever being too
conscious of the act of choice made for the abstraction being realized. The choice of
representation, however, can depend on many factors, and in practice trial and error is
required to obtain the right structure, which makes the programmer more conscious of what
he is doing. Of course, much backtracking and revision is required to obtain a workable
specification in the first place, but let us remember that at this point in the discussion we are
concerned only with the structural relationship between specification and implementation.

We thus move, in a program derivation, along the near continuum from specification
to implementation by means of a sequence of representational decisions, or commitments—
whether entirely consciously or not. We use the term "commitment" to refer to the process
of introduction of structure tha t goes along with realizing or representing an abstraction.
In this sense, commitment and abstraction, as processes, are inverse notions.

The commitments that allow.passage from specification to implementation are linked
together and, indeed, advantage is realized from them, by means of the simplification
steps they permit us to make. That is, commitments introduce structure, which in turn
facilitates simplification, which then suggests further commitments, and so on. In this
way, the problem of implementation becomes one of selecting an appropriate sequence of
commitments.

What is simplification? Any such notion must necessarily be based on some idea of
cost or complexity, since otherwise the term "simplification" is meaningless! At specification
time, the only cost is conceptual cost, and simplifications made to "improve" specifications

- 7 -

are intended to lower conceptual cost. But if we are to move towards implementation,
this notion of conceptual cost must give way to the more usual (and better understood)
notion of computational cost. If we could minimize conceptual cost and computational cost
simultaneously, then there would be no need for this notion of program derivation at all.
Practice, unfortunately, has shown this to be impossible, so we must develop s tructure in
which movement can be made along the cost axis depending on the needs of the "reader"
(human or mechanical). Program derivations are thus directional in this sense, but their
orientation depends on whether conceptual cost or computational cost is being minimized.
(Actually, we should be speaking of a cost space, whose axes include not only computational
and conceptual costs, but also costs such as numerical accuracy.)

Thus, representational commitments increase conceptual cost, but they are necessary
if computational cost is to be decreased and because execution of programs requires us to
realize the abstractions of the specification in the limited, concrete terms that computers
can accept and manipulate. Thus, our program derivation structure emerges: a progres
sion of increasingly committed representations of programs leading from specification to
implementation.

Let us recall, however, tha t a program derivation describes a structural relationship
only; we can use it as a setting for discussion not only of the traditional problem of obtaining
useful implementations from specifications, but of the inverse problem as well. We obtain
a useful specification for a program by selectively ignoring implementation details—"by a
sequence of abstraction steps. In this scenario, the cost being minimized in simplification
steps becomes conceptual cost. Although non-effective specifications are often the most
natural ones, it is usually inappropriate (as we remarked above) to find maximally abstract
specifications. In fact, for certain applications such as editors and operating systems
the most useful specifications tend to be less abstract (and much larger) than for other
applications. There is, of course, nothing inherent in program derivation structure tha t
forces a certain level of abstraction in specifications. But as we understand more about
how to write useful specifications, the distance between specification and implementation
in program derivations will increase and the derivations will become correspondingly more
useful.

Although it is not structurally necessary, it will simplify our discussion if we consider
separately the business of deducing facts in derivations—facts about the situation a t a
particular point in a derivation or simply imported from outside bodies of knowledge. Of
course, these observation steps don't affect cost in the same way that simplification or
commitment/abstract ion steps do, but they do provide a mechanism by which the business
of establishing a precondition for some other step can be separated from the step itself.

We remark here that an essential goal in this development is to find a repertoire
of program derivation steps that fairly closely reflect the way we think about program
development informally [Floyd79]. For this reason, we have justified our division of program
derivation steps into the categories of commitment/abstract ion and simplification on purely
philosophical grounds. This is the same kind of necessarily informal argument tha t some
logicians use to argue that, say, Gentzen-style formal proofs are more natural than Hilbert-
style formal proofs, and are therefore more suited to informal application. In this case,

- 8 -

however, it is still a bit early to tell if the proposed structure is exactly the right one.
(Comparison with a number of informal and formal derivations in the literature suggests
that while in some cases the structure we suggest is indeed directly apparent, in most it
becomes apparent only when aggregates of steps are considered. For example derivations,
see [Burstall77, Clark80, Green78, Paige82, Reif82].)

E x a m p l e s from Pract ice . We have just argued tha t commitments and simplifica
tions, along with observations, are the fundamental steps of program derivations. We
wish now to show that , while this categorization is still perhaps a bit speculative, many
conventional programming techniques fall very nicely into these classes of steps. We
mention several specific forms that these steps can take on.

Perhaps the most immediate form of commitment is the representation of abstract
structures such as functions (as discussed above), or sets, or graphs. Graphs, for example,
can be represented as adjacency matrices, as linked physical structure, as relation sub
programs, and so on. There are, however, other kinds of commitments tha t are made
when passing from specification to implementation. Specifications describe relations, while
executions of programs are inherently sequential activities. In order to develop implemen
tations, then, we must determine an order of computation—not necessarily total, as for
concurrent or nondeterministic computations. Once ordering commitments are made, then
simplifications can be made that allow sections of code to take advantage of results com
puted earlier. For example, traversing the nodes of a graph after making a commitment
to an order of computation tha t is consistent with a depth-first traversal allows for a very
efficient implementation. It might be the case, however, tha t for certain applications this
order of enumeration of nodes is not appropriate, and less efficient methods must be used.

A much simpler example concerning order of computation arises, say, in the usual
iterative integer square root program. In this trivial program, the integer square root i
of a positive number n is found by initializing i to 0 and incrementing its value until i2 <
n < (i + l) 2 . By making this commitment to testing values of i in ascending order, the
value of (i + l) 2 from a previous iteration can be used directly as the value of i2 on the
next. Further, the next value of i2 can be computed directly from the preceding value by
a simple addition. But note these algebraic simplifications are possible only because of the
commitment to incrementing the value of i.

A less obvious form of commitment is commitment to order of presentation. To
illustrate this kind of commitment, we mention briefly an example of a programming
language that permits avoidance- of commitment to order of presentation. In P R O L O G ,

one defines relations and is permitted to access the relations in many ways. If, for example,
a relation i?(x, y, z) is defined (possibly recursively), then the definition could be used in a
straightforward way to test if a given triple is in the relation. But, in certain circumstances,
it could also be used when given, say, particular values for x and z only, leaving the system
to search for values of y for which the relation holds. It is a specific language design
decision to discourage explicit commitments on how defined relations are used. For many
applications, this avoidance of commitment has a distinct cognitive advantage and can be
realized fairly efficiently using a parameter binding mechanism based on unification. This
notion, on the other hand, is so foreign to users of conventional languages tha t it rarely

- 9 -

appears in published specifications. The lesson, then, is tha t many commitments are made
in specification concerning input variables and output variables that often unnecessarily
constrain the range of possible implementations (in a program derivation setting).

On the other hand, some languages such as P O P - 2 provide a limited explicit mechanism
for introducing such commitments. Partial application, called by Ershov mixed computa
tion, is an example of such a mechanism [Beckman76, Ershov78j. Indeed, as Ershov points
out, compilation is itself just the simplification tha t results naturally from an order-of-pres-
entation commitment. In this case, procedure text and perhaps certain actual arguments
are provided before others [i.e., at compile time), and then the natural simplifications are
made. Note tha t these "natural" simplifications may depend on deep outside theorems
introduced as observations.

Language design that permits explicit commitments to be made or avoided certainly
broadens the range of applicability of tha t language. In the program derivation framework,
however, we seek language features for specifications tha t permit avoidance of the various
kinds of commitments whenever possible. Machine language programs, in which very few
such decisions are left unresolved, are at the other extreme of the spectrum.

Commitments are made not only to eliminate from specifications those abstractions
not directly realized by computers, but also to permit simplifications. Let us consider,
by way of example, the use of the divide-and-conquer paradigm to obtain the usual binary
array search algorithm. The problem is to determine if a key k appears in an array segment

The essential assumption is that the array elements are given in increasing order.
We can then take advantage of this assumption after a commitment is made to testing
a particular array element, say A[m]. (This is the "divide" step.) If the test fails, we
want to test recursively the remainder of the array. A simplification allows us to use
additional information about the outcome of the test to exclude more than just that single
element A[m] from consideration; indeed, the entire initial portion of the array segment
from position m to the beginning can be excluded if A[m] < k. We are then left with a
considerably smaller segment for the recursive call (which means much less to "conquer").

Another form of simplification is the elimination of simple redundancy, and this is the
basis for the so-called dynamic programming paradigm for algorithm design. The Cocke-
Kasami-Younger parsing algorithm, for example, results from a simple recursive definition
of the derives relation for Chomsky-Normal-Form context-free grammars. By making an
appropriate order-of-computation commitment—which in this case is really only a partial
commitment—and eliminating redundancy in the resulting definitions, an exponential-time
algorithm is transformed into a polynomial-time algorithm.

3 . T h e Role of Formal izat ion .

If we are to succeed at building semantically based tools that will have any significance
for programming methodology, our conceptualization of program derivation, which we have
just discussed in general terms, must lead to some of the same kinds of understanding tha t
logic brought to the perception of the structure of mathematical proof. The parallel must
not be regarded as perfect, however. Formalization in logic is the means by which proofs
are introduced as legitimate objects of mathematical attention; that is, a formal proof itself

- 10 -

becomes a mathematical structure tha t can be reasoned about. Our conceptualization of
program derivations, similarly, must lead us to a point where program derivations are
considered as formal structure representing the evolutions of programs. As we remarked,
we are still far from being able to propose the exact details of the required formalization;
but even the suggestion that it is possible to find such a definition raises many questions—
and generally raises blood pressure as well!—since the significance of formalization in
mathematics remains hotly debated.

W h o deals w i t h formal s tructures? We do not mean to suggest tha t programmers
must deal directly with the minute formal s tructure of a derivation—say, the filling in of
the names of the principles employed at each step. Indeed, it will be asked: do we need to
formalize program derivations at all? Mathematicians do not really build formal proofs in
practice; why should programmers? Real programming, like the proving of real theorems, is
a process unhampered by the observance of niggling little rules, a process requiring, rather,
insight and creativity. How can formalization help? Perhaps formal logic improved our
understanding of the structure of mathematical proof, but it hasn' t helped us prove new
theorems, has it? Well then, neither will formalization help us find new programs.

The tenor of this objection is common, and it sounds very reasonable at face value. We
find a basic fallacy here, however. In a way, formalization plays an even more important
role in computer science than in mathematics because—as is obvious to all programmers—
programming languages are by necessity formal languages. The programming process is a
process of building and reasoning about formal program structures; people can consume
informal proofs (indeed more easily than their formal counterparts), but computers do
not run "informal" programs. To run, programs must be syntactically absolutely correct.
Much of the good advice of program methodology is aimed at keeping the complexity of
the formal programs under control, and much systems building is devoted to constructing
aids for providing a programming environment allowing the programmer to rise far above
the counting of parentheses and the filling.in of semicolons. Tha t is not all there is to
formalization, of course.

To be fair to classical mathematics, its level of precision has improved by leaps and
bounds since the turn of the century. The field of algebraic geometry is an outstanding
example, and this improvement has almost nothing to do with the history of mathematical
logic and logical formalization. To cite a trivial example of precision (that has been around
for a very long time but required clear thinking when it was originated), consider proving,
say, the convergence of some infinite series. Many manipulations must be done, and every
student has experienced the problem of getting some signs wrong. Going back over the
formulae until the missing minus sign is located is just exactly the same as debugging a
program. Much of the language of algebra, calculus, and more advanced analysis is a formal
language, and people prove things by learning the rules of the formalization. Today, the
M A C S Y M A system is able to deal with these manipulations in a pretty direct way. And,
much, much more of mathematics has been formalized in this sense: take large portions of
algebraic topology, for example, which require heavy formal machinery now often expressed
in category theory. Mathematicians are able to prove important theorems with the aid of
these formalizations tha t were unthinkable 100 years ago. The point is that the difficulty

- 11 -

of the abstractions has forced real mathematicians to introduce what can only be called
formal methods. The argument tha t mathematicians have with logicians, on the other
hand, is over the further question of whether there is any sense in looking at a complete
formalization of a whole proof. Often there is not.

Returning to the domain of programming, we think tha t there is a difference in scale
and a difference in kind between programming and mathematics. It will be agreed tha t
much of programming deals with systems: languages, compilers, interfaces. All these topics
are formal by nature, as structured messages have to be interpreted and either executed or
turned into something else. Tha t is, computation is a symbol manipulation activity, and
so formalization lies at the basis of all automated systems. This is the difference in kind.

But, even relatively elementary programs tend to be more complicated than elementary
theorems. Why? Because in a certain sense more of their structure has to be made
explicit. In mathematical literature, it is often sufficient to do one precise calculation,
and for the other cases say "similarly". A proof is often more a genteel tourist guide than
instructions for a treasure hunt. Programs, on the other hand, not only operate on very
highly structured data, but they must do so in unobvious ways in order to be efficient. All
this pressure requires a high degree of formal t reatment . But, just as before, we ask: even
if programming is more concerned with formalization than mathematics, must the whole
process be formalized? This leads us directly to the next question.

H o w t o go: formal or informal? Like proofs, program derivations can certainly
be presented both formally and informally. Formal derivations, like any formal proof or
other structure, are not intended for everyday consumption. Much misunderstanding has
resulted when this important distinction has not been recognized. For example, David
Gries has this pessimistic quotation on program transformation in his new book [Gries81]
(p. 235).

It is extremely difficult to understand a program by studying a long sequence of trans
formations; one quickly becomes lost in details or bored with the process.

We do not intend here to ascribe this misunderstanding to Gries. We suspect, rather, tha t
his remark is a natural response to the way in which transformation sequences have some
times been presented in the literature, not to their structure. It is just as inappropriate—to
understanding—to use a sequence of formal transformation steps to describe a program as
it is to justify a theorem by giving a full formal proof. We are quite comfortable with in
formal mathematical proofs; we must learn better, however, how to present transformation
sequences (which are really program derivations) in an informal way so tha t they will be a
useful tool for explaining programs.

It should not be forgotten tha t we have never had useful informal ways of justify
ing the correctness and s tructure of programs until recently! Indeed, most of our ex
perience in this area is with formal proofs; the historical development of programming
methodology has been completely unlike tha t of ordinary mathematics in this regard. The
point of most of the early program-transformation papers, for example, was to expose new
program-transformation techniques, not to give accounts of algorithms [Broy81, Burstall77,
Manna79, Paige82, Wand80]. More recently, papers have appeared in which the trans
formational method is used to explicate existing algorithms—and occasionally even new

- 12 -

algorithms—but we have still not yet developed concise informal language for describing
the transformation sequences [Clark80, Green78, Reif82].

Gries went so far as to suggest t ha t programs subject to transformation should be
proved afresh at every stage of development. We suggest, contrariwise, tha t the transfor
mation process, properly presented, constitutes a much more useful proof than the usual
sort of static program proof. Of course, transformations can transform proof along with
program, so this requirement could always be satisfied trivially—but this is not the point.

Here is the key design problem: we must conceptualize program derivation in such a
way tha t both informal and formal .presentations will be (appropriately) useful! Tha t is,
formal program derivations will be useful only if the structure they make manifest is in
some way a reflection of the way we think (intuitively) about the evolution of programs.
We must build formal structures tha t will permit not only the presentation of arguments
(in the form of program derivations) but also the development of new arguments and the
adaptation and modification of old ones—by means of inferential programming techniques.

An alternative approach to formalizing our reasoning about the evolution of programs
is based, rather directly, on the evolution of formal proofs in mathematics, combined with
rules for generating an algorithm from the proof [Bates79, Bates82, Goad82, Kriesel82,
Martin-Lof79]. Improvements to the algorithm are made either by restructuring the formal
proof or through the use of automatic optimization tools. Commitment steps, in this
approach, correspond to proof-development steps. The inferential programming approach,
on the other hand, is based on the thesis tha t the passage from informal to formal can
bring us directly into a program-oriented language, even if the "programs" are nothing
more than abstract—even noneffective—specifications.

When we think again about who deals with formal structures, the answer that we hope
will emerge is tha t the programmer deals with them on one level (just as mathematicians
have to) while manipulating them in informal ways in his head or in his documentation,
and the system deals with them on quite another level interacting with the programmer(s).
The kind of system we would like to see built will keep track of all the little syntactical
niceties as a matter of course, but at a different stage of interaction will dovetail steps of
the derivation under direction of the programmer. This view gives us a chance to suggest
a new answer to the next question.

A t w h a t po int do we find verif ication? It is commonly argued tha t formalization
inhibits the social process of acceptance of proofs. Indeed, why should we believe formal
proofs—even if they are produced by a machine—since they are almost immune to the usual
kind of social process of having friends, enemies, referees, students, and others check the
details in their heads or with pencil and paper. In objecting specifically to the suggestions
for methods of (automatic) program verification, De Millo, Lipton, and Perlis say at the
s tar t of their well-known paper [DeMillo79] (p. 271):

We believe that, in the end, it is a social process that determines whether mathematicians
feel confident about a theorem—and we believe that, because no comparable social process
can take place among program verifiers, program verification is bound to fail. We can't
see how it's going to be able to affect anyone's confidence about programs.

Further on they are even more outspoken and say (p. 275):

- 13 -

The proof by itself is nothing; only when it has been subjected to the social processes of
the mathematical community does it become believable.

In this regard—though they mention the early muddy history of the "solutions" to the
Four-color Conjecture—De Millo, Lipton and Perlis do not discuss the subsequent machine-
aided proof of this world-famous conjecture. (Their paper was received by the editors in
October 1978 and probably written much earlier. The first announcement by Haken, Appel,
and Koch of the solution of the conjecture was made in September 1976, and the paper was
published in September 1977, see [Haken77j.) As this example fits exactly into the area of
methods of proof that they are criticizing, we would like to go more into the circumstances
of the proof and its believability.

Fortunately, the computer proof—a checking of a large number of cases—of the Four-
color Theorem (hereafter, 4CT) has caused considerable comment, so we shall not have to
be too explicit here about mathematical details and can refer to the published literature.
Everyone has surely heard the statement of the problem: Does every finite planar map
require only four colors to color all regions so that no two adjacent regions have the same
color? The conjecture received many inadequate proofs over the years. In February 1979,
in an article The Jour-color problem and its philosophical significance, Thomas Tymoczko
published a long broadside [Tymoczko79] against the claimed solution in which he asserted
(p. 58):

What reason is there for saying that the 4CT is not really a theorem or that mathe
maticians have not really produced a proof of it? Just this: no mathematician has seen
a proof of the 4CT, nor has any seen a proof that it has a proof. Moreover, it is very
unlikely that any mathematician will ever see a proof of the 4CT.

What reason is there, then to accept the 4CT as proved? Mathematicians know that
it has a proof according to the most rigorous standards of formal proof—a computer
told them! Modern high-speed computers were used to verify some crucial steps in an
otherwise mathematically acceptable argument for the 4CT, and other computers were
used to verify the work of the first.

Thus, the answer to whether the 4CT has been proved turns on an account of the role of
computers in mathematics. Even the most natural account leads to serious philosophical
problems. According to that account, such use of computers in mathematics, as in the
4CT, introduces empirical experiments into mathematics. Whether or not we choose to
regard the 4CT as proved, we must admit that the current proof is no traditional proof,
no a priori deduction of a statement from premises. It is a traditional proof with a lacuna,
or gap, which is filled by the results of a well-thought-out experiment. This makes the
4CT the first mathematical proposition to be known a posteriori and raises again for the
philosophy the problem of distinguishing mathematics from natural sciences.

Subsequent commentators are far from agreeing with Tymoczko that "we are com
mitted to changing the sense of ' theorem', or more to the point, to changing the sense
of the underlying concept of 'proof.'" In the same journal in December 1980 in a reply,
Computer proof, Paul Teller argues cogently against all Tymoczko's conclusions [Teller80].
In the very same number of the journal, Michael Detlefsen and Mark Luker in another long
reply, The four-color theorem and mathematical proof, point out that computer checking of
certain proof steps is hardly a novelty (they give several telling references and quotations)
and they discuss rather fully the question of 'empiricism 7 [Detlefsen80]. They say (p. 804):

We do not disagree with Tymoczko's claim that evidence of an empirical sort is utilized
in the proof of the 4CT. What we find unacceptable is the claim that this is in any sense
novel.

- 14 -

It is best for the reader to read the original paper and the replies himself to judge the
issues. They make interesting reading.

Another author, however, who touches on the points closest to our present discussion
is E. R. Swart in yet another reply to Tymoczko in November 1980 in an article The
philosophical implications of the four-color theorem [Swart80]. Swart—owing to his detailed
and professional knowledge of the field—points out tha t in fact Tymoczko fails to recognize
the actual weak point of the Haken-Appel proof. Moreover, he suggests a cure. He also
points out tha t other machine-aided proofs of the 4CT are now available, referring to
extensive work of F . Allaire. He says (p. 698):

... Allaire's proof also involves a discharging/reducibility approach but only requires some
50 hours of computer time. It is moreover, based on an entirely different discharging
procedure and a completely independently developed reducibility testing program. At
the very least Allaire's proof must rank as an independent corroboration of the truth
of the four-color conjecture, and there* can be little doubt that even if the Haken/Appel
proof is flawed the theorem is nevertheless true.

Swart goes on convincingly to support the thesis that computers are more reliable than
humans in checking details and says (p. 700):

Human beings get tired, and their attention wanders, and they are all too prone to slips
of various kinds: a hand-checked proof may justifiably be said to involve a "complex set
of empirical factors." Computers do not get tired and almost never introduce errors into
a valid implementation of a logically impeccable algorithm.

He understands, of course, that the original algorithm design is the important point here.

In our view what Swart demonstrates in a fully documented way is just how computer-
aided proof can be subjected to the "social process"—which is just what De Millo, Lipton
and Pedis denied was going to happen. In the case of the 4CT, Swart criticizes the original
method, he points out how it can be strengthened, he discusses an alternative approach, and
he comments on the general reliability of algorithms. This is more attention to particulars
than many results get, and in any case he has gone into the mathematical details elsewhere
and clearly knows what he has been talking about. A particularly encouraging statement
about the "social" nature of the activity occurs on p. 704 of his paper:

It is perhaps appropriate to begin to draw this section to a close with some discussion
of the obvious first requirement of mathematical proofs—namely, that they should be
convincing. At this juncture in history the 4CT has not been properly integrated into
graph theory as a whole and stands to some extent as a monument on its own, but there
is little doubt that this is not its permanent lot.

Indeed, it already has strong connections with at least some branches of graph theory
that have no direct reliance on computer programs. Several mathematicians, such as
Walter Stromquist, Frank Bernhart, and Frank Allaire, who did research on the question
of reducibility also developed a coherent theory of irreducibility that is in complete
agreement with the reducibility results that have been obtained thus far on the computer.
Moreover, in the light of such irreducibility theory, it became possible to determine anti-
configurations for all planar configurations that are not freely reducible. And Frank
Allaire was able to make excellent use of such anti-configurations in finding reducers
for intractable reducible configurations. Such developments can surely only serve to
strengthen the confidence that mathematicians have in the truth of the 4CT.

And in the years to come, when the theorem is even more inextricably intertwined with
graph theory as a whole, it will seem not a little quaint to even suggest that it is not

- 15 -

a priori theorem with a surveyabie proof. The four-color conjecture served as an
excellent stimulus to graph-theoretic research, and the 4CT may continue to exert a
benign influence on graph theory until such time as it has been brought into "the body
of the kirk."

We think this answers De Millo, Lipton, and Perlis pretty fully. To be fair to them,
they did not have very good paradigms in mind: at the time that they wrote their paper the
suggestions for computer-aided verification were low-level. But Swart describes very well
what happens to this kind of work when there is actual content involved. He shows that ,
since people are involved in formulating the problems and in evaluating the results, thoughts
tend to occur to them. No one is going to be satisfied with the answer "VERIFIED"—they
will want to know how and why and what the context is. Though the 4CT is a highly
specialized problem, the algorithms developed have wider significance beyond the proof
of one theorem. This is the typical direction of problem solving into generalization, as
everyone knows.

Our contention is that the difficulty with the question of program verification—which
has almost become a dirty word—is tha t the question was asked at the wrong level of
abstraction. Our approach is to replace this question by the aim of correct program
development with correctness being checked at each stage. This puts the emphasis on
verification in a different light. De Millo, Lipton, and Perlis say (p. 279):

The concept of verifiable software has been with us too long to be easily displaced.
For the practice of programming, however, verifiability must not be allowed to over
shadow reliability. Scientists should not confuse mathematical models with reality—and
verification is nothing but a model of believabiiity. Verifiability is not and cannot be
a dominating concern in software design. Economics, deadlines, cost-benefit ratios, per
sonal and group style, the limits of acceptable error—all these carry immensely much
more weight in design than verifiability or nonverifiability.

So far, there has been little philosophical discussion of making software reliable rather
than verifiable. If verification adherents could redefine their efforts and reorient them
selves to this goal, or if another view of software could arise that would draw on social
processes of mathematics and the modest expectations of engineering, the interests of N

real-life programming and theoretical computer science might both be better served.

We agree with them that reliability is the key driving force and. that verifiability at some
time after a giant program has been completely written by different hands is virtually
impossible. But we cannot let this be an excuse for not producing provably correct software,
even if "correct" only means that documentation is generated concerning the extent to
which a program is reliable. We ourselves would not be satisfied with such a weak notion
of correctness, but informative documentation would be a step forward. The emphasis
in our minds is on "proof"—meaning tha t the right observations from allowable ones are
made at the right points in the derivation.

Once we accept the proposition that individual program derivation steps preserve cor
rectness, then it is implicit in derivation structure that implementations are consistent with
specifications. The confidence of users arises from their knowledge of how the implemen
tation is linked to the specification, and no formal proofs need ever change hands. That
is, confidence is based on the assured existence of the proof and not on its content or
structure. It is exactly this kind of reasoning tha t justifies our confidence tha t the object
code produced by programming language compilers is faithful to the source code. Once we

- 16 -

accept the correctness of a compiler—an acceptance which is almost always effected by a
social process—we necessarily accept the correctness of the results; this is what compiler
correctness means. In practice, we rarely bother even to inspect the results of compilations.
Our t reatment of transformations is going to be like our t reatment of compilers--and indeed
like arbitrary programs—for, once we accept their correctness, then we necessarily accept
the correctness of their results.

W h a t are the proper analogies? De Millo, Lipton, and Perils contrast two analogies
in their paper (p. 275):

T h e Verifiers' Original A n a l o g y

Mathematics Programming

theorem . . . program
proof . . . verification

The D e Mil lo-Lip ton-Per lis A n a l o g y

Mathematics Programming

theorem . . . specification
proof . . . program

imaginary formal
demonstration . . . verification

We just do not agree with this picture of the activity. We would like to revise the analogy
in the light of all the foregoing discussion, since we feel that , if left in the above form, it
does a disservice to the concept of formalization and its correct role.

T h e R e v i s e d A n a l o g y

Mathematics Programming

problem . . . specification
theorem . . . program

proof . . . program derivation

All of this has to be taken with a big grain of salt, since all these words can mean many
things. We prefer to put "problem" in parallel with "specification," because the statement
of a (mathematical) problem formulates a goal without saying how to solve the problem.
Neither does a specification determine an algorithm—nor need a specification be satisfiable
at all. In both cases the answer must be found, and it need not be unique.

Now theorems come in many flavors. If De Millo, Lipton, and Perlis understand by
"theorem" a statement like "The problem has a solution," then we agree there is not much
to choose between problem and theorem—and their analogy can stand. But many more

- 1 7 -

theorems are stated "The solution to the problem is given by this formula: . . . ," and
this is much more like a program. There is no hint in the statement of the theorem why
the formula gives the answer; one must look to the proof. As we have remarked before,
programs tend to be pretty explicit, so let us understand by "theorem" something more
like "theorem cum construction" which is parallel to "program for a given specification."
But if we agree tha t the lines of the analogy table are not meant to be read in isolation,
then we can take it that each line follows on from the previous one and that our suggestions
can remain in the more abbreviated form.

The word "proof," admittedly, is much harder to pin down; proofs, too, come in all
flavors, and they are all too often half baked. A good proof should contain some discussion
to let the poor reader know how the solution to the problem was arrived at. There are lots
of tedious steps tha t have to be checked, but the author of the proof should have supplied
some organization to the way the steps have been assembled. We are back at our conflict
between formal and informal methods. De Millo, Lipton, and Perlis say (p. 275):

There is a fundamental logical objection to verification, an objection on its own ground
of formalistic rigor. Since the requirement for a program is informal and the program is
formal, there must be a transition, and the transition itself must be necessarily informal.
We have been distressed to learn that this proposition, which seems self-evident to us,
is controversial. So we should emphasize that as antiformalists, we would not object to
verification on these grounds; we only wonder how this inherently informal step fits into
the formalist view. Have the adherents of verification lost sight of the informal origins
of the formal objects they deal with? Is it their assertion that their formalizations are
somehow incontrovertible? We must confess our confusion and dismay.

Confession is always regarded as good for the soul, but somehow we cannot accept
tha t the authors are too sincere in this passage. They must have felt tha t they had dealt
a death blow to the project of verification, and they did not want to gloat too much. But
our whole argument in this paper is tha t the place for verification is within a program
derivation. Formalization is much concerned with the way the steps of the derivation fit
together; while the informal understanding of how the solution to the original problem
is emerging is in the choice of the sequence of steps. (Granted, an informal reader of a
program derivation may need some comments to help him remember where he is and which
subgoal is in need of attention, but a mathematical proof needs some commentary also—if
one is ever going to learn anything beyond an ability to recite the proof verbatim.) There
is plenty of room here for the interplay between formal and informal strategy without
relegating formal methods to the madhouse.

It is no argument that some mathematicians give vague proofs—so vague that one
often wonders how they solve their problems at all. There are excellent authors that craft
proofs that can be checked even by undergraduates. There are also proofs tha t have thorny
steps that require machine-aided checks. As we learn to take advantage of the power of
the computer, there will be many more of these proofs. Students will soon learn to use the
necessary machines (perhaps before their teachers), and proofs will become more complex.
There is no conflict between the formal and the informal in this way of telling the story,
however, as each has its place.

In making these analogies, one must take care to assess goals. There are problems that
must be faced by the computer scientist tha t mathematicians might regard as unutterably

- 18 -

boring. As far as the latter is concerned the problem is solved, and the choice of a particular
computation method or a particular representation of the data is of no concern. The
programmer will have to slog through many thickets in which the mathematician can see
no game. The subjects are different, the interests are different, and the aims are different,
but the two hunters after solutions of problems can learn from each other. Just as logic has
something to tell us about proofs, we feel inferential programming can provide a framework
for presenting and justifying the structure of algorithms and programs.

4. T h e Inferential P r o g r a m m i n g P r o b l e m .

The success of the inferential programming approach to program development will
depend on the design and implementation of the supporting mechanical systems. There is
no denying tha t constructing an adequate design tha t can be made to work in practice is
a truly challenging problem! A major difficulty in building such a system is that there are
many, many ways in which we can deal with derivations: extending them in one direction
or another, reasoning about them, using them as a basis for constructing new derivations,
and so on.

It is not our intention here to champion any particular philosophy of practical pro
gram development, nor do we intend for inferential programming systems to embody any
preconceived approach to programming methodology or management. We believe, in fact,
tha t programming, like other areas of creative endeavor, should not be too heavily shackled
by form or method. Tools or vehicles for programming, therefore, must be constructed in
such a way tha t programmers will still feel the freedom to explore in unfettered fashion.
They must be given, however, the added confidence tha t the paths they explore are all
safe ones—leading to correct implementations and faithful specifications. Awareness, in
addition, has to be maintained of the various possible directions still open, and advice must
be forthcoming when "navigation" decisions are to be made. The journeys may still involve
experimentation and backtracking and, rarely, unprotected forays, but the experiences ul
timately gained have to be captured in the form of "maps" tha t others can use to stay safely
on course when in similar situations. Thus, as experience accumulates, programmers will
find themselves more often in known—or at least easily charted—terri tory in which they
can defer decisions to their guides, interfering only when necessity (or curiosity) demands.

It must be emphasized here tha t we do not regard programming as an intellectually
shallow activity tha t can be automated simply by finding the right set of "tricks." No one in.
the near future will succeed in fully automating the programming process, and we must not
waste our efforts in such an a t tempt . Instead, we feel we should focus on building powerful
interactive tools. As our understanding of the process of programming improves, it is
true tha t more aspects of it will be pubject to complete systematization and automation—
but the completely mechanical programmer is a will-o-the-wisp. For this reason, we are
concentrating our investigations on finding the sorts of components a powerful interactive
inferential programming system should have, and on understanding how they could aid iii
both the formal and heuristic aspects of programming.

Integrat ing deduct ion . There must be, first of all, a mechanism for carrying out
the fundamental program-derivation steps. In its most primitive form, this mechanism

- 19 -

will apply syntactic transformations in order to make or remove commitments, to carry
out simplifications, and to make straightforward observations. More advanced capabilities
would include tools for manipulating and reasoning about entire derivations. All of these
symbol-manipulation activities can be regarded as forms of deduction, and a powerful single
general-purpose deductive mechanism such as tha t already used in LCF [Gordon79] could
go a long way towards realizing them.

Whatever the deductive facility is, it must at the very least have sufficient capability
tha t users are not bothered with having to make trivial algebraic simplifications and trans
formations. It goes without saying tha t the more difficult simplification and observation
steps may require considerable activity in formal reasoning with many heuristic decisions—
and perhaps with interaction from the user. Although we feel able to address the heuristic
issues in a meaningful way, much thought is still required before the right style of interac
tion between user and system can be arrived at. More will be said on these points below, but
it should be clear that the heart of an inferential programming system will be its deductive
mechanism.

It seems to be a valid point to make that an effective approach to theorem proving
is first to start with a suitably implemented proof-checker technology and then to add
heuristic features. The success of LCF is largely due to this correct philosophical a t t i tude.
In LCF a clear distinction is made between metalanguage and object language, permitting
users to focus separately on facts and the strategies that control the process of inference.
A really general programming language (for LCF it is called ML) for controlling inference
was also used in the AI languages P L A N N E R and C O N N I V E R . The novelty of LCF is the
use of the ML type mechanism to maintain important distinctions in the object language,
such as between theorems and other formulas. This permits users to experiment with proof
strategies and be confident of not disturbing the underlying logic.

As the formal reasoning mechanism will be operating primarily on program-derivation
structure, we have to ask what the actual shape of this structure will be. Since our
project is not yet at the stage of implementation, we can only anticipate now the kinds of
problems that will probably arise when we set out to formalize the informal understanding
of derivations discussed earlier. At a first approximation, a program derivation is likely to be
a directed graph in which nodes are programs and arcs are fundamental program derivation
steps (i.e., commitment and simplification). The simplest sort of program derivation yields
a linear graph; more complex structure emerges when alternative commitments are pursued
and different implementations of the same specification (or multiple specifications for the
same implementation) are obtained.

Program derivations are themselves objects, and it is often easiest to obtain a new
program derivation by a transformation on an existing derivation. A mechanism of this sort
(and a language for expressing relationships among derivations) will have to be developed
if, for example, users are to be able to create new derivations by analogy with existing*
ones. This question also leads us to thinking about derivation strategies and heuristics and
their realizations as higher-level derivations. Much experimentation remains to be done,
especially in obtaining a feeling of how deduction is to be combined with the more prosaic
steps of program construction.

- 20 -

A d a p t i n g convent ional too l s . Many groups are currently ai work building and
using program-development tools. We cannot survey the whole vast field here, but we do
wish to discuss some useful aspects of present efforts in order to be able to explain how
the additional features we hope to add to a system will qualify it for use in what we call
inferential programming. The existing programming aids help programmers operate on the
syntax of their programs, but they generally do little to help when the effects of programs
must be considered. It is an essential par t of our thesis that powerful semantically based
programming tools will utterly change the way in which programs are created and modified.
It is not simply a mat ter of adding these new features to our standard tools but, rather, of
creating an entirely new at t i tude towards the programming process.

Consider structured editors, for example. With these tools, programmers are allowed
to explore alternative syntactic constructions as they manipulate the text of their programs.
They are thus freed from concerns relating to the syntactical correctness of their programs.
We assert, similarly, tha t programming tools tha t operate on derivation structure will
help programmers explore a range of implementations while essentially freeing them from
semantical correctness concerns. The change in a t t i tude here makes programming move
closer to problem solving.

The first "automatic programming" tools were of course the compilers. Incremental
compilers and associated programming environments—as seen, for example, in modern
LISP systems—are among our most powerful contemporary programming tools. Perhaps
the principal reason the LISP environment is so at tract ive is tha t users have tremendous
freedom to modify the text of programs and sample their executions without having to
follow the rigid discipline of edi t /compile/ test associated with traditional compilers. In
such an environment, users can respond to problems by investigating the execution context
of the problem, then, perhaps, by making a local change (while still in the context), and
finally by continuing execution. Immediate response and adaptat ion to small problems
is possible, and radical context switches are not required except in unusual cases. An
inferential programming environment, similarly, should not force general retreat when small
problems develop. Rather, it must allow an incremental approach to the manipulation of
program derivations, which is again a change of a t t i tude.

Very little success has been experienced in applying formal techniques from program
ming logics to reasoning about very large programs, and indeed a very natural worry about
the inferential programming paradigm is its ability to scale up. Will inferential program
ming systems ever be sold other than in the toy shops? The answer lies partly in the de
velopment and use of powerful modularization techniques for both programs and program
derivations. Modularization is an important concern of systems builders, and such a facility
for inferential programming would allow individual parts of a large program to be derived
independently and then combined together in such a way that all possible interactions can
be anticipated. Here is a case where the right at t i tudes are already familiar, except they
have not been applied sufficiently to deduction.

By anticipating interactions, version control becomes a much more precise activity—
another very critical concern in large-scale programming. Current systems for version con
trol, as seen in G A N D A L F and MasterScope, must apply a necessarily conservative strategy

- 21 -

to the task. Because they are unable to make inferences about the effects of changes, any
change must be treated as a major change, and analysis and perhaps recornpilation is
necessary for those modules tha t might possibly be affected. If a semantic component were
added to these systems, then changes would need to be propagated only to those modules
tha t were truly affected. We feel this would encourage more extensive experimentation.

Type checking, both at compile time (static checking) and at run time (dynamic
checking), is among the essential mechanisms tha t programming languages have provided
to help programmers protect lines of abstraction in their programs. The trend towards
self-documenting programs has brought a variety of new kinds of abstraction facilities in
programming language designs, along with correspondingly complex languages of types
and type-inference algorithms. In program derivations, the lines of abstraction are drawn
between programs rather than within them, so the need for complex typing mechanisms may
diminish appreciably. But, we will still have to devote considerable effort to the design of the
typing mechanisms used in the formal language in which the program derivations themselves
are expressed. Like formal proofs—and indeed any formal objects (even programs)—
program derivations have many, many internal consistency requirements, and a suitably
rich typing mechanism can make the process of checking and maintaining these consistency
requirements largely mechanical. Programmers who want to study and use strongly typed
languages can still be accomodated, in any case, even if we feel we can shift part of the
burden of type checking in program development to other phases of the process.

D e v e l o p i n g h e u r i s t i c s . An understanding of meaning does not necessarily imply
a command of technique. Students can develop a reasonably deep understanding of the
foundations of calculus without developing any skill at solving integrals. Similarly, many
students are quite adept at integration, but have little understanding of the fundamentals,
so we must conclude conversely tha t a command of technique does not imply a deep
understanding of meaning. Though these remarks are truisms, they suggest tha t if we
are to design a useful deductive facility, we must provide methods for introducing not only
new knowledge to the database, but also information regarding how the facts are to be
used.

Inferential programming tools will become more applicable as the heuristic knowledge
they embody increases. Programmers will be tinkering constantly with their personal
stores of heuristic knowledge in order to make them more powerful and flexible. It is
necessary, however, to protect the database of facts from this constant tinkering, so our
deductive mechanisms must be designed to keep correctness issues separate from the
heuristic mechanism.

As we remarked in Section 2, the bul*k of programming activity—whether in the
modification of existing programs or in the creation of new programs—is carried out, often
consciously, by analogy with past experience. Analogical inference is a fundamentally
heuristic activity, involving search and pat tern recognition. A system tha t supports it
must store representations of past experience, aid programmers in finding useful analogies
with derivation pat terns in the store, help them select the most fruitful analogies, and
finally allow them to adapt the store of knowledge as needs and understanding change
[Carbonell82]. As our grasp of this kind of heuristic reasoning improves, our tools will

- 22 -

become better at helping programmers find not only new analogies but also new kinds of
analogies. The heuristic mechanism of an inferential programming system must facilitate
this kind of reasoning.

A simple example will illustrate the sort of reasoning tha t might go on. Consider the
derivation of a program for numbering the nodes of a tree in preorder. A specification,
say for generalized tree traversal, is committed to visit tree nodes in preorder. From
this preorder enumeration algorithm, an algorithm for explicit preorder numbering is then
derived. Now, the most natural way to derive the postorder numbering program is to follow
this derivation, but with a slightly different commitment. These derivations are closely
related because, although the commitments are different, the pat tern of simplification steps
is essentially the same. Tha t is, at some level of abstraction, the same simplification activity
is being performed. This could be the case even if the new program structure tha t results
may not have any obvious resemblance with the original program.

Roughly, an analogy exists between two phenomena if there is a "close" general
phenomenon tha t captures essential qualities of both. If we are to reason effectively by
analogy, then we will need to develop a language for program derivations tha t has an
abstraction mechanism that is rich enough to express these generalizations. Thus, we
must not only introduce conceptualizations concerning the fundamental program derivation
steps, but about common patterns of their usage. Present programming languages do not,
in general, have sufficiently rich abstraction mechanisms even to express directly the various
kinds of analogies tha t can exist among programs. Were these analogies expressible, they
still would not be nearly as useful (and would not reflect our intuitive thinking nearly as
closely) as the sorts of analogies tha t exist among derivations. The issue boils down to
this: Can we find program derivation abstractions tha t can capture the common pat terns
of programming activity?

5. P r o g r a m s of t h e Future .

Just as twenty years ago we learned to move away from the details of object code
by thinking about control and da ta structures more abstractly, we are learning now to
move away from the details of algorithm, representation, and implementation by thinking
instead about the qualities we desire of them and how they might be chosen. Thus, rather
than leading to programs we can no longer understand, the use of inferential programming
techniques will lead to a different view of how programs are to be presented.

Stripped down to essentials, our claim is t ha t the "programs" of the future will in
fact be descriptions of program derivations. Documentation methods based on stepwise-
refinement methodologies are already strong evidence tha t there is movement toward this
approach. These documentation methods also provide support for the hypothesis tha t
program derivations offer a more intuitive and revealing way of explaining programs than
do conventional proofs of correctness. The conventional proofs may succeed in convincing
the reader of the correctness of an algorithm without giving him any hint of why the
algorithm works or how it came about . On the other hand, a derivation may be thought
of as an especially well-structured "constructive" proof of correctness of the algorithm,

- 23 -

taking the reader step by step from an initial abstract algorithm he accepts as meeting the
specifications of the problem to a highly connected and efficient implementation of it.

We shall not arrive at inferential programming overnight, however, because the very act
of producing a complete derivation requires a programmer to express some of his previously
unexpressed intuitions. Thus, it may often be harder to produce a complete program
derivation than simply to write code for an implementation. The additional effort is justified
by the fact tha t the explicit representation of the derivation sequence facilitates analysis,
proof, and, most importantly, eventual modification of the programs derived. Many tools
remain to be built to make this kind of programming possible. We believe, nevertheless,
t ha t the first comprehensive steps are becoming feasible, and we hope, further, tha t the
arguments we have put forward in this paper will make the outcome seem worth the effort.

- 24 -

B i b l i o g r a p h y

[Balzer81] Balzer , R., Transformational implementation: an example. I E E E
Transac t ions on Sof tware Engineer ing , Vol. SE-7 , N o . 1, p p . 3 - 1 4 , 1981 .

[Barstow80] Bars tow, D. R., The roles of knowledge and deduction in algorithm design.
Yale Research R e p o r t 178, Apr i l 1980 .

[Bates79] Bate s , J. L., A logic for correct program development P h . D . Thes i s ,
Cornel l Univers i ty , 1979 .

[Bates82] B a t e s , J. L. and R. L. C o n s t a b l e , Proofs as programs. Cornel l Univers i ty
Technica l Repor t , 1982 .

[Bauer8 l] Bauer , F . L., et al.f Programming in a wide spectrum language: a
collection of examples. Sc ience of C o m p u t e r P r o g r a m m i n g , Vol. 1, p p .
7 3 - 1 1 4 , 1981 .

[Bauer82] Bauer , F . L. , From specifications to machine code: program construction
through formal reasoning. S ix th Internat iona l Conference on Sof tware
Engineer ing , 1982.

[Beckman76] B e c k m a n , L., A . Hara ldsson , 0 . Oskarsson , and E. Sandewal l , A partial
evaluator and its use as a programming tool. Artif icial Inte l l igence , Vol .
7, p p . 3 1 9 - 3 5 7 , 1976.

[Broy81] Broy, M. and P . Pepper , Program development as a formal activity. I E E E
Transac t ions on Sof tware Eng ineer ing , Vol. SE-7, N o . 1, pp . 1 4 - 2 2 , 1981 .

[Burstal l77] Bursta l l , R. M. and J. Dar l ing ton , A transformation system for developing
recursive programs. Journal of the A C M , Vol. 24 , N o . 1, p p . 4 4 - 6 7 ,
1977.

[Carbonel l82] Carbonel l , J., Learning by analogy: formulating and generalizing plans
from past experience. Carneg ie -Mel lon Univers i ty Technica l R e p o r t , 1982 .

[Cheatham72] C h e a t h a m , T. E . and B. Wegbre i t , A laboratory for the study of automatic
programming. A F I P S Spring Joint C o m p u t e r Conference , Vol . 4 0 , 1972 .

[Chea tham79] C h e a t h a m , T. E . , J. A . Townley , a n d G. H. Hol loway , A system
for program refinement. Four th Internat ional Conference on Sof tware
Engineer ing , p p . 5 3 - 6 3 , 1979 .

[Clark80] Clark, K. and J. D a r l i n g t o n , Algorithm classification through synthesis.

C o m p u t e r Journal , Vol . 2 3 , N o . 1, 1980 .

[Clocksin81] Clocks in , W . F. a n d C. S. Mel l i sh , P r o g r a m m i n g i n P R O L O G .
Springer-Ver lag, 1981 .

[DeMillo79] D e Mil lo , R. A . , R. J. L i p t o n , and A . J. Perlis , Social processes and
proofs of theorems and programs. C o m m u n i c a t i o n s of t h e A C M , Vol. 2 2 ,
N o . 5, p p . 2 7 1 - 2 8 0 , 1979 .

[Detlefsen80] Det l e f sen , M. a n d M. Luker , The four-color theorem and mathematical

proof. T h e Journal of P h i l o s o p h y , Vol . 77 , N o . 12, p p . 8 0 3 - 8 2 0 , 1980.

[Di jks tra7 l] Di jks tra , E . W . , Notes on structured programming. In: S t r u c t u r e d
P r o g r a m m i n g . (O . J. Dahl , E . W . Di jkstra , C. A . R. Hoare , Eds .)
A c a d e m i c Press , 1 9 7 1 .

[Ershov78] Ershov , A . P . , On the essence of compilation. Formal Descr ip t ions of
P r o g r a m m i n g C o n c e p t s , E. J. N e u h o l d , ed . , N o r t h - H o l l a n d , 1978.

[Feather82] Feather , M. S., A system for assisting program transformation. A C M
Transac t ions on P r o g r a m m i n g L a n g u a g e s and S y s t e m s , Vol . 4, N o . 1,
p p . 1 -20 , 1982 .

[Floyd79] F loyd , R. W. , The paradigms of programming. C o m m u n i c a t i o n s of t h e
A C M , Vol. 22 , N o . 8, p p . 4 5 5 - 4 6 0 , 1979.

[Goad82] G o a d , C , Automatic construction of special-purpose programs. 6 t h
Conference on A u t o m a t e d D e d u c t i o n , 1982 .

- 25 -

r 1

[Gordon79] G o r d o n , M. J., Milner, A . J., and C. P . W a d s w o r t h , E d i n b u r g h L C F .
Springer-Verlag Lec ture N o t e s in C o m p u t e r Sc ience , 1979.

[Green78] Green C. C. and D . R. B a r s t o w , On program synthesis knowledge.
Artificial Intel l igence, Vol. 10, p. 2 4 1 , 1978.

[Green8 l] Green , C , et a/., Research on knowledge-based programming and algorithm
design. Kestrel Ins t i tu te Technica l Repor t , 1981 .

[Gries81] Gries , D . , T h e s c i e n c e o f c o m p u t e r p r o g r a m m i n g . Springer-Verlag,
1981 .

[Haken77] l l a k e n , W. , K. Appe l , and J. K o c h , Every planar map is four-colorable.
Ill inois Journal of M a t h e m a t i c s , Vol . 2 1 , N o . . 84 , p p . 4 2 9 - 5 6 7 , 1977.

[Knuth74] K n u t h , D. E. , Structured programming with goto statements. C o m p u t i n g
Surveys , Vol. 6, N o . 4, pp . 2 6 1 - 3 0 1 , 1974 .

[Kriesel81] Kricsel , G., Neglected possibilities of processing assertions and proofs
mechanically: choice of problems and data. In: U n i v e r s i t y - L e v e l
C o m p u t e r - A s s i s t e d I n s t r u c t i o n a t S t a n f o r d : 1 9 8 8 — 1 9 8 0 . Stanford
Univers i ty , 1981.

[Manna79] M a n n a Z. and R. Wald inger , Synthesis: dreams =4 programs. IEEE
Transac t ions on Sof tware Eng ineer ing , Vol. S E - 5 , N o . 4, July 1979.

[Martin-L6f79] Martin-L6f, P. , Constructive mathematics and computer programming.
6th Internat ional Congress for Logic , M e t h o d o l o g y and Ph i losophy of
Sc ience , 1979.

[Paige82] Paige, R. and S. K o e n i g , Finite differencing of computable expressions.
A C M Transact ions on P r o g r a m m i n g L a n g u a g e s and S y s t e m s , Vol . 4, N o .
3 , pp . 4 0 2 - 4 5 4 , 1982 .

[Reif82] Reif, J. and W. L. Scherl is , Deriving efficient graph algorithms. Car
neg ie -Mel lon Univers i ty Technical R e p o r t , 1982 .

[Rich78] Rich , C. and H. Shrobe , Initial report on a Lisp programmer'3 apprentice.
I E E E Transact ions on Software Eng ineer ing , Vol . S E - 4 , N o . 6, pp .
4 5 6 - 4 6 7 , 1978.

[Scherlis81] Scherl is , W . L., Program improvement by internal specialization. E ighth
S y m p o s i u m on Pr inc ip les of P r o g r a m m i n g L a n g u a g e s , p p . 4 1 - 4 9 , 1981 .

[Schwartz73] Schwartz , J. T. , On programming, an interim report on the SETL project.
C o u r a n t Inst i tute of M a t h e m a t i c a l Sc iences , N e w York Univers i ty , 1973 .

[Schwartz77] Schwartz , J. T. , On correct program technology. Courant Ins t i tu te of
M a t h e m a t i c a l Sc iences , N e w York Univers i ty , 1977.

[Swart80] Swart , E. R., The philosophical implications of the four-color problem.
A m e r i c a n M a t h e m a t i c a l M o n t h l y , Vol. 87 , N o . 9, p p . 6 9 7 - 7 0 7 , 1980.

[Swartout82] S w a r t o u t , W . and R. Balzer , On the inevitable intertwining of specification
and implementation. C o m m u n i c a t i o n s of the A C M , Vol. 25 , N o . 7, p p .
4 3 8 - 4 4 0 , 1982 .

[Teller80] Teller, P . , Computer proof T h e Journal of P h i l o s o p h y , Vol . 77 , N o . 12,
p p . 8 0 3 - 8 2 0 , 1980.

[Tymoczko79] T y m o c z k o , T. , The four-color problem and its philosophical significance.
T h e Journal of P h i l o s o p h y , Vol. 66 , N o . 2, p p . 5 7 - 8 3 , 1979 .

[Wand80] W a n d M., Continuation-based program transformation strategies. Journal
of the A C M , Vol. 27 , N o . 1, pp, 1 6 4 - 1 8 0 , 1980 .

[WatersSl] Waters , R. C , A knowledge based program editor. Seventh Internat iona l
Joint Conference on Artif icial Inte l l igence, Vancouver , 1981 .

[Wile81] Wi le , D . S., Program developments as formal objects. U S C / I n f o r m a t i o n
Sc iences Inst i tute Technica l R e p o r t , 1 9 8 1 .

[Wirth71] W i r t h , N . , Program development by stepwise refinement. C o m m u n i c a t i o n s
of the A C M , Vol. 14, N o . 4, pp . 2 2 1 - 2 2 7 , 1971 .

- 26 -

