
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-139

S Y N C H R O N I S A T I O N T R E E S

Glynn Winskel
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pa.

June 1933

A version of this paper is to be published in a special JCALP 83 version of the journal "Theoretical
Computer Science".

The research reported in this paper was supported in part by funds from the Computer Science
Department of Carnegie-Mellon University, and by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33015-81-K-
1539. The views and conclusions contained in it are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the US Government.

S Y N C H R O N I S A T I O N T R E E S

by
Glynn Winskel

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abs t r ac t .

Synchronisation trees are a concrete underlying model for much of the work on concurrency. They are
trees with labelled arcs; the nodes represent states, the arcs occurrences of events and their labels how the
events can synchronise with other events in the environment. The many different ways in which events are
allowed to synchronise are captured abstractly by the concept of a synchronisation algebra. It says which
pairs of labelled events can combine to form an event of synchronisation and what label the synchronisation
event carries. Synchronisation trees are trees with arcs labelled by elements of a synchronisation algebra. Our
approach is based on a natural definition of morphism of trees which essentially expresses how the occurrence
of events in in one process imply the synchronised occurrence of events in another. Well-known operations
on trees arise as categorical constructions. For example a sum construction is a coproduct on synchronisation
trees while many familiar parallel compositions of synchronisation trees are restrictions of the product in the
underlying category of trees. The constructions are continuous with respect to a natural complete partial
order structure on trees so one obtains denotational semantics as synchronisation trees to a wide range of
parallel programming languages, based on the constructions with recursion, in a routine manner by varying
the synchronisation algebra. Isomorphism of synchronisation trees induces a basic congruence on terms of
the language. We present a complete proof system tor the congruence restricted to non-recursive terms. The
categories of trees are generalised to categories of transition systems. The pleasant categorical set up which
exists between the categories of trees and transition systems makes possible a smooth translation between
operational semantics expressed in terms of transition systems and denotational semantics expressed in terms
of trees.

0. In t roduc t ion .

We present a collection of categories of labelled trees useful in giving denotational semantics to parallel
programming languages such as Milner's "Calculus of communicating Systems" , CCS [Ml], his synchronous
CCS, called SCCS [M2], and languages derived from Hoare's CSP as presented in [HBR] and [B]. Enough
results are given to provide denotational semantics to any of the languages in [Ml, M2, HBR] though at the
rather basic level of labelled trees—-called synchronisation trees in [Ml].

Synchronisation trees are a basic, very concrete, interleaving model of parallel computation in which
processes communicate by mutual synchronisation. A synchronisation tree is a tree in which the nodes
represent states and the arcs represent event occurrences, labelled to show how they synchronise with
events in the environment. Tree semantics arise naturally once concurrency is simulated by nondeterministic
interleaving and for this reason synchronisation-tree semantics underlie much of the work on the semantics
of synchronising processes. For example in [Ml] it is made clear how every equivalence on CCS programs
presented there factors through a synchronisation-tree semantics while [B] shows a similar result for the
failure-set semantics in [HBR].

In order to cover a wide range of synchronisation disciplines between synchronising processes we express
synchronisation disciplines between processes as synchronisation algebras. They are algebras on sets of

1

labels which specify how pairs of labelled events combine to form a synchronisation event and what labels
such combinations carry. They also specify what labelled events can occur asynchronously. The parallel
composition is derived from a product in a category of trees; essentially one restricts the product of trees to
those synchronised events allowed by the synchronisation algebra. By varying the synchronisation algebra
we obtain many forms of parallel composition in the literature. Other useful operations are defined on
synchronisation trees. They are all continuous with respect to a natural complete partial order of trees and
so can be used to give denotations to processes defined recursively in terms of them by using least-fixed
points—the standard tool of Scott-Strachey semantics.

The denotational semantics is related to operational semantics expressed in terms of labelled transition
systems used in most of the work on CCS. In this framework recursion is often handled by introducing
loops into the chains of state-to-state transitions. We define a category of transition systems whose product
unfolds to the product of trees. Consequently one can define a parallel composition of labelled transition
systems which unfolds to parallel composition of trees. Again this is so for a wide variety of synchronisation
disciplines obtained by varying the synchronisation algebra.

There is a natural notion of equivalence on processes; two processes are equivalent if they are represented
by isomorphic synchronisation trees. A complete set of proof rules are provided for this equivalence on a
language of finite processes. Of course these rules will still be valid for any more abstract equivalence based
on synchronisation trees. Unfortunately we do not consider proof rules for infinite processes or the important
phenomenon of divergence (see e.g. [HN],[HP]).

Many of the results below follow from the paper and report [Wl, W2] which however concentrated
on showing how to use a broader framework of event structures [NPW1,2, W,W1] to give denotational
semantics languages of synchronising processes like CCS. Event structures which include trees are closely
related to Petri nets, reflect concurrency naturally and are not committed to interleaving. In [Wl,W2j it is
proved that by interleaving (or serialising) the labelled event structure denotation of a process one obtains its
synchronisation-tree denotation. The papers [W1,W2,W3] provide a precise sense in which event structure
models and Petri net models of communicating processes specialise down to an interleaving model based on
synchronisation trees. In the special case of purely synchronous processes (for which the synchronisation
algebra satisfies the synchronous law below) the event structure and tree semantics agree.

1. A category of t r ees .

Assume in any finite history a process can perform a sequence of events. Because a process need not be
deterministic, such a sequence need not be extended in a unique way, but rather form a tree of sequences.

1.1 Definition. A tree is subset T C A of finite sequences of some set A which satisfies
(i) <>eT and,
(ii) < a 0 , a i , . . . a n , . . . > £ T =*< a 0 , a i , . . . a n >G T.

R e m a r k . Condition (i) says a tree must always contain the null sequence < > , the root node. Condition (ii)
says a tree is closed under the initial subsequence relation. To make the ideas as familiar as possible I have
taken a different definition of trees from that given in [W1,W2]. However importantly all the categories here
will be equivalent to the categories of the same name introduced in [W1,W2]. (Two categories are equivalent
if their skeletal categories of isomorphism classes are isomorphic-see [Mac].)

1.2 Nota t ion . Let T be a tree with T C A*. We say T is over A iff every element of A is in some sequence
of T. We shall often call elements of A events.

2

The following convention is very useful to avoid treating the null sequence < > as a special case. Often
we shall write a typical sequence as < ao, <i\,..., a n _i > where n is an integer representing the length of
the sequence. We shall allow the length n to be 0 when by convention we agree that the above sequence
represents < > .

Let a be a sequence < ao, a i , . . a n _ i > and t be a sequence < 6Q, &I, . . . , &m-i > . Write their
concatenation as

st = < a 0 , a i , . . . , a n _ _ i , 6 0 , 6 1 , . . . , 6 m _ i > .

Let T be a tree. Let b be an element. By bT we mean the tree

bT = {<>}u{t\teT}.

Let T be a tree. For t,t' eT write

t — • r &def 3a.i' = t < a > .

When we wish to highlight that an arc is associated with a particular event we draw the event above the
arrow so:

t -£-+T t' &t' = i < a > .

Clearly the elements T correspond to the nodes of a tree T while arcs correspond to pairs (t,tf) where
t — T h e nodes are thought of as states of a process and the arcs as occurrences of events. A morphism
from a tree S to a tree T shows the way in which the occurrence of an event of the process S implies the
synchronised occurrence of an event in the process T. Formally it is a map on nodes which preserves the
root-node and either preserves or collapses arcs. A special kind of morphism are the synchronous morphisms
which always preserve arcs.

1.3 Definition. A morphism of trees from S to T is a map / : S —• T such that
W / (< >) = < > and,
(ii) 3 _ 5 => f(3) = / (, ') O R / (,) •T / (* ') .

A synchronous morphism of trees from S to T is a map / : S —* T such that
(i) / (< >) = < > and,
(ii) a — > s a' => f(s) *T f(s').

Let / : S —> T be a morphism of trees. Assume s —>s in S, representing the occurrence of an
event a of 5 so that s' = s < a > . If f(s) — > T f{s') there is an event 6 such that f(sf) = f(s) < b >.
Intuitively the occurrence of the event a implies the occurrence of the event 6, synchronised with that of
a. If instead f(s) — f{s') then the occurrence of a is not synchronised with an event occurrence in T. The
latter possibility is disallowed for synchronous morphisms. We shall see that morphisms and synchronous
morphisms give rise to a product and synchronous product of trees. Events of the products will essentially
be pairs of events of the two trees, representing events of synchronisation between two processes. Their
occurrence will project via tree morphisms to occurrences of component events in the constituent processes.

1.4 Propos i t ion . Trees with tree morphisms form a category with composition and identities those usual
for functions. Similarly trees with synchronous morphisms form a subcategory.

1.5 Definition. Let Tr be the category of trees with tree morphisms. Let Trayn be the subcategory of
trees with synchronous morphisms.

R e m a r k . The above categories are equivalent but not equal to the categories of the same name in [W1,W2].

3

2. Categor ica l cons t ruc t ions on t r ees .

Some major categorical constructions on Tr and T r a y n are presented. The basic category theory used
can be found in [AM] or [Mac].

2.1 Definition. (Coproduc ts in Tr and Tr3yn)
Let S and T be trees. Define

S + T = { < (0 , a 0) , . . . , (0 , a n _ 1) > | < a0y.^ian^i >£ S} U { < (1, 6 0), • • . , (1, * N - I) > | < 6 o , . - - , * » - I > £ T}.

Define the obvious injections i$: S —• S + T and i\ : T —• S + T by

¿0 : < a 0 , . . . , a n _ i > H + < (0, a 0) , . . . , (0, a n _x) >

U : < 6 0 , . . . , 6 n _ ! > H->< (L , 6 0) , . . . , (L , F T N - I) > *

The coproduct construction just "glues" trees together at their roots, so:

2.2 T h e o r e m . The construction S + T ,T 0 , « i a b o v e i s a coproduct of S and T in the categories T r and
Tr ayn

Proof. Clearly S + T is a tree and T 0 : S -> 5 + T and t x : T -+ 5 + T are synchronous morphisms. In order
for 5 + T, i'o, ¿1 to be a coproduct in T r we require that for arbitrary morphisms j 0 : S — U and ji'.T -*U
to a tree U there is a unique morphism j : 5 + T — 17 such that the following diagram commutes:

J
f

u

T .

J '

This is clearly the case for j defined by:

If jo, j i are synchronous so is j . Consequently S + T, i 0 , ¿1 is a coproduct in T r , v n too.

»
W " U (< » t f , - - - . 6 » - I >)

if v = < (0,a 0) , • • • , (0 ,a n _i) >
if v = < (L , 6 0) > - - - I (L I * N - I) >

2.3 Definition. (General coproducts)
Let { T{ I i E / } be an indexed set of trees. Define their coproduct by

Y^Ti = I J { < (* I a o) > - - - I (T ' I A N - i) > | < a o , . . . , A N - i > € Ti).
iei iei

Define the obvious injections mt- : T t ->] C I E / T , by m t-(< a 0 , . . . , a n _ i >) = < (*, a 0) , . . . , (», a n _ i) > for

When the indexed set / is null we understand £ t 6 / T t = £ 0 " t o b e t h e n u U t r e e (< > }•

2.4 T h e o r e m . The construction X ^ t G / T t ,
 i n * ^ o r 1 ^ ^ above forms a coproduct of { T̂ | i G / } in the

categories Tr an J T r a y n .

Proof. The proof is very similar to that of theorem 2.2. 3

It is easier to define the product of trees in the category Trsyn than the product in Tr . We call the
product in Trsyn the synchronous product. The synchronous product of two trees basically "zips" their
sequences together.

2.5 Definition. (Synchronous p r o d u c t in t h e ca tegory Tr9yn)
Let 5 and T be trees. Define their synchronous product by

5 (g) T = { < (a 0 > 6 0) , (o 1 , 6 1) > . . . , (a n - 1 , 6 n - 1) > | < a 0 , au . . . , a n _ A >G S&< 6 0 , bu . . . , 6 n _ x >G T } .

Define projections TT0 : 5 ® T 5 and TTJ : 5 <g) T -> T by

vro •< (ao,M>--->(an-i>&n~i) > •-+< oo>--->an-i >>
7Ti : < (a 0 , 6 0) , • • . , (a n _ ! , 6 n _ i) > H + < 6 0 , . . . , & n - i > .

2.6 T h e o r e m . The construction S ®Т}тт0)7Г1 above is a product of S and T in the category T r s y n .

Proof. Clearly 5 ® T is a tree and тг0 : S ® T -> 5 and 7Ti : 5 ® T -> Г are synchronous morphisms.
For S @ T , 7T0, 71-j to be a product in Т г л у л we require the property: For arbitrary synchronous morphisms
/о : U ~> S and fj:U—>- T from a tree U there is a unique synchronous morphism / : U —• S ®T making
the following diagram commute:

S

Because / 0 , A are synchronous, for u G 17 the sequences / 0 (u) and fx(u) have the same length. Thus
we can define

/ («) = < K , ^ o) , . . . , (a n - i , 6 n _ i) >
where / 0 (u) = < a 0 , . . . , a n _ ! > and /x(u) = < 6 0 , . . . ,6 n - - i > . Obviously / : U -> 5 ® T is asynchronous
morphism making the above diagram commute, and clearly it is the unique morphism doing so. g

2.7 Example .

< * , ь >

Г
o >

t

< (o , c) , C V O >

< > < >

5

Or, labelling arcs by the events they are associated with we obtain:

For example
TT 0(< (a,c),(6,d) >) = < a, 6 >

7n(< (a,c),(6,d) >) = < - c , d > '
Notice how projections "unzip" sequences of pairs in the synchronous product. Clearly we have the following
synchronous product

so projections need not be onto—consider the projection 7r0 : < (a, e) >>-•< a > .

2.8 No ta t i on . To give an explicit construction of a product in the category Tr we use partial functions.
Represent undefined by the symbol * and regard a partial function from A to B as a total function from A
to B U { * }. Write a partial function, represented by 0 : A —> J3 U { * }, as 0 : A —>. 2?—we shall always
assume * £ 2? for such functions. Compose partial functions as follows: Let 0 : A —B and : 2? —•* C.
Define their composition 00 : A —•* C to be

W = M 0 (a)) if 0(a) ^ <
I* otherwise.

Denote by Set* the category of sets (not containing *) with partial functions as morphisms. Now Set*itself
has a useful product. The product in Set.of two sets A and B is given by

A X . B = { (o , *) | a 6 A } u { (a l 6) | a 6 A & 4 e B } U { (* , 4) | 6 G B }

with projections po • A X * B —• A and pi : A X * B —• 23 given by pi(xo, £i) = x t for t = 0 ,1 .
We wish to extend a partial function 9 : A —• * 23 on sets to a function 0 : A* —• 2?* on sequences. So by

induction on the length of sequences, we define

0 (< >) = < > and 0(<a>) = {<>

/

d(3t) = (d{s))(d{t)) tor s,teA\
)>

if 0(a) = *
otherwise for a E A,

6

Now we define the product in Tr .

2.9 Definition. (P roduc t in the category Tr)
Let S and T be trees. Assume S is over A and T is over B. Define S X T to consist of sequences over

A X * B which project via extensions of po : A X * B —A and p\ : A X * B —• * B to sequences in 5 and T
as follows:

« e S x r ^ u G (i 4 x . B) ' i po{u) E S & pT(u) E T.

Define projections nQ : S X T -+ S and 7Ti : S X T —* T by taking 7r 0(u) = po(u) and 7Ti(u) = pl(w) for
u E 5 X T.

2.10 Theo rem. The construction S X T, 7TO ,7T I above is a product in the category Tr .

Proof. Clearly 5 X T is a tree and 7TQ : S X T —• 5 and 71"! : S X T —> T are morphisms. Assume fo : U -+ S
and fi:U-+T are morphisms from a tree [/. We require that there is a unique morphism / : £/ -+ S X T
making the following diagram commute:

Define f(u) by induction on u:

!

f{u) if f0{u < e > } = /o(u) and / x (u < e >) = / i(u)

/(u) < (a, *) > if / 0 (t t < c >) = /o(w) < a > and /^t* < e >) = / i(u)
/(u) < (*,6) > if / 0 (u < e >) = / 0(tt) and fL{u < c>) = / ^ u) < 6 >
/(u) < (a,6) > if / 0 (^ < e >) = /o(w) < a > and fx(u < e >) = / ^ u) < 6 > .

A simple induction on u shows that Kj}{u) = fj{^) for jT = 0,1. Obviously f : U ~> S X T is a morphism.
Assume h : U —• S X T is another morphism making the diagram commute. Another simple induction on
sequences u shows f{u) = establishing the uniqueness of / . Consequently S X Ty 7TQ, TT\ is a product
in the category Tr . |
2.11 Example . We show the product of two simple trees. We label arcs by their associated events.

The projections 7TO ,7T I act for example so that

TTO :< (*,c),(a, *),(&, *) > »-•< a , 6 >
i : < (, c), (a, *), (6, *) > H->< C >

Notice how the projections "unzip" sequences of pairs of events with *. By introducing * wc allow the
possibility of asynchrony; events in the product of two trees are not forced to occur in step if they are to
occur at all. Contrast the synchronous product.

In the categories Tr and Trsyn there are pleasing relations between product and coproduct. This result
indicates the relation between the parallel compositions of synchronisation trees (in e.g. [Ml, B]) and the
product of trees.

2.12 Theorem. Let S and T be trees. Then

S = (J aSa =] T aSa and T = [j bTh =] T bTb

a€A a£A beB beB

for some sets of events A and B and trees Sa and Tb indexed by a £ A and 6 G B respectively. We have the
following characterisation of the product of S and T:

S x T = (J (a,*)Sa X T U | J (A, 6)5. X Tb U | J (. ,6)5 X Tb

a€A aeA,beB beB

=] T (a , *) S a X Yl M) S « x r 6 + £ (. , 6) S x r * ;

A6A ' a€A,bEB beB

and the following characterisation of their synchronous product:

S ® r = (J (a , f c) 5 o 0 r 6 3 £ (a,b)Sa(&Tb.
aeA,beB aeA,beB

Proof.

Clearly the tree S = U aeA a i^*> where Sa = {t \< a > t £ £ } f o r 3ome subset A of events. As the
sets aSa are disjoint, S =]CaeA a j^ t t* Similarly the tree T = Ubetf^* = X^6EB ^& ^ o r s o m e subset B of
events.

Let it be a sequence of events of the product which project via partial functions /?o> pi to events of 5
and T—we use the notation of definition 2.9. We have

u e S X T <=> p5(u) € 5 & pï(tt) G T
< (a, *) > u' for a G A & pô(u') G 5 a & pl(u') G T or

<=> u = I < (a, 6) > u' for a G A & 6 G B & J5Ô{t*') G 5 a & pl(u') G T 6 or
< (*, 6) > u' for 6 G B & pô{u') G 5 & pT(u') G ï*

This gives the above characterisation of the product. The characterisation of the synchronous product
follows similarly. fl

We define an operation of restriction in the next section. The synchronous product is a restriction of
the product to those events with no undefined component (i.e. a component *). Parallel compositions will be
defined as a restriction of the product. In fact the parallel composition of synchronisation trees appropriate
to Milner's synchronous calculi will be a restriction of the synchronous product (^).

8

3. Comple te par t ia l orders of t rees .

We consider two natural complete partial orderings on trees. One is based on the idea of restricting
a tree to a subset of events—an operation natural in itself—and the other is just inclusion of trees. Our
operations on trees will be continuous with respect to both orderings so we shall be able to define trees
recursively following now standard lines—see e.g. [S]—by taking least fixed-points in either of the two cpo's.

3.1 Definition. (Restrict ion) Let T be a tree. Let B be a set. Define the restriction of T to B, written
T\B, by

t e t\b &teT &teB*.

In other words the restriction of a tree to a subset of events is just the subtree consisting of sequences
in T for which all elements are in B. Restriction induces a partial order on trees; one tree is below another
if it is a restriction of the other. This ordering makes a complete partial order (c.p.o.) of trees, apart from
the fact that trees form a class and not a set. Of course there is another natural c.p.o. of trees induced by
simple inclusion. All the above operations on trees are continuous with respect to the two c.p.o. structures.

3.2 Definition. Let S and T be trees over A and B respectively. Define

S<T <=> AC B & S = T\A.

3.3 Lemma. Let S and T be trees over the same set of events. If S<T then S = T.

Proof. Assume 5 and T are both over the set of events A. Then T = T H A* = 5 . Q

3.4 T h e o r e m .
(1) The relation < is a partial order with least element the null tree} { <> } . Let T Q < T I < • • < T N < • • •

be an UJ-chain of trees. Then it has a least upper bound [jneui Tn.
(ii) The null tree { <> } is the C-least tree i.e. for all trees T, { <> } C T. Let T0 C Ti C • • • C

Tn C • • • be an uj-chain of trees. Then it has a least upper bound \Jneuj Tn.

Proof, (i) Obviously S<S for any tree S so < is reflexive. If S<T<S then S C T C S so < is
antisymmetric. If S<T<U, where 5, T, U are trees over A, B, C respectively, then S = T Pi A = U f|
B* f| A* = U fl A* so S<U, making < transitive. Thus < is a partial order.

Clearly { < > } < T , for all trees T.

Let To < T\ < • • • < Tn < • • • be an u;-chain of trees Tn with Tn over events An. Then as 7o C T\ C - • • C
Tn C • • • we obtain that T — (Jnew ^ n ^s a ^ r e e o v e r ^ ^ U n e w ^ * ^ * n e following argument T is an
upper bound of each Tn.

Suppose t £ T f] An . Then t £ Tm for some m > n . As T n < T m we must have t E Tn. Thus Tn<T for
every n, so T is an upper bound of { T n | n E w }. Now we show that T is the least upper bound. Suppose
Tn<U for all n with U a tree. Clearly T C U. If u £ U fl A* then u E An* for some n. Hence as Tn<U
we have u £ Tn. So u £ T too. This makes T<U and so T is the least upper bound of { Tn \ n £ UJ } with
respect to < .

The remaining part, (ii), is obvious. |

9

3.5 Definition.
Say a unary operation operation op on trees is < - (respectively C-) monotonic iff S<T => op(S)<op(T)

(respectively S C T =» op(5) C op('f)).
Say a unary operation operation op on trees is <--(respectively C-) continuous iff it is <-(respectively

C-) monotonic and preserves least upper bounds of a;-chains of trees i.e. if TQ<TI — 'Tn< - • • (respectively
To C Tv • -T n C • • •) is an w -chain of trees then opflJnew = = U N E W °P(^n).

If op is an n -ary operation on trees, say it is < - (respectively C -) monotonic iff it is monotonic in each
argument separately. If op is an n-ary operation on trees, say it is <--(respectively C -) continuous iff it is
continuous in each argument separately.

The next lemma provides useful necessary and sufficient conditions for an operation to be <-continuous;
the operation should be <-monotonic and act continuously on the sets of events associated with trees, where
the sets of events are ordered by inclusion.

3.6 Lemma. Let op be a unary operation on trees. The operation op is ^-continuous iff
(i) the operation op is monotonic, and
(ii) if To < TV • Tn < • • • is a Lj-chain of trees then the events of op({Jnew Tn) are included

in the events of | J n e u , op(Tn).

Proof.

Obvious.

"<=" Suppose (i) and (ii) above. Let TQ<T\ <• • <Tn<- • • be a chain of trees such that each tree Tn is
over events A n . The chain has lub (J n Tn. By monotonicity U n £u/ °P(^n) is a tree and \JNCZUI op{Tn)<op(\Jneuj Tn

From (ii) we know the trees \Jneuj op(Tn) and op((Jnr_^ Tn) are over the same set of events. Thus by the
above lemma they are equal. Q

3.7 Theorem. Each operation T 6T, T \-> T\BI -1-, ® , X, for an arbitrary element b and set B,
is <-continuous and C-continuous. The operation of restriction is continuous on sets of events ordered
by inclusion i.e. if T is a tree and if BQ C ••• C BN C ••• is an uf-chain of sets then T\(\Jne<JJ BN) =

U „ 6 U № N) .

Proof. The continuity of these operations with respect to < is best proved using lemma 3.6. Continuity
with respect to C is easier to show. We show only the continuity of X with respect to < . Assume S, S*
and T are trees over A, A1 and B respectively. Then S X T, S' X T are over events A X * B and A! X * B.
Let po : A! X B —> A! and p\ : A' X B B be the partial functions projecting events in the product to their
component events in Sf and T respectively.

In showing monotonicity, by symmetry, it is sufficient to consider just one argument which we can
assume to be the left. Suppose S<S'. We require S X T<S' X T. This follows by:

u e s X T <=» u e (A X . B)' & p^{u) e s & pi(u) e T

<=• u G (A X . B)* & Mu) G S' & pl{u) G T
**ue{s'x T)\{A X*B).

Now assume So<- - * ^ 5 n < - • • is a chain of trees so that Sn is over events A n . Let c be an event of
(U N 6 W Sn) X T. Then c has the form (a, *), (a, b) or (*, 6). Thus c is an event of U N T W ^ n

 x T) ' T l m s x fa

continuous in its first and, by symmetry, its second argument. Thus X is <-continuous.

The remaining proof is left to the reader. 1

Consequently each of the above operations can be used in the recursive definition of trees.

1 0

4. Synchronisat ion algebras.

We shall label events of processes to specify how they interact with the environment. We shall obtain
trees in which the arcs are labelled just like the synchronisation trees of CCS in [Ml]. However our approach is
more abstract. We shall label trees by elements of a synchronisation algebra which shows how labelled events
synchronise with labelled events in the environment. Associated with any particular sychronisation algebra
is a particular parallel composition of synchronisation trees. So, by specialising to particular synchronisation
algebras we obtain Milner's parallel composition of synchronisation trees [Ml], the parallel composition that
underlies his synchronous calculi [M2], and the parallel compositions defined in [B] which underlie the parallel
compositions on failure sets given in [HBR].

The intuitions behind synchronisation algebras are given in [W1?W2]. To recap, a synchronisation
algebra is a binary, commutative, associative operation • on a set of labels which always includes two distin
guished elements * and 0. The binary operation • says how labelled events combine to form synchronisation
events and what labels such combinations carry. No real events are ever labelled by * or 0. However their
introduction allows us to specify the way labelled events synchronise without recourse to partial operations
on labels. (These two forms of undefined should not be confused with another "undefined" J_ used in the
theory of domains.)

The constant 0 is used to specify when sychronisations are disallowed. If two events labelled X and X'
are not supposed to synchronise then their composition X • X' is 0. For this reason 0 does indeed behave like
a zero with respect to the "multiplication" •.

We have already seen the constant * in the definition of product. Recall the partial functions po,Pi

which projected from the events in the product to events in one of the components. An event (eo, *) in
the product S X T of trees S and T projected down to the event eo in S and the undefined "event" * =
Pi((eo>*)) M 7\ This meant the event eo of S occurred asynchronously, unsynchroniscd with any event of
T. In a synchronisation algebra, the constant * is used to specify when a labelled event can or cannot occur
asynchronously. An event labelled X can occur asynchronously iff X • * is not 0. We insist that the only
divisor of * is * itself, essentially because we do not want a synchronisation event to disappear. (The reader
may find it helpful to glance ahead to the definition of parallel composition of synchronisation trees given
in 6.8.)

4.1 Definition. A synchronisation algebra (S.A.) is an algebra (L, *,0) where L is a set of labels so
L \ { * , 0 } T ^ 0 a n d • is a binary commutative associative operation on L which satisfies

(i) VX G L. X • 0 = 0 and
(ii) *•* = * and VX, X' E L. X • X' = * =» X = *.

Synchronisation algebras have an obvious divisor relation which intuitively says when one labelled event
can be a component of a synchronisation event.

4.2 Definition. Let (L, •, *,0) be an S.A.. For X, X' G L define

X div X' <=* X = X' or 3/x G L. X • /x = X'.

When X div X' we say "X divides X'".

11

4.3 Lemma. Let (L, *,0) be a synchronisation algebra. Then the following properties hold:
(i) the constants * and 0 are distinct,
(ii) the relation div is reflexive and transitive i.e. a preorder,
(Hi) X div * => X = * ;

(iv) 0 div\=>\ = 0,

(v) C*O div (3Q & cti div Pi =>• (AO • <*I) C/FV (/?O •
Proof.

(i) We can take a£L\{*,0}. Then if 0 = * we would have a • 0 = 0 = * which implies a = *. This
contradicts the choice of a making 0 y£ *.

(ii) by associativity,

(iii) by property (ii) in the definition of synchronisation algebra,

(iv) as 0 is a zero,

(v) by commutativity and asscociativity. 1

We might wish to specify that no event can occur asynchronously. An event will be labelled by a non-*,
non-0 label so this can be specified by ensuring the composition of such labels with * always gives 0. Milner's
synchronous calculi [M2] fit into this scheme, as we shall see later in proposition 6.19. In 6.11, we shall make
use of another law on synchronisation algebras. It expresses when • behaves like the least upper bound
with respect to div, or, the same tiling, when • is the operation of least common multiple (L.C.M.) for the
"multiplication" •.

4.4 Definition. Let (L, •, *,0) be an S.A.. We say L is synchronous when it satisfies the law

VX £ L \ { * }. X • * = 0.

We say (L, •, *, 0) satisfies the L.C.M. law when

Va, /3 ,7 £ L.a div 7 & /3 div 7 => (a • ¡5) div 7 .

As examples and for future reference we now present some synchronisation algebras. We present the
algebras in the form of multiplication tables. In fact the synchronisation algebras correspond to the parallel
composition of CCS and the two forms of parallel composition in [HBR. B]. A full justification of these facts
appears later. For the moment though, the reader can probably see what each synchronisation algebra is
saying so we shall try to give the intuition. The tie-up with Milner's monoids and groups of actions for his
synchronous calculi will be made later.

12

4.5 Example . (The synchronisat ion a lgebra for CCS [Ml])

Pure CCS—no value passing: In CCS events are labelled by a,/?,••• or by their complementary labels
a,/?, • or by the label r. The idea is that only two events bearing complementary labels may synchronise
to form a synchronisation event labelled by r. Events labelled by r cannot synchronise further; in this sense
they are invisible to processes in the environment, though their occurrence may lead to internal changes of
state. All labelled events may occur asynchronously. Hence the synchronisation algebra for CCS takes the
following form. We call the algebra L\.

« 1 * a a 0 P-
a
a

0

* a a P P a 0 r 0 0
a r 0 0 0 ¡3 0 0 r 0

r 0
0 0
0 0
0 O

With value passing .Suppose values v £ V are passed during synchronisation. Take labels of the form *, 0,
av (receiving a value v on line a) and av (sending a value v on line a) with a synchronisation algebra like
that above but now with av the complement of av. More precisely take Li(V) to be the synchronisation
algebra (L, •, *, 0) where L = (Li \ { r, *, 0 } X V) U { r, *, 0 } with composition given by

T if X = av and X' = av,

r if X = av and X' = av,
XoX' = <X if X' = *,

V if X = *,

,0 otherwise.

We shail see that L\(V) can be viewed as a simple quotient algebra of the (direct) product of two synchronisa

tion algebras, one being L\ and the other a straightforward extension of the set of values V to a synchronisa

tion algebra.
4.8 Example . (The synchronisat ion a lgebra for j| in [HBR, B]) In [HBR] and [R] events are labelled
by a,/3, • • • or r. For the parallel composition || in [HBR, B] events must "synchronise on" a,/?, • • •. In other
words non-r-labelled events cannot occur asynchronously. Rather, an a-labellcd event in one component
of a parallel composition must synchronise with an a-labelled event from the other component in order to
occur; the two events must synchronise to form a synchronisation event again labelled by a. The S.A. for
this parallel composition takes the following form. We call the algebra ¿ 2 «

* 0 0
0 a 0
0 0 / 3

r 0
T 0
0 O

0 O

4.7 Example . (The synchronisat ion a lgebra for ||| in [HBR, B]) The parallel composition ||| in [HBR]
and [B] is called the "interleaving" operation in [HBR, B]. The reason is that no synchronisations are allowed,
but every event can occur asynchronously, so in the framework of [HBR, Bj where processes are coerced so
they perform only one event at a time the parallel composition ||| interleaves the sequences of events of the
two component processes. Events are labelled exactly as they are for L 2 but the synchronisation algebra
takes a different form, shown below. We call this algebra L3.

1 3

• * a 0 • • T 0
* a 0 • • T 0

a a 0 0 • • 0 0
0 0 0 0 • • 0 0

Of course synchronisation algebras can be viewed as standard algebras with an operation o and two
constants * and 0 . Looked at in this way they come ready equipped with the usual definition of homornor-
phism (made to preserve the composition and the constants), and the attendant categorical constructions
like (direct) product. But docs this mathematical definition match the interpretation we put to the operation
• and constants * and 0 ? I think not, and tentatively suggest the following definitions are more suitable.
They regard synchronisation algebras as partial algebras (see [Grii]) which have partial operations preserved
by homomorphisms only when they are defined; think of composition as being undefined when it gives 0 .
Consequently 0 is preserved in rather a strict way. One class of homorphisms result if we impose a similar
strict law for *—we call these strict—and another if we require simply that * is preserved.

4.8 Definition. Let A = (LA, 9 A, *A> 0 A) and B = (LB,*B,*B,®B) D e synchronisation algebras. A
homomorphism of synchronisation algebras from A to B is a function h : LA —• LB such that the following
conditions hold:

(i) a • a' ^ 0 = > h(a mA a') = h(a) • B h(a%
(ii) h(a) = 0B ct = 0 A ,

(iii) h(*A) = * B .
We say a homomorphism h is strict when h(\) = *B X = *A-

4.9 Prox>osition. Synchronisation algebras with homomorphisms form a category with composition the
usual composition of functions and identity homomorphisms the identity functions. Synchronisation algebras
with strict homomorphisms form a subcategory.

Proof. We check the composition of homomorphisms is a homomorphism. Suppose h : A —• B and g : B —• C
are homomorphisms. Assume a • ct 7^ 0 in A. Then h(ct • a') = h(ct) • h(a!) 7^ 0 in B. So gh(a • a') =
g(h(a) • ft(a')) = gh(a) • gh(a') in C. Clearly gh(a) = 0 & h(a) = 0 <=> a = 0 and gh(*) = g(*) = *. Thus
gh is a homomorphism. The remainder of the proof is left to the reader. |

4.10 Definition. Write SAfor the category of synchronisation algebras with homomorphisms.

We show the form of products in the category SAand its subcategory with strict homomorphisms.
Products of synchronisation algebras provide one way to construct more complex algebras form more simple
ones.

4.11 Definition. Let A = (L^, «A> * A , 0 A) and B = (LB, * B » 0 B) be synchronisation algebras.
Define the product of synchronisation algebras, A X B, to be (L, •, *, 0) given by

(i) L = (LA \ { 0 A }) X (LB \ { 0B }) U { (0 A > 0B)},
r-\ (a\ f ' a'\ J(°A>M i f <*•«' = 0 A o r / ? o / ? ' = 0 B ,

(iii) * = (* A) * B) and 0 = (0 A , OB)-

Define projection homomorphisms hA : A X B -+ A, hs ' A X B B, by hA(ot,P) = ct and /i B(a,/?) = /?.

14

4.12 Definition. Let A = [LA,*A, *A,0A) -ind B = [LA, • *B,0«) be synchronisation algebras.
Define the strict product of synchronisation algebras, y l ® B, to be (L',;*,0) given by

(i) V = (LA \ { *A,0a }) X (L B \ { 0« }) U {(*A, *B) , (Oyi,0B)},
, M / (O A . O B) if a O a ' = 0 a o r / ? . / ? ' = 0 b ,

(u) (a , / J) , (a ./?) = { (Q O j 4 a , > / 3 # B / n o t h e r w i s e j

(iii) * == (* A } * B) and 0 = (0^ ,0B) .
Define projection hornomorphisms hf

A : A X B A, hf

D : A X B -+ B, by hA(a, (3) = a and h'B(a,(3) = /3.
Notice / 1 0 B has sort a subset of the sort of A X B and that it is closed under all the operation • of

A X B. It is subalgebra (of partial algebras) in the sense of [Gra]. It is also the restriction of the larger
algebra to a subset, another way of constructing new synchronisation algebras from old.

4.13 Theorem. Let A and B be synchronisation algebras. The construction AX B, KA, hn is a categorical
product of A and B in SA. The construction A^)B, h'A, h'B is a categorical product of A and B in the
subcategory with strict hornomorphisms.

Proof. See the appendix. 3

Another way to obtain new synchronisation algebras is to quotient by a congruence relation. A
congruence relation on a synchronisation algebra is an equivalence relation = such that

X = X' & p ~ / / & X O p ^ 0 & X' • p,' ^ 0 => X O ii == X' » / / .

Given a synchronisation algebra and a congruence relation == the quotient consists of new labels the equiv
alence classes of == with ©-composition induced by the representatives. We illustrate how the synchronisation
algebra for CCS with value passing arises as the quotient of a strict product. Firstly a non-null set of values
V extends to a synchronisation algebra V* with extra elements * and 0 by taking v • v — v for v £ V and
v % * — *#v = v for v £ V U {*} and u«G = 0«?; — 0 for v £ V U { *, 0 }.

4.14 Proposi t ion. Let L\ be the synchronisation algebra for CCS given in example 4.5. Let h : Lx 0 V* —*>
Li be the strict projection homomorphism from the strict product. Take the relation == on L\ 0 V9 to be
given by:

\ = \<=> h{\) = /I(X') = r.

Then = is a congruence relation and the quotient (Li ® V #) / = is isomorphic to Li(V) the synchronisation
algebra for CCS with value passing given in example 4.5.

Of course one can specify that more complicated operations are performed on values than just send and
receive.

We stress that the definitions of hornomorphisms on synchronisation algebras are tentative. Constructions
like 0 on synchronisation algebras appear useful but may not be as general as one would like. The axioms
on synchronisation algebras arose by considering an abstract way to formalise the range of synchronisation
disciplines between labelled events. Possibly there is a class of algebras for specifying how processes are
connected, or linked, together. That the physical linkage can be quite complicated and yet still be highly
structured is demonstrated in [CP]. Typically processes may be linked by abstract channels or physical wires
connected to linkage points or ports of the processes. To specify how they are linked by channels or wires
the ports are assigned names or labels; perhaps ports to be linked carry the same label, as in [Mi], or com
plementary labels as in [Ml]. An algebra on these labels might specify the geometric layout of the processes,
how the processes are physically linked or wired together. But then along the channels or wires values
may meet and interact; for example in hardware the values may be voltage contributions due to processes
wired together. The interaction of these values might be specified by a synchronisation algebra.(The table

1 5

giving this interaction in hardware is generally called the logic—it may be Boolean, have undefined values,
floating values, strong and weak values etc..) Such processes interact through the synchronisation of events,
where an event is a value at a port. Of course only events which are physically linked can interact. When
they do the resultant value communicated will be determined by the component values. This suggests that
the synchronisation algebra associated with processes should be a product of the "linkage algebra" and the
synchonisation algebra of values. At present this is rather speculative but it does suggest we explore a wider
class of algebras and, from our experience with synchronisation algebras, that the algebras should be partial.

5. Synchronisat ion t rees .

A synchronisation tree is a tree with arcs labelled by elements of synchronisation algebra. It is convenient
to label arcs via the underlying events from which the tree is built.

5.1 Definition. Let L be a synchronisation algebra. An L-synchronisation tree is a pair (T,l) where T is
a tree over A and I : A —• L \ { *, 0 }.

5.2 Nota t ion . Let (T, I) be an L-synchronisation tree. Write t tf when t —* t' and 1(a) = X for the
unique a such that t1 = t < a >.

Frequently we shall omit the prefix "L-" when discussing synchronisation, trees. When it is important
the appropriate synchronisation algebra should be clear from the context.

We produce a category of synchronisation trees by restricting the tree-morphisms in accord with the
synchronisation algebra. We insist the label of ihe image of an arc should divide the label of the arc because
the image of an event is imagined to be a component of the event. Of course an arc may be collapsed in the
image corresponding to the intuition that the event is not synchronised with any event of the image. But
then we insist * divides the original label.

5.3 Definition. Let L be a synchronisation algebra. Define an L-morphism of L-synchronisation trees from
(S,ls) to (T,IT) to be a map / : S —• T such that

/ (< >) = < > and

s a' => (f(s) = f(a') & * div X) or (/(a) -^1 f(a') & X' div X).

5.4 Proposi t ion. Let L be a synchronisation algebra. Then L-synchronisation trees with L- morphisms
form a category under the usual function composition and with the usual identity functions.

Let (Syls) and (T, IT) be two L-synchronisation trees. Then (S,ls) and (T,IT) are isomorphic in this
category iff there is a bijection f : S —• T such that A

s—+s'* f(s) —> /(*')
and such that labels of corresponding arcs divide each other.

In particular, if div is an antisymmetric relation on L (i.e. X div X' div X =• X = X;J tiien (S,Is) and
(T,l'p) are isomorphic iff there is a bijection f : S —* T such that

a Ju s' * /(,) -A+ f(s').
16

Proof. That /^-synchronisation trees with \J~ morphisms, for a synchronisation algebra L, form a category
follows routinely from the facts that Tr is a category and div is a reflexive transitive relation on labels. The
characterisations of isomorphism follow directly from the definition of L-morphism. 3

5.5 Definition. Write Tr/, for the category of /^-synchronisation trees with L morphisms.

R e m a r k . Note this category is equivalent but not equal to the category Tr^ in [Wl, W2],

5.6 Proposi t ion. Let L be a synchronisation algebra. If f : (S,ls) -+ {T>h) 'ls an L-morphism of
synchronisation trees then f : S —*.T is a morphism of trees. Assume that L is synchronous, so X » * = 0
for all X G L\{* } . Then for any L-morphism f : (S , / 5) (T , / T) the map / : S -> T is a synchronous
morphism of trees.

Proof. Clearly if L is synchronous * <fiv \ for any label X G L \ { *, 0 }. Thus / morphisms cannot collapse arcs. 3

Thus we see how assumptions made on the synchronisation algebra influence the morphisms we allow.
In fact, particular synchronisation algebras give us categories isomorphic to Tr and Tr3yn .
5.7 Proposi t ion. Let A and S be the synchronisation algebras given by:

A •A * T 0
* * T 0
T T T 0
0 0 0 0

• 5 * T 0
* * 0 0
T 0 T 0
0 0 0 0

Then Tr A — Tr and Tr s S Tr
^ J-rayn •

6. Opera t ions on synchronisat ion t rees .

Assume (L, •, *,0) is a synchronisation algebra. Define the following operations on (L-)synchronisation trees.

6.1 Definition. (Lifting)

Let X £ L \ { * , 0 } and (T, I) be a synchronisation tree. Define X(T,Z) to be the svnchronisation tree (T V) where

t G T' ^ t = < > o r t = < (0, X), (1, oo), • • (1 , a n _ i) >

for some < a 0 , . . . , a n _x >G T, and the new labelling function acts so /'((0, X)) = X and /'((1, a)) = 1(a).
Extend lifting to morphisms as follows: Assume / : (T , / T) -> (T',l'T) is a morphism of synchronisation

trees and X G L \ { *, 0 }. Define X/ : X(T, lT) -» X(T', l'T) by

(\f)(t) = J < (0, X), (1, 6 0) , . . . , (1, 6 m _ x) > if * = < (0 , X), (1, a 0) , • • (1 , a n _ r) >

I & / (< a 0 , . . . , a n _ ! >) = < 6 0 , . . . , ^m- i >•

17

ted bv XT must fust do a X -labelled event before becoming the process represented
The process represented by *i musi lirau

by a copy of T. In pictures we can draw lifting so: < —

I *
6.2 Theorem. Let \ £ L\{*,0}. The operation of lifting is a functor X : Trj, Tr£, .

Proof. Obvious. |

6.2 Definition. (Sum)
Let (5 , Is) and (T, IT) be synchronisation trees. Define their sum by

{S,ls) + {T,lT) = {S + Tfl)

where

l[C)-\h(b) if c = (l,6).

The sura just sticks trees together at their roots. We can draw the sum (Sy Is) + {T,fa)

so:

6.3 Definition. (Indexed Sum) e t h e i r s u m b y
Let (Ti,li) be a set of synchronisation trees indexed by

Til <€/

where 1(c) = Zt-(a) if c = (i, a) for t G / .

Sum has obvious injection morphisms such that it is a coproduct in the category of synchronisation

trees. Consequently the construction will extend naturally to a functor.

6.4 Theorem. Let (S,ls) and (T, IT) be L-synchronisation trees. Let i0 : S S + T and i'i : T —> S + T be
the injections—as given in the definition of coproduct. Then to,*i are L-morphisms and (S,ls) + {T, Zr)» *o> *i
is a coproduct in the category TTL, of synchronisation trees.

Similarly, !Ct-€/(rt-,/,-) with injections tnt- for i £ / is a coproduct where (T t , / t) is an I-indexed set
of synchronisation trees with injections in{ : (Tiyli) -> II i6j№,/,)—as given in the definition of indexed

coproduct.
Proof. These properties follow from the corresponding properties in the underlying category of trees. |

6.5 Definition. (Restr ict ion)
Let A C L \ { *,0} satisfy the property: X £ A & X div V & X' div X =* X' £ A. Let (T,/) be a

synchronisation tree over A. Define
(T,l)\A = (T\B,l')

where
B = { 6 € A | ¿(6) e A } and l'{b) = l{b) for b G B.

1 8

The operation (T,/)[A restricts events to those which are labelled by elements of A. There are several
alternative definitions of restriction in the literature [Ml, M2, 1IBR, B]. Ours is chosen to be general and
such that it still preserves isomorphism; it is like that in [M2]. I do not know how to extend restriction to a
functor in a natural way. (At some cost in artificiality restriction can be presented as an equaliser.)

6.6 Definition. (Relabelling)
Let S : L —> L be a strict homomorphism of the synchronisation algebra L. Let (T, /) be a synchronisation

tree. Define (T,Z)[S] = (T, EZ).
For S : L —> L a strict homomorphism, extend relabelling to morphisms as follows: Assume / : (5 , Is) —*

{S',l's) is a morphism of synchronisation trees. Define /[5] : (S,ls)[2] ~> (SV' 5)[2] by (/[S])(s) = f(s). .

We have chosen this definition of relabelling because it extends to a functor on Tr/, . (Of course there
are other possible definitions which are also continuous with respect to < L given below. One example is the
make --a-labels into-r-labels definition of hiding given in [I1BR, B].)

6.7 T h e o r e m . Let S : L —• L be a strict homomorphism on the synchronisation algebra L. The operation
[E] : Tr^ —> Trj, is a functor on synchronisation trees.

Proof. Recall what it means for 5 to be a strict homomorphism on L: that H : L —• L and E preserves •,
*, 0 and

VX G L.(~{\) = 0 =» X = 0) & (S(X) = * => X = *).
These properties ensure T[E] is a synchronisation tree for a synchronisation tree T. Because X' div X =>
B(X') div E(X) the map FS] produces morphisms from morphisms. Thus it is clearly a functor. 3

6.8 Definition. (Parallel Composition)
Let (Syls) and (TJT) be synchronisation trees. Assume S is over A and T is over B. Then S X T is

over A X * B, the product in Set* with projections po : A X + B — • A and pi : A X * B —• B. Define the
parallel composition of (S,ls) and (Tt IT) by

{S,IS)Q{T,IT) = (S X T\CA)

where
C — {c e A X* B \ lsPo{c) • hpi{c) 7^ 0} and 1(c) = lspo(c) * hpi(c\

Note we assume that the projection function compositions occur in Set . ; so if, for example, po(c) = * then

hpo(c) = *.
Extend to morphisms as follows. Let / : (S,ls) —* (Sf,lrf) and g : (T,IT) —> (T1\IT') be two

morphisms in Trj, . Define / g = f X g, the image of / and g under the product functor X on Tr .

In fact this definition makes into a functor.

6.9 Theo rem. The operation is a functor Trj, 2 —> Trj, on synchronisation trees.

Proof. Let / : S —> S' and g : T —> Tf be L-morphisms. We show by induction on the length of u' that

if u A . u ' in S Q T then / X <7(t*') € 5 ' Q T' and / X g(u) = / X 0(11') & * X or / X 0(1*)

/ X 0(1*') & X' div X. It follows that f Q g : S Q T -+ S' (?) T' is a morphism.

Either (a) / X g(u) = f X g(u') or (b) / X g(u) —• f X g(u'). If (a) then f(u) = f(u') (and g(u) = g(u'))
so * div X. Otherwise (b), in which case let c be the unique event such that u < c > = v!. Write its
component-events in S and T as CQ and cx respectively—one of cQ and cx may be *. Let ZS(CQ) = XQ and
h(ci) = Xi. Similarly let c' be the unique event of Sf X T' such that (/ X g(u)) < c' > = / X g(u'). Assume

19

the component events of c' have labels XQ and \ \ in S9 and 7" respectively. As / and g are L-morphisms
XQ div XQ and \\ div \\. By lemma 4.2(v) we obtain X' = XQ • \\ div XQ • Xi = X. Thus \'Q • X'A 0 by
lemma 4.2(iv) so c' is an even t of Sf 0 T'. Inductively this ensures that / X g{v!) G S ' Q f and clearly

/ X g(u) - X / X g(u') & X' div X.

Thus takes L-morphisms to Zr-morphisms. Its functorial properties follow from those of X in the
underlying category of trees. fl

Thus apart from restriction all the above operations extend to fuuctors on TV/, in an obvious way.

Generally the parallel composition of synchronisation trees is defined recursively—see e.g. [Ml, B].
Instead we can give a recursive characterisation of our definition of parallel composition, which fortunately
agrees with those in the literature when we specialise to particular synchronisation algebras. Because here
we serialise all event occurrences, parallel composition, like product, can be expressed as an indexed sum.

6.10 Theorem. Let S an T be L-synchronisation trees. Then

S =] P x t S t - and T = y]v>jTj iei jeJ
for some indexed sets of labels and synchronisation trees. Moreover, the parallel composition of S and T
can be characterised as follows:

S Q T = £ (X i . .) (s t - 0 r) + £ (X t . ^) (5 I © T J) + £ (. . / i , - X s © T I .) . •
Xj«*y^0 Xj»/lj7^0 *«/i,7^0

Proof. This follows from theorem 2.12 and definition 6.8. 1

The above result means we can show how by specialising to particular synchronisation algebras we
obtain various parallel compositions of synchronisation trees present in the literature. Before this we pause
to show how parallel composition relates to product in the categories of synchronisation trees. Although
there are obvious projection functions, parallel composition does not always coincide with product. It does
however when the operation • in the algebra behaves like the least common multiple (L.CM.) operation,
defined in 4.3.

6.11 Theorem. Let (S,ls) and (T,lr) be two L-synchronisation trees over A and B respectively. Let
7rr

Q = 7TO[(£ Q?) T) and TT\ = ni\{S (T) T) be the obvious restrictions of the projections 7TQ : S X T —* 5
and 7Tx : S X T —* T to the parallel composition. Then S ^T) T, 7^,7^ is a product in the category Tr£, if

V7 G Bict G h AMP G ITB.CL div 7 & /3 div 7 (a • /3) div 7 .

It follows that parallel composition is always a categorical product in Trj, iff the synchronisation algebra
satisfies

Va, /3, 7 G L.ct div 7 & /3 div 7 (a • (3) div 7 .

Proof.

Let (5,/5), [T,IT) be two L-synchronisation trees and 7r'0 : (S, Is) 0 {T,IT) {S> h) and 7 ^ :

{S, h) 0 {T, h) -> (ï \ h) be restrictions of the projections TT0 : S X T S and TTl : S X T -• T in Tr .

Suppose V7 G LVa G lsAM(3 G WB.ct div 7 & /3 div 7 =• (a • /3) div 7 . Assume / 0 • [U,lu) -+ {S,ls)
and / 1 : (U,lu) (^Vr) are L-morphisms. Let h : U —> S X T be the unique morphism of trees such that

20

7R0/i = / 0 and TTih — J\. We show h is an L rnorphism, h : (U,lu) —* (S,ls) \W)> Then h is certainly
the unique L-morphism such that 7t'0h = fo and ii\h = / 1 .

Clearly / i (< >) = { < > }. We show by induction on the length of u1 G U that if u -2-* u' then

h(uf) £ S T and ft(u) = /i(u') & * cfrv 7 or (h(u) h(u') &, 6 div 7) . It follows that h is an £r-morphism.

Suppose u -2-> 1/. If AI(IT) = h(v!) then /o(^) = fo(uf) a r u ' l * 7- Otherwise h(u) < c > = fe(u') for
some event c = (a, 6) of the product. As fo and / 1 are L-morphisms, a = /s(a) 7 and (3 — /r(&) div*).
(We allow a, 6 to be * in which case the labelling is *.) By assumption a • ¡3 div 7 so a • (3 ^ 0. This makes
c an event of the parallel composition. Thus h(uf) <G S T, completing the induction.

Suppose L satisfies the LCM law. Then by the previous argument S (7^ T, 7TQ, 7zf

x is the product of
synchronisation trees S, T in the category Tr/, . Conversely suppose for arbitrary synchronisation trees 5,
T we have S T, TX\v rc\ is a product in Tr^ . Suppose a div 7 and f3 div 7 in L. Clearly if 7 = 0 or
a — /3 = * then a o /3 div 7 so assume 7 ^ 0 and ->(a = /3 = *). Suppose a = * (so /3 j£ *). Take
5 to be the null tree and T to be the synchronisation tree consisting of a single /^-labelled arc. Let U
be the synchronisation tree consisting of a single arc labelled by 7 . Take fo : U —* S to be the unique
rnorphism to the null tree and / 1 : U —• T to be the unique arc preserving rnorphism. A unique rnorphism
h : U —> 5 (?) T exists such that 7rf

Qh = fo and n\ = } \ . Thus a • /? dw 7 . If a =^ * and /3 * then taking
5 to consist of a single arc labelled by a and T to consist of a single arc labelled by /3 a similar argument
shows a * /3 div 7 . 3

Let us run through, in a series of propositions, some parallel compositions in the literature. We refer to
the synchronisation algebras LXl L21 L3 of the earlier examples—4.5, 4.6, 4.7.

6.12 Proposi t ion. (Parallel composit ion in CCS) Lei Lx be the synchronisation algebra for CCS
presented above. Write the parallel composition Q?) as \, as in [Ml]. Then two L\ -synchronisation trees

<ei jeJ

have a parallel composition given by

Becausej for instance, a div r yet 0 = a • a and 0 (fiv T the parallel composition | for CCS does not coincide
with product in the category of synchronisation trees.

A similar proposition holds for the synchronisation algebra of CCS with value passing—recall the
synchronisation algebra iu example 4.5 two processes synchronise iff one sends and the other receives a
common value on the same line.

Now we examine the parallel compositions || and ||| given in [B] to support the failure set semantics in
[IIBRj. Here || only coincides with product in the appropriate category of synchronisation trees if no events
in the components are labelled by r.

6.13 Proposi t ion. (Parallel composit ion || in [B]) Let L 2 be the synchronisation algebra presented
above. Write the parallel composition Q) as \\, as in [Bj. Then two L2~synchronisation trees

S ~ X > S , +] T > S f c and R = J ^ X ^ + ^ T R R , ,
i k j I

21

where Xt-; \ 3 are non-T labels, have a parallel composition given by

S\\T= £ x,-(5,-||T i) + 2^*l|r) + Er

(
s

H
T

')-
T , J : X I = \ J k I

The synchronisation algebra does not satisfy the L.C.M. law above because for instance r div r and yet VT =
0 <fiv r. However for trees without r-labels \\ coincides with product in the category of L«-synchronisation
trees.

6.14 Proposi t ion. The parallel composition ||| in [B]: Let L% be the synchronisation algebra presented
above. Write the parallel composition as |||, as in [B]. Then two L^-synchronisation trees

%ei jeJ
have a parallel composition given by

S III T s 2X«№ III T) + EMollir,-).

For Z>3 we have a div a and yet a • a = 0 .so (a • a j/iv a). Therefore \\\ does not coincide with product in
the category of L%-synchronisation trees.

The papers [IIBR] and [B] contain another operation • called "conditional composition" which can also
be thought of as a parallel composition. The idea is that both components of a conditional composition can
proceed independently performing r labelled events until one component makes a communication with the
environment —performs a non-r labelled event—when future communication must henceforth be with that
component. There are two choices for the subsequent behaviour of the other component: one is that it may
continue to perform r-events (the idea in [ÏIBR]) and another that even these invisible events are stopped
(the idea in [B]). From the point of view of the failure-set equivalence in [IIBR, B] these distinctions make
no difference but they are detected by a synchronisation tree semantics. We present the first alternative and
leave the second to the reader—or see [Bj. We choose to obtain D as a restriction of |||.

6.15 Definition. Let (5 , Is) and (T , / T) be synchronisation trees labelled by elements of L 2 {or / , 3) . Define
(S,ls)0{T,IT) to be the synchronisation tree consisting of sequences < c 0 , . . . , c n _ i > of (5,Is) \\\ {T,IT)

which satisfy

(Vt. lsPo(ci) = * or lspo{ci) = r) or (Vt. lTpi{ci) = * or / r P i (C T) = r)

with the labelling / given by l((a, *)) = /s(a) and /((*, 6)) = ZT(6)-

6.16 Proposi t ion. Let S and T be L2~synchronisation trees so

s s ^2\isi + Y^TSkandT - Ẑ r< + Err<-

Then
sut s ^x^DfTMi+s^Ma^+E^ari+E^^ ') '

where for instance T\r abbreviates T\{T } .

As a final example we exhibit how Milner's synchronous calculi fit into the picture. In [M2] algebras
of actions are presented. They are closely related to synchronisation algebras, though because the algebras
do not contain * they cannot express asynchrony in the direct way synchronisation algebras can. The
most general algebras of actions described in [M2] are Abelian monoids of the form (M, o, 1). The identity

22

element servos to label delay events. These nre essential to the way asynchrony is handled in [M2]; there the
asynchrony of an event is modelled by allowing the event to be preceded by an arbitrary number of delay
events. Contrast the direct way asynchrony is modelled using synchronisation algebras to restrict the events
in the product; the fact that an event is not synchronised with any events of a process is expressed by the
event not having any component event from the process.

We show how Milner's monoids of actions determine synchronisation algebras which satisfy the synchronous
law of definition 4.4.

6.17 Definition. Let (A/, *M, 1) be an Abelian monoid (assumed to not contain * or 0).
Define L[M] to be the algebra (M U { *, 0 }, •, *, 0) where • extends the monoid operation «A/ SO * O * =

*, and *»/x = /x • * = 0 for u. E M U { 0 }, and 0 • /x = /x • 0 - 0 for /x £ M U { *, 0 } and /x • /x' = /x • M
for /x, /x' £ M.

Define a divisor relation on (Af, *JVJ, 1) by

/x divM a! <=> /x = u! or 3U. /x » M V =

6.18 Lemma. The algebra. L[M\ defined above is a synchronisation algebra which satifies the synchronous
law VX 7 ^ *. X • * = 0 . Further, the algebra L[M] satisfies the L.C.M. law a div 7 & ¡3 div 7 => a • /3 div 7
iff M satisfies the L.C.M. law a div\i 7 & P div^f 7 —> a * Q div^f 7 .

Proof. These follow because the composition • of L[M] is simply the extension of to the extra'elements
* and 0. 0

6.19 Proposi t ion. Let L be a synchronisation algebra which satisfies the synchronous law. Then the
parallel composition of L-synchronisation trees

S = X̂X.S.- and T = X̂ yTy
« i

has the form

sQ)T= Y, '(x.«̂)(s,©ry).
So then parallel composition is obtained by restricting the synchronous product.

Let (A / , « M . 1) he an Abelian monoid. Write X M for the parallel composition with respect to the
synchronisation algebra L[M). Then for two M -labelled synchronisation trees

S .= \{S{ and T = y^fijTj
*

we have

SXMT =]T(Xt- # M N)(Si X M Tj).

The operation X M coincides with product in the category of synchronisation trees iff the operation »M in
(A/, «M, 1) behaves like an L.C.M.. If(M,9M}l)is an Abelian group X M coincides with product.

Proof. When the synchronisation algebra satisfies the synchronous law parallel composition takes the above
form by 6.10. By 2.12 this is a restriction of the synchronous product. The remaining facts follow directly
from the definition of L[M], 6.11 and 6.18. (Clearly an Abelian group satisfies the LCM law.)

23

7. Denota t ional semantics .

We present a denotational semantics to a simple parallel programming language which involves the
constructs we have defined earlier. The class of languages is parameteriscd by the synchronisation algebra
L.

7.1 Definition. Let L be a synchronisation algebra. The language Proc/Js given by the following grammar:

t ::= NIL | x \ \t \ t + t \ t\k \ t[E] \ t @ t \ recx.t

where x is in some set of variables X over processes, X E L \ { *, 0 }, A C L \ { *, 0 } is closed under divC\div~l

 y

and E : L —> L is a strict homomorphism.

In order to give a meaning to the recursively defined processes of the form recx.£ we use the fact that
the operations are continuous with respect to a c.p.o. of synchronisation trees. Fortunately the two c.p.o.'s
of trees < and C extend naturally to synchronisation trees in such a way that the operations of the previous
section are continuous.

7.2 Definition. Let L be a synchronisation algebra. Define the orderings < / v and C L on synchronisation

trees by:
(S , / S) < L (7 V T) * S<T &ls= h\A,

(S,ls) C L (TM) * S C T & ls = lT\A.

7.3 Theo rem. 7'he null synchronisation tree ({ < > } , 0) is the least L-synchronisation tree with respect
to both orderings <i and C L . Both orderings <L and C L possess least upper bounds of u>-chains; the lub
of a chain (To, /o)» . . . , (T N , Z n) , . . . with respect to either order takes the form (\Jn Tn, \Jn ln)-

All the operations lifting T X T , sum +, restriction T h-» T [A 7 relabelling T T [S] and parallel
composition Q), of section 6, are continuous with respect to and i.e. they preserve lubs of UJ-chains.

Proof. The cpo properties of of < £ and C i follow directly from the cpo properties of < and C .

The continuity of the operations on synchronisation trees follows from the continuity of the operations
on trees from which they are derived e.g. parallel composition is a restriction of the product so its continuity
with respect to <i is proved as follows.

Let T O < L * * 'Tn<L- • • be an w-chain of synchronisation trees such that Tn is over events An labelled by
ln. We write its lub as (Jn Tn over events A = U n^n with labelling / == Un^« Let S be a synchronisation
tree with events B labelled by / 5 . We use po : A X* B A and px : A X* B —** B to represent the
obvious projection functions on events. The parallel composition of (J n Tn and S is the restriction of their
product to events C = {e E A X* B \ lpo(e) • /spi(e) 7^ 0 } so we obtain

(U rn)0S = (IJ rn) X S\C = {\J{Tn X S))\C by the continuity of X

n n n
= (J (T N X S\C) by the continuity of restriction

n
= [j(Tn X S\Cn) = {jTn(L)S.

n n
as required. B

Thus we can give a denotational semantics to Proc£,by representing recursively defined processes as the
least fixed points of continuous functionals.

24

7.4 Definition. Denota t ional semantics for Procj , .
Let L be a synchronisation algebra. Define an environment for process variables to be a function

p : X —> Tr^ . For a term t and an environment p, deiine the denotation of t with respect to p written
[tjp by the following structural induction. Note syntactic operators appear on the left and their semantic
counterparts on the right.

\NIL\p = ({ < > } . 0) =!*MA

Mp =\(Mp) 1*1 © hfo=Mp © Mp
|[*i + ta]!p=I<i3P+|[*8LI? ttrecx.tjp = / i x T

where T : Trj, —* Tr-£, is given by r(7') = |i]!/>[T/x] and fix is the least-fixed-point operator so that

fixT = (\JnTn,{Jnln) where (7 ' 0 > / 0) = ({ < > } , 0) and (T n + 1 , Z n - 0 = r(rn,/„) inductively.

R e m a r k . A straightforward structural induction shows that T above is indeed continuous with respect to
either order < ^ or so the denotation of a recursively defined process is really the least fixed point of
the associated functional V.

Choosing L to be the appropriate synchronisation algebra we immediately obtain denotational semantics

for CCS and SCCS.

Of course we cannot expect all languages to fit into the simple scheme Proc^ ; for instance the CSP-
ianguagc of [HBR, B] does not quite because it has two parallel compositions corresponding to two synchronisa
tion algebras on the same set of labels. However the semantics for this language and that for CCS with
value-passing follow similar lines to that for Procj , .

We point out how to extend the language Proc^to value-passing. We assume the synchronisation
algebra is that of CCS with value passing, as given in example 4.5. Include terms of the form av.t with
denotation o7vj[t]lp to represent the sending of a value v. Include terms of the form ad.ty where d is a variable
over the set of values V, with denotation YLv<=.v av§.^p to represent the receipt of a value. Terms can be
taken to include constants from V, value-variables like conditional expressions etc. so the language can
be quite rich—see [Mlj for the full language of CCS and examples.

Some languages like those in [H, Mij have a parallel composition which depends on sorts being associated
with processes. They need a slightly more intricate definition of parallel composition which uses combinations
of our parallel composition, with respect to some synchronisation algebra, together with restriction and
relabelling.

25

file:///NIL/p

8. Labelled t rans i t ion systems.

We show how categories of synchronisation trees fit into the broader categories of labelled transition
systems. Transition systems have often been used to give operational semantics to programming languages.
For example, semantics for Robin Milner's CCS are often based on them and Cordon Plotkin shows in [Pl,2]
how widely they can be applied in giving semantics to languages. This section provides a bridge between
operational semantics in terms of transition systems and denotational semantics expressed in terms of trees.

8.1 Definition. A transition system is a 4- tuple (.S, i,A, Tran) where S is a set of states with initial state
i, A is a set of events, Tran C S X A X S is the transition relation^ elements of which are called transitions,

which satisfy
(i) Va G A3s, sf G S. (5 , u, s') G Tran,
(ii) (3, a, a') G Tran & (3 , a, 3 ") G Tran =• s' = 3 " .

Intuitively a transition system represents a process which can make transitions between states starting
from an initial state. Here we assume, as with trees, it can only perform one event at a time. The first axiom
we impose says every event is associated with some transition and the second axiom says that from a state
the occurrence of an event is associated with a unique transition and so, of course, leads to a unique state.
Thus transitions from a state correspond to occurrences of events from that state. (Note however that this
will not be the case for "idle" transitions which we shall introduce soon.) Of course transition systems are
more general than trees because the transitive closure of the transition relation may contain loops. In fact
this is often the way recursion is handled when using transition systems.

8.2 Nota t ion . Let (S, 1, A, Tran) be a transition system. We draw the transitions between two states as
arrows—there may be more than one. For example the transition system ({ 0,1 }, 0, { a, b }, {(0, a, 1), (0, 6,0) })
would be drawn as: cu

And we can write the transition (0, a, 1) as 0 1, so events serve to index transitions between pairs of

states.
It is convenient to extend the set of transitions in a formal way so that they include the possiblity of

inaction at any state. We already have a symbol for such inaction, the symbol *. Of course inaction does
not take a state to another state so we extend the set Tran just by elements of the form (3 , * , 3) . We call
such transitions idle transitions because they are not associated with any event occurrence. For a transition
system as above write the idle transitions as

Tran* = Tran U { (3 , * , s) \ s G S } .

Idle transitions are not to be thought of as events of inaction performed by a process; they are not associated

with any event of the process at all.

Morphisms on transition systems are defined analogously to those on trees. The intuition is the same.
A morphism from a transition system T to a transition system U specifies how the occurrence of an event
in T implies the synchronised occurrence of an event in U. States of T image to states of U. However,
there may well be occurrences of events in T which are not represented by any event occurrences in [/. The
transitions associated with such event occurrences image to idle transitions introduced above. Hence we
define a morphism as consisting of two parts one a function on states and the other a partial function on
events which induces a function on transitions, including the idle ones. Following the definition on trees, we
say a morphism is synchronous if it is a total function on events and so never sends a non-idle transition to
an idle one.

26

8.3 Definition. A morphism from a transition system (SO,/'O, 4o> Trano) to a transition system (Si,ii,A\, Tran\)
is a pair (JSIIE) where f§ - SO —• S\ is a function on states such that

/S(*O) == H

and where /E'-AQ — A \ is a partial function on events which satisfies

(s, a, 3') e Tran0 = • (/ 5 (5) , /s(a), M*')) £ T r a n u .

Say the morphism (JS^/E) is synchronous if is a total function.

8.4 Proposi t ion. Transition systems with rnorphisms as defined above form a category under the pairwise
composition of functions (fs, IE)°(QSI QE) =def [fsOSj f S{JE) where composition on the state functions is the
usual composition on total functions and the composition on the event functions is that for partial functions
and identity rnorphisms are pairs of identity functions. Transition systems with synchronous rnorphisms
form a subcategory.

Proof. Routine. I

8.5 Definition. Let T ran denote the category of transition systems with the above definition of morphism
and T r a n s y n the subcategory with synchronous rnorphisms.

Let us see the form products take in the category Tran . The projection functions will provide examples
of typical rnorphisms.

8.7 Definition. (The p roduc t of t rans i t ion systems) Let (SO, *O> Ao> Trano) and (S I , i\, A\, Tran{)
be transition systems. Define their product, (SOJ*O> Ah Trano) X (S I , * I , Ay, Tran\) = (S,i,A, Tran) by
taking:

(i) States S = SO X S I , the product in Set with projections TTJ : S —• Sj for j = 0,1,
(ii) initial state i = (¿0, ¿1),
(iii) events A = Ao X * Ai, the product in Set* with projections pj : A —•* Aj for

j = 0,1, and,
r> \ .4.. (t\ r- T ^ f i^oi8)) Po{c)i 7 ro(^ /)) £ Tran0 + & (lv) transitions [s,c, s') £ Tran ^ < ; ; : , ; ; m
K } V } I (* I (^ I (' W * ')) € Tran^.

Define the projections Uj : (S , i,A, Tran) —• (Sj, ij,Aj, Tran3) by taking Uj — (KJ,PJ) for j = 0 ,1 .

A similar construction has been used to build the "product machine" of [CES]. It really is a product.

8.8 Theorem. The construction (S 0 , i0, A0, Trano) X (S I , ¿1, Ai} Tranx), UQ, I I I above is a categorical
product in the category Tran of transition systems.

Proof. It follows immediately from the definition of product that it is a transition system—the axioms follow
from their truth in the components—and that the projections are rnorphisms of transition systems.

Let Tj abbreviate (Sj,ij, Aj, Tranj) for j = 0 ,1 . Suppose that U is a transition system and that
/ = (ISJIE) : U T 0 and g = (gs,GE) '• U —• Tx are rnorphisms. In order for T0 X T x to be a product
we require that there is a unique morphism h = (hSl hE) : U -> T 0 X T x such that U0h = / and Uih = g.
This is so when we define h as follows:

M«) = Us(u), gs(u)) and hE(c) = [fE{c), gE(c))

for u a state of U and c an event of U. fl

27

8.9 Example . The product of the transition systems

and

takes the form:

We shall see how the definition of product of transition systems in Tran generalises that of trees in
Tr . In fact a product of transition systems will unfold to a product of trees. Transition systems also have
a coproduct, perhaps not quite what is expected as its unfolding will turn out to not coincide with the
coproduct of trees.

8.10 Definition. (The coproduct of t rans i t ion systems) Let (So>lo>^o> Tran0) and (Si,ii,Ax, Trani)
be transition systems. Define their coproduct (5o,t'o,Ao, Trano) 4- (S\, i\, A\, Trani) — (S,i,A, Tran) by
taking:

(i) 5 = (So X { ¿ 1 }) U ({ ¿0 } X Si) with injections in3 : Sj —> S, for j = 0,1, given by
in0(s) = (s, ¿1) and ini(s) = (i0} s),

(ii) ¿ = (¿0,21),

(iii) A = ({ 0 } X Ao) U ({ 1 } X Ai) the disjoint union of the sets of events with injections
o.j : Aj —• A given by ay(a) = (j, a) for j = 0,1 and,

(' W a T i^S> a' S^ e Tran^'t
 = (2 n o(s), «u(fl), inQ(sf)) or

(iv) Iran | 3 (5 n ^ e T r a n i t = (in^la^alin^s')).
Define the injections I3 : (5y, i3,A3, Tran3) —• (S, Tran) by /y = (iny, ay) for j = 0,1.
8.11 Theorem. The construction above is a coproduct in the categories T ran and T r a n t f J / n of transition

systems.
Proof. It is easy to see that the coproduct construction gives a transition system and that the injections
are indeed (synchronous) morphisms. Suppose / : TQ —• U and g : Ti —• U are morphisms from transition
systems T3 abbreviating (5Y,2Y,Ay, Tran3), for j ' = 0,1, to a transition system U. Define a morphism h =
(hS) hE) : T0 + Ti -> U by taking:

jfsM 5 (1 W*i) ¡r.-ini(.,)
if c = «o(a)
if c = «i(a).

It is easily seen that /1 is the unique morphism of transition systems so that hl0 = / and hh - <7- Moreover
if / and g are synchronous then so is h. Therefore the construction is a coproduct in T ran and T r a n a y n .

8.12 Example . The coproduct of the transition systems

and a\
takes the form:

28

Clearly a tree can be viewed as a transition system:

8.13 Definition. Let 5 be a tree over the set A. Define TS5 to be (5 , < > , £ , Tran) where

E = {(sy a) £ S X A I 3 < a > £ 5 } and

Tran = {(s,(s,a),s ') | s < a > = 3 ' £ 5 }.

Extend TS to a functor by defining it to act on morphisms of trees as follows: Let / : 5 —• U be a tree

morphism. Define (TS f) : TS5 -> TSC/ by taking

R e m a r k . Notice that TS would not have extended to a functor, in the above definition, if we had taken A
instead of E as the events. The reason: In the category Tr morphisms respect only the node-arc structure,
and not the event sets, which are respected by the more discriminating morphisms in T r a n .

Not only can trees be viewed as transition systems, but also transition systems can be unfolded to trees.
This is well known. The unfolding is determined by the categorical set-up. It is characterised to within
isomorphism as the right adjoint to the obvious functor TS taking trees to transition systems—see [AM] or
fMacj. In other words, given a transition system its unfolding is cofree over it with respect to TS the natural
identification of trees with a form of transition system.

8.14 Definition. Let (5 , i ,A, Tran) be a transition system. Define its unfolding U(S,i,A, Tran) to be the

tree

{ < a 0 , a i , . . . , a n - i > | 3 3 0 , 3IY..., 3N £ 5 . 30 = i & VJF < n. (aj} ay, .sy+i) £ Tran).

Define the folding morphism <j> = (<£s-,<£#) TS ¿/((5,1,A, Tran)) —• (5, i,A, Tran) by taking </>IJ;(U,a) =

a on events and defining <j>s by induction as follows:

<+>s{<>) = * and <£s(u < a >) = a

where 3 is the unique state such that (<f>s(u)y a, 3) £ Tran.

Thus folds a state < ao, a i , . . . , a n _ i > in the unfolding to the state sn where ¿0 , ¿ 1 , . . £ n £ 5 is

the unique sequence of states such that 3Q = i' &, Wj < n. (sjy aj,33+i) £ Tran.
8.15 Theo rem. Let (5 , i , A, Tran) be a transition system. Then 1/(5, i, A, Tran) is a synchronisation tree and

defined above is a morphism of transition systems. In fact, U(Syi,A, Tran), (j) is cofree over (5 , z, A, Tran)
with respect to the functor TS i.e. for any morphism f : TSV (Syi,A, Tran) with V a tree, there is a
unique morphism g : V —• £/(5, i,A, Tran) in Tr such that / = 4>(TSg):

U($ ¿5. / < ^ .ô i lA.fr^)

Consequently, U extends to a right adjoint of TS.

Proof. Let V be a tree and / : TSV —*• (S,i,A, Tran) be a morphism of transition systems.

V

Define g : V —* U(S,i,A, Tran) by induction as follows:

g{<>)=<>,

g(v < b >) = (K f E (v ' 6) > lf f ^ V ' h) ^ **
\g(v) otherwise.

Clearly g is a morphism of trees. We require <j> o (TSg) — f and of course this follows if we can show
(0 o (TSg))s = fs and (<t> o (TStf))* = / E -

We first show (q> o (TSg))s = / 5 . We show </>s o g(v) = fs(v) by induction on v E V. Obviously
<!>s 0 ! ? (< >) = / 5 (0) establishing the basis of the induction.

Now we show the inductive step, that (j>s o g(v < b >) = /s(v < 6 >) if the induction hypothesis
05 0 Q{V) — holds. From the definition of g there are two cases to consider, when /is(i>,6) 7^ * and
when /E{v, b) = *.

Assume /E(V, 6) 7^ *. From the definition of g we get < b >) = gf(v) < 6) > . From the
definition of 05 we obtain <f>s o < 6 >) = 3 where 3 is the unique state such that (<£s(<7(v)), 3) £
Tran. As / is a morphism of transition systems we must have (fs{v), / E (V I b), fs(v < b >)) E Tran too. The
induction hypothesis provides <j>s(y(v)) — fs(v)> Thus <f>s(g(v < 6 >)) = 3 = /s(u < 6 >) .

Now assume / 2 7 (1 » , 6) = *. The definition of g gives g(v < 6 >) = g(v). So </>s(o(v
 < 6 >)) =

</>s({7(v)) = /s('y) by induction. As / is a morphism fs[v) = /s(*> < b >) . Thus <j>s°g(v < b >) = / 5 (1 ; <
6 » .

This shows that (0 o (TStf))^ = / s - We now show (<j> o (TSg))E — !E> This is part of a more general
fact which also establishes the uniqueness of g\ a morphism of trees h : V —* ¡1(8, iy A, Tran) satisfies g's
recursive definition iff (<f> o (TSh))E = /E- More precisely we show:

Let h : V — U(S, i9A, Tran) be a morphism of trees. Then (<t> o (TSh))E = iff

fe(<>)=<>»
U jg(v)<fE(v,b)> itfB(v,b)^;
h(v < b >) = < .

I / 1 (1 ; J otherwise

for v G V and 6 an event of the tree V such that v < 6 > E V.

"if": Let u < 6 > E V. From the assumption and the definition of (TSII)E we obtain

(TSh)E(v, b) = i^' h*v> W if f ^ v > V ^ *

^* otherwise.

From the definition of 4>E we immediately have <f>E 0 (TSfe)#(t/, fc) = 6).

"only if": By the definition of 4>E and (TSII)E we have
<f>E°{TSh)E{v,b)= < v . ' w

1̂* otherwise.

But by assumption <f>E o (TS/i)#(t;, 6) = 6) which implies the result.

Clearly it now follows that (<j> o (TSg))^ = fE- So 0 o g = / . The uniqueness of g follows too. Assume
h:V -+ U(S,i,A, Tran) is a morphism such that <j>oh = / . Then (<f>o(TSh))E — IE- By a simple induction
using the above result with h(<>) = < > we obtain = for all v E V.

30

Th3 theorem is proved. i
Right adjoints have the pleasant property that they preserve limits, so in particular they preserve

products—see [AM] or [Mac]. This means that if we take the product of two transition systems and then
unfold them we obtain the same tree, to within isomorphism, as if we unfold them first and then take their
product in the category of trees. This is significant for us because we derive parallel compositions from
products by restricting the events. It will mean that we can define a parallel composition directly on labelled
transition systems and know that it unfolds to the parallel composition of the synchronisation trees which
are the unfoldings. In view of these facts the following example is not surprising.

8.16 Example . The transition system »\ unfolds to the tree: ^ \

The transition system (Jf^ unfolds to the tree

Their product

un
folds to the following tree which is isomorphic to the product (in Tr) of the two tree unfoldings:

Right adjoints preserve limits but they do not necessarily preserve colimits. And in fact the unfolding
functor U does not preserve coproducts as the following example shows.

8.17 Example . The coproduct of the transition systems ^

which unfolds to this tree:

But their two unfoldings have this coproduct in Tr :

< y
Now we label events by elements of a synchronisation algebra to specify how they interact with the

environment.

8.18 Definition. Let L be a synchronisation algebra. An L-labelled transition system is a 5-tuple
(5, i, A, Tran, I) where (S, i,A, Tran) is a transition system and / is a labelling function I : A —> L \ { *, 0 }.

Just as with trees we can restrict morphisms on transition systems in accord with labellings of the
transitions by elements of a synchronisation algebra.

8.19 Definition. Let L be a synchronisation algebra. Let (So,i0,Ao, Tran0,lo) and {Si,ii,Ai, Trani,l{)
be L-labelled transition systems. An L-raorphism from (So,iojAo, 7rano,/o) to (S\,ii,Ai, Trani,l{) is a
morphism of transition systems / : (So,i0,Ao, Tran0) —• (Si,ii,Ai, Trani) such that Zi/#(a) div l0(a) for all
a G A0.

The condition satisfied by L-morphisms of transition systems simply expresses that the label of the
image of an event must divide the label of the event.

8.20 Proposi t ion. Let L be a synchronisation algebra. Then L-labelled transition systems with L-
morphisms form a category with composition the pairwise composition of functions and identities pairs
of identity functions.

8.21 Definition. Let L be a synchronisation algebra. Let TRANj , be the category of labelled transition
systems.

Not surprisingly labelled transition systems unfold to labelled trees or synchronisation trees simply by
extending the unfolding operation to cope with labels. Similarly synchronisation trees can be viewed as sorts
of labelled transition systems by extending the operation TS.

8.22 Definition. Let L be a synchronisation algebra. Define the operation TS L • Tr^ -* TRANf, by
T S I . : (R , 0 - (T S R , /) .

Define the unfolding operation on labelled transition systems by taking 11 j , : (S,i, A, Tran, I) t-+ (T, /')
where T = U(Sji}A} Tran), and /' is / restricted to the events of T. (Not all events A necessarily appear in
branches of T.)

8.23 Proposi t ion. In fact TSL extends to a functor with respect to which UL gives the cofree object; thus
UL extends to a right adjoint of TSL*

Proof. This follows from theorem 8.15. B

Just as with synchronisation trees one can define operations on labelled transition systems and use these
to give a semantics to to a variety of parallel programming languages. The most interesting operation is
parallel composition which we obtain by restricting the transitions of the product of transition systems in
accord with their labelling.

32

8.24 Definition. Parallel composition of labelled t rans i t ion systems: Let L be a synchronisation
algebra. Let (5o,z'o,Ao, Tran0,lo) and (5i , i ' i ,Ai, TraniJi) be L -labelled transition systems. Define their
parallel composition (5o,z 0,Ao, TranoJo) {Si, ¿ 1 , Ai, Trari\,li) to be (5 , 2 , A ' , Tran , I) formed from the
product of transition systems as follows—we use the notation of definition 8.7:

(i) 5 is the states of their product with the same initial state t,
(ii) A F = {c £ AQ X * A I I loPo{c) • ^iPi(c) 7 ^ 0 } is a subset of events of the product,
(iii) labelled by / : A! —• L \ { *, 0 }; a lopo(c) • /i/9i(c),
(iv) with transitions Tran = 5 X A! X 5 PI Tran which are a subset of the transitions

Tran of the product.

Because the operation of unfolding preserves products and the parallel compositions of synchronisation
trees and labelled transition systems are restrictions determined in the same way from the labelling we obtain
the following reassuring fact:

8.25 Proposi t ion. Let L be a synchronisation algebra. The parallel composition of labelled transition
systems TQ and T\ unfolds to the parallel composition of the unfoldings:

UL(T0 0 Ti) = UL(T0) © №) •

8.26 Example . Let L be a synchronisation algebra with the following multiplication table:

• * a 0 T 0
* * a 0 0 0
a a 0 T 0 0
,8 0 r 0 0 0

The parallel composition of the labelled transition systems

and (3

is the appropriate restriction of the product in example 8.9 and takes the form:

By example 8.17 we know that the unfolding of a coproduct of transition systems is not necessarily
the coproduct of their unfoldings; we must look elsewhere for a definition of the sum of labelled transition
systems if we wish it to unfold correctly to the sum of the synchronisation-tree unfoldings. We can define
the Milner sum of two transition systems as follows:

8.27 Definition. Let (5o,*'o>A)> Trano) and (S i , u , A i , Irani) be transition systems. Define their Milner
sum {So,io,Ao, Trano) +M (5i,i 'i, Ai, Tran^ = (5 , 2 , A, Tran) by taking:

(i) 5 = {0} X So U {1} X Si U { (2 , (1 0 , 1 0) } ,
i = (2,(»o,*i)),
A = ({ 0 } X A 0) U ({ 1 } X Ai) and,

f 3 (3 , a, 3 ') G Tran0. t = ((0, a), (0, a), (0, 3 ')) or
| 3 (3 , a , 3 ') e Tranx.t = ((1, 3) , (1, a), (1, /)) or
I 3 (2 0 , a, 3) G Tran0.t = (t, (0, a), (0, 3)) or
{3(ii)a,s)e Trani.t = (i',(l,a), (1 , 3)) .

(ii)
(iii)

(iv) t G Tran <=> I

33

8.28 Example . The Milner sum of the transition systems \ and

is the transition system:

The Milner sum of two transition systems does unfold to the sum of the two unfoldings. Note too that
provided the transition systems have no loops back to the initial state their coproduct does unfold nicely.
Of course the same construction works if the transition systems are labelled. It is easy to define operations
on labelled transition systems which unfold to the remaining operations on synchronisation trees given in
section 6.

As presented, transition systems are still an interleaving model of concurrency because they allow the
occurrence of only one event at a time. One can however generalise transition systems to reflect concurrency.
For example one can view Petri nets as kinds of transition systems in which transitions are sets of concurrently
firing events—see e.g. [Bra]. The definition of morphism can be generalised to reflect this extra information
about concurrency while maintaining, in essence, the results of this section—see [W3].

9. P roof rules.

Naturally one wishes to use semantics to prove properties of programs. This can often be reduced to the
problem of whether or not two programs have equivalent behaviour with respect to some natural notion of
equivalence. Thus much work is involved with inventing natural equivalences and proof rules for them—see
e.g. [Ml], [B], [HN].

Consider the programming language Proc^for some synchronisation algebra L. There is an obvious
equivalence on closed terms of the language: Say two closed terms are equivalent iff they have isomorphic
denotations. (The idea extends to open terms; say two terms are equivalent if the closed terms obtained by
an arbitrary assignment of closed terms to free variables are always equivalent.)

9.1 Definition. Let L be a synchronisation algebra. Let i and t' be closed terms of Proc£,. Write

t~ f * iqP ie\P

for some arbitrary environment p.

We immediately know some properties of the equivalence. Firstly it really is an equivalence—is reflexive,
symmetric and transitive—because these properties hold for isomorphism, and then the commutativity and
associativity of sum -f- with respect to ~ follows directly from the properties of coproduct. Less immediate
are the commutativity and associativity of parallel composition but these facts follow easily from
the corresponding properties of product X of trees and • in the synchronisation algebra L. Because all
our operations preserve isomorphism—all but restriction are functors anyhow and functors must preserve
isomorphism—we know that the equivalence ~ is also a congruence with respect to the operations of Procx .

9.2 Proposi t ion . The equivalence — on closed terms of Proc^is a congruence with respect to the operations
lifting T »-> \T, sum +, restriction T H-> T\A, relabelling T H-> T[H] and parallel composition o fP roc^ .

Particular laws follow from particular properties of the synchronisation algebra L. One useful property,
when it is valid, is that of the distributivity of parallel composition over sum. This property holds for the
equivalence ~ precisely when the synchronisation algebra satisfies the synchronous law.

9.3 Proposi t ion . Let L be a synchronisation algebra. The following conditions are equivalent:
(i) L satisfies the synchronous law i.e. X • * = 0 for X an element of L \ {*},

34

(ii) NIL is a 0-zero i.e. NIL Q)t~- NIL for t an arbitrary closed term of P rocx ,

(iii) Parallel composition distributes over sum i.e. t 0 (u + v) ~ (t 0 u) + (t 0 v),
for arbitrary closed terms t,u,v ofProcjr,.

Proof.
(i) ^ (ii): If L is synchronous no events of the form (*,e) are allowed in the parallel composition so

NIL 0 t ~ NIL for any closed term t. Conversely if NIL 0 * ~ NIL for any closed term t then in

particular NIL \NIL ~ NIL and this isomorphism ensures **X = 0.

(i)=> (iii): The distribution of 0 over -f follows directly from the expansion rule of proposition 6.19.

(iii)=> (i): Suppose (iii) and that a * * = /? 7^ 0 for some a £ L \ { * }. Then /?ML — aiV/L 0 NIL ~

aJV/L 0 [NIL + MX) — (aNIL Q) NIL) + (aQ ML) — + flNIL. But this is impossible so a • * = 0

for a G L \ { * }, making L synchronous. B
Of course a semantics for a language of synchronising processes may well ensure that parallel composition

distributes over sum without the synchronisation algebra being synchronous. The above result only implies
that any abstract semantics which factors through our synchronisation tree semantics will satisfy the
distributivity. For example the synchronous calculi SCCS do because the equivalences in [M2] could be
based on synchronisation trees and the synchronisation algebras associated with monoids of actions are
synchronous—see lemma 8.18.

Now we present a sound and complete proof system for the non- recursive processes of Procj , .

9.4 Definition. Let L be a synchronisation algebra. Let the language Simp^consist of the following subset

of Proc£*.

t ::= NIL \ \t | t + t \ t\A \ t[E] | t 0 t

where X G L \ { *, 0 }, A C L \ { *, 0 } is closed under divC\div~l and 5 : L —> L is a strict homomorphism.
9.5 No ta t ion . We use the convention that

^ Xtat- = X03o H H \n-i*n-i

where n > 0 with the understanding that the sum represents NIL when n = 0. Our notation assumes the

associativity of -f, one of the rules below.

9.6 Definition. (Proof rules for S i m p L)
Let SytjUyV range over terms of Simp^.

1. Rules of equivalence. 3 — t 3 — t, t ~ u
3 — 3, 7 ,

t ~ 3 3 ~ u

3 ~ 3 2. Substitutivity.

op(s) ~ op(s')

w h e r e o P is an operation of lifting, restriction or relabelling.

35

whe.e op is the operation sum or parallel composition.
3. Divisor rules.

X* ~ \'t

when X, X' G L \ { *, 0 } and X div X' and X' div X.
4. Rules for restriction.

NIL\A ~ NIL, (s + t)\A ~ s\A + t\K

(\t)[A fX(tfA) ifXGA
{NIL i f X £ A

where À Ç L \ { * , 0 } i s closed under the relation divDdiv 1 and X G L \ { *, 0 }.
5. Rules for relabelling.

NIL\ß}~NIL, (Xt)[3] ~ 3(X)«, (« + i) '[3]~«[S] + t[S]

where 5 : L —• L is a strict homomorphism of L and X G L \ { *, 0 }.
6. Rules for sum.

s + NIL ~ s, 3 + t ~ £ + 3, s + (t + u) — (3 + t) + u.
7. Expansion rules for parallel composition.

i < N J < M

«©*- E (x«-•*)(«.•©*)+ E (x«)(•"'©«*)+ E (* » M I X « © * Y) '
X , » * = ^ 0 X ^ / I J T ^ O *«^ J 7 ±O

9.7 Theo rem. Let L be a synchronisation algebra. Let 3 and t be terms of S i m p L . They have isomorphic
denotations as synchronisation trees in Trj, iff they are provably equivalent according to the proof system
above.

Proof. Previous results ensure that the rules are sound. The above rules are sufficient to convert any term
of S i m p L t o one of the normal form Yli<n^*si m

 w n i c h each 3{ is itself of normal form. The normal
form corresponds in an obvious way to a synchronisation tree. The isomorphism of two denotations is then
provable by inductively using the divisor rule. |

In the case where the synchronisation algebra is synchronous the expansion rules above can be replaced
by simpler rules expressing the commutativity and associativity of parallel composition and rules as in
proposition 9.3 which say NIL is a (^-zero and that parallel composition distributes over sum. More
precisely the expansion rules can be replaced by the rules:

NIL(7)t~ NIL, .3 Q * ~ * Q s, (5 0 I) 0 U - 3 0 (T 0 U) ,

©(« + «) = (©«) + (*© v), (Xa) © fcrf) ~ • & © *) i f X * M f °>
{NIL otherwise.

Of course the above proof rules are rather limited; they only work for finite processes and for a somewhat
primitive notion of equivalence. Still many more abstract ideas of equivalence are or could be based on
synchronisation trees. Proof rules for the more abstract equivalences would have to imply the rules above. It
is even arguable that synchronisation trees give the basic interleaving semantics making indentifications of
processes which all other interleaving semantics should also make. The argument does not quite push home,
however, because of the phenomena of divergence. We explain the problem.

36

One technique for making a synchronisation-tree semantics more abstract is to identify a process with
the set of assertions it satisfies. The assertions may be in some fragment of modal logic and express the
possible or inevitable behaviour of a process. A recursively defined process is denoted by the least upper
bound of a chain of iterates obtained by repeated application of a continuous functional to the ^-process.
One would like that the set assertions satisfied by the recursively defined process is the union of those sets
of assertions true for the iterates. Unfortunately this is not the case for synchronisation trees when taking
modal assertions which express the inevitable behaviour of a process—see e.g. [IIM] and [UN]. Suppose one
iterate was the synchronisation tree £

We cannot say of the process that it is inevitably prepared to make an a-communication because some later
iterate could be \

A satisfaction relation defined between trees and assertions does not respect any approximation ordering
on trees. The problem is that trees alone do not carry enough structure to reflect where their growth is
complete and incomplete and without such extra knowledge we cannot be sure of any non-trivial assertions
about the inevitable behaviour of the process. Of course one can extend trees or transition systems by extra
structure to express those states which are incompletely defined, generally called ''divergent"—see [HP],[UN]
for example. I am not certain how the Work above generalises to trees or transition systems which take
account of divergence.

Although our approach ignores divergence there is a defence. Each closed program of Procj , is given
a denotation as a synchronisation tree. This tree faithfully represents the completed program and we can
consider those assertions which it satisfies and then take this set of assertions as its more abstract denotation.
As an example, the process P — recx.(ctNIL + x) is denoted by the infinitely branching tree

which according to one reasonable definition would satisfy an assertion saying that the process would
inevitably be prepared to make an a-communication. Contrast the situation in [HN] where, essentially,
they denote a process by the set of assertions it satisfies. Because in [HN] it is ensured that all the functions
in the dénotâtional semantics arc continuous they cannot attribute this inevitable behaviour to P. This is
not to say the equivalence in [HN] is wrong, just different.

Finally, I hope that the relation between parallel composition and product will be useful in proving
properties of processes with synchronised communication. It is certainly useful in proving relations between
semantics in the different categories of Petri nets [W3], event structures [Wl,2], trees and transition systems.
But also, I hope that the projection functions will be useful in formalising the practice of proving properties
of a parallel composition by projecting-down to the component processes, proving properties there and then
combining the properties to yield the required proof.

10. Rela ted work.

The paper and report [Wl, W2] show how the above results for trees hold in the more general framework
of event structures. Event structures are related to Petri nets in [NPW1, 2]. They exhibit the causal
independence and dependence of events and provide a basic model of parallel processes which does not
rely on interleaving. In [Wl,2] it is shown that they bear a smooth relation with trees; there is a natural
interleaving , or serialising, operation on event structures which essentially imposes an extra causal constraint
on the occurrence of events by ensuring events occur synchronised, in-step, with the ticks of a clock—it is
a synchronous product on event structures. Then one can for example prove easily that a noninterleaving

semantics for Proc/Jn terms of labelled event structures interleaves to the synchronisation tree semantics
we provide here. The recent paper [W3], on a new category of Petri nets, extends the work of [Wl,2] and
the work here. All the different categories are related by adjunctions so we can go quite far in translating
between the different modes of expression.

The categories here and those mentioned above might be criticised for being too concrete because they
distinguish too many processes. For example S -f S is not generally isomorphic to S even though it is hard
to see a programming context in which they could be distinguished. Hopefully there are categories with
objects which reflect a more abstract notion of behaviour with pleasant relations to the ones here. In [UN] it
is shown how equivalence classes with respect to three natural equivalences on behaviour can be represented
by a form of labelled tree. In [LP] morphisms very like those here are defined on equivalence classes of trees
with respect to Milner's observational equivalence, which essentially treats r-labelled events as invisible.

And then there are relations with path expressions and trace languages ([CH], [LTS]). Obviously a
synchronisation tree determines a set of sequences of labels showing the possible communications. Only
recently I noticed that ideas very similar to that of the morphisms presented here are found in the literature
on languages of traces used to model concurrent processes—see [KGR].

In [M3] the finite delay property is -considered for a synchronous calculus with an Abelian group of
actions. The basic idea is to prune away disallowed infinite derivations from the labelled-transition-system
semantics. One can generalise synchronisation trees to reflect this in the unfolding. Take a generalised tree
to consist of finite and infinite sequences. Infinite sequences hang as limit points at the ends of u;-chains
of nodes. By not insisting that every ^-chain of nodes have a limit one specifies by their absence those
infinite derivations which are not permitted. In a way exactly analogous to the above one obtains a category
of generalised trees whose product, when labelled appropriately, is the parallel composition; it coincides
with the unfolding of the transition system given in [M3] with the correct infinite derivations removed. A
transition system semantics similar to Milner's is presented by Plotkin in [P3] to give an operational semantics
to constructs like a fair parallel operation. Interestingly in proving that the operational and denotational
semantics are equivalent Plotkin uses projection functions from the parallel composition to the component

processes.

As indicated in the previous section one can obtain more abstract semantics by "filtering-out" those
properties of interest for a specific problem. (See the work [HN] for a good example of this idea. Think of
a property as an assertion one might make about the behaviour of a program.) This begs two questions: Is
there a class of basic models from which all interesting properties can be extracted? What are the interesting
properties of concurrent programs? Petri nets and event structures are more basic models than trees because
they express much more about the causal relations between events. It is not yet clear however what interesting
class of assertions force one to use event structures or nets instead of trees.

Unfortunately trees, event structures and Petri nets are indifferent, as they stand, to notions of diver
gence as presented for example in [IIP] and [HN]. This means that a satisfaction relation defined between
trees or event structures and assertions about their inevitable behaviour cannot respect an approximation
ordering on trees or event structures. In order to capture divergence in event structures one needs somehow
to extend their structure to include local places of growth, just as how, with trees sometimes _L is put at the
leaf-nodes to show how they may extend in the approximation ordering. At first glance this idea is very like
that of places in concrete data structures—see [KP], [BC], [W].

38

Appendix The proof of theorem 4.13.

T h e o r e m . Let A and B be synchronisation algebras. The construction A X B, hA, hB is a categorical
product of A and B in SA. The construction A(g)B, h!A, h!B is a categorical product of A and B in the
subcategory with strict homomorphisms.

Proof. Let A = (LAY * A , *AY 0A) and B = (LB, •B, *B, OB) be synchronisation algebras.

We first show A X By hAl hB is a product in the category SA. We use the notation of 4.11.

We make sure A X B is an S.A.: It is obvious that • is commutative. The following steps show • is
associative:

\(a,f3).(a' .a",?' . p»

= <

if a' • a" = 0A or ,3' • /3" = 0#,
otherwise
if a ' o a" = 0 A or p • /3" = 0B,
if a • a ' • a" = 0A or 0 •/3' • /?" = 0 B ,

((a • a' • a", / ? • / ? ' • /3") otherwise
_ TO if a ma'ma" = 0 A or/3 • / ? ' • / 3 " = 0 B ,
~~ \ (Q : • a ' 9 a", (3 • ¡3' • /?") otherwise
= ((a , / ?) . K ^)) * K , / J ' y) .

Clearly L \ {*,0} 7^ 0; by definition (0 A , 0e) 9 i^,P) — (0 a , 0 B) ; by definition *«* — (* A «* A , *B**B) = *
while (a,/?) • (a',/?') => a * af = *A & Q • /3 ' = *B => & = ot! = * A & 5 = ¡3' = so * is the unique
divisor of *.

We check that the projections hA and HB are homomorphisms. Suppose (ay P) • (a', /?') 7^ 0. Then
(a,/?)«(a',/?') == (a . a ' , where a o a ' ^ 0 A and /?•/?' 7^ 0 B . Thus hA((a, ¡3) • (a', /3')) = fcA(a
/9') = a • a' = fcA((a, p)) o hA((a', P')). Also hA(a, /3) = 0 A a = 0 A «=> a — 0 A & /9 == 0B for (a, /5) e
Aiid /iA(*j = hA(*A. *B), which shows that hA is a homomorphism. Similarly HB is a homomorphism.

Assume in there are homomorphisms f A : C —• A and f B - C —> B for a synchronisation algebra
C = (Lc) #c> *c>0c)- In order order to show A X B, hA) KB is a product we require there exists a unique
/ : C —* A X B making the following diagram commute:

Ax ,
* ^ y

Define /(c) == (fA(c), / 5 (c)) . Clearly provided / is a homomorphism it is the unique one such that
the above diagram commutes. If c £ LQ then either c = Q c & /(c) = (/ A(c), /#(c)) = 0 or c 7^ 0 &
/ A (C) 7 ^ 0 A & / B (C) 7^ O B so /(c) E L Y making / a function L A We now argue that / is also a
homomorphism. Suppose c . cf ^ 0. Then / (c • c') = (/ A (c • c')y (/*(c • c')) = (/ A (c) . / A (c ') , (/ B (c) • fB(c'))

where / A (c) • / A (c ') 7^ 0 A and //?(c) • !BW) 7 ^ 0 B as / a and / # are homomorphisms. Therefore f(c • c') =
ifA{c),fB(c)) • (/ A (C ') , / B (C O) = f(c) a /(c ') . We have /(c) = 0 ^ / A (c) = 0 A & / B (c) - 0^ ^ c = 0 C .
Also / (*c) = {/A{*A), /B{*B)) = (* A , * B) . And so / is a homomorphism, as required for A X J5, h A) h s to
be a product in SA.

The verification that A ® ^ A , is a product in the subcategory is so similar that we omit it; one
simply checks that the constructions stay inside the subcategory. 0

39

Acknowledgements

Thanks are due to Mogens Nielsen of the Computer Science Department, Aarhus University, Denmark
for encouragement and many helpful discussions. This work was supported in part by a postdoctoral
fellowship from the Royal Society of Great Britain, to work at Aarhus, and in part by funds from the
Computer Science Department of Carnegie-Mellon University, and by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under
Contract F33615-81-K-1539. The views and conclusions contained in it are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

40

References

[AM] Arbib, M.A.,and Manes,E.G., Arrows, Structures and Functors, The categorical imperative. Academic Press (1975).

[B] Brookes, S.D., On the relationship of CCS and CSP, ICALP 1983.

[BC] Berry, G. and Curien, P.L., Sequential algorithms on concrete data types, Report of Ecole Nationale
Supérieure des Mines de Paris, Centre de Mathématiques Appliquées, Sophia Antipolis (1981).

[Bra] Brauer, W.(Ed.), Net Theory and Applications, Springer-Verlag Lecture Notes in Comp. Sei., vol.84 (1980).

[CES] Clarke, E.M., Emerson, E.A., Sistla, A.P., Automatic Verification of Finite State Concurrent
Systems using Temporal Logic Specifications: A Practical Approach, to appear in Proceedings, I0TFL ACM
Conference on Principles of Programming Languages (1983)

[CII] Campbell, R. H.,and Habermann, A. N.„ The Specification of Process Synchronisation by Path
Expressions. Springer-Verlag Lecture Notes in Comp. Sc. Vol.16 (1974).

[CP] Cardelli, L., and Plotkin, G., An Algebraic Approach to VLSI design. In VLSI 81, Academic Press (1981).

[Grä] Gratzer, G., Universal Algebra. Van Nostrand University series in Higher Mathematics (1968).

[HBR] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W., A Theory of Communicating Processes, Technical

Report PRG-16, Programming Research Group, University of Oxford (1981); to appear also in JACM.

[HM] Hennessy, M.C.B, and Milner, R., On observing nondeterminism and concurrency, Springer LNCS Vol. 85. (1979).

[UN] Hennessy, M.C.B., and de Nicola, R., Testing Equivalences for Processes, Internal Report, University of Edinburgh, (July 1982).

[IIP1] Hennessy, M.C.B, and Plotkin, G., A term model for CCS, Proceedings of the 9 t / l Conference on
Mathematical Foundations of Computer Science, Springer-Verlag LNCS Vol. 88. (1980)

[KP] Kahn, G., and Plotkin, G., Domaines Concrètes, Rapport IRIA-LABORIA, No.336 (1978).

[KGR] Knuth, E., Györy, Gy.,and Ronyai, L., A Study of the Projection Operation. Proc. of workshop
on Petri nets, Springer-Verlag Informatik-Fachberichte Vol. 52 (1982).

[LP] Labella, A., and Peterossi, A., Towards a Categorical Understanding of Parallelism. Report of
Istituto di Analisi dei Sistemi ed Informatica del C.N.R., Rome (1983).

[LTS] Lauer,P., Torrigiani, P.,and Shields, M., COSY, a system specification language based on paths
and processes. Acta Informatica 12 (1979).

[Mac] Maclane, S., Categories for the Working Mathematician. Graduate Texts in Mathematics,Springer-Verlag (1972).

[Ml] Milner, R., A Calculus of Communicating Systems. Springer-Verlag Lecture Notes in Comp. Sc. vol. 92 (1980).

41

[M2] Milner, It., On relating Synchrony and Asynchrony, Dept. of Comp. Sei. report, University of

Edinburgh (1980).

[M3] Milner, R., A finite delay operator in Synchronous CCS, Internal Report CSR-116-82, University

of Edinburgh (1982)

[Mi] Milne, G., Synchronised Behaviour Algebras; a model for interacting systems. Report of Comp.
Sc. Dept., University of Southern California (1979).

[NPW1] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and Domains. Proc. Conf.
on Semantics of Concurrent Computation, Evian, Springer-Verlag Lecture Notes in Comp. Sc. 70 (1979).

[NPW2] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and Domains, part 1 .
Theoretical Computer Science, vol. 13 (1981) pp.85-108.

[PI] Plotkin, G., A structural approach to operational semantics. DAIMI FN-19 Comp. Sc. Dept.,

Aarhus University (1981).

[P2] Plotkin, G., A Powerdomain for countable non-determinism, Springer-Verlag Lecture Notes in

Comp. Sc. 140 (1982).

[S] Scott, D., Domains for Denotational Semantics, Springer-Verlag Lecture Notes in Comp. Sc. 140

(1982).

[W] Winskel, G., Events in Computation. Ph.D. thesis, University of Edinburgh (1980).

[Wlj Winskel, G., Event structure semantics of CCS and related languages, Springer-Verlag Lecture

Notes in Comp. Sc. 140 (1982).

[Wr2] Winskel, G., Event structure semantics of CCS and related languages, Report of the Computer
Sc. Dept., University of Aarhus, Denmark (1982).

[W3] Winskel, G., A New Definition of Morphism on Petri Nets. To be submitted (1983).

42

