NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-139

SYNCIHRONISATION TREES

Glynn Winskel
Computer Seicnee Department
Carnegie-Mclion University
Pittsburgh, Pa.

June 1933

A version of this paper is to be published in a special ICALP 83 version of the journal “Theoretical

Computer Science”,

The resear¢h reported in this paper was supported in part by funds fromn the Computer Scieace
Department of Carnegic-Mellon Uuniversity, and by the Defense Advanced Rescarch Projects Ageney {DOD),
ARPA Order No. 3597, monitored by the Air Force Avionica Laberatory under Conteact F33515-81-K-
1539. The views and conclusions contained in it are those of the aunthor and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advunced Pesearch Projects

Agency or the US Government.

SYNCHRONISATION TREES

by
Glynn Winskel
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Penusylvania 15213

Abstract.

Synchronisation trees are a concrete underlying model for much of the work on concurrency. They are
trees with labelled ares; the nodes represent states, the ares occurrences of events and their labels hiow the
events can synchronise with other events in the environment. The many different ways in whicli events are
allowed to synchronise are captured abstractly by the concepl of a synchronisation algebra. It says which
pairs of labelled events can combine to form an event of synchronisation and what label the synchronisation
event carries. Synchronisation trees are trees with ares labelled by elements of 2 synchronisation algebra. Qur
approach is based on a natural definition of morphism of trees which essenlially expresses how the occurrence
of events in in one process imply the synchronised occurrence of cvents in another, Well- known operatioas
on trees arise as categorical constructions. For example a sum construction is a coproduct on synchronisation
trees while many familiar parallel compositions of synchronisation trees are restrictions of the product in the
underlying category of lrees. The ronstructions are continuous with respect to a natural complete partial
order sbrueture on trees so one obtnins denotational semantics as synchronisation trees to a wide range of
parallel programming languages, baseé on the constructions with recursion, in a routine manner 1')y varying
the synchronisation algebra. Isomorphism of synchronisation trees induces a basic congruence on terms of
the language. We present a complete proof system for the congruence restricted to non-recursive terms. The
calegories of trees are gencralised to categorics of transition systems. The pleasant categorical set--up ‘which
exists hetween the categories of trees and transition systerns makes possible a smooth iransiation between
operational semantics expressed in terms of transition systems and denotational semantics expressed in terms
of trees.

0. Introduction.

We present a collection of categories of labelled trees useful in giving denotational semantics to parallel
programming languages such as Milner’s “Caleulus of communicating Systems” , CCS [M1], his synchronous
CCS, called SCCS [M2], and languages derived from Hoare’s CSP as presented in [HBR] and [B]. Enough
results are given to provide denotational semantics to any of the languages in {M1, M2, HBR| though at the
rather basic level of Inbelled trees—-called synchronisation trees in M1}

Synchronisation trees are a basic, very concrete, interleaving model of parallel computation in which
processes communicate by mutual synchronisation. A synchronisation tree is a tree in which the nodes
represent states and the arcs represent event occurrences, labelled to show how they synchronise with
events in the environment. Tree semantics arise naturally once concurrency is simulated by nondeterministic
interleaving and for this reason synchronisation—tree semanties underlie much of the work on the semantics
of synchronising processes. For example in [M1] it is made clear how every equivalence on CCS programs
presented there factors through a synchronisation-tree semantics while [B] shows a similar result for the
failure-set semantics in [IIBR].

In order to cover a wide range of synchronisation disciplines between synchronising processes we express
synchronisation disciplines between processes as synchronisation algebras. They are algebras on sets of

1

labels which specily how pairs of labelled events combine to farm a synchronisation event and what labels
such combinations carry. They also specily what labelled cvents can occur asynchronously. The parallel
composition is derived from a product in a category of trees; essentially one resiriets the product of trecs to
those synchronised evenls allowed by the synchronisation algebra. By varying the synchronisation algebra
we obtain many forms of parallel composition in the lilerature. Other useful operations are defined on
synchronisation trees. They are all continuous with respect to a natural complete partial order of trees and
so can be used to give denotations to proccsses defined recursively in terms of them by using least-fixed
points- -the standard tool of Scott-Strachey scmantics.

The denotational semantics is related to operational semantics expressed in terms of labelled transition
systems used in most of the work on CCS. In this framework recursion is often handled by introducing
loops inlo the chains of state-to-stale transitions. We define a category of transition systems whose product
unfolds to the product of trces. Consequently one can define a parallel composition of labelled transition
systems which unfolds to parallel composition of trees. Again this is so for a wide variety of synchronisation
discipiines obtained by varying the synchronisation algebra.

There is a natural notion of equivalence on processes; two processes are equivalent if they are represented
by isomorphic synchronisation trees. A complete sct of proof rules are provided for this equivalence on a
language of finite processes. Of course these rules will still be valid for any more abstract equivalence based
on synchronisation trees. Unfortunately we do not consider proof rules for infinite processes or the important
phenomenon of divergence (see e.g. [HN],[IIP]). -

Many of the results below follow from the paper and report W1, W2| which however concentrated
on showing how to use a broader framework of event structures ([NPW1,2, W, W1| to give denotational
sernantics languages ol synchronising processes like CCS. Event structures which include trees are closaly
related to Petri nets, reflect concurrency nasurally and are not committed to interleaving. In [WI,W2] it is
proved that by interleaving {or serialising) the labelled event structure denotation of a process one obtaing its
synchronisation-tree denotation. The papers [W1,W2,W3] provide a precise sense in which cvent structure
models and Petri net models of cornmunicating processes specialise down to an interleaving model based on
synchronisation trees. In the special case of purely synchronous processes (for which the synchronisation
algebra satisfies the synchronous law below) the event structure and tree semantics agree.

1. A category of trees.

Assume in any finite history a process can perform a sequence of events. Because a process need not be
deterministic, such 2 sequence need not be extended in a unique way, but rather form a tree of sequences.

1.1 Definition. A tree is subset T C A" of finite sequences of some set A which satisfies
(i), <>€T and,
(i) < ag,81,...8n,... >ET =< agp,64,...0n €T,

Remark. Condition (i) says a tree must always contain the null sequence < >, the root node. Condition (i)
says a tree is closed under the initial subsequence relation. To make the ideas as familiar as possible I have
taken a different definition of trees from that given in [W1,W2]. However impartantly all the categories here
will be equivalent to the categories of the same name introduced in [W1,W2]. (T wo categories are cquivalent
il their skeletal categories of isomorphism classes are isomorphic-see [Mac|.)

1.2 Notation. Let T be a trec with T C A’ We say T is over A iff every element of A is in some sequence
of T. We shall often call elements of A events.

The following convention is very useful to avoid treating the null scqucnce‘< > as a spectal case. Often
we shall write a typical sequence a3 < ag,ay,...,a,-; > where n is an integer representing the length of
the scquence. We shall allow the length n to be 0 when by convention we agree that the above sequence
represents <>,

lict s be a sequence < ap,a1,...,an_; > and ¢ be a sequence < ba, b1, . bm—1 >. Write their
concatenation as

=< ap,q1,-.Qn--1, 00,01, ., 01 > .

Let T be a tree. Let b be an element. By 6T we mean the tree
r={<>}u{t|teT}.
Let T be a tree. For t,t' € T write
t—rt By dal =t <a>.

When we wish to highlight that an arc is associated with a particular cvent we draw the event above the
arrow so:
t- Lt @t =t<a>.

Clearly the elements T correspond to the nodes of a tree T while arcs correspond to pairs (¢, #) where
t — ¢’. The nodes arc thought of as states of a process and the ares as oceurrences of events. A morphism
from a tree S to a tree 7" shows the way in which the occurrence of an event of the process § impliea the
synchronised occurrence of an event in the process T'. Formally it is 2 map on nodes which preserves the
root-node and either preserves or collapses ares. A special kind of morphism are Lthe synchronous morphisms
which always preserve arcs,

1.3 Definition. A morphism of trees from § to T is a map f : § — T such that
() fA<>)=<> and,
(i) s —s5 o = f(s)= f(s)or F{s) —r f(5).
A synchronous morphism of trees from S to 7' is a map f: 8§ - T such that
i) f(<>)=<> and,
(it) s —s s = fls) —7 f(s).

Let f : § — T be a morphism of trees. Assume s —g &' in S, representing the occurrence of an
event a of § so that s’ = 3 < a >. If f(s) — ¢ f(s') there is an event b such that &)= fls) < b >.
Intuitively the oecurrence of the event a implies the occurrence of the event b, synchronised with that of
a. If instead f(s) = Jf(s') then the occurrence of a is not synchronised with an event occurrence in T. The
latter possibility is disallowed for synchronous morphisms. We shall sce that morphisms and synchronous
morphisins give rise to a product and synchronous product of trees. Events of the products will essentially
be pairs of events of the two trees, representing events of synchronisation between two processes. Their
cccurrence will project via tree morphisms to occurrences of component events in the constituent processes.

1.4 Proposition. Trees with tree morphisms form a category with composition and identities those usual
for functions. Similarly trees with synchronous morphisms form a subcategory.

1.5 Definition. Let Tr be the category of trees with tree morphisms. Let Tr,,, be the subcategory of
trees with synchronous morphismas.

Remark. The above categories are equivalent but not equal to the categories of the same name in (W1,w2l.

3

2. Categorical constructions on trees.

Some major categorical constructions on Tr and Tr,yn are presented. The basic category theory used

can be found in [AM] or [Mac].

2.1 Definition. (Coproducts in Tr and Tr.yn)
Lei S and T be trees. Define

5+T = {< (0,0,0),.. .,(O,Cln.-l) >l< ag,.- 0n_1 >E€ S} LJ { < (1,bﬂ), ...,(1,6,-,__1) >l< bg,...,

Define the obvious injections 49 : § = S+ T and &3 : T - S+ T by

B0t gy On-1 > =< (0,a0),.. (0,801} >
T:]_ 4 bO)---;bn-—l > =< (l,bg),...,(l,bn_l) >

The coproduct construction just “glues” trees together at their roots, so:

<Y

ba1 >€ T}

2.9 Theorem. The construction § + T,iq,4; above is a coproduct of S and T in the categories Tr and

.,
Trayn -

Proof, Clearty §+ T isatrecand 7g: § — §+ T and ¢; : T — § + T are synchronous moiphisms. In order
for §+ T, io, i1 to be a coproduct in Tr we require that for ar bitrary morphisms jo : § — U and 53 : T -~ U

to a tree U there is a unique morphism j : § + T — U such that the following diagram commutes:

”*'/’l\
\/

This is clearly the case for 7 defined by:

J(’U] — {JO(< ap; .- -3 3n—1 >) ifv=< (0, (LQ), .. -,(0, a’ﬂ--l) e
_]1(< bg, - . Y >) ifovo=< (1;b0)1 e 'J(]‘!bﬂ—l) >,

If j5, 71 are synchronous so is j. Consequently § 4 T, g, i1 is a coproduct in Treyn

2.3 Definition. {General coproducts)
Let { Ti | i € I} be an indexed set of trees. Define their coproduct by

ZT—U{< (3,80), - - o (£ @n—) >< ag, .. 8nmt >eT: }.

1134 et

Define the obvious injections in; : Ty — 357 Ty by ini(< agy.- 0 ln-1 >) =

1€ 1.

When the indexed set T is null we understand 3., Tc = 5_ 9" to be the null tree {<>}

4 -

(i, ap—1) > for

2.4 Theorem. The construction 2icrTey ing for i € I, above forms a coproduct of {1y)i € 1} in the
categories Tr and Tr,y, .

Proof. The proofl is very similar to that of theorem 22. g

It is easier to define the product of trees in the category Tr,y, than the product in Tr . We call the
product in Tr,,, the synchronous product. The synchronous product of two trees basically “zips” their
scquences together.

2.9 Delluition. (Synchronous product in the category Tr,,,)
Let § and T be trees. Define their synchronous product by

S®T = {< (a‘O!bD)J (al:bl)r"'!(a’"—llbﬂ—l) >]< 20,y .- ln oy >E 5 &< bo, by, ..., bp_ | >€ T}
Define projections my : S@ T — § and =, S@T - T by

o < (GOst);---s(an—l) bn-—l) > =< @0, ... Apn—1 >,
Ty (aﬂrbﬂ)"'-r(aﬂ—libﬂﬁl) > bﬂ)"'!bﬂ—l > .

2.6 Theorem. The construction § R T,mg, 1, above is a product of S and T in the category Tr,,,. .

Preof. Clearly S& T is a tree and ST — § and =y ; S@T — T are synchronous morphisms.
For §@ T, mp, 71 to be a product in Tr,,, we require the property: For arbitrary synchronous morphisms
Jo:U - Sand f; : U — T Irom a tree I/ there 18 2 unique svnchronous morphism S:U - S@T making

S®T.
Fron 'ﬁ"
o ¢ _T

R'\
N7

Because fq, fy are synchronous, for u € U the sequences fo(u) and fi(u) have the same length. Thus
we can define

the following diagram commute:

f(") =< (GO, bo): ‘- ')(aﬂ-—lj bn—l) >

where fo{u) =< ap,...,2,_; > and Hluy =< by, .. by >. Obviously f: U — S@ T is a synchronous
morphism making the above diagram comunute, and clearly it is the unique morphism doing so.

2.7 Example.

<R bci)>
. <C L.I-> \(a?(-‘)) L 4
<&, b> .

I I __

< o> ® < Ly 7 <f?’—> - <“CCL, C)) <<Qu ‘:)>

N I

@ <2

Or, labelling arcs by the events they are associated with we obtain:

} A (b.d)

@, ¢) {a,e)

o Dy <

For example
7o(< (a,¢),(b,d) >} =< a,b >

T (< (a,¢),(b,d) >) =< ¢,d >
Notice how projections “unzip” sequences of pairs in the synchronous product. Clearly we have the following
synchronous product

A Q fze

I

T (L e)

so projections need not be onto-—consider the projection my 1< (a,€) >+< a >.

2.8 Notation. To give an explicit construction of a product in the category Tr we use partial functions.
Represent undefined by the symbol * and regard a partial function from A to B as a total function from A
to BU {*}. Write a partial function, represented by 8 : A — B U {*}, as 8 : A —, B—we shall always
assume * & B for such functions. Compose partial functions as follows: Let 8 : A —, B and $: B —,C.
Define their composition ¢8 : A —, C to be

ota) = {AOe) L0 £ -,

otherwise.

Denote by Set.the category of sets (not containing *) with partial functions as morphisms. Now Set, itself
has a useful product. The product in Set,of two sets A and B is given by

AX.B={(a,+}[ac A} U{(a,t)}ac A&be B} U {(+,b)|beE B}

with projections py: A X, B — A4 and py : A X. B — B given by pilzg,T1) = z; for i =0, 1.
We wish to extend a partial function 6 : A —, B on scts to a function §: A — B* on sequences. So by
induction on the length of sequences, we define

<> if 0(a) = »

f € A,
< Ha) > otherwise ora

(<>)=<> and ¥ <a >)={

O(st) = (B(a))(0(t)) for s,t € A"

Now we define the product in Tr .

2.9 Definition. (Product in the category Tr)
Let S and T be trees. Assume § is over A and T is over 3. Define § X 7' ‘o consist of sequences over
A X. B which project via extensions of pg: A X, B —. Aand p; : A X, B —, B to sequences in § and T
as follows:
uESXTewue(AX,B) &pg(u) €5 &au)eT.

Define projections g : § X T'— S and 7y : § X T — T by taking mo{u) = pg(n) and m;{x} = 57{u) for
ueES XT.

2.10 Theorem. The construction § X T, mg, m, above is a product in the category Tr

Proof. Clearly SX Tisatreeand 7y : S X T — S and ny : § X T — 7T are morphisms. Assume fg: U = §
and fy : U — T are morphisms from a tree U. We require that there is a unique morphism f: U - § X T
making the following diagram commute:

C5x T -
-;; /N "’d___
'\;f o

LL

Define f(u} by induction on u:

fl{u) if folu < e>j= folu) and fi(v < e >) = f((u)
flu<e>)= j(u] < (g, *.) > if folu <e>)= folu) < a > and fi(n < e>)= fi(u)
- [(u) << (%, 0) > if folu<e>)= folu)and fillu < e>)= fi{lu) < b >
flu) < (a,b) > ffolu<e>)= folu) <a>and filu < e >)= fi{u) < b >.

A simple induction on u shows that 7;f{u) = f;{) for j = 0,1. Obviously f: U - § X Tisa morphism.
Assume h : U — 5 X T is another morphism making the diagram commute. Another simple induction on
sequences u shows f{u) = h(u), establishing the uniqueness of f. Consequently § X T, mg, 7y is a product
in the category Tr. R)

2.11 Example. We show the product of two simple trees. We label arcs by their associated events.

A X ' ¢ =
1a,r ,

<>

<>

The projections mg, 7; act for example so that
My 1< (*:c);(ar *)1(b:*] > =< ab>
i< (¢, e),(a, %), (B, %) > < e >
7

Notice how the projections “unzip” sequences of pairs of events with . Dy introducing * wc allow the
possibility of asynchrony; events in the product of two trees are not forced to occur in step if they are to
oceur at all. Contrast the synchronous product.

In the categories Tr and Tr,y, there are pleasing relations between product and coproduct. This result
indicates the relation between the parallel composilions of synchronisation trees (in e.g. [M1, B]} and the
product of trees.

2.12 Theorem. Let S and T be trees. Then

S=1JaS = Y oS and T=|JbTy =) bT

acA 4cA 1P 1] beB

for some sets of events A and I3 and trees 8, and Ty indexed by a € A and b € B respectively. We have the
following characterisation of the product of § and T:

§XT=|J(a*)8% xTu U (@S xThu UG0S X T

a€A seAbBEDR e
= (@S Xx T+ 3 (a,8)8a X Ty + D (%,5)S X T;
acA ' ac AbDCH beB

and the following characterisation of their synchronous product:

SQT= U @us.@n= > (a,8)8: @) Te.

a= A,bB aEAbEB

Proof.

Clearly the tree § = |J, .25, where §; = {t|[<a>t€ S} for some subset A of events. As the
sets aS, are disjoint, § = Y ., a$,. Similarly the tree T = Usen dTs == 20,cp 0T, for some subset B of
events.

Let u be a sequence of events of the pfoduct. which project via partial functions pg, p1 to events of §
and T—we use the notation of definition 2.9. We have

vESXTeoplu)eS&p(u}eT
< (a,%) > o fora € A& po(v') € Sa & Pr(W)ET or
e u=1<(ab > forac A&be B&py(v) € Sy & pr(w') €Ty or
< (*,b) > o forbe B& po(w)e S & p(v) €Ty

This gives the above characterisation of the product. The characterisation of the synchronous product
follows similarly. @

We define an operation of restriction in the next section. The synchroncus product is a restriction of
the product to those events with no undefined component (i.e. a componcent *). Parallel compositions will be
defined as a restriction of the product. In fact the parallel composition of synchronisation trees appropriate
to Milner’s synchronous calculi will be a restriction of the synchronous product &.

3. Complete partial orders of trees.

Woe consider two natural complete partial orderings on trees. One is based on the idea of restricting
a tree to a subsel of events—an cperation natural in itsell—and the other is just inclusion of trees. Our
operations on trees will be continuons with respect to both orderings so we shall be able to define trees
recursively following now standard lines—see e.g. [§]—by taking least fixed-points in cither of the two cpo's.

3.1 Definition. (Restriction) Let T be a tree. Let B be a set. Deline the restriction of T to B, written
T[B, by
teET[BotcT&te B .

In other words the restriction of a tree to a subset of events is just the sublree consisting of sequences
in T for which all elements are in 3. Resiriction induces a partial order on trees; one tree is below another
il it is a restriction ol the other. This ordering makces a complete partial order (c.p.o.) of trees, apart from
the fact that trees form a class and not a set. Of course there is another natural c.p.o. of trees induced by
simple inclusion. Ali the above operalions on trees dre continuous with respect to the two c.p.o. structures.

3.2 Definition. Let S and T be trees over A and B respectively. Define

ST ACBE&ES=T[A

3.3 LLemma. Let 5 and T be trees over the same set of events. If §<71 then § = T. -
Proof. Assume § and T zre both over the set of events A. Then T=T N A" =§. g

3.4 Theorem.
(i) The relation < is a partial order with least element the null tree, { <> }. Let o<1 <--- < T <+
be ainr w-chain of trees. Then it has a icast upper bound |, .., Ta.

(i) The null tree { <>} is the C-least tree t.e. for all treecs T, { <>} C T. Let Ty, C T, C --- C
Tn, C -+ be an w-chain of trees. Then it has a least upper bound | J T,

nEw TN
Proof. (i) Obviously S<S for any tree § so < is reflexive. If §S<T<S then § C T C §s0 < is
antisymnmetric. If S<T<U, where §, T, U are trees over A, B, C respectively, then S=Tn A" =Un

B'NA"=UnNA"so §<U, making < transitive. Thus < is a pariixl order.
Clearly { <> }<T, for all trees T.
Let To<T, <.--<T,<{--- be an w-chain of trees T, with T, over events A,. Thenas Ta C T3 C --- C

Tn € -+ we obtain that T = |J T, is a tree over A = |}
upper bound of each 77,.

1.. By the following argument T is an

new nEw ¢

Suppose t € TN A, . Then ¢ € T, for some m>n. As T, <T,, we must have t € T,,. Thus T,,<T for
every n, so T is an upper bound of { T}, | n € w}. Now we show that T is the least upper bound. Suppose
T <U for all n with U a tree. Clearly T CU. fu € U N A" then u & A, for some n. [lence as T.<U
we have u € T,. So u € T too. This makes T<U and so T is the least upper bound of {7, | » € w } with
respect to <. :

The remaining part, (ii), is obvious. |

3.5 Definition.

Say a unary operalion operation op on trees is <-{ respectively C-) monotonic il S<T = op(5)<op(T)
(respectively § C T = op(S) C op(T)).

Say a unary operation operation op on trees is <-{ respectively C-) continuous iff it is <-(respectively
C-} monoionic and preserves least upper bounds of w-chains of trees t.e. if To<Ty- - -Tp <+« (respectively
To C Ty---Tn C ---} is an w-chain of trees then op{l),, -, Tn) = U, 0P(Tn)-

If op is an n--ary operation on trees, say it is < -(respectively C-) monotonic iff it is monotenic in each
argument scparaicly. If op is an n-ary operation on trees, say it is <-(respectively C-} continuous ilf it is
continuous in each argument separately.

The next lemma provides useful necessary and sufficient conditions for an operation to be <-continuous;
the operation should be <-monotonic and act continuously on the sets of events associated with trees, where
the sets of events are ordered by inclusion.

3.6 Lemma. Let op be a unary operation on trees. The operation op is <-continuous iff
(i) the operation op is monotonic, and
(i) ifFTo<Ti - Tw<---is aw-chain of trees then the cvents of op(|J
in the events of |J,,, op{Tn)-

T,) are included

ncw

Proof.
“-=" Obvious.

“=" Suppose (i} and (ii) above. Let Tp<T) <. --<7T,, < - be a chain of trees such that each tree Ty, is
over cvents A,. The chain has tub |, Tn. By monotonicity 1), ., op(Tn)is a tree and U,, -, op(Tn) < 0p{lnz,, Tn)-
From (ii) we know the trees J, ., 02(T,) and op(U),,., T.) are over the same set of events. Thus by the
above lemnma they are cqual. @

3.7 Theorem. FEuch operation T — bT, T — T[B, +,), X, for an arbitrary elerent b and set B,
is <-continuous and C -continuyous. The operation of restriction is cortinunus on scts of events ordered
by inclusion i.e. if T is a tree and if By C -+ C B, C -+ is an w-chain of sets then T{({J, ., Ba) =

Unew(T[Ba)-

Proof. The continuity of these operations with respect to < is best proved using lemma 3.8. Continuity
with respect to C is easier to show. We show only the continuity of X with respect to <. Assume §, s
and T are trees over A, A' and B respectively. Then § X T, §' X T are over events A X, B and A’ X, B.
Let po: A’ X B — A’ and p; : A’ X B — B be the partial [unctions projecting events in the product to their
component events in S’ and T respectively.

"In showing monotonicity, by symmetry, it is sufficient to consider just one argument which we can
assume o be the Jeft. Suppose §<S’. We require § X T<S5' X T. This follows by:
wESXToue(AX.B) &pi(u) €S &pi(u) €T
eue(AX.B) &mv)ecS &pi(u)eT

= ue (S xX T)(A X. B).

Now assume §p<.--<8,<.-- is a chain of trees so that S, is over events A,. Let ¢ be an event of
(Uncw Sn) X T. Then c has the form (a, *), (a,b) or (+,5). Thus ¢ is 2n event of Unecw(Sn X T). Thus X is

continucus in its first and, by symmetry, its second argument. Thus X is <-continuous.
The remaining proof is left to the reader.

Consequently each of the above operations can be used in the recursive definition of trees.

10

4. Synchronisation algebras.

We shall label events of processes to specily how they interact with the environment. We shall obtain
trces in which the arcs are labelled just like the synchronisation trees of GCS in [M1]. [lowever our approach is
miore abstract. We shall label trees by elements of a synchronisation algzebra which shows how labelled events
synchronise with labelled events in Lhe environment. Associated with any particular sychronisation algebra
is a particular parallel composition of synchronisation trees. So, by specialising to particular synchronisation
algebras we obtain Milner’s parallel composition of synchronisation trees [M1], the parallel composition that
underlies his synchronous caleuli IM2], and the parallel compositions defined in [B] which underlie the parallel
compositions on failure seis given in [UBR].

The intuitions behind synchronisation algebras are given in [WI.W2]. To recap, :# synchronisation
algebra is a binary, commutative, associalive operation e on a sct of labels which aiways includes two distin-
guished elements * and 0. The binary operation s says how labelled events combine to form synchronisation
cvents and what labels such combinatlions carry. Neo real events arc ever labelled by * or 0. However their
introduction allows us to specily the way labelled events synchronise without recourse to partial operations
on labels. (These two forms of undefined should not be confused with another “undefined” 1 used in the
theory of domains.)

The constant 0 is used to specily when sychronisations are disallowed. If (wo events labelled X and X\
are not supposed to synchronise then their composition k ¢ X' is 0. For this reason 0 does indeed behave like
a zero with respect to the “multiplication” e,

We have already seen the constant # in the definition ol product. Recali the partial funetions 70, PL
which prejected from the evenis in the product to events in onc of the components. An cvenl {#g,+) in
the product § X 7 of trees § and T projccted down to the cvent ¢ in S and the undeiined “event” « ==
pi(lea, #)) in 7. This meant the event gy of 5 occurred asynchrounonsly, unsynchronised with any event of
T. In a synchronisation algebra, the constant * is used to specify when a labelled event can ar cannot occur
asynehronously. An event labelled A can occur asynchronously iff X e + is net 0. We insist that the only
divisor of # is = itsclf, essentially because we do not want a synchronisation event to disappear. {(The reader
may fipd it heipful to glance ahead to the definition of parallel composition of synchronisation trees given

in 6.8.)

4.1 Definition. A synchronisation algebra (S.A.) is an algebra (L, s, +,0) where L is a set of labels so
L\ {+,0} £ 0 and = is a binary commutative associative operation on L which satisfies

(i) Ywe€LXe0=0 and)

(ii) sox = xand YA, N EL AeXN =+ =2 X = «,

Synchronisation algebras have an obvious divisor relation which intuitively says when one labelled event
can be a component of a synchronisation event.

4.2 Definition. Let (L, s,%,0) be an S.A.. For X\, € L define
AdivN @x=XNordu€ L eau=>»\.

When X div A\’ we say “A\ divides A",

11 -

4.3 Lemma. Let (L, e, +,0) be a synchronisation algebra. Then the following properties hold:
(i) the constants x and 0 are distinct,
(i} the relation div is reflexive and transitive i.c. a preorder,
(ili) N dive =X ==,
(iv) Odivh=X=0,
(v} oo divfBy & ay div 1 = (g » ay) div (8 * 3).

Proof.

(i) We can take @ € L\ {+,0}. Then if 0 = * we would have a ¢ 0 = 0 = * which implies o = ». This
contradicts the choice of o making 0 5% .

(ii) by associativity,

(iii) b)'r property (ii) in the definition of synchronisation algebra,
{iv) as 0 is a zero,

{v) by commutativity and asscociativity. @8

We might wish to specify that no event can occur asynchronously. An event will be labelled by a non-=,
non-0 label so this can be specified by ensuring the composition of such Iabels with * always gives 0. Milner’s
synchronous calculi [M2] fit into this scheme, as we shall see later in proposition 6.19. In 6.11, we shall make
use of ancther law on synchronisation algebras. It expresses when e behaves like the least upper bound
with respect to div, or, the same thing, when e is the operation of least common multiple (L.C.M.) for the
“rmultiplication” .

4.4 Definition. Let (L, s, %,0) be an S.A.. We say L is synchronous when it satisfics the law
YweLi{+}.hes=0.
We say (L, », +,0) satisfies the L.C.M. law when

Vo,B,v € Ladivy & 8 divy = (ae g) divy.

As examples and for future reference we now present some synchronisation algebras. We present the
algebras in the form of multiplication tabies. Ir fact the synchronisation algebras correspond to the parallel
composition of CCS and the two forms of parallei composition in IIBR, I3]. A full justification of these facts
appears later. For the moment though, the reader can probably see what each synchronisation algebra is
saying so we shall try to give the intuition. The tie-up with Milner’s monoids and groups of actions for his
synchronous calculi will be made later.

12

4.5 Example. (The synchroniaat.ion algeb

Pure CCS—no value passing: In CCS even
W, B, - or by the label 7.
to form a sy nchronisation event
they are invisible to proc
All labelled events may ©

ng form. We call the algebra L1.

state.
followi

o v ©OR|R

With value passing:Sup
av (receiving 2 yalue v on

that above but now with &

algebea (L, o, x,0) where L = (La\{m %0} X
r

r

AeN =4h

XI

0

We shall see that L
sion algebras, one being Ly an

(V) can be viewed

tiou algebra.

4.8 Example. (The sy
by a,f3,---or T For the para
t occur asy

words non-7—labelled events canno

of a parallel composition must synchronise with an o—

occur; the two events must synchronise to

this parallel composition takes the following

The idea is that only two ¢
fabelled by 7. Events 1
esses in the envireumen

ccur asy nehironously.

pose values v ¢ V are passed during synchronisation.
line &) and @v {sendin
v the complement of av.

as 2 simple quotient algebr
& the other aslra

anchronisation algebra
llel composition || in (IBR, B e

form a synchronisation event agai
form. We call the algebra La.

ea for CCS (M1])

1s arc labelled by @, 8,-+-or by their complementary labels

bearing complementary labcls may synchronise

vents
abelled by 7 cannob syneli
t, though their occurrence may
lience the synchronisation algebra for CCS takes the

ronise further; in this sense
Jead to internal changes of

0
0
0
0
]

o o = RlIR
4 o oW
o o @ A

B
0
0
0

Take labels of the form *, 0,
a synch ronisation algebra like
(V) to be the synchronisation

g a value v on line a) with
More precisely take L
Viu n by

{r,%0} with composition give

i\ = av and N =@,

if % = av and X = av,

if N o=,
ifh=r¢,
otherwise.

a of the (direct) product of Lwo synchronisa-

ightforward extension of vhe set of values V toasy nchronisa-

evenis are labelled
., In other
mponent

for || n [HBR, B]) In [HBR} and B
nt o, B,

Rather, an a-labelled event in one €0
iled event from th

vents must “synchronise o
nchronously.
labe ¢ other component in order to

n labelled by a. The S.A. for

4.7 Example. (The synchronisatio
and [B] is called the “inter
but ever

leaving” operation in

y event can oceur asynchronous]y, S0

they perform only one event at a time the par

two component processes.
We call t

takes a different [orm, shown below.

1 algebra for ||j in

Events are labelled exactly as they are for L2

w o e
o o 2
o o Qe

[HBR, B]) The parallel composition il
(HBR, B}. The s

in the framework of

| in [HBR]
cason is that no synchronisations are allowed,

MIBR, B] where

terleaves the sequences ©

processes are coerced so
allel composition |1} in f events of the
but the synchronisation algebra

his algebra Lj.

13

*

™R e
*
o O RR
=R =g L}
oo H-
[o |]

W R

OFf course synchronisabion algebras can be viewed as standard algebras with an operation e and two
constants * and 0. Looked af in this way they come ready equipped with the usual definition of homomor-
phism (made to preserve the composition and the constants), and the attendant categorical constructions
like (direct} product. But docs this mathematical definition match the interpretation we put to the operation
e and constants = and 0?7 I think not, and tentatively suggest the foliowing definitions are more suitable.
They regard synchronisation algebras as partial algebras (see [{Gril]) which have partial operalions preserved
by homomorphisms only when they are defined; think of composition as being undefined when it gives 0.
Conscquently ¢ is preserved in rather a strict way. One class of homorphisms result if we imnpose a similar
strict law for *—we call these strict—and another if we require sirmply that * is preserved.

4.8 Definition. Let A = (L4,%4,%4,04) and B = (Lp,ep,*p,0g) be synchronisation algebras. A
homomorphism of synchronisation algebras from A to B is a function A : L4 — Lp such that the following
conditions hold:

(i) aead #Z£0= h{ae,)= h{c)egh(a'),

(ii) h.(a] =0g 2 a=10,,

(i1} A(*a) = *p.
We say a homomorphism £ is sirict when A(X) = +g & A = »4.

4.9 Proposition. Synchronisation algebras with homomorphisms form a category with composition the
usual composition of functions and idcntily homomorphisms the identity functions. Synchronisation algebras
with strict homomorphisms form a subcategory.

Proof. We check the compesition of homomorphisms is a homomorphism. Suppose h: A - Bandg: B—=C
are homomorphisms. Assume ae o 3£ 0in A. Then h{a o a') = h{a) e h{a’) 7 0 in B. So gh{a e a') =
glh(a) e h(a')) = gh(a) ® gh{e’) in C. Clearly gh{a) = 0 & h{a) =0 & a = 0 and gh(s) = g{+) = *. Thus
gh is 2 homomorphism. The remainder of the proof is left to the reader. B

4,10 Definition. Write SAfor the category of synchronisation algebras with homomorphismas.

We show the formn of products in the category SAand its subcategory with strict homomorphisms.
Products of synchronisation algebras provide one way to construct more complex algebras form more simple
ofnes.

4.11 Definition. Let A= (L4,94,%*4,04) and B = (L, g, *p,05) be synchronisation algebras.
Define the product of synchronisation algebras, A X B, to be (L, s, %,0) given by
() L=(La\{0a) (15 \ {0 U {(0a,08)}, o
.. 04,0p faea =04 40r fof =0g,
(i) {aB)e(d,5)= {Ea ., a)', Bepp) otherwise,
(iii) * = (*A: *B) and 0 = (OA,OB).
Define projection homomorphisms hg : A X B — A, hp: A X B — B, by ha(a, f) = a and hg(a,) = 0.

14

4.12 Definition. Let A = (La,va,#4,04) and B = (L, #5, +p,0g) be synchronisation algebras.
Define the strict product of synchronisation algebras, A @ B, Lo be (I/,»,+,0) given by
(i) L =(La\{*4,04}) X (Lo\{*5, 05}V {(*/}, *5), (Omﬂu)}:
.. 0,08 ifeeod =0 0r fef =0pg,
@) (@) el 8) = {0 e
(lll) * = (*,'l; *}3) and 0 = (OA,OB).
Define projection homomorphisms &y : A X B — A, hfyy: A X B — B, by K,(«,8) = a and h'z(a, f) = p.

Notice A@ B has sort a subset of the sort of A X B and that it is closed under all the operation e of
A X 3. Tt is subalgebra (of partial algebras) in the sensc of [Gri]. It is also the restriction of the larger
algebra to a subsct, another way of constructing new synchronisation algebras from old.

4.13 Theorem. Let A and B be synchronisation algebras. The construction A X B, ha, hp is a categorical
product of A and B in 8A. The construction AQ B, ks, 'y is a categorical product of A and B in the
subcategory wilh strict homomorphisms.

Proof. See the appendix. @2

Another way to obtain new synchronisation algebras is to quotient by a congruence relation. A
congrucnce relation on a synchrenisation algebra is an equivalence relation = such that

ASNEu=p EXxeuHO0X Ny F£ 0= hop=Nay"

Given a svnchronisalion algebra and a congruence relation = the quotient consists of new labels the equiv-
alence classes of = with e—composilion iriduced by the representatives. We illustrate how the synchronisation
algebra for CCS with value passing ariscs as the quollent of a strict product. Firstly a noa- null set of values
V extends o a synchronisation algebra V'* with extra clements = and 0 by taking vev = v for v € V and

vas =y =wvlorvEVU{s}andvel=00v=0forveV U{s0}

4.14 Proposition. Let L; be the synchronisation algebra for CCS given in example 4.5, Let h: L@ V* —
Ly he the strici projection homemorphism from the strict product. Take the relation = oo Ly @ V* to be
given by:

A=) & h(A) = h(N) =r.

Then == is a congruence relation and the quotient (L, @ V*)/= is isomorphic to L,(V') the synchronisation
algebra for CCS with value passing given in example 4.5.

Of course one can specify that more complicated operations are perfornied on values than just send and
reccive.

We stress that the definitions of homomorphisms on synchronisation algebras are tentative. Constructions
like @ on synchronisation algebras appear uselul but may not be as general as one would like. The axioms
on synchronisativn algebras arose by considering an abstracl way to formalise the range of synchronisation
disciplines between labelled events. Possibly there is a class of algebras for specifying how processes are
connected, or linked, together. That the physical linkage can be quite complicated and yet still be highty
structured is demonstrated in [CP]. Typically processes may be linked by abstract channels or physical wires
connected to linkage points or ports of the processes. To specify how they are linked by channels or wires
the ports are assigned names or labels; perhaps ports to be linked carry the same label, as in [M}], or com-
plementary labels as in [M1]. An algebra on these labels might specify the geometric layout of the processes,
how the processes are physically linked or wired together. But then along the channels or wires values
may meet and interact; for example in hardware the values may be voltage contributions due to processes
wired together. The interaction of these values might be specified by a synchronisation algebra.(The table

15

giving this interaction in hardware is generally called the logic —it may be Bon-ulc:m, have undclined values,
floating values, strong and weak values ete..) Such processes interact through the synchronisation of events,
where an event is a value at a port. Of course only events which are physically linked can interact. When
they do the resuitant value communicated will be determined by the component values. This suggests that
the synchronisation algebra associated with processes should be a product of the “linkage algebra” and the
synchonisation algebra of values. At present this is rather speculative but it does suggest we explore a wider
class of algebras and, from our experience with synchronisation algebras, that the algebras should be partial.

5. Synchronisation trees.

A synchronisation tree is.a tree with arcs labelled by elements of synchronisation algebra. It is convenicnt
to label ares via the underlying evenis from which the tree is built.

5.1 Definition. Let L be a synchronisation algebra. An L-synchronisation tree is a pair (T',l) where T is
atreeover Aand l: A— L\ {%,0}. '

5.2 Notation. Let (T,!) be an L-synchronisation tree. Write ¢ 2, ¢ when t — ¢ and l{a) = X for the
unique a such that ¢! ==t < a >.

Frequently we shali omit the prefix “L-" when discussing synchronisation trees. Whern it is important
the apprepriate synchronisation algebra should be clear {rom the context.

We produce a category of synchronisation trees by restricting the treec—morphisins in accord with the
synchronisation algebra. We insist the label of the image of an arc should divide the lzbhel of the are because
the image of an cvent is imagined to be a component of the event. Of course an are may be collaupsed in the
image corresponding to the intuition that the event is not synchronised with any event of the image. But
then we insist * divides the original label.

5.3 Definition. Let L be a synchronisation algebra. Define an L-morphism of L-synchronisation trees from
(S,is) to (T',lr) to be a map f:S — T such that

fl<>)=<> and

] X, 3 = (f(s) = f(9') & * div \) or {f(s) R (') & N div \).

5.4 Proposition. Let L be a synchronisation algebra. Then L-synchronisation trees with L-inorphisms
form a category under the usual function composition and with the usual identity functions.

Let {8,ls) and (T,lr) be two L-synchronisation trees. Then (§,1s) and (T', i) are isomorphic in this
category iff there is a bijection f : § — T such that

s — 3" & fls) — f(5)

and such that labels of corresponding arcs divide each other.
In particular, if div is an antisymmetric relation on L (i.e. » div \' div X\ = X\ = X'} then (S,ls) and
(T,!r) are isomorphic il there is a bijection f : § — T such that

s 2 s o fs) D f(s).

16

Proof. That L-synchronisation trees with [~ morphisms, for a synchronisation algebry L, form a category
lollows routinely from the facls that Tr is a calegory and divis a reflexive transitive relution on labels. The
characterisations of isotorphisin follow directly from ihe definition of L-maorphism. |

5.5 Definition. Write Try, for the category ol L-synchronisation trees with L-morphisms.
Remark. Note Lhis category is equivalent but not, cqual to the category Try, in (W1, waj.

5.6 Proposition. et [, be a synchronisation algebra, If f (S,is) — (T'i7) is an L-morphism of
synchronisation trees then f:8§2Tisa morphisni of trees. Assume that Lis synchronous, so X a x = ()
for all h ¢ I\ {*}. Then for any L-morphism [(S,0s) — (T, {r) themap . § - 7 i5 2 synchronous
morphism of trees.

Proof. Clearly if L is synchronous s v \ for any label X £ LN {0} Thus L -morphisms cannot coilapse
arcs.

Thus we see how assumpiions made on the synchronisation algebra influence the morphisms we allow,
In fact, particular synchronisation algebras give us categories isomorphic to Tr and Treyn .

5.7 Proposition, Let A and § be the sy;'rchronisation algebras given by:

A

Proof. Because % di T in A morphi : 3 ile i must be
preserved,

8. Operations on synchronisation trees.

Assume (L, », +, 0) is a synchronisation algebra. Define the following operations on (L~)synchronisation
trees,

6.1 Definition. (Lifting)
Let X € L\ {%,0} and (T')!) be a synchronisation tree. Defife MT, 1} to be the synchronisation tree
{(T7,7} where ‘
teTM e t=<>orte=e (0.2), (1, ap), co(lany) >
for some < ay, ..., n—y >C T, and the new labelling function acts so 2((0,2)) = X\ and (1, a)) = l{a).

Extend lifting to morphisms as follows: Assume F AT, ir) - (T, {7) is a morphism of synchronisation
trees and X € L\ {+,0}. Define AT, ir) = N7, %) by

<> ft=a>

OO =1 <ON (Wb} (o) > it s (0.7, (L, a),. (1, ap_y) >
&f(< Q0y-- 0 lp_) >):< 60;---me--1 >.

17

The process represented by T must first do a X Jabelled event before becoming the process represented

b a copy Of T. Iﬂ pictul‘cs we ¢an (ll'a»w ﬁfting 800
Y \/ - '
/|
l

8.2 Theorem. Let X € L \{+0}. The operation of lifting is a functor » : Try, — Trp .

Proof. Obvious. 1

8.2 Definition. (Sum)
Let (S,1s) and (T, I7) be synchronisation trecs. Define their sum by

(S,Is) + (T, lr)= (§+ T,0)
where

_ fis(a) Me= (0, a),
He) = {lj-(b) if ¢ = (1,b).

The sum just sticks trees together at their roots. We can draw the sum (§,i5) + (T, lr) so:

8.3 Definition. (Indexed Sum)
Let (Ti, 1) be a set of synchronisation trecs indexed by i € I. Define their sum by

STk = (- Tad)

iel el
where l{c) == li{a) if ¢ = (i,@) fori€ L.

Sum has obvious injection morphisms such that it is 2 coproduct in the category of synchronisation
trees. Consequently the construction will extend naturally to a functor.

8.4 Theorem. Let (5, Ig) and (T, i) be L-synchronisation trees. Letig: S = S+T andi, : T — S+T be
the injections—as given in the definition of coproduct. Then ig,i; are L-morphisms and (8,1s)+(T, 1), %0, 11
is a coproduct in the category Try of svnchronisation trees.

Similarly, Z"er(Tivli) with injections in; for 1 €] is a coproduct where (T;, 1) is an [-indexed set
of synchronisation trees with injections n; : (Ti, i) — E,-ef(Ti,Ii)f—aﬂ given in the definition of indexed
coproduet.

Proof. These properties follow from the corresponding properties in the underlying category of trees. 1

8.5 Definition. (Restriction)
Let A C L\ {0} satisfy the property: » € A & \ div M & M div X = N € A. Let (T,!) be a
synchronisation tree over A. Define

(T,0A = (T[B,1)

where

B={bcAllp)er} and V(E)=I0) fot b € B.

18

The operation (T, {){A restricts events to those which are labelled by elements of A. There are several
alternative definitions of restriction in the literature [M1, M2, IBR, B]. Ours is chosen to be general and
such that it still prescrves isomorphism; it is like that in [(M2]. | do not know how to extend restriction to a
functor in a natural way. (At some cost in artificiality restriction can be presented as an equaliser.)

6.6 Definition. (Relabelling)

Let B : 1, — [be a strict homomorphism of the synchronisation algebra L. Let (T, 1) be a synchronisation
tree. Define {T,1)[E] = (T, El).

For & : L — L a strict homomorphism, extend relabelling to morphisms as (ollows: Assume f: (S, Ig) —
(§',1%5) is a morphismn of synchronisation trees. Define f18] = (8,Ls)[E] = (57, I5)[E] by (FEI)s) = f(s). .

We have chosen this definition of relabelling because it extends to a functor on Tr. . {Of course there
are otiier possible definitions which are also coutinuous with respect to <<, given below. One example is the
make - labels into—r—labels definition of hiding given in {HBR, BJ.)

8.7 Theorem. Let 3 : L — L be a strict homomorphism on the synchronisation algebra L. The operation
8] : Try, — Try is a functor on symchronisation trees.

Proof. Recall what it means for E to be a strict homomorphism on L: that £:L — [and E preserves s,
», 0 and
VXEL.{E()\)=0:>)\=0)&(E()‘)—_ﬂ-* =5 X = x).

These propertics ensure T(Z] is a synchronisation tree for a synchronisation hree T. Because N odiv X =
Z(\') div E()\) the map [E] produces morphisms from morphisms. Thus it is clearly a functor. 8§

6.8 Definition. {Parallel Cemposition)

Let (S,1s) and (7', 17) be synchronisation trees. Assume S is over A and T is over 3. Then § X T is
over A X. B, the product in Set.with projections pg : A X. B — A and py : A X, B — B. Define the
parailel composivion of (S,15) and (T, !7) by

($,ts) B (T, lr) = (§ X T[C.1)
where
C={ceAX.B|lspolc)slrpi(c) #0} and ()= Ispofc) 2 Irpy(c)-
Note we assume that the projection function compositions oceur in Set.; so if, for example, po{c) = * then

Lspolc) = =
Extend @ to morphisms as follows. Let f : (S,ls) = (& !r/) and g : (T,lp) — (T',ir) be two

morphisms in Try . Define f @ g = f X g, the image of f and g under the product functor X on Tr .
In fact tiis definition makes @ into a functor,

8.9 Theorem. The operation @ is a functor @: Tr, 2 - Try on synchronisalion trees.

Proof. Let f: 85 — S'andg: T — T’ be Irmorphi‘sms. We show by induction on the length of u’ that
it X win § (D) T then f X g(w') € 5" () T and f X g(u) = [X o(w') & div) or f X g(u) 2o
f X g(u') & N div . It follows that f ()g: 5 ()T — & () T’ is 2 morphism.

Either (a) f X g(u) = [% g(w/) or (b) f X g(u) — f X g(u). If {a) then F(u) = f(u') (and g(x) = g{u'))
so * div . Otherwisc (b), in which case let ¢ be the unique event such that v < ¢ >= u'. Write its
component-events in § and T as ¢p and) respectively—one of ¢g and ¢, may be . Let ls{co) = Xo and
I7(c1) = \,. Similarly let ¢’ be the unique event of §' X 77 such that (f X g(u)) < ¢ >= f X g(u'). Assume

19

the component events of ¢/ have Jabels 2y and X, in §' and T’ respectively. As f and g are L-morphisms
X, div Ao and Xy div ;. By lemma 4.2(v} we obtain N = Ay e X, div Ag Ay = A. Thus hjeX) 5 0 by
lemma 4.2(iv) so ¢/ is an event of 5’ @ T'. Inductively this ensures that f X g(u’) € §' @ T? and clearly

I X glu) 2 f X g(u') &N div .

Thus @ takes L-morphisms to L-morphisms. Its functorial properties follow from those of X in the
underlying category of trees. 1

Thus apart from restriction all the above operations extend to functors on Try in an obvious way.

Generally the parallel compesition of synchronisation trees is defined recursively—see ¢.g. [M1, BJ.
Instead we can give a recursive characterisation of our definition of parallel composition, which fortunately
agrees with those in the literature when we specialise to particular synchronisation algebras. Because here
we serialise all cvent occurrences, parailel composition, like product, can be expressed as an indexed sum.

6.10 Theorem. Let S an T be L-synchronisation trees. Then
S = E)\,-S.- and T = Z,ujT_,-
icl jed

for some indexed sets of labels and synchronisation trees. Moreover, the parallel composition of S and T
can he characterised as follows:

SOT= Y, e @OD+ 3 Curud ST+ Y (oS @ L)

hienxl0 Niop; 70 ep; 20

Proof. This follows from theorem 2.12 and definition 6.8. §

The above result means we can show how by specialising to particular synchronisation algebras we
obtain various parallel compositious of synchronisution trees present in the literature. Before this we pause
to show how parallel composition relates to product in the categories of syuchronisation trees. Although
there are obvious projection functions, parallel composition does not always coincide with product. It does
however when the operation e in the algebra behaves like the least common multiple (L.C.M.) operation,
defined in 4.3.

8.11 Theorem. Let (S,ls) and (T,lr) be two L-synchronisation trees over A and B respectively. Let
wp == mol{S @ T) and wy, = m, (S @ T) be the obvious restrictions of the projections wg : § X T — §

and my: § X T — T to the parallel composition. Then § @ T,), ' is a product in the category Try if
¥y € IYa € lgAYVB € iy B.a divy & 8 divy = (o @ B) div .

It follows that parallel composition is always a categorical product in Try if the synchronisation algebra

satisfies
Ve, B,7 € Lo divy & 8 divy = (e 8) divy.

Proof.

Let (S,ls), (T,{r) be two L-synchronisation trees and wf : (S,ls) @ (T,ir) — (S,ié) and wf :
(S,1s) @ (T,ir) — (T,{7) be restrictions of the projections 79 : § X T = Sandm : § X T > T in Tr .

Suppose Vv € I¥a € IsAVA € lrB.a divy & 8 divy = (o e B) div . Assume fo : {U,ly) — (S,ls)
and fy : (U,ly) = (T,ir) are L-morphisms. Let h: U — § X T be the unique morphism of trees such that

20

moh = fo and mh = f1. We sliow & is an L-morphism, h : (U, {y) — (8,15) @ (T,17). Then h is certainly
the unique L-morphism such that mhh = fp and nhh = f,.

Clearly (<>} = {<>}. We show by induction on the length of w' € U that if u s o then
h{v')e 5 @ T and A(u) = A{u') & * div vy or (h(u) <, h(u') & & div 7). It follows that h is an L morphism.

Suppose u —» ', If h{u) = h{w') then fo{u) = fy(u’) and * div 4. Otherwise h(u) < ¢ >= h(u') for
some event ¢ = (a,b) of the product. As fy and f; are L-morphisms, a = lg{a) div v and 8 = br(b) div 4.
{We allow a, b to be * in which case the labelling is +.} By assumption ae g div v so o e 3 3= 0. This makes
¢ an event of the paralle! composition. Thus h(w') € § @ T, completing the induction.

Suppose L satisfies the LCM law. Then by the previous argument § @ T, mfy, w is the produet of
synchronisation trees 5, T in the category Try . Conversely suppose for arbitrary synchronisation trees §,
T we have § @ T, w4, m) is a preduct in Try, . Suppose a div vand 8 dw v in L. Clearly if y = 0 or
@ = f# = x then e 8 div vy so assume v #£ 0 and (@ = B = «). Suppose @ = * (s0 g #). Take
S to be the null tree and T to be the synchronisation tree consisting of a single F-labelled are. Let U
be the synchronisation tree consisting of a single arc labelled by v. Take f3 : U — § ‘to be the unique
morphism to the null tree and f, : U — T to be the unique arc preserving morphism. A unique morphism
h:U = § @ T exists such that #jh = fy and 7y =fi. Thus ae g div v, If % + and 3 £ % then taking
5 to consist of a single arc labelled by @ and T to consist of single arc labelled by 3 a similar argument
shows a9 3 diwy., 3

l.et us run through, in a serics of prepositions, some parallel compositions in the literature. We refer to
the synchroaisation algebras L), Ly, Ly of the eariier examples—1.5, 4.6, 4.7.

8.12 Proposition. (Parailel composition in CC3) Let Ly be the synchronisation algebra for CCS
presented above. Write the parallel composition @ as |, as in (MI]. Then two L, -synchronisation trees

§= 3 NS and T =) uTy
sel Jjed
have a parallel composition given by

3|T~=~Zx,~(s,-1f)+ >3 r(S;]TJ-)+ij(S|T,-).

X =@, 0lu; =X,

Because, for instance, @ div 7 yet 0 = a e a and 0 #v 1 the parallel composition | for CCS does not coincide
with product in the eategorv of synchronisation trees.

A similar proposition holds for the synchronisation algebra of CCS with value passing—recall the
synchronisation algebra i example 4.5 two processes synchronise iff one sends and the other receives a
common value on the same line.

Now we examine the parailel compositions {| and ||| given in [B] to support the failure set semantics in
[HHBR]. Here || only coincides with product in the appropriate category of synchronisation trees if no events
in the components are labelled by r.

8.13 Proposition. (Parallel composition [l in [B]) Let Ly be the synchronisation algebra presented
above. Write the parallel composition @ as ||, as in [B]. Then two Ly-synchronisation trees

§ = Z}‘.-S;+ZTS';,. and T = 3 \T;+) 1Ty,
i k 7 -

21

where \;, \; are non-1 labels, have a parallel compusition given by

SIT= 3,)\i(S,-|Tj)+Zr(SkHT)—t—Zr(SHT;).
k {

i3 =h,

The synchronisation algebra does not satisfy the L.C.M. law above because for instance 7 divt and yet TeT =
0 giv r. However for trees without v-labels || coincides with product in the category of Lo -synchronisation
trees.

8.14 Proposition. The parallel composition ||| in [B): Let Ly be the synchronisation algebra presented
above. Write the parallel composition @ as ||, as in {B]. Then two Ly-synchronisation trces

§ =Y %S and T =) pTy

el jed
have a parallel composition given by

ST = Zki(si ll T)+Zﬂ;‘(5 ill T5)-

For Ly we have o div a and yet a s a = 0 s0 (a e a div). Therefore ||| does not coincide with produet in
the category of Ly-synchronisation trees.

The papers IIBR} and 'B] contain another operation [calied “conditional composition” which can also
be thought of as a parallel composition. The idea is that both components of a conditional composition can
proceed independently petforming 7 labelled events until one component makes a communication with the
environment --performs a non-7 lubelled event —when fubiire cominanication musi hencelorth be with that
component. There are two choices for the subsequent behaviour of the other compounent: one is that it may
continue to perform r-events {the idea in [[IBR}) and another that even thesc invisible events are stopped
(the idea in [B]). From the point of view of the failure—set equivalence in [IIBR, B] these distinctions make
no difference but they are detected by a synchronisation iree semantics. We present the first alternative and
leave the second to the reader—or sce [B]. We choose to obtain [J as a restriction of |||

8.15 Definition. Let (S,Is) and (T,17) be synchronisation trees labelled by elements of Ly {or L3). Define
(8,15)0(T,I7) to be the synchronisation tree consisting of sequences < €g,. .-, ¢n—1 > of (S,is) || (T) 1)
which satisfy ‘

(Vi. lspoles) = *or lspole:) =) or (Vi. lyppi(e;) = * or irpi(e;) =)

with the labelling { given by i({a, +)) = ls(e) and i(+,b)) = lr(b)-

8.16 Proposition. Let S and T be La-synchronisation trees so
§ = 3 NS+ S rScandT = > uiTi+ > T
i Ok § !

Then .
SOT = Y NS DT + 2 pit(S[1NOT3) + Y A(sOT)+ > r(SOT,
i i k

i

where for instance T[r abbreviates T[{7}.

As 2 final example we exhibit how Milner’s synchronous calculi fit into the picture. In [M2] algebras
of actions are presented. They are closcly related to synchronisation algebras, though because the algebras
do not contain * they cannot express asynchrony in the direct way synchronisation algebras can. The
most general algebras of actions described in [M2] are Abclian monoids of the form (M, e,1). The identity

22

element servos to label delay events. These are essential to the way asynchrony is handled in [M2]; there the
asynchrony of an event is modelled by allowing the event to be preceded by an arbitrary number of delay
events. Contrast the dircct way asynchrony is modelted using synchronisation algebras to restrict the cvents
in the product; the fact that an cevent is not synchronised with any events of a process is expressed by the
event not having any component event from the process.

We show how Milner’s monoids of actions determine synchronisation algebras which satisfy the synchronous
law of definition 4.4.

6.17 Definition. Let (M, 95,1) be an Abelian monoid (assumed to nol contain * or 0).

Define L{M] to be the algebra (M U {+,0},, *,0) where @ cxtends the monoid operation ey 50 *ox =
#and sep = pex=0forpe M U{0},andQep—pe0=0lorpc MU {*,0}and pey' = pap
forp,u’ e M.

Define a divisor relation on (M, »pf, 1) by

y,divMy'ﬁuzp'orﬂu.poMuzu'.

6.18 Lemma. The algebra L{M] defined above is a synchronisation algebra which satifies the synchronous
Iaw Y\ 3£ +. X\ o x = 0. Further, the algebra LIM] satisfies the L.C.M. law « div Y& B divy = aef divey
il M satisfies the L.C.M. law « divyy v & 8 divpg v = aef divgg .

Proof. These foilow because the composition s of L{M] is simply the extension of ey to the extra clements
+and 0. H

8.19 Proposgition. Let L be a synchronisation algebra which satisfies the synchronous law. Then the
parallel compuosition of L-synchronisation trees

5 = Zx,»si and T = Zp,-'r,-
L] Fl

has the form

S @ T = Z . (hiw P"J)(Si @ TJ')'

Ajep; 70

So then parallel composition @ is obtained by restricting @ the synchronous product.
Let {M,ep,1) be an Abelian monoid. Write X m for the parallel composition with respect to the

N

synchronisation algebra L|M|]. Then for two M -Iabelled synchronisation trees

§=3Y NS and T = Zp,-r,-

q 2

we have
SXMT =Y (\oarps)(Si Xne T5).
ty
The operation X 5 coincides with product in the category of synchronisation trees iff the operation ey in
{M,err, 1) behaves like an L.C.M.. If (M, e, 1) is an Abelian group X ps coincides with product,

Proof. When the synchronisation algebra satisfies the synchronous law parailel composition takes the above
form by 8.10. By 2.12 this is a restriction of the synchronous product. The remaining facts follow directly
from the definition of L{Af], 6.11 and 6.18. (Clearly an Abelian group satisfics the LCM law.) 4

23

7. Denotational semanties.

We present a denolational semantics to a simple parallel programming language which involves the
constructs we have defined earlier. The class of languages is parameterised by the synchronisation algebra
L.

7.1 Definition. Let I be a synchronisation algebra. _The language Procis given by the following grammar:
true= NIL |z |2 |t+t]tlA]¢t[E] H@t}recz.t
1

where z is in some set of variables X over processes, A\ € L\{+,0}, A C L\{+,0} is closed under divNdiv™ ",
and 5 : L — L is a strict homomorphisin. '

In order to give a meaning to the recursively defined processes of the form recz.t we use the fact that
the operations are continuous with respect to a c.p.o. of synchronisation trees. Fortunately the two c.p.0.’s
of trees < and C extend naturally to synchronisation trees in such a way that thie operations of the previous
section are continuous.

7.2 Definition. Let L be a synchronisation algebra. Definc the orderings <y, and C, on synchroanisation

trees by:
(S,ls)sL(T, [T) = S$T & lg = ET‘-A,

(S,ls) QL(T,IT)@ S g T &g =lT[A.

7.3 Theorem. The null synchronisation tree ({ <>}, @) is the least L-synchronisation tree with respect
to both orderings < and C . Both orderings <, and C | possess least upper bounds of w-chains; the lub
of a chain (To, o), (T1, i1}y - s Ty [n), ... with respect to either order lakes the form {{J, Tn, U, In)-

All the cperations lifting T — \T, sum +, restriction T — TiA, relabelling T — T[Z] and parallel
composition (L), of section 6, are continuous with respect to < and Cy, i.e. they preserve lubs of w-chains.

Proof. The cpo properties of of < and Cy follow directly from the cpo properties of < and cC.

The continuity of the operations on synchronisation trees follows from the continuity of the operations
on trees from which they are derived e.g. parallel composition is a restriction of the product so its continuity
with respeet to < is proved as follows.

Let To<j---To<p--- be an w-chain of synchronisation trees such that T,. is over events A, labelled by
I.. We write its lub as {J_ T» over events A = {J,, A, with labelling [= J,, In. Let S be a synchronisation
vree with events B labelled by lg. We use pp : A X, B -+, Aand p; : A X. B —, B to represent the
obvious projection functions on events. The parallel composition of U, Ta and § is the restriction of their
product to events C = {e € A X. B|lpo(e) » Ispr{e) # 0} so we obtain

(U T,) @ S = (U T.) X S[C == (U(T" x 8)[C by the continuity of X

= U(T" X §[C)} by the continuity of restriction
= T x STC =T (O S.

as required. Q

Thus we can give a denotational semantics to Procpby representing recursively defined processes as the
Jeast fixed points of continuous functionals.

24

7.4 Definition. Denotational gemantics for Procy.

Let L be a synchronisalion algebra. Deline an environment for process variables to be a function
p: X — Try . Foraterm ¢ and 2n environment p, define the denotation of t with respect to p wrilten
[t]e by the following siructural indnction. Note syntactic operators appear on the left and their semantic
counterparts on the right.

vl =({<>1}9) [t[Ale =ltie[A
lalp =al2) 1tEge =[lolEl
ele =X[tlp) [t (0 t2e=ltJp () 121

M, + to]o=[t: 5o+ Tt=le [reez.t]p =fiz 1

where [' : Try — Trp is given by {T) = [t1plT /2] and fiz is the least—fixed —point operater so that
fiz T = (U, Tn, U, In) where (To,l) ={{ <>}) and (Tass ln -1} = (T, ln) inductively.

Remark. A straightforward structural induction shows that [above is indeed continuous with respect to
either order < or C so the denotaiion of a recursively delined process is reaily the least fixed point of
the associated functional T ’

Choosing L to be the appropriate synchronisation algebra we immediately obtain denotational semankics

for CCS and SCCS.

Of course wa cannot expect all languages to (it into the simple scheme Procy; for instance the C5P-
language of [HBR, B] does not quite beeause it has bwo parallel compositions corresponding to two synchronisa-
tion algebras on the same seb of iabels. However the semantics for this language and thau for CC8 with
value—passing follow similar lines to thut for Proeg.

We point out how to extend the language Proegto value-passing. We assvme the synchronisation
algebra is that of CCS with value passing, as given in example 4.5. Include terms of the form @v.t with
denotation @uflt]p to rcpresent the sending of a value v. Include terms of the form «9.t, where 9 is a vaciable
over the set of values V', with denotation DoV avt]p to represent the ceccipt of a value. Terms can be
vaken to include constants from V', value-variables like 9, conditicnal expressions etc. so the language can
be quite rich—see [M1] for the full language of CCS and examples.

Some languages like those in [H, Mi) have a parallel composition which depends on sorts being associated
with processes. They nced a slightly more intricate definition of parallel composition which uses combinations
of our parallel composition, with respect to some synchronisation algebra, together with restriction and
relabelling.

25

file:///NIL/p

8. Labelled transition systems.

We show how categories of synchronisation trees fit into the broader categories of labelled transition
systems. Transition systems have often been used to give operational semantics to programming languages.
For cxample, semantics for Robin Milner’s CCS are often based on them and Gordon Plotkin shows in [P1,2]
how widely they can be applied in giving semantics to languages. This section provides a bridge between
operalional semaniics in terms of transition systems and denotational semantics expressed in terms of trees.

8.1 Definition. A transition system is a 4-tuple (5,3, 4, Tran) where S is a sct of states wilh initial state
i, Ais a set of events, Tran C § % A x S is the transition relation, elements of which are called transitions,
which satisfy

(i) Vac Ads, s’ € 5.(s,0, 3') & Tran,

(i) {s,a,8) € Tran& (3,0,8") € Tran = &' = s’

Intuitively a transition system represents a process which can make transitions between states starting
from an initial state. llere we assume, a8 with trees, il can only perform one event at a time. The [irst axiom
we impose says every event is associated with some transition and the second axiom says that from a state
the occurrence of an event is associated with a unique transition and so, of course, leads to a unique state.
Thus transitions from a stale correspond to occurrences of events from that state. (Note however that this
will not be the case for “idle” transitions which we shall introduce soon.) Of course transition systems are
more general than trees because the transitive closure of the transition relation may contain loops. In fact
this is often the way recursion is handled when using transition systems.

8.2 Notation. Let {S,7, A, Tran) be a transition system. We draw thc transitions hetween two states as
arrows—-there may be more than one. For example the transition system ({0,1},0, {e, 8}, {{0,u, 1),{0,5,0)})
would be drawn os: a

0@t el

And we can write the transition (0,a,1) as 0 2, 1, so events serve to index transitions between pairs of
states. . i

1t is convenient to extend the set of transitions in a formal way so that they include the possiblity of
inaction at any state. We already have a symbol for such inaction, the symbol +. Of course inaction does
not take a state to another state so we extend the set Tran just by elements of the form (s,%,9). We call
such transitions idle transitions because they are not associq.ted with any event occurrence. For a transition

system as above write the idle transitions as
Tran, = TranU {(s,* 9} |8 €S}

Idle transitions are not to be thought of as events of inaction performed by a process; they are not associated
with any event of the process at all.

Morphisms on iransition systems are defined analogously to thosc on trees. The intuition is the same.
A morphism from a transition system T to a transition system U specifies how the occurrence of an event
in T implies the synchronised occurrence of an event in U. States of T image to states of U. However,
there may well be occurrences of events in T which are not represented by any event occurrences in . The
transitions associaled with such event occurrences image to idle transitions introduced above. Hence we
define a morphism as consisting ol two parts one a function on states and the other a partial {unction on
events which induces a function on transitions, including the idle ones. Following the definition on trees, we
say a morphism is synchronous if it is a total function on events and so never sends a non—idle transition to
an idle one.

26)

8.3 Definition. A morphism from a transition system (Sa, 10, Ag, Trang) to a transition system (S, 1, Ay, Tran,)
is a pair (fg, fi) where fg: Sy — §, is a funclion on states such that

fslio) =14
and where fg: Ag —. A, is a partial function on events which satisfies
(5,8,8') € Trang = (f5(s), fu(a), [s(s)) € Tran,,.
Say the morphism (fg, fr) is synchronous if fg is a total function.

8.4 Proposition. Transition systems with morphisms as defined above form a category under the pairwise
composition of functions (fs, fz)o(gs, ge) =4er (f59s, fugr) where composition on the stale funections is the
usual composition on total functions and the composition on the event funclions is that for partial functions
and identity morphisms are pairs of identity functions. Trausition systems with synchronous morphisms
form a subcategory.

Proof. Routine. §

8.5 Definition. Let Tran denote the category of transition systems with the above definition of morphism
and Tran,,, the subcategory with synchronous morphisms.

Let us sce the form products take in the category Tran . The projection functions will provide examples
of typical morphisms.

8.7 Definition. (The preduct of tramsition systema) Let (Sy, 49, Aq, Trang) and (81,41, Ay, Tran,)
be transition sysiems. Define their product, (Surdo, Ag, Trang) X (Sy, iy, Ay, Trany) = (5,1, A, Tran) by
taking: .
{i) tates § = Sy X §) , the product in Set with projections m; : § = §; for j = 0, 1,
(i} initial state © = (49, 4y),
(i) eveals A = Ag X. A, the product in Set, with projections p; : A —, Ay for

i =0,1, and,
(mo(s), po(e), mo(s")) € Trang. &
(715}, pi{c), m1(o")) € Tram,.,.
Define the projections I1; : (S, 1, A, Tran) — (S;,15, A;, Tran;) by taking II; = {7, p4) for § =0, 1.

(iv) transitions (s, ¢, 8') € Tran & {

A similar construction has been used to build the “product machine” of [CES]. It really is a product.

8.8 Theorem. The construction (S0, %0, Ao, Trang) X (St, 41, Ay, Trany), 0o, T, above is a categorical
product in the category Tran of transition systems,

Proof. It foilows immediately {from the definition of product that it is a transition systemn —the axioms [ollow
from their truth in the components—and that the projections are morphisms of transition systems.

Let T; abbreviate (S},1;, A;, Tran;) for 5 = 0,1. Suppose that {/ is a transition system and that
f=(fs,fe): U - Tyand g = (95,98) : U — Ty are morphisms. In order for To x T to be a product
we require that there is a unique morphism & = (hs,hg): U — Ty X Ty such that Hoh = f and I}h = 4.
This is so when we define k as follows:

hs(v) = (fs(u),gs(u)) and hglc) = (fu(c), gx(c))
for u a state of U and ¢ an event of I/. - | -

27

8.0 Example. The product of the transition systems
1 and i |
a 2 (3@ ©
takes the form:

(1) g (AP
U

(%)

e
(0 2) (6. b)
We shial] see how the definition of product of transition systems in Tran generalises that of irees in
Tr . In fact a product of transition systems will unfold to a product of trees. Trausition systems also have
a coproduct, perhaps not quite what is expected as its unfolding will turn out to not coincide with the
coproduct of trees.

8.10 Definition. {The coproduct of transition systems) Let (So, 10, Ag, Trang) and (S1,i1, Ay, Trang)
be transilion systems. Define their coproduct {So, 0, Ao, Trang) + (51,1, Ay, Trang) = (5,4, 4, Tran) by
taking: :
(i) S =(Sox {ixPu{{in} X 51} with injections tn; : S; - 8§, for j = 0,1, given by
ing{s) = (s,1) and in,(s) = (%0, 3),
(Il) 1= (‘.0::.1)) -
fii) A= ({0} X Ag) U ({1} X Ay) the disjoint union of the sets of events with injections
o; 1 A; — A given by aj(a) = (7,a) for j = 0,1 ard,
] (s, q,s) € Trang.t = (ing(s), ay(a), ing)} or
(iv) ¢ € Tran e {E%s, a, .s'% ¢ Trony.t = timgs), a;%a), inlgs’g.
Define the injections I; : (8,15, Az, Trang) — (8,4, A, Tran) by [; = (inj, a5) for 3 =0, L.

8.11 Theorem. The construction above is a coproduct in the categories Tran and Tran,y, of transition
gysteras.

Proof. 1t is easy to sce that the coproduct construction gives a transition system and that the injections
are indeed (synckronous) morphisms. Suppose f: To — U and ¢ : Ty — U are morphisms {from transition
systems T; abbreviating (5,15, Ay, Tran;), for § = 0,1, to a transition system [/. Define a morphism h =
(hs, hE) Ta+ T = U by taking:

’fs(“}g) lf 3 = ino(SO)

_ fe(a) if ¢ = aola)
hs{s) = {_gs(ﬂ) if s = iny{s1)

and hp(c) = {gE[ﬂ) if ¢ = ay(a).

It is casily seen that h is the unique morphism of transition systems so that hfy = f and h{} = g¢. Moreover
if f and g are synchronous then so is A. Thercfore the construction is a coproduct in Tran and Tran,yn -

8.12 Example. The coproduct of the transition systems

. an b
AN :

takes the form: G:

%

)

(L)

28

Clearly a tree can be viewed as a transition systemn:

8.13 Definition. Let § be a tree over the set A, Define TSS to be (S, <>k, Tran) where

E——:{(s,u)ESXAls<a>€S}and
Tran == {(8,(8,&),3’) ls <a>= Jest

Fxtend TS to a functor by defining it to act on morphisms of trees as follows: Let f: 8 — U be a tree

morphism. Define (TSf): TS5 — TSU by taking

TS =) and (TSNl = > <2 >) =Sl

olherwise.

Remark. Notice that TS would not have extended to a functor, in the above definition, if we had taken A
instead of E as the events. The reason: In the calegory fr morphisms respect only the node-arc structure,
and not the event sets, which are respected by the more discriminating morphisms in Tran .

Not only can trees be viewed as transition systems, but alse transition systems can be unfoided to trees.
This is well -known. The unfolding 8 determined by the categorical set—up. 1L is characterised to within
isomorphism as the right adjoint to the obvious functor T3 taking trecs to transition systems-—see [AM] or
Mac). Tn other words, given a transilion system its un (olding is cofrce over it with respect to TS the natural

identification of trees with o form of transition system.

8.14 Definition. Let (S,i, 4 Tran) be a transilion system. Define its unfoiding U(S, % A, Tran) to be the
tree
{ < an, a1, -+ 0n-1 >{3sg,91,--19n € S.sg =t &V <n (ﬂj,aj,vqj+}) & Tran}.
Define the folding morphism b = (ps,¢E): TS U{(S, 5 A Tran)) — (5,1, A: Tran) by taking dp(u,a) =

4 on events and defining @5 by induction as follows:
bs{<>)=1 and ps(u <a>)=3
where s is the unique state such that (¢s(u) e, s5) € Tran.

Thus ¢ folds a state < do,@1,-- lm—1 > 10 the unfolding to the state sn where 39,81, 19 € Sis
the unique sequence of states such that sg = 1 &Yj < n. (85, a.,-,s,-_;,i) € Tran.

g.15 Theorem. Let(S,i,4, Tran) be a transition system. Then U(s,1, 4, Tran) is 2 synchronisation tree and
¢ defined above is a morphism of trapsition systems. In fact, U8, A, Tran), ¢ is cofrec over (S, A, Tran)

with respect to the functor TS i.e. for any morphism [TSV - (S,1,A, Tran) with V a tree, there is a
unigue morphism g : V- U(S, 1, A, Tran) in Tr such that [= ¢(TSg):

oo A TR : G R
U(S b4, Tran) (5 5 A es) <P 2 (5 AT

= ™
2 \ 5y
v Y
Consequently, U extends to a right adjoint of TS. ’

Proof. Let V be a tree and [:TSV = (5, i, A, Tran) be a morphism of transition systems.
29

Define g : V — U[5,7, A, Tran) by induction as [ollows:

(v, b if fulv,b) £
9(v)={g(”)<f13(“:) > i fL(U’.)?‘i*’.
. g(v) otherwise.
Clearly ¢ is a morphism of trees. We require ¢ o (TSg) = f and of course this follows if we can show

(po(TSg))s = fs and (¢ o (TSa))e = [&.

We first show (po(TSq))s = fs. We show ¢ 0 g(v) = fs(v) by induction on v € V. Obviously
#s0g(<>)= fs(<>) establishing the basis ol the induction.

Now we show the inductive step, that ¢scg{v < b >) = fg(v < b >) if the induetion hypothesis
$s o g(v) = fs(v) holds. From the definition of g there are two cases to cousider, when fp{v,6) 7 * and
when fp(v,b) = ».

Assume fg{v,b} 7 +. From the delinition of ¢ we get glv < & >) = g{v) < fal»,b) >. From the
definition of ¢5 we obtain $gsog{v < b >) = 3 where s is the unigue stale such that {$s{g(v)), fe(v, b), s) €
Tran. As [is a morphism of transition systems we must have {fs(v), fu(v,b), fs(v < & >)) € Tran too. The
induction hypothesis provides ¢s{g(v)) = fs{v}. Thus ¢s(glv < b >)) =9 = fs(v < b>).

Now assume fr{v,b) = *. The definition of g gives glv << b >) = g(v). So dg(glv < b >})) =
¢s(g(v)) = fs(v) by induction. As f is a morphism fs(z) = fs(v < 6 >). Thus dsog(v < & >) = fe{v <
b>).

This shows that (¢ o (TSg))s = fs. We now show (¢ o (TS¢)}s = fg. This is part of a more general
fact which also establishcs the unigueness of g; a morphism of trees & : V — U(F,{, A, Tran) satisfies g's
recursive definition iff (¢ o (TSh))g = fg. More precisely we show:

Let h: V — U(S,, A, Tran) be a morphism of trees. Then (¢ o (TSh))g = fi iff
h(<>) =<>,

b < 03 = {20) < Salu) >l 7

h{v) otherwise

for v € V and b an event of the tree V such that v < b >€ V.

“f”: Let v < b >€ V. From the assumption and the definition of (TSA)g we obtain

(TSh)z(v,) = {fj’(“’)’ [a(b)) 1 Ja(v,) 7% »

otherwise.

From the definition of ¢ we immediately have ¢ o (TSh)}g(v, 8) = fe(v, b).
“only if”: By the definition of ¢g and (TSh)g we have

b5 0 (TSR (v, b) = {a ifhiv < b>)=rr)<a>
i ’ * otherwise,

But by assumption ¢g o (TSh)s(v,6) = fr(v, b) which implies the result.

Clearly it now follows that (¢ o (TSg))g = fg. So ¢ og = f. The uniqueness of g follows too. Assume
h:V — U(S,4, A, Tren) is a morphism such that $oh = f. Then {¢0(TSh))g = fe. By a simple induction
using the above result with A(<>) =< > we obtain h{v) = g(v) for all v € V.

30

Ttz theorem is proved. 1

Right adjoints have the pleasant property that they preserve limits, so in particular they preserve
products—sce [AM] or [Mac]. This means that if we take the product of two transition systems and then
unfold them we obtain the same tree, to within isomorphism, as if we unfold them first and then take their
product in the category of trees. This is significant for us because we derive parallel compositions from
products by restricting the events. It will mean that we can define a parallel composition directly on labelled
transition syslems and know that it unflolds to the parallel composition of the synchronisation trees which
are the unfoldings. In view of these facts the following example is not surprising,. ‘

8.16 Example. The transition system 7’%‘ unfolds to the tree: 1\.
[- A"
=/ <>

™ .
L a

;

b
. i b .-
The transition system (/ unfolds to the tree: o-lj’?""”w
1

Their product

unfolds to the following tree which is isomorphic to the product (in Tr) of the two tree unfoldings:

Y .rv‘] L
=
- ¥,)
19
\ .
. v e
QLR '
et "*, n' kML
— R /'-
it o)
s -
—
<

Right adjoints preserve limits but they do not necessarily preserve colimits. And in fact the unfolding
functor U does not preserve coproduets as the following example shows.

8.17 Example. The coproduct of the transition systems

~p K0
“‘7\5 wnd ﬁ) is:—\p)

1

which unfolds to this tree:

ik

. 7&*’ -!_1.\FJ)|
b ,‘.x)
[

But their two unfoldings have this coproduct in Tr : 71/
1,k

#

\ | 7 (%)

. N
(0,a) \'/U,h)
<7

Now we label events by elements of a synchronisation algebra to specify how they interact with the
environment.

8.18 Definition. Let L be a synchronisation algebra. An L-labelled transition system is a 5-tuple
(8,4, A, Tran,{) where (5,1, A, Tran} is a transition system and ! is a fabelling funciion ! : A — L\ {+0}.

Just as with trees we can restrict morphisms on transition systems in accord with labellings of the
transitions by elements of a synchronisation algebra.

8.19 Definition. Let L be a synchronisation algebra. Let {S0,%0, Ao, Trang,ly) and (Sy,,, A, Trany,!,)
be I-labelled transition systems. An L-morphism from (So, %0, Ao, Trang, ly) to (Sy, 4, Ay, Tran,,l;) is a
morphism of transition systems f : (S, %o, Ao, Trang) — (81,41, Ay, Tran,) such that {; fg(a) div lg{a) for all
a& Ao.

The condition satisfied by L-morphisms of transition systems simply expresses that the label of the
image of an event must divide the label of the event.

8.20 Proposition. Let L be a synchronisation algebra. Then L-labelled transition systems with I
morphisms forin a category with composition the pairwise composition of functions and identities pairs
of ideatity functions.

8.21 Definition. Let L be a synchronisation algebra. Let TRAN L be the category of labelled transition
systems.

Not surprisingly labelled transition systems unfold to labelled trees or synchronisation trees simply by
extending the unfolding operation to cope with labels. Similarly synchronisation trees can be viewed as sorts
of labelled transition systems by extending the operation T§.

8.22 Definition. Let L be a synchronisation algebra. Define the operation TSy : Try, — TRAN by
TSL (T,) (TST,).

Define the unfolding operation on labelled transition systems by taking U, : (S,i, A, Tran, i} — (T, V)
where T' = U(S,1, A, Tran), and I is [restricted to the events of 7. (Not all events A necessarily appear in
branches of T.) :

8.23 Proposition. In fact 7S, extends to a functor with respect to which Uy, gives the cofree object; thus
Uy extends to a right adjoint of TS 1.

Proof. This follows from theorem 8.15. §

Just as with synchronisation trees one can define operations on labelled transition systems and use these
to give a semantics to to a variety of parallel programming languages. The most interesting operation is
parallel composition which we obtain by restricting the transitions of the product of transition systems in
accord with their labelling.

32

$.24 Definition. Parallel composition of labelled transition systems: Let L be a synchronisation
algebra. Let (Sp, 19, Ao, Trang, o) and (8,1, Ay, Trany,{\) be L-labelled transition systems. Define their
parallel composition {Sy, 1o, Ae, Trang, ly) @ (81,11, Ay, Trany, 1) to be (S,i, A', Trar/,1) formed [rom the
product of transilion systems as follows—we use the notation of definition 8.7:
(i) S is the states of their product with the same initial state t,

(i) A = {c& Ag X. Ay [lopalc)elipi(c) 7 0} is a subsct of events of the product,
(ii) labelled by [: A" — L\ {*,0}; a — lppo(c) e Ly p((c), A
(iv) with transitions Tran’ = § X A’ X § N Tran which are a subset of the trunsitions

Tran of the product.

—

Because the operation of unfolding preserves products and the parallel compositions of synchronisation
trees and labelled transition sysitems are resirictions determined in the saine way from the labelitng we obtain
the following reassuring fact:

8.25 Proposition. Let L be a synchronisation algebra. The parzllel composition of Jabelled transition
systems Ty and T unfolds to the parallel composition of the unfoldings:

L(To @ Ty) = Uu(To) @ Ur(Ty).

8.26 Example. Let L be a synchronisation algebra with the {ollowing multiplication table:

e+ a 4 7.0
x|+ a 0 0 0
ala 0 = 0 0
glo » 0 00

The parallel composition of the labelicd transition systems
. &
I
;\ and (.&

is the appropriate restriction of the product in example 8.9 and takes the {orm:

By example 8.17 we know that the unfolding of a coproduct of transition systems is not necessarily
the coproduct of their unfloldings; we must look elsewhere for a definition of the sum of labelled transition
systems if we wish it to unfold correctly tc the sum of the synchronisation -tree unfoldings, We can define
the Milner sum of two transition systems as follows:

8.27 Definition. Let (S, f, Ag, Trang) and (Sy,11, Ay, Tran,) be transition systems. Decfine their Milner
sum Sy, i, Ag, Trang) +u (51,1, 41, Tran,) = (5,1, A, Tran) by taking:

i) §={0}XxSuU{1} xS U{(2{.,u)}

(ii) i= (2:(i0’£1))1

(iti}) A=({0} X Ag)uU ({1} x Ay) and,

§.5 ,a,3 ;E Trang.t = (%0, s;,(ya), (0,3')) or

v i 3(s,a,9") € Tran,.t = ({1, 3),(1,a),(!, ")) or

(iv) € Tran (0, a,8) € Trang.t = (1,(0,), (0, s}) or
(i1, a,8) € Trany.t = (i,(1.a),(1, s)).

8.28 Example. The Milner sum of the transition systems and ///

] /’7 LV_“ o
" P
&
The Milner sum of two transition systems does unfold to the sum of the two unfoldings. Note too that
provided the transition systems bhave no loops back to the initial state their coproduct does unfold nicely.
Of course the same construction works if the transilion systemns are labelled. It is casy to define operations

on lahclled transition systems which unfeld to the remaining operations on synchronisation trees given in
section 6.

is the transition system:

As presenled, transition systems are still ap interleaving model of concurrency because they allow the
occurrence of only one event at a time. One can however generalise transition systems to reflect concurrency.
For example cne can view Petri nets as kinds of transition systems in which transitions are sets of concurrently
firing events-—see e.g. [Bra]. The definition of morphism can be generalised to reflect this extra information
about concurrency while maintaining, in essence, the results of this section—see [W3].

9. Proof rules.

Naturally one wishes to use semantics to prove properties of programs. This can often be reduced to the
problem of whether or not two programs have equivalent behaviour with respect to some natural notion of
equivalence. Thus much work is involved with inventing natural equivalences and proof rules for thern—see

c.g. [M1], (B, [HN]. |

Consider the programming language Procyfor some synchronisation algebra L. There is an obvious
equivalence on closcd terms of the language: Say two closed terms are equivalent iff they have isomorphic
denotations. {The idea extends to open terms; say iwo terms are cquivalent if the closed terms obtained by
an arbitrary assignment of closed terms to free variables are always cquivalent.)

9.1 Definition. Let L be a synchronisation algebra. Let ¢t and t' be closed terms of Proey. Write
t—t' & [tlp = [f]e
for some arbitrary environment p.

We immediately know some properties of the equivalence. Firstly it really is an equivalence—is reflexive,
symmetric and transitive—because these properties hold for isomorphism, and then the commutativity and
associativity of sum -+ with respect to ~ follows directly from the propertics of coproduct. Less immediate
are the commutalivity and associativity of parallel composition @, but these facts follow easily from
the corresponding properties of product X of trees and e in the synchronisation algebra L. Because all
our operations preserve isomorphism-—all but restriction are functors anyhow and funetors must preserve
isomorphisto—we know that the equivalence ~ is also a congruence with respect to the operations of Procy,.

8.2 Propoéition. The equivalence ~ on closed terms of Proey is a congruence with respect to the operations
lifting T — AT, sum +, restriction T — T[A, relabelling T — T{Z] and paralle! composition of Procy.

Particular laws follow from particular properties of the synchronisation algebra L. One useful property,
when it is valid, is that of the distributivity of parallel composition over sum. This property holds for the
equivalence ~ precisely when the synchronisation algebra satisfies the synchronous law.

9.3 Proposition. Let I be a synchronisation algebra. The following conditions are equivalent:
(i) L satisfies the synchronous law i.c. \ ¢ «+ = 0 for \ an element of L\ { +},

34 -

(ii) NIL is a @—zero i.e. NIL t ~ NIL for t an arbitrary ciosed term ol Procy,;
(iti) Parallel composition distributes over sum te. t @ (u+v) ~ { @ u) + (¢ @ v),

for arbitrary closed terms t, %, ¥ of Procg.
Proof.

(i) (ii): I Lis synchronous no events of the form (*, ¢} are allowed in the paraliel composition 30
NIL @ t ~— NIL for any dosed term & Conversely if NIL @ $ ~ NIL for any closed term t then in

particular NIL @ \NII, ~ NIL and this isomorphism ensures «on = 0.
(i)= (iii): The distribution of @ over + follows directly from the expansion rule of proposition 6.19.

(sii)=> (i): Suppose (iii) and that ae* == B 5 0 for some @ € L\ {*}. Then BN, ~ aNIL @ NIL ~

aNIL () (NIL + NIL) ~ (aNIL () NIL)+ (a () NIL)~ ANIL + ANIL. Dub this s impossible so aex =0
for a & L\ { *}, making L synchronous. R

Of course a semantics for a language of synchronising processes mMay well ensure that parallel composition
distributes over sum without the synchronis:l.tion algebra being synehronous. The above result only implies
that any abstrach semantics which factors through our synchrouisa.tion tree semantics will satisfy the
distributivity. For example the synchronous caleuli SCCS do because the cquivalences in M2} could be
based on sy nehronisation trees and the synchronisation algebras associated with monoids of actions are

syuchropous—-sce lemma 6.18.
Now we presenb a sound and complete proof system for the non- recursive processes of Proecp.

9.4 Definition. Let L be a sy nchronisation algebra. Let the langnage Simp Lconsist of the following subset
of Procr:

t = NIL[MlHtu{A\t[EHt@t
where X € L\ {+,0}, A C L\ { £,0} is closed under divndiv ' and E: L — I, is a strict homotnerphisim.

9.5 Notation. We use the convention that

z Ni3; = hoso + 0t Xn—13n-1

i<n

where n > 0 with the understanding that the sum represents NIL when n = 0. Our notation assumes the
associativity of +, one of the rules below.

9.6 Definition. (Proof rules for Simpy)
Let s,t,u,v range over terms of Simpy-
1. Rules of equivalence.

g ~t g~tit~u
§ ~ 3’ - —_
t—~ 3 8~ u
9. Substitutivity.
s~4

opls) ~ op(s")

where op is an operation of Hifting, restriction or relabelling.

a -~ o, t~ t
op{s,t) ~ op(s', '}
35

whe.e op is the operation sum or parallcl composition.
3. Divisor rules.
At ~ Nt
when \, N € L\ {*,0} and X div \ and N div\.
4. Rules for restriction. '

NIL[A ~ NIL, (3 +t)]A ~ s[A + t[A

A(t[A) ifxeA
(””AN{ML fAgA

where A © L\ {*,0} is closed under the relation divndiv ! and) € L\ {*0}.
5. Rules for relabelling,
NIL[E] ~ NIL, (M)[E] ~ E(\)t, (s + t)[E] ~ s[E] -+ ¢[g]

where 2 : [, — L is a strict homomorphism of L and X € L\ {+,0}.
6. Rules for sum.
3+ NIL~3, s+t~t+s, 9+(+u)~(s+t)}+u.

7. Expansion rules for parallel composition.

3~ Z Nisg, t~ Z Bty

i<n j<m

s@t~). IR CHOLEEDY o pi)o D t)+ D (repy)(s ®t)

E] howp ;20 rop; 70

9.7 Theorem. Lct L be a synchronisation algebra. Let s and t be terms of Simp,. They have isomorphic
denotations as synchronisation trees in Try, iff they are provably equivalent according to the proof system
above.

Proof. Previous results ensure that the rules are sound. The above rules are sufficient to convert any term
of Simp to one of the normal form Zi—<n A;8; in which each s; is itsell of normal form. The normal
form corresponds in an obvious way to a synchronisation tree. The isomorphism of two denotations is then
provable by inductively using the divisor rule. |

In the case where the synchronisation algebra is synchronous the expansion rules above can be replaced
by simpler rules expressing the commutativity and associativity of parallel composition and rules as in
proposition 9.3 which say NIL is a zero and that parallel composition distributes over sum. More
precisely the expansion rules can be replaced by the ruies:

NIL@t~NL, s@t~t(®)s OO~ ®E®),

t@Qu+)=t@uv)+t®v) ()@ (ut)~ {(ﬁf},“)ﬂ ©9 ftl?e::mf >

Of course the above proof rules are rather limited; they only work for finite processes and for a somewhat
primitive notion of equivalence. Still many more abstract ideas of equivalence are or could be based on
synchronisation trees. Proof rules for the more abstract equivalences would have to imply the rules above. It
is even arguable that, synchronisation trees give the basic interleaving semantics making indentifications of
processes which all other interleaving semantics should also make. The argument does not quite push home,
however, because of the phenomena of divergence. We explain the problem.

36

One technique for making a synchronisation -tree semanties more abstract is to identify a process with
the set of assertions it satisfies. The assertions may be in some fragment of modal logic and express the
possible or inevitable behaviour of a process. A recursively defined process is denoted by the least upper
bound of a chain of iterates obtained by repeated application of a continuous functional to the 1-process.
One would like that the set assertjons satisficd by the recursively defined process is the union of those sets
of assertions true for the iterates. Unfortunately this is not the case for synchronisation trees when taking
modal asscrtions which express the inevitable behaviour of a process—see e.g. [IIM] and [IIN]. Suppose one
iterate was the synchronisation tree :

a

We cannot say of the process that it is inevitably prepared to make an c-communication because some later
iterate could be
a\ 8

A satisfaction relation defined between trees and assertions does not respect any approximation ordering
on trees. The problem is that trees alone do noi carry enough structure to reflect where their growth is
complete and incomplete and without such extra knowledge we cannot be sure of any non-trivial assertions
about the inevitable behaviour of the process. Of course one can extend trees or transition systems by extra
structure ta express those states which are incompletely defined, generally called “divergent” —see [HP],[HN]
for example. | am not certain how the work above generalises to trees or transition systems which take
account of divergence.

Although our approach ignores divergence there is a defence. Each closed program of Proey, is given
a denotation as a synchronisation tree, This tree faithfully represents the completed program and we can
consider those assertions which it satisfies and then take this set of assertions as its more abstract denotation,
As an example, the process P = recx.(aNIL + z) is denoted by the infinitely branching tree

T

which according to ope reasonable definition would satisly an assertion saying that the process would
inevitabiy be prepared to make an a-communication. Contrast the situation in [HN] where, essentially,
they denoie a process by the set of assertions it satisfies. Because in [HIN] it is ensured that all the functions
in the denotational semantics are continuous they cannot attribute this inevitable behaviour to P. This is
not to say the equivalence in [HN] is wrong, just different.

Finally, I hope that the relation between parallel composition and product will be useful in proving
properties of processes with synchronised communication. It is certainly useful in proving relations between
semantics in the different categories of Petri nets (W3], event structures [W1,2], trees and transition systems.
But also, I hope that the projection functions will be useful in formalising the practice of proving properties
of a parallel composition by projecting-down to the component processes, proving properties there and then
combining the properties to yield the required proof,

10. Related work.

The paper and report w1, W2] show how the above results for trees hold in the more general framework
of event structures. Event structures are related to Petri nets in [NPWI, 2. They exhibit the causal
independence and dependence of events and provide a basic model of parallel processes which does not.
rely on interleaving. In [(W1,2] it is shown that they bear a smooth relation with trees; there is a natural
interleaving , or serialising, operation on event structures which essentially imposes an extra causal constraint
on the occurrence of events by ensuring events occur synchronised, in-step, with the ticks of a clock—it is
a synchronous product on event structures. Then one can for example prove easily that a noninterleaving

37

semantics for Proegin terms of lubelled cvent structures interleaves to the synchronisation tree scmantics
we provide here. The recent paper [W3], on a new category of Pelri nets, extends the work of (W1,2] and
the work here. All the dilferent categories are related by adjunctions so we can go quite far in translating
between the different modes of expression.

The categories here and those mentioned above might be criticised for being too concrete because they
distinguish too many processes. for example § + S is not gencrally isomorphic to § cven though it is hard
to sce a programming context in which they could be distinguished. Tlopefully there are categories with
objecls which reflect a more abstract notion of behaviour with pleasant telations to the ones here. In [IIN] it
is shown how cquivalence classes with respect, to three natural equivalences on behaviour can be represented
by a form of labelled tree. In {I.P} morphisras very like those here are defined on equivalence classes of trees
with respect to Milner’s observational cquivalence, which essentially treats r—labelled events as invisible.

And tien there are relations with path expressions and trace languages {[CH], [LTS}). Obviously a
synchronisation tree determines a sel of sequences of labels showing the possible communications. Only
recently 1 noticed that ideas very similar to that of the morphisms presented here are found in the literature
on languages of traces used to model concurrent processes—sce [KGR].

In {M3] the finite dclay property is considered for a synchronous calculus with an Abelian group of
actions. The basic idea is to prune away disallowed infinite derivations from the labclled—-transition-system
semaniies. One can generalise synchronisation trees to rellect this in the unfoldirg. Take a gereralised tree
to consist of finite and infinite sequences. Infinite sequences hang as limit points at the ends of w—chains
of nodes. By noi insisting that every w—chain of nodes have a limit one specifies by their abscnce those
infinite derivations which are not permitted. In a way exactly analogous to the above one obtains a category
of generalised trees whose product, when labelled appropriately, is the parallel composition; it coincides
with the unfolding of the transition system given in [M3| with the correct infinite derivations removed. A
transition system semantics similar to Milner’s is presented by Plotkin in [P3] to give an operational semantics
to constructs like a fair parallel operation. Interestingly in proving that the operational and denotational
semanties are equivalent P’lotkin uses projection [unctions from the parallel composition to the componenk

processes.

As indicated in the previous section one can obtain more abstract semantics by “Bltering-out” those
properties of interest for a specific problem. (See the work [HN] for a good example of this idea. Think of
a property as an assertion one might make about the behaviour of a program.} This begs two questions: Is
there a class of basic models from which all interesting properties can be extracted? What are the intercsting
properties of concurrent programs? Petri nets and event structures are more basic medels than trees because
they express much more about the causal relations between cvents. It is not yet clear however what intercsting
class of assertions force one to use event structures or nets instead of trees.

Unfortunately trees, event structures and Petri nets are indiiferent, as they stand, to notions of diver-
gence as presented for example in [HIP] and [IN]}. This means that a satisfaction relation defined between
trees or event structures and assertions about their inevitable behaviour cannct respect an approximation
ordering on trees or event structures. In cider to capture divergence in event structures one needs somehow
to extend their structure to include local places of growth, just as how, with trces sometimes L is put at the
leal-nodes to show how they may extend in Lhe approximation ordering. At first glance this idea is very like
that of places in concrete data structures—sce [KP], [BCI, [W}.

38

Appendix The proof of theorem 4.13.

Theorem. Let A and B be synchronisation algebras, The construction A X B, ha, hg is a categorical
product of A and B in SA. The construction A & B, &'y, hly is a categorical product of A and B in the
subeategory with strict homomorphisins.

Proof. Let A = (La,e,, %4, 0a) and B = (Lg,ep,+p, 04) be synchronisation algcbras.
We first show A X B, ha, hp is a product in the category SA. We use the notation of 4.11.

We make sure A X Bis an S.A.: It is obvious that » is commutative, The lollowing steps show e is

associative:

(02 (0,9 (e) = {20 o ifeeal =00 g'upr =0,
(a,8)8 (0 o, 3 2" otherwise
0 ifa’oa” = 0401 5 e 8" =0p,
={0 ifaea'ea” =040rBeps ep" =y,
(xec’ e’ feg e B8") otherwise
0 _ ifxea’ea” =040rBep epgh=0p,
= (dec’ea” fef e 8" otherwise

(v, B) 0 (o, B)} o (", 7).

Clearly L\ {+,0} 3£ 0; by definition {04,08) 0 (o, 3} = (04,04); by definition e+ == (ra®xq, 4 pasg) = «
while (@, 8) o (o, ') = a s = +,4 & BoF =sg=ma=a =, & 8 =" = xp s0 * is the unique

!
)

divisor of «.

We check that the projections h, and hy are homomorphisms. Suppose {(,8) o (a’,5') % 0. Then
{a,8)e(a, B") = (w3 e 3) where as o % 040nd @ £ 05. Thus hal(e, 8)e{c’, 3)) = ha(aoa, e
B=aed = ha({a, B)) e ha{{e’, 8')). Also hale,B) =04 &2 a =0, a0 = 04 & 8 =0p for (o, 3) € L.
Aid ha(s) = hy(*a. *g), which shows that h4 is a homomeorphism. Stmilarly kg is a homomorphism.

Assume in there are homomorphisms f4 : € — A and /e : C — B for a synchronisation algebra
C = (L, s, *c,0¢). In order order to show A x B, ha, hp is a product we require there exists a unique
f:C—-AxXB making the following diagram commute:

AxP

i
IILA ’ L ivg
,/ A N
AL b8

”A ™ C/JL‘;*

Define f(e) = (falc), F8(c)). Clearly provided f is a homomorphism it is the unigque one such that
the above diagram commutes. If ¢ € L then cither ¢ — Oc & flc) = (falc), fu{e)) = 0 or ¢ #0&
fale) # 04 & fplc) £ 0g so f{e) € L, making f a function La — Lp. We now argue that fis also a
homomorphism. Suppose ¢ e ¢’ £ 0, Then fleoe!) = (fa(co), {fu(cs) = (falc)e fald), (fa(c) e fa(c))
where fa(c) e f4{c') # 04 and fo(c) e f5(c') £ 0p as f4 and /B are homomorphisms. Therefore flcod)=
(fale), fo(c)) o {(fa(c'), FB(e) = f(c) o f{¢'). We have =0 falc) =04 & fB(c) = 05 & ¢ = 0.
Also f(sc) = (fa(*4), /B{*B)) = (x4, »B). And so f 18 a homomorphisin, as required for A X B,ha, hy to
be a product in SA.

The verilication that 4® B, ki, k' is a product in the subcategory is so similar that we omit it; one
simply checks that the constructions stay inside the subcategory. g

39

Acknowledgements

Thanks are due to Mogens Niclsen of the Computer Science Departinent, Aarhus University, Denmark
for encouragement and many helplul discussions. This work was supported in part by a postdoctoral
fellowship from the Royal Socicly of Great Britain, to work at Aarhus, and in part by funds {rom the
Computer Science Department of Carnegic-Mellon University, and by the Defense Advanced Research
Projecis Agency (DOD), ARPA Order No. 3597, monitored by the Air force Avionics Laboralory under
Contract F'33615-81-K-1539. The views and conclusions contained in it are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Delcnse Advanced
Research Projects Agency or ihe US Government.

.

40

Reflerences

{AMJ Arbib, M.A.,and Manes,E.Q., Arrows, Structures and Funclors, The categorical imperative. Academic
Press (1975).

(3] Brookes, 8.D., On the relationship of CCS and C8P, ICALP 1983.

IBC] Berry, G. and Cu rien, L., Sequential algorithms on concrete data types, Report of Beole Nationale
Supérieure des Mines de Paris, Centre de Mathématiques Appliquées, Sophia Antipolis (1981).

[Bra] Brauer, W.(Fd.), Net Theory and Applications, Springer-Verlag Lecture Notes in Comp. Sei.,
vol.84 (1980).

[CES] Clarke, EM., Fmerson, E.A., Sistla, A.P., Automatic Verification of Finite State Coneurrent
Systems using Temporal Logic Specifications: A Practical Approach, to appear in Proccedings, 108" ACM
Conference on Principies of Programming Languages (1983)

[CH] Campbell, R. H.,and Habermann, A. N.., The Specification of Process Synchronisation by Path
[Expressions. Springer-Verlag Lecture Notes in Comp. Se. Vol.1§ (1974).

cp] Cardelii, L., and Plotkin, G., An Algebraic Approach to VLSI design. In VLSI 81, Academic Presa
(1981).

[Cra] Gratzer, G., Universal Algebra. Van Nostrand University series in Higher Mathematics (1968).

(HBR] Hoare, C. AR, Brookes, 5.D., and Roseoe, AW, A Theory of Comm unicating Processes, Teehnical
Report PRG-186, Programming Research Group, University of Oxford (1981); o appear also in JAQM.

[IM] Hennessy, M.C.B. and Milner, R., On observing nondeterminism and concurrency, Sprinzer LNCS
Vol. 85. (1979).

[HN] Hennessy, M.C.B,, and de Nicola, R., Testing Equivalences for Processes, faternal Report, University
of Edinburgh, (July 1982), ’ ’

(LI1] Hennessy, M.C.B. and Plotkin, G., A term model for CCS, Proceedings of the gth Conference on
Mathematical Foundations of Computer Science, Springer—Verlag LNCS Vol. 88. (1980)

[KP) Kahn, G, and Plotkin, G., Domaines Concrétes, Rapport IRIA-LABORIA, No.338 (1978).

{KCR] Knuth, E,, Gyéry, Gy.,and Roenyai, L., A Study of the Prajection Operation. Proc. of worksliop
on Petri nets, Springerﬁ\’erlag Informatik-Fachberichte Vol. 52 (1982).

[LP] Labella, A., and Peterossi, A., Towards a Categorical Understanding of Parallelism. Report of
Istituto di Analisi dei Sistemi cd Informatica del C.N.R., Rome (1983).

(LTS| Lauer,P., Torrigiani, P.,and Shields, M., COSY, a system specification language based on paths
and processes. Acta Informatics 12 (1979). :

{Mac] Maclane, 8., Categories for the Working Mathematician. Graduate Texts in Mathematics,Springerq
Verlag (1972).

[M1] Milner, R., A Calculus of Communicating Systema, Springer—Verlag Lecture Notes in Comp. Se,
vol. 92 (1980).

41 -

[M2] Milner, R., On relating Synchrony and Asynchrony, Dept. of Comp. Sci. report, University of
Edinburgh (1980).

M3] Milner, R., A finite delay operator in Synchronous CCS, Internal Report CSR-116-82, University
of Edinburgh (1982)

[Mi] Milne, G., Synchronised Behaviour Algebras; a model for interacting systems. Report of Comp.
S¢. Dept., University of Southern Calilornia (1979).

[NPW1] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Livent structures and Domains. Proc. Conf.
on Semantics of Concurrent Computation, Evian, Springer-Verlag Lecture Notes in Comp. Sc. 70 (1979).

[NPW2] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and Domains, part 1 .
Theorctical Computer Science, vol. 13 (1981) pp.85-108.

[P1] Plotkin, G., A structural approach to operational semantics. DAIMI FN-19 Comp. Sc. Dept,
Aarhus University (1981).

[P2] Plotkin, G., A Powerdomain for countable non-determinism, Springer-Verlag Lecture Notes in
Comp. Sc. 1410 (1982).

[S] Scott, D, Domains for Denotational Semantics, Springer-Verlag Lecture Notes in Comp. Sc. 140
(1982).

W] Winskel, G., Events in Computation. Ph.D. thesis, University of Edinburgh (1980).

(W1} Winskel, G., Event structure semantics of CCS and related languages, Springer-Verlag Lecture
Notes in Comp. Sc. 140 (1982}). '

[W2] Winskel, G, Event structure semantics of CCS and related languages, Report of the Computer
Sc. Dept., University of Aarhus, Denmark (1982).

[W3] Winskel, G., A New Definition of Morphism on Petri Nets. To be submitted (1983).

42

