
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A r c h i t e c t u r e Val idat ion S y s t e m

Using Assertion Descriptions

U s e r s Manual

9 May 1983

Char les P. Kol lar

Computer Science Department

Carnegie -Mellon University

Copyright © 1983 Charles P. Kollar

This research was sponsored in part by the Department of the Army under contract number DAA

B07-82-C-J164. This document should not be interpreted as representing the official or unofficial

policies, either expressed or implied, in part or in whole, of the Department of the Army or the United

States Government.

Tab le of Contents

1. In t roduct ion

1.1 The Problem of Computer Architecture Validation.
1.2 Program Verification.

1.2.1 Formal Analysis.

1.2.2 Symbolic Execution.

1.2.3 Test Data Selection.

1.2.3.1 Computer Architecture Test Data Selection.

1.2.4 Summary

1.3 Architecture Validation

1.4 The Proposed Approach.
1.5 Summary

2. Val idat ion S y s t e m

2.1 Justification of the Approach
2.2 Overview

3. T h e In terpreter

3.1 Functions

3.1.1 Function Call

3.1.2 Special Forms

3.1.3 General Primitive Functions

3.2 Production Construct

3.2.1 Activation Parameters

3.2.2 Formal Parameters

3.2.3 Production Call

3.2.4 Example

3.3 Equation Solving

3.3.1 Example

4. S e c o n d Level Val idat ion Program Template

4.1 The Validation Program

4.2 Level II Instruction Definitions

4.3 Level II Validation System Specific Primitive Functions

4.4 Level II Table Definitions

4.4.1 Condition Code Tables

4.4.2 Size Range Tables

4.4.3 Value Size Correspondence Tables

4.4.4 Maximum Value for a Size Tables

4.4.5 Access Mode Size Tables

4.4.6 Condition Code Affect table

5. First Level Val idat ion Program Template

5.1 The Validation Program

5.2 Level I Instruction Definitions

5.2.1 Instruction Type Function

5.2.2 State Descriptors

5.2.3 Code Sequence
5.2.4 Production Classification

5.3 Access Mode Productions

5.3.1 Format of a Value Range

5.3.2 AM Form

5.4 Setup and Check Productions
5.4.1 Access Mode Checking
5.4.2 Condition Code Setup and Checking

5.5 Level I Validation System Specific Primitive Functions

5.6 Level I Table Definitions
5.6.1 Condition Code Definition Table

5.6.2 Exception Code Definition Tables

6. A Program Example

6.1 Level II Program
6.2 Level I Result

6.3 Target Result

7. IO

7.1 READ

7.2 FILE

7.3 CLOSE

7.4 PRINT

7.5 PRINTL

7.6 PRINTS

7.7 PRINTSL

P R E F A C E
PAGE 1

Preface

An overview and background to the system is presented in the Introduction. The latter portion of

this document is a users manual to be used to construct computer architecture validation programs.

Please address all comments concerning this document to the author at ARPANET address

KOLLAR@CMU-CS -C .

p A G E 2 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

I N T R O D U C T I O N
PAGE 3

1. Introduct ion

1 . 1 The Problem of Computer Architecture Validation.

The problem of computer architecture1 validation is simply the problem of proving the equivalence

of incarnations of the same computer architecture. Since computer architectures are essentially

algorithms, the problem becomes one of proving the equivalence of algorithms. This latter problem is

dealt with under the heading of 'Program Verification'. Program verification attempts to determine

whether the program description is implemented via the formal programming language.

There are several approaches to program verification that should be understood before attempting

computer architecture validation. In addition there are constraints that the physical computer

architecture imposes that are not found in program verification. The following will briefly discuss the

current schools of thought of program verification (Section 1.2). After this a brief overview of the

current schools of thought of computer architecture validation will be discussed (Section 1.3) noting

the similarities between the two.

1 . 2 Program Verification.

Program Verification techniques are divided along the lines of how much formal understanding of

the problem is used. There are three current divisions that are described, in order of decreasing

formal understanding, as follows:

1.2.1 Formal Ana lys i s .

Here the program is described as a mathematical model and analyzed axiomatically. This

formalization allows general assertions about value/set interactions to be demonstrated. Hoare [3]

describes a program as possessing a precondition, a function and an assertion. The precondition

describes the state that is necessary to invoke the function. The function describes the action that is

necessary to produce the assertion. The assertion is the action of the function. Hoare points out that

this approach does not detect failure to terminate due to an infinite loop. It should be interpreted as:

"provided that the program successfully terminates, the properties of its results are described by the

assertion." Hoare's axioms and rules are not implementation dependent. Rather, they focus on the

™ I n l h . e o l ° m . P U t e r a r c h i t e c t u r e i s d e f i n e d " t h a t *me independent aspect of a computer implementation that the
programmer sees. '

PAGE 4
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

"conditional" correctness of a program, "relying on an implementation to give a warning if it has had

to abandon execution of the program as a result of violation of any implementation limit." He makes

mention of including these implementation dependencies but warns of their "reflection in the

complexity of the underlying axioms."

The method is general and it is not surprising that the results are likewise general.

1.2.2 Symbol ic Execut ion .

The program is executed symbolically in an effort to understand the data paths through the

program. A data path is described by a set of symbolic inputs that derive a set of symbolic outputs. In

symbolic program execution, the set of all inputs is divided into classes or subsets of inputs. The

classes are selected by analyzing the program control flow. The control flow is determined by

representing the program in the form of a flow diagram or network structure. One class corresponds

to one path along the flow diagram or network. The symbolic program execution method is not a

formal correctness proof as is the formal analysis method, since the program is not analyzed

axiomatically. The halting problem is not satisfied since, as stated by King [5]: "Often the set of input

classes is determined only by those inputs in the control flow".

The term "symbolic" arises from the fact that the real data for program execution is not used. Each

symbol corresponds to a set of real data. The input is symbolic and therefore the output is symbolic.

1.2.3 Tes t Data Se lect ion .

The least general, and least formal, method is that of manual test data selection. Here input is

selected to cover certain "intuitively chosen" problem cases. The method does not satisfy the

general Halting problem in that typically only a subset of the input criteria is considered. Therefore it

is not valid in demonstrating the existence of errors for all input that produces output as does the

formal analysis method. This problem was recognized by Dijkstra [2]. "Program testing can be used

to show the presence of bugs but never to show their absence."

1.2.3.1 Computer Arch i tec ture Tes t Data Se lect ion .

Several problem areas relating to computer architecture validation have been presented by Lai [6].

His experiments attempt to determine where ambiguities are most likely to occur in the specification

of a computer architecture. He discusses several likely sources of errors. These are:

1. Incomplete and imprecise specification: Where the "Hardware for any implementation

does something for the unspecified operations."

I N T R O D U C T I O N
PAGE 5

2. Interdependent side-effects: "An instruction consisting of multiple operations is
inherently ambiguous if the order of the operations is not clearly specified and the effect
of the instruction depends on this order."

3. Boundary values: "Input values that are at the boundaries of different decision regions in
the input domain of the instruction."

4. Missing features: "Relatively simple features are left out of an implementation due to the
oversight or lack of experience of its designers."

1.2.4 Summary

The first approach is considered useful for only the simplest of programs. Therefore, this approach

does not lend itself to the validation of computer architectures. Some work has been conducted on

the second approach (in relation to computer architectures). A simulator for a computer architecture

written in ISPS [4] for the PDP-11 [1] has been analyzed in this manner by Oakley [9]. This involves

the creation of an input/output assertion description from the procedural ISPS description. The

procedural description has the advantage of being more easily analyzed by humans, while the

assertion description gives a clearer understanding of the paths through the computer architecture.

If the test data by intuition method is to become more complete, less intuition and more formalization

will be required. However if this method is used the problem areas, as discussed by Lai, should be

exercised thoroughly.

1.3 Architecture Validation

Due to the physical nature of most computer architectures, validation takes place along one of two

lines. The first line requires the hardware implementation of the computer to be modified so that

certain machine state is made available. A second computer architecture description (perhaps

written in a procedural language such as ISP) is created and declared the "standard" to which all

other implementations of this architecture are compared. Machine state of the "standard" and the

implementation to be validated are compared as each executes the same series of instructions. This

approach has the disadvantage of requiring extra machinery to produce the comparisons. The

advantage of this approach is that instructions are "validated" at a high rate. This approach can be

categorized as one of brute force. There is usually little attempt to single out potential problem areas

and concentrate on them; instructions are typically selected at random. The high instruction

throughput and the random selection lead to a 'certain' degree of confidence.

PAGE 6
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

The second method is characterized by low instruction/data throughput but a high degree of

concentration on what are considered the problem areas. These are the features of the architecture

that should be most prone to implementation error. A typical approach assumes orthogonality of the

access modes and the instruction functionality. This allows instructions that modify data 'exclusively'

to be tested in a table driven format. This assumption decreases the complexity of the validation

program which allows it to be more easily declared correct 2 . In contrast to the first approach, the

second approach provides low instruction throughput and a high degree of selection to give a

'certain' degree of confidence.

Confidence is not easily quantified.

1.4 The Proposed Approach.

The following approach allows the computer architecture to be tested along different data paths.

As such it should be used in conjunction with the symbolic execution of a procedural description of

the computer architecture to be validated. The approach requires the construction of one 'validation

program' for each of the input/output assertion paths described by the symbolic execution 3 (See

Section 1.2.2.). The issue of 'what actual data to select' within the sets described by the input/output

assertions is in part answered by providing tools for the creator of the validation programs. The tools

allow the input/output assertion sets to be further divided into sets, with a probability selection

distribution associated with each set. This allows the architecture to be described at a somewhat

lower input/output assertion level than could be provided by the assertion description for the

architecture. The necessity for this arises from the knowledge that the procedural or assertion

description does indeed describe the physical architecture at a relatively. *igh level.

Assuming the validity of the data paths described by the high level description with respect to the

physical implementation, it becomes necessary to describe the sub-paths. The system discussed

within allows these sub-paths to be described yet it does not claim to find them. Since these.sub-

paths are architecture dependent, and indeed implementation dependent, they must be found

through a more in-depth knowledge of the structure of the physical implementation. Lacking this, it is

necessary to make assumptions about the underlying data paths based on intuition. These

2 A problem with this approach is having to 'prove' the validation program correct (the first approach uses no program per

se).

3 lndeed, it is possible to proceed without an input/output assertion description generated from a procedural description.
This simply requires the input/output description to be generated from scratch.

I N T R O D U C T I O N
PAGE 7

assumptions could include choosing the more complicated addressing modes to be used more often

than the less complicated, or subseting data paths along the lines of the storage sizes (i.e. word, byte,

halfword) of the architecture. The work of Lai (See Section 1.2.3.1.) suggests other sources of

implementation error.

1.5 Summary

A system has been devised to generate program modules whose data and addressing modes are

chosen with given probabilities. The programs themselves are generated automatically from

'templates'. Each 'template' describes one input/output assertion path through the architecture. The

potential data set of the instruction is divided into weighted subsets, as are the potential access

modes of the instruction to be validated.

In addition, the automation of this process allows certain methods to be employed that would

otherwise be too tedious and time consuming to 'hand cede'. These methods include the execution

of different instruction sequences to add a dimension of instruction interaction to the testing. For

example, a result produced by the previous instruction can be used as a source operand for the

instruction currently being validated. The use of several methods to both set and test operands,

either sources or destinations, decreases reliance on the 'functionality' of any one method of testing

or path through the architecture. In this manner different paths through the architecture are used in

areas of the program that are 'assumed' 4 to be previously validated.

4
Instruction sequences that are used to "validate" other instructions should themselves be valid.

p A G E 8 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

V A L I D A T I O N S Y S T E M
PAGE 9

2. Val idation System

2.1 Justification of the Approach

For the purposes of the system of validation used here it is necessary to think of a computer as a

finite state machine. The state of the machine can be characterized by the value of all architecture

variables such as the program counter, the registers, the memory, as well as architecture variables

not available directly to the programmer. The exact definition of a state for our purposes will be

qualified below. In addition it is necessary to effect a state transformation via a state transformation

function. The state transformation function will be defined as requiring two inputs, a state and an

event, and producing as output a state. That is:

N E X T - S T A T E (S . , EVENT) => S j
Or simply:

E V E N T (S 1) => S j

Which states that it is the event itself which is responsible for the state transformation and is thus the
state transformation function.

To continue this discussion it will be necessary to define several terms. A pre-condition consists of

the machine state prior to the occurrences of some event. A post-condition consists of the machine

state at the termination of some event. An event is therefore a means of effecting a state change in the

computer. An event would include: the execution of an instruction, the execution of some portion of

an instruction, or some action initiated external to the computer such as a I/O request. That is:

E V E N T (S p r e) - > S p o s t

This being the case, the task of validating the computer architecture may be described as follows:

Given all possible events it is necessary to determine that all possible pre-conditions of these events

produce the "expected" post-conditions. To effect this it will be necessary to:

1. Find a means to capture machine states.

2. Find a means to compare machine states.

3. Find a means to initiate an event.

The method chosen here to capture and compare machines states as well as to initiate events 5 has

been determined, in part, by a constraint placed on the validation system: no external hardware

5
As well as the exact definition of a state and event for our purposes.

PAGE 10
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

probes are permitted to examine states on the "sub-instruction" level. Therefore states must be

captured and compared at the "instruction" level. This determines what may be considered a "state"

for validation purposes. Here the "state" consists of those aspects of a computer architecture which

may be examined and compared at the instruction level of the architecture. If the system is permitted

to ignore I/O events, the events which may be initiated are those of the instruction level. A scheme

must therefore be devised for establishing a state (as we have defined it) as well as testing for the

existence of a state after the event of an instruction execution.

Several assumptions have been made which allow this task to become manageable. These are:

1. Instructions which are used to establish the required pre-condition are indeed valid (will

modify the intended state variables correctly) and will produce no "unexpected" side

effects.

2. The instruction subject to validation will modify only those state variables that it is

"expected" to modify (though it may not modify these correctly), and in doing so will

produce no "unexpected" side effects.

That is an instruction which is "expected" to modify only the value of the state variables, the

operand, and the condition codes t
6 would not unexpectedly add 5 to the stack pointer and place the

result in virtual memory address 5432 hex.

These assumptions about instruction execution behavior permit the architecture validation system

to proceed in the following manner:

1. The required precondition S p r e may be established by applying several instruction level

state transformations to a known current state S c u r r e n t . That is:

E V E N T (S c u r r e n t) = > S k
E V E N T (S k) => . . .
E V E N T (. . .) => S p r e

This follows from the first assumption in that the state transformation function is

guaranteed to produce the desired result with no "unexpected" side effects.

2. The expected post-condition S p o s t may be tested for by examining only those state

variables which the instruction is "expected" to modify. This follows from the second

assumption in that the state transformation function under test is guaranteed to effect

only these state variables.

6 F o r example, the NEBULA INC instruction which is expected to modify an operand (by incrementing it's value), and modify

the condition codes (based on the resulting value of the operand).

V A L I D A T I O N S Y S T E M
PAGE 11

2.2 Overview

The state of the architecture which an instruction under test may modify is sub-divided along

certain conceptual divisions or boundaries. Currently these boundaries or sub-states 7 are:

I . T h e memory and registers (MR), which are modified by the instruction through the
operand fetch mechanism, or access mode (AM).

2. The condition codes (CC), which are modified by the instruction directly.

3. The program counter (PC), which is modified by the instruction directly.

4. Exception has been generated (EX), which is modified by the instruction directly.

The instruction manipulates data (effects change in state of the memory and registers (MR))

through the AM's. For example, given a three operand instruction of the form:

INSTR A M I , AM2, AM3

Two pieces of data, located in the memory or register (MR) state variables, might be fetched

through AM1 and AM2 with the result returned through AM3. In the instance where instructions

produce arithmetic results it is clear that the CC's are an integral part of the true result8 . The CC's

exist in part due to the problems associated with implementing the mathematical concept of a

number. This is true in particular for the truncate and carry CC's. However for validation purposes

the condition codes CC's are treated as a separate state variable.

The effect of state modification by an instruction execution event which is under test
T E S T - E V E N T (S n r J => S n n c + v pre' post

can be divided along the aforementioned state divisions. That is:

T E S T - E V E N T (S M R) - > S t

T E S T - E V E N T (S C C . f e) - > S P
0

T E S T - E V E N T (S p c . J r e) - > S ^

Accordingly the required state precondition S x maybe realized as follows:

V NT ^ - c u r r e n t -I'" ^ E V E N T (S p c . c u r r e n t) => . . . => E V E N T (S p c . p r e)

7 These particular sub-states were chosen as a result of their being easily accessed or monitored at the NEBULA computer
architecture instruction level. In somes sense this issue is architecture dependent. However the state of most architectures
can be subdivided into, at least, the first three sub-states. These are the MR, CC, and PC sub-states.

g
True result in the mathematical sense of an operation such as "add" or "subtract"

PAGE 12
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

In addition serial events may be initiated to verify the post-conditions: S M R . p o s t , Sec -pos t ' ^ P C - p o s t '

and S E X s t . The only restraint placed on these events is that they do not perturb any state that has

already been established as part of the precondition, or has not already been verified as part of the

expected post-condition.

This results in three sub-divisions of the validation procedure: the setup, the execution, and the

check. For example, a particular AM is chosen from the list of legal AM's for an instruction according

to a given probability distribution. The AM has a value associated with it (the MR state modified)

according to a given probability distribution. The setup involves the generation of code sequences

that cause the AM to fetch the associated value (MR value) at instruction execution. The setup also

includes the generation of code to establish the proper C C state, as well as the proper PC state. The

execution phase causes a code sequence for the instruction to be generated that reflects the chosen

AM's (MR state) and PC state. In the check phase, a code sequence is generated that determines

whether the instruction execution produced the expected resulting state.

In like fashion each potential state modification of the instruction undergoes one or all of the above

sub-division phases. Sub-division phases, for all divisions, take place at one time. That is the setup

phases for all divisions take place, then the execution phases, and then the check phases.

THE INTERPRETER PAGE 13

3. The Interpreter

The validation system interpreter is written in a dialect LISP [7]. The kernel of the validation system

is a modified LISP interpreter. It was derived from one described by Steele and Sussman [10].

The modifications include:

o Implementing the original interpreter in MacLISP [8], a dialect of LISP developed at MIT.

• Adding a production construct:

© Adding an equation solving construct.

© Adding certain primitive operations which are to be used by the validation system. These
primitive operations are divided into two categories as follows.

o General LISP primitive operations.

o Validation system specific primitive operations which are described in the following
chapters.

The interpreters I/O capabilities are described in Chapter 7.

PAGE 14
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

3.1 Functions
A function definition is a list consisting of: the keyword F U N C T I O N , the Function Name Fname, a

list of Format Parameters FPj, and an Symbolic Expression Sexpr. That is:

(F U N C T I O N Fname (FP1 FP2 . . .) Sexpr)

The arguments to a function, the Actual Parameters, are bound to the Formal parameters at the

time of the functions evaluation.

Functions are composed of calls to General Primitive, Validation System Specific Primitive, or User

defined functions. Several Primitive Functions currently exist and are enumerated in Section 3.1.3.

The Validation System Specific Primitive functions are described in the following chapters.

3.1.1 Funct ion Call

A Function call is distinguished from a Production call in that the first element in the function call

must evaluate to an ATOM which corresponds to the function name. That is, a function call is a list

consisting of: a Function Name Fname followed by some number of Actual Parameters ActPj. That is:

{Fname ActP1 ActP2 . . .)

A production call is a list consisting of: a list of Activation Parameters APn followed by some

number of Actual Parameters ActPn. That is:

((AP1 AP2 . . .) ActP1 ActP2 . . .)

3.1.2 Special Forms

The following is a list of special forms which are of general use.

Takes any number of arguments and evaluates the arguments in the order given.

The value returned is that of the last function evaluated.

Takes any number of arguments. The first argument is a repeat count. The

remaining arguments are evaluated in PROGN fashion the number of times

specified by the repeat count. If the repeat count is less than one the remaining

arguments are NOT evaluated.

Function call binding mechanism without the function name (As in LISP).

PROGN

REPEAT

LAMBDA

SETQ Takes two arguments. The first argument is not evaluated. The value of

second argument is assigned to the first argument.

THE INTERPRETER PAGE 15

C O N D The traditional LISP conditional mechanism.

3.1.3 Genera! Primitive Funct ions

The following is a list of primitive functions which are of general use.

EQ Takes two arguments. Returns T if the arguments are identical, otherwise it
returns'NIL'.

C O N S

L IST

C A R

CDR

A S S O

N U L L

Takes two arguments and returns the CONS of the arguments.

Takes any number of arguments and returns a list of the arguments.

Takes one argument and returns the left hand portion of its CONS cell.

Takes one argument and returns the right hand portion of its CONS cell.

Takes two arguments. The first argument must evaluate to an atom. The second

argument is a list of CONS cells. The function scans the CAR of each CONS cell

until one matches the first argument. The function then returns that CONS cell.

Takes one argument and returns T ' if the value of the argument is 'NIL5, otherwise
it returns'NIL'.

Q U O T E Takes one argument, an item to be quoted. The item quoted is not evaluated. That
is the character string that is quoted (argument) is to be taken as a literal.

Takes one or more arguments. If one argument is c'.ven the two's complement
negative of that argument is returned. If more than one arguments are given then
the first argument has subtracted from it all the remaining arguments. The
subtraction is two's complement.

+ Takes two or more arguments. The arguments are added together and their sum is
returned.

1 - Takes one argument. The value returned is that of the argument minus one.

1 + Takes one argument. The value returned is that of the argument plus one.

* Takes two or more arguments. The arguments are multiplied together and their
product is returned.

PAGE 16
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

// Takes one or more arguments. If one argument is given, it's reciprocal is

returned. If more than one argument is given, the first argument is divided by the

following arguments and the quotient is returned.

\ Takes two arguments. The remainder of the first argument divided by the second

argument is returned.

\\ Takes two arguments. The value returned is the greatest common denominator of

the arguments.

t Takes two arguments. The value returned is that of the first argument raised to the

power of the second argument.

ROT Takes three arguments. The first argument is rotated by the value specified by the

second argument. If the second argument is positive then the first argument is

rotated right. If the second argument is negative then the first argument is rotated

left. The third argument specifies the size of the register that the rotation takes

place in as a power of two.

LSH Takes two arguments. The first argument is shifted by the value specified by the

second argument. If the second argument is positive then the first argument is

multiplied by two raised to the power of the second argument. If the second

argument is negative then the first argument is divided by two raised to the power

of the second argument.

C O B Takes one argument. The value returned is the count of the powers of two that the

argument is composed of. 9

ABS Takes one argument. The value returned is the absolute value of the argument.

N O T Takes one argument. The value returned is the ones complement negative of the

argument.

AND Takes three arguments. The value returned is the logical AND of the first and

second arguments. The third argument specifies the size of the register that the

AND operation takes place in.

OR Takes three arguments. The value returned is the logical OR of the first and

second arguments. The third argument specifies the size of the register that the

OR operation takes place in.

9
Historically count one bits.

THE INTERPRETER PAGE 17

Takes three arguments. The value returned is the logical XOR of the first and
second arguments. The third argument specifies the size of the register that the
XOR operation takes place in.

PAGE 18 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

3.2 Production Construct

A production definition is a list consisting of: the keyword P R O D U C T I O N , a list of Activation

Parameters APn, a list of Formal Parameters FPn, and an Symbolic Expression Sexpr. That is:

(P R O D U C T I O N (AP1 AP2 . . .) (FP1 FP2 . . .) Sexpr)

3.2.1 Act ivat ion Parameters

The Activation Parameters in the production definition are compared, considered as (unordered)

sets, with the Activation Parameters in a production call. A list of productions is constructed whose

AP's are equal (as a set) to the production call AP's. From this list one production is selected and

executed. If no production can be found with the above properties a list is constructed corresponding

to the productions whos AP's are a superset of the production call AP's. From this list one production

is selected and executed. If no production can be found with the above properties an error is

generated.

3.2.2 Formal Parameters

The Formal Parameters are bound to the Actual Parameters when the production is invoked.

3.2.3 Product ion Cal l

A production call is a list consisting of: a list of Activation Parameters APn followed by some

number of Actual Parameters ActPn. That is:

((AP1 AP2 . . .) ActP1 ActP2 . . .)

3.2.4 Example

The production call:

((1 f r 1 e n d - o f ' g e o r g e) C l y d e)

will invoke a production from the set of productions which contain 'friend-of and 'george' in their

activation parameters.

Of the following production definitions only the first two productions will be in this set (Here nc

exact match is found). One will be chosen arbitrarily for execution.

(PRODUCTION (g e o r g e sam f r i e n d - o f n e i g h b o r) (p e r s o n) S9xpr)
(PRODUCTION (f r i e n d - o f george guy) (p a l) S o x p r)
(PRODUCTION (f r i e n d - o f sam guy) (p e r s o n) S e x p r)
(PRODUCTION (p o t - o f sam) (name) S o x p r)

THE INTERPRETER PAGE 19

Of the following production definitions only the last production will be in the set (Here an exact

match is found). It will be chosen for execution.

(PRODUCTION (g e o r g e sam f r i e n d - o f n e i g h b o r) (p e r s o n) S e x p r)
(PRODUCTION (f r i e n d - o f george guy) (p a l) S e x p r)
(PRODUCTION (f r i e n d - o f sam guy) (p e r s o n) S e x p r)
(PRODUCTION (p o t - o f sam) (name) S e x p r)
(PRODUCTION (g e o r g e f r i e n d - o f) (p e r s o n) S e x p r)

PAGE 20
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

3.3 Equation Solving

An Equation definition consists of the string E Q U A T I O N followed by the Equation Key eq-key

followed by a list of Formal Parameters FPn followed by the Equation Form eq-form.

(E Q U A T I O N eq-key (FP1 FP2 . . .) eq-form)

The eq-key is used to refer to the equation definition in an invocation or call. A call consists of a list

containing the Equation Key eq-key followed by the Actual Parameters APn. The value of the Actual

Parameters APn are bound to the Formal Parameters FPn in the Equation form eq-form of the

instruction definition.

(eq-key AP1 AP2 . . .)

The Equation Form is a Symbolic Expression (Sexpr) which contains function calls and

assignments (a special function). The special function ' = = ' (the assignment) allows assignment to

Formal Parameters FPn (variables) within the Equation Form. All variables are local to the Equation

Form. Assignment may only take place if the value of the Actual Parameter bound to the Formal

Parameter in the equation is '&NIU and in addition assignment only takes place once.

The functions and assignments in the Equation Form are "solved" by iteration over the Equation

Form. When the system encounters a function it will be executed "produce a non-&NIL result" only

when all of it's parameters are bound to a non-&NIL value (otherwise it produces &MIL). There is

therefore no explicit ordering of execution. This iterating over the Equation Form continues until all

the Formal Parameter bindings are non-&NIL at the end of an iteration (The maximum number

iterations is one greater than the number of Formal Parameters. When this number if iterations is

exceeded an error is generated.).

3.3.1 Example

The following example describes an equation which will produce a result which is dependent upon

the values of the actual parameters of the call.

(E Q U A T I O N x (a b C)
(L I S T

(« a (COHD ((p r i m e - p b) ' p r i m e) (T ' n o t - p r i m e)))
(== b (random c))))

If the call is of the form:

(x '&NIL '&NIL 1024)

on the first iteration the actual parameter bound to 'a' is &NIL but the equation ' = = a' depends on

T H E INTERPRETER PAGE 21

the result of the equation ' = = b' (the value of 'b' is &N1L), therefore insufficient information is

available to solve this equation. The actual parameter bound to 'b' is &NIL so the equation ' = = b' is

solved for (since 'c' has a non &NIL binding). On the second iteration 'b' has a non &NIL binding and

the equation ' = = a' may be solved. A list will be produced the first item of which is either 'PRIME' or

'NOT-PRIME', depending on the value of the function 'prime-p' (this function returns T if the

argument is a prime number or NIL if the argument is not a prime number). The second item of the list

will be a number selected randomly in the range '0' to 'c-1'.

If the call is of the form:

(x '&NIL 20 1024)

On the first iteration the actual parameter bound to 'a' is &NIL and 'b' has a non &NIL bind, therefore

the equation ' = = a' is solved. The actual parameter bound to 'b' is non &NIL (the equation has been

"solved previously") so the equation ' = = b' is NOT solved. A list will be produced whose first item is

'NOT-PRIME' and whose second item item is the number 20. That is:

(NOT-PRIME 20)

p A G E 2 2 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

\

S E C O N D LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 23

4 . Second Level Val idation Program Template

4.1 The Validation Program

The Level II Validation Program consists of several parts which are described in the following

sections. The parts which constitute a program may be placed directly in the program or in separate

files, being referenced through the READ function (See Section 7). The extension of a Second Level

Validation Program file shall be HLV.

PAGE 24 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

4.2 Level II Instruction Definitions

The Level II Instruction Definitions file shall have the extension L2. A Level II Instruction Definition

consists of Equations.

An example of a Level II Instruction Definition for the NEBULA INC instruction which specifies a
post condition of a positive condition code, where no exception should take place is as follows:

(e q u a t i o n 1nc -p (s i z e v a l u e - p r e v a l u e - p o s t c c - p r e c c - p o s t)
(l i s t 1 n o - e x c e p t i o n - - s d ' * i n c

(l i s t ' q u o t e (l i s t
(l i s t 'am

(l i s t (« s i z e (SET bhw))
(== v a l u e - p r e (- v a l u e - p o s t 1))
(« v a l u e - p o s t (RANGE 1 (1 - (CDRASSQ s i z e b h w - s i z e))))))

(l i s t »cc
(« c c - p r e (SET c c - a l l))
(== c c - p o s t ' p))))))

The above equation may be invoked with the following,

(i n c - p '&NIL '&NIL '&NIL 1 &NIL ' & N I L)

The equations will be solved to produce a Level I Instruction Definition which is actually a function

call. It is important to note that each Level II instruction Definition represents a "set" of Level I

Instruction Definitions (one-to-many), only one of which is produced for each Level H Instruction Call.

One possible Level I Instruction Definition produced from the above Level It Instruction Definition

above is as follows:
(NO-EXCEPTION—SD ' I N C ' ((A M (BYTE 5 6)) (CC N P)))

S E C O N D LEVEL V A L I D A T I O N PROGRAM TEMPLATE
PAGE 25

4.3 Level I! Validation System Specific Primitive Function!
SET Takes one argument which is a list. The function returns a randomly chosen top

level element of the list.

RANGE

C D R A S S Q

Takes one argument which is a list. The elements of the list are CONS cells. The
values of a CONS cell describes a range. The CAR of the cell describes a lower
limit. The CDR of the cell describes an upper limit. The function randomly chooses
one of the CONS cells of the list. It then returns a randomly chosen number in the
range described by that CONS cell.

A short hand notation for the following.

(CDR (ASSQ i tem l i s t))

R A N G E - E Q C A R Takes two arguments, an ATOM key and a list. If the key is EQ to the CAR of a

'sublist' of the list then the RANGE opération is done on the CDR of the 'sublist'.

S E T - I N R A N G E

A F F E C T

Takes two arguments, a NUMERIC key and a list. If the numeric key is IN the

RANGE of the CAR of a 'sublist' (the CAR of the 'sublist' is a CONS cell which

contains a range pair) then the SET operation is done on the CDR of the 'sublist'.

Takes three arguments, an ATOM code, an ATOM code modifier, and an Affect
list. If the code is EQ to the CAR of a 'sublist' of the list and the list represented by
the CADR of the 'sublist' contains the code modifier then the CADDR of the
'sublist' is returned.

PAGE 26
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

4.4 Level II Table Definitions

The following tables are used by the Level II Validation System Specific Functions described above.

These tables are designed for the NEBULA architecture and do not constitute all the tables used to

validate the NEBULA architecture. These tables are included here to give some flavor of the types of

data structures which are necessary to construct Level II Validation systems.

4.4.1 Condit ion Code Tab les

These are used to group similar condition codes into sets. In general it is necessary to select one

condition code from the set. This is done with the SET function. Some NEBULA specific examples of

condition code tables are.

; ; ; L i s t o f a l l the NEBULA c o n d i t i o n c o d e s :

(s e t q c c - a l l *(
p p - c p - t p - t c
z z - c z - t z - t c
n n - c n - t n - t c
zn z n - c z n - t z n - t c))

• • •
> » •

; ; ; L i s t o f a l l the NEBULA c o n d i t i o n codes t h a t a re NOT z e r o :

(s e t q c c - t z 1 (
p p - c p - t p - t c
n n -c n - t n - t c
zn z n - c z n - t z n - t c))

4.4.2 Size Range T a b l e s

It is sometimes necessary to select a number from a range which corresponds to the different data

sizes that the architecture supports. This is done with the RANGE function. Some NEBULA specific

examples are.

» I »

Range d i s t r i b u t i o n t a b l e ,

(s e t q r a n g e - s i z e 1 (
(0 . 127)
(128 . 32767)
(32768 . 214748367)))

S E C O N D LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 27

4.4.3 Value Size C o r r e s p o n d e n c e Tab les

It is sometimes necessary to determine which addressing mode sizes will accommodate a particular

value. This is done through the S E T - I N R A N G E function. Some NEBULA specific examples are.

(s e t q range-bhw 1 (
((0 . 127) b y t e h a l f w o r d word)
((128 • 32787) h a l f w o r d word)
((32768 . 214748367) w o r d)))

(s e t q r a n g e - b h ' (
((0 . 127) b y t e h a l f w o r d)
((128 . 32767) h a l f w o r d)))

4.4.4 Maximum Value for a Size Tab les

It is sometimes necessary to determine what the maximum value for a particular access mode size

is. Or what is the greatest power of two of a value that a size will accommodate. This is done through

the function CDR A S S Q . Some NEBULA specific examples are.

t i !

; ; ; S i z e t a b l e ,

(s e t q bhw-s1ze f (
(b y t e . 255)
(h a l f w o r d . 32767)
(word . 214748367)))

; ; ; What power o f two (w t 2) t a b l e . . .

(s e t q bhw-amt2 f (
(b y t e . 8 .)
(h a l f w o r d . 1 6 .)
(word . 3 2 .)))

4.4.5 A c c e s s Mode Size Tab les

It is sometimes necessary to choose a particular access mode size. This is done through the SET

function. Some NEBULA specific examples are.

(s e t q bhw ' (b y t e h a l f w o r d w o r d))

4.4.6 Condit ion Code Affect table

It is sometimes necessary to modify a condition code to reflect some aspects of another condition

code. This is done through the function A F F E C T . Some NEBULA specific examples are:

PAGE 28
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

(s e t q c c - a f f e c t ' (
p - t t (p - t c n - t c z - t c z n - '
n-n (p - t c n - t c z - t c z n - '

p-n (p - c n -c z -•c z n - c)
n - t t (p - c n -c z -•c z n - c)

z
• • •

(p n z z n) z)
zn (p n z z n) z n)

-n • • •

(p - t c p - c) p - c)
- * t (z n - t z n) z n)

- t (p - t c p - c) p - t c)
; - t (p - t p) p - t)
; - t (z n - t z n) z n - t)))

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 29

5. First Level Val idation Program Template

5.1 The Validation Program

The Level I Validation Program consists of several parts which are described in the following

sections. The parts which comprise the program may either be placed directly in the program or in

separate files and referenced through the READ function (See Section 7). The Level I Validation

program file shall have the extension MLV.

PAGE 30
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

5.2 Level I Instruction Definitions

The Level I Instruction Definition is a function call to an Instruction Type function. One Instruction

Type function should exist for each "type" of instruction. This "type" classification reflects various

broad aspects of an instruction. Some of the aspects reflected in the "type" for the NEBULA

architecture might be.

• The instructions takes exceptions.

© The instructions does NOT take exceptions.

• The instruction takes branches.

© The instruction does not take branches.

© The instruction has one source and one destination.

© The instruction has two sources and one destination.

• The instruction has one source.

5.2.1 Instruct ion T y p e Funct ion

This function is used to determine the "order of execution" of the productions which process the

assertions about the instruction (state) to be validated. The following is an example of an Instruction

Type Function for the NEBULA architecture to handle Level I Programs of the form:

(n o - e x c e p t i o n - - s - s - d name
((am (sizepre-condition-value)

(size pre-condition-value)
(size post-condition-value))

(c c pre-condition post-condition)))

The instruction "type" reflected here has the following constraints:

• The instructions must take no exceptions.

• The operand type is of the form: Source, Source, Destination.

The Instruction Type Function is as follows:

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 31

(f u n c t i o n n o - e x c e p t i o n - - s - s - d (name fo rm)
(p r o g n

(d e a l l o c a t e ' r e g i s t e r) ; F ree up the r e g i s t e r s between t e s t s
((l ambda (ami am2 am3 c c l cc2)

((lambda (s i s2 d)
(p r o g n

((' c c ' p r e ' n o - e x c e p t i o n) (c d r (a s s o c c c l c c - t a b l e)))
((' n o - e x c e p t i o n — s - s - d name) s i s2 d)
((' c c ' p o s t ' n o - e x c e p t i o n) (c d r (a s s o c cc2 c c - t a b l e))

modu le -no)
((' a m ' p o s t ' s i g n e d) (c a d r am3) d m o d u l e - n o)))

((' a m ' v a l u e ' s o u r c e (c a r a m i)) (c a d r a m i))
((' a m ' v a l u e ' s o u r c e (c a r am2)) (c a d r am2))
((' a m ' d e s t i n a t i o n (c a r a m 3)))))

(c a r (c d a r f o r m))
(c a d r (c d a r f o r m))
(c a d d r (c d a r f o r m))
(c a r (c d a d r f o r m))
(c a d r (c d a d r f o r m)))

name))

The instructions of a certain type are specified by a production which contains, as the activation

parameter, the "type" and the instruction name. Some examples of this for the NEBULA architecture

are.
• • •

; ; ; p r o d u c t i o n s o f true fo rm ' N O - E X C E P T I O H - - S - S - D ' . . .

(p r o d u c t i o n (n o - e x c e p t i o n - - s - s - d add) (s i s2 d)
(s t r e a m *| ADD | s i ' | , | s2 •

(p r o d u c t i o n (n o - e x c e p t i o n — s - s - d
(s t r e a m •| SUB | s i *| ,| s2 '

(p r o d u c t i o n (n o - e x c e p t i o n — s - s - d
(s t r e a m ' | MUL | s i ' J , | s2 '

(p r o d u c t i o n (n o - e x c e p t i o n — s - s - d
(s t r e a m *| DIV | s i ' | , | s2 '

(p r o d u c t i o n (n o - e x c e p t i o n - - s - s - d
(s t r e a m ' J MOD | s i ' | , | s2 '

d))

sub) (s i s2 d)
.1 d))

mul) (s i s2 d)
.1 d))

d i v) (s i 32 d)
.1 d))

mod) (s i s2 d)
.1 d))

5.2.2 State Descr ip tors

The State Descriptors are used to specify the assertion about that state. There is no general form

for the State Descriptor since an Instruction Type function may be constructed to handle any form.

Some examples of State Descriptors for the NEBULA architecture are.

• The following is.an AM State Descriptor for instructions which have one access mode of
type: Source-Destination.

PAGE 32 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

(am (s i z e p r e - c o n d i t i o n - v a l u e)
(s i z e p o s t - c o n d i t i o n - v a l u e))

• The following is an AM State Descriptor for instructions which have two access modes of

type: Source, Source-destination.

(am (s i z e p r e - c o n d i t i o n - v a l u e)
(s i z e p r e - c o n d i t i o n - v a l u e p o s t - c o n d i t i o n - v a l u e))

© The following is an AM State Descriptor for instructions which have three access modes

of type: Source, Source, Destination.

(am (s i z e p r e - c o n d i t i o n - v a l u e)
(s i z e p r e - c o n d i t i o n - v a l u e)
(s i z e p o s t - c o n d i t i o n - v a l u e))

© The following is a CC State Descriptor for instructions which modify the condition codes.

(CC c c - p r e - c o n d i t i o n c c - p o s t - c o n d i t i o n)

Some of the valid States for the NEBULA architecture are. •

AM The memory/register (access mode) state key.

B R A N C H The take branch state key (boolean).

C C The condition code state key.

E X C E P T I O N The take exception state key (boolean).

5.2.3 Code Sequence

The Code Sequence is typically composed of STREAM function calls. The STREAM function is

used to generate the Level 0 Validation Program text. The Code Sequence may also contain

Production Cails and Level I Function calls.

5.2.4 Product ion Class i f icat ion

The machine specific code can be divided as follows:

1. Pre -d iagnost ic code. Code emitted at the beginning of the diagnostic program module.

This code can set the starting address of the program, specify a starting label or

whatever.

2. Post -d iagnost ic code . Code emitted at the end of the diagnostic program module. For

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE

example, the assembler may require an end statement and a starting address for the
diagnostic program module.

3. Set code. Code used to place a value at a certain location, or set the precondition of a
certain state. The location can be a memory address, a register, the condition codes, or
whatever.

4. Target inst ruct ion . The code here is the instruction under test.

5. Check code. Code used to verify that a location contains a certain value, or check the
post condition of a certain state. The location can be a memory address, a register, the
condition codes, or whatever.

In general productions are created to handle the above areas (See Section 5.4 and 5.3).

PAGE 34 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

5.3 Access Mode Productions

The function of an access mode (addressing mode) is to retrieve certain data from the MR

(Memory/Register) state, for use by the processor. The validation program has the responsibility of

setting up access modes to point to certain pieces of data (value range) in the MR space. That is,

given a certain piece of data (value) and an access mode, the system must Emit the appropriate

sequence of instructions to cause that access mode to 'evaluate to' the specified data (value) when

the instruction is executed. The access mode definitions are created to do just this. However, rather

than pointing to just one piece of data, the AM is given a "range" of values that it will theoretically be

allowed to point or evaluate to. The "value range" is therefore a set of values.

5.3.1 Format of a Value Range

The value range is a list of three items: the type, the value, and the size. The type is created by the

first attempt to allocate it. That is, there are no 'wired in' types. Some types used in the NEBULA

architecture are.

1. NUMBER - type number or literal.

2. MEMORY - type memory address.

3. REGISTER - type register.

The value is a list that designates the form that the value is to take. The value may be a range of

values, or it may be one value. A range of values is described by a list beginning with the identifier

'RANGE' and followed by range-pair<s>^°/probability list. That is:

(R A N G E (range-pair<s> prob) . . . (range-pair<s> prob))

The range-pair is a dotted pair 1 1 consisting of the (inclusive) lower bound followed by the

(inclusive) upper bound of the range. That is:

(lower-bound. upper-bound)

The probability fields are interpreted as being relative to the other probabilities specified. Actual

selection probabilities are determined by normalizing the numbers given. The probability may be

omitted, leaving only the range-pair<s>. In this case the range descriptor takes on the form:

One or more range-pair.

1 1 A left parenthesis followed by a value followed by a period followed by a value followed by a right parenthesis.

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 35

(R A N G E range-pair<s>)

In this case the probability of selection is evenly distributed over the range-pair<s>.

The single value form consists of a list whose first element is the identifier 'VALUE' followed by the

numeric value. This can be seen as a special case of the range form, and is included for the sake of

convenience. That is:

(V A L U E 790)
(R A N G E (790. 790))
(R A N G E (790.790) (790.790))

all mean the same thing.

The size is a number which describes the size in bytes that the value will occupy in the memory or

register array. The size of a value located in a memory byte would be 1, in a half word 2, in a word 4,

and in a double word 8.

The value range corresponding to a number whose value is 5 and is located in a half word would

be:

(N U M B E R (V A L U E 5) 2)

The value range corresponding to the number whose range is -8 through 123 and is located in a word

would be:

(N U M B E R (R A N G E (- 8 . 7 2 3)) 4)

5.3.2 AM Form

The AM form (or AM) is defined as a Lisp EXPR with one variable. The variable is the RANGE that

the AM evaluates to upon instruction execution. The function must return an expression known as an

AMEXPR-LIST. The AMEXPR-LIST is a list containing two lists, these are the EMIT-EXPR and the

RANGE-EXPR.

The EMIT-EXPR is a list that describes how the AM is placed or emitted into the instruction stream.

The list consists only of literal expressions.

The RANGE-EXPR has a form similar to the range and, in general, points to that place, in the MR

state, where the RANGE has been stored. Thus a range (that may be a range of one value) is

associated with an AM. The AM is said to evaluate to this range or fetch the value of (or pointed to by)

the RANGE-EXPR range.

PAGE 36 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

A function named AMEXPR is provided that will produce an AMEXPR-LIST from other AMEXPR-

LISTS as well as literal expressions and numeric values. The AMEXPR is a function of two variables,

an EMIT-EXPR (or list of EMIT-EXPR's) and RANGE-EXPR. The EMIT-EXPR can contain any of the

following:

1. L i teral . Causes a string to be emitted literally. The string is to be enclosed in double

quotes (").

2. E M I T - E X P R . The entries of the EMIT-EXPR (argument) are placed, at the point of

reference, into the EMIT-EXPR that the AMEXPR function generates.

3. A M E X P R - L I S T . In this case the EMIT-EXPR from the AMEXPR-LIST is placed, at the

point of reference, into the EMIT-EXPR that the AMEXPR function generates.

The RANGE-EXPR may be any one of the following:

1. R A N G E - E X P R .

2. A M E X P R - L I S T . In this case the RANGE-EXPR form the AMEXPR-LIST is extracted. The

AMEXPR-LIST found here is typically produced be another AM form.

An example of an AM definition for the NEBULA memory byte, register, and register indirect byte

mode is as follows:

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 37

(PRODUCTION (am memory b y t e v a l u e s o u r c e s o u r c e - d e s t i n a t i o n i n d e x)
(r a n g e)

((LAMBDA ($1)
((LAMBDA ($2)

(PROGN
(STREAM '| MOVL | ((' a m ' l i t e r a l ' b y t e) range) ' | t | $2)
$ 2))

(AMEXPR (l i s t $1 ' t B) $ 1)))
(ALLOCATE 'memory

(l i s t 'RANGE (cons b u f f e r - b o t t o m b u f f e r - t o p))
b y t e - s i z e)))

(PRODUCTION (am r e g i s t e r v/ord v a l u e s o u r c e s o u r c e - d e s t i n a t i o n i n d e x)
(r a n g e)

((LAMBDA ($1 $2)
((LAMBDA ($3)

(PROGN
(STREAM ' j MOVL | $1 ' | , | $3)
$ 3))

(AMEXPR (l i s t '% $2) $ 2)))
((' a m ' l i t e r a l 'word ' v a l u e) range)
(ALLOCATE ' r e g i s t e r

(l i s t 1 RANGE (cons r e g i s t e r - b o t t o m r e g i s t e r - t o p))
r e g i s t e r - s i z e)))

(PRODUCTION (am i n d i r e c t b y t e v a l u e source s o u r c e - d e s t i n a t i o n i n d e x)
(r a n g e)

((LAMBDA ($1)
(AMEXPR (l i s t '@ ((' a m ' r e g i s t e r 'word ' v a l u e) $1) '*B) $ 1))

((' a m 'memory ' b y t e ' v a l u e) r a n g e)))

In this example of the register indirect byte mode, the range is placed in a memory byte location. A

register then takes on the range of the evaluation of that memory byte. The EMIT-EXPR is the " @ "

followed by the EMIT-EXPR of the AMEXPR-LIST generated by the 'register' production followed by

the literal " t B " . The RANGE-EXPR is the RANGE-EXPR of the AMEXPR-LIST of the evaluation of the

'memory byte' production.

PAGE 38
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

5.4 Setup and Check Productions

In the set and check routines, implementing more than one method of accomplishing the appointed

task is recommended.

It is necessary to exercise as many different paths in the architecture as possible to build

confidence in the check and set code sequences.

5.4.1 A c c e s s Mode Checking

For example, the following code may be used for an AM check of the NEBULA architecture 1 2 .

(PRODUCTION (am p o s t s i g n e d) (v a l u e address modulo)
((LAMBDA (l a b e l)

(PROGN
(STREAM ' | CMP #| v a l u e •|,| a d d r e s s)
(STREAM ' J BEQL | l a b e l)
(STREAM 'I DISPLAY #|

module
* ; F a i l e d access mode t e s t |)

(STREAM l a b e l ' | : |)))
(MAKE-LABEL ' a m p)))

In this code sequence access -mode and value are both E M I T - E X P R ' s . The purpose of this code

is to compare the literal value with the contents of the location and halt if they are different. Another

code sequence that performs this task could be written as:

(PRODUCTION (am p o s t s i g n e d) (v a l u e address module)
((LAMBDA (p a s s f a i l)

(PROGN
(STREAM *| CMP #| v a l u e ' | , | a d d r e s s)
(STREAM 'I BNE | f a i l)
(STREAM 'I B I p a s s)
(STREAM f a i l

•|: DISPLAY ff\
module
'\,ffl ; F a i l e d access mode t e s t |)

(STREAM pass ' I : I)))
(MAKE-LABEL 'AMP)
(MAKE-LABEL ' A M F)))

1 2 U s e of both methods above will catch errors in which the conditional branches always branch.

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 39

5.4.2 Condit ion Code Setup and Checking

The following productions may be used for the Condition Code Setup for the NEBULA architecture.

(p r o d u c t i o n (c c pre n o - e x c e p t i o n) (v a l u e)
(s t r e a m '| SETCC #| v a l u e))

(p r o d u c t i o n (c c pre e x c e p t i o n) (v a l u e)
(s t r e a m '| SETCC #| v a l u e 1 | . O R . t X 1 0 |))

The following productions may be used for the Condition Code Checking for the NEBULA

architecture.

(p r o d u c t i o n (c c pos t n o - e x c e p t i o n) (v a l u e module)
((lambda (l a b e l)

(p r o g n
(s t r e a m ' | CALL GETCC,%1|)
(s t r e a m 1 j CMPU v a l u e)
(s t r e a m 1 j BEQL | l a b e l)
(s t r e a m ' j DISPLAY #\

module
' |,#2 ; F a i l e d c o n d i t i o n code t e s t j)

(s t r e a m l a b e l •1 : |)))
(m a k e - l a b e l f C C P)))

(p r o d u c t i o n (c c post n o - e x c e p t i o n) (v a l u e module)
((l ambda (pass f a i l)

(p r o g n
(s t r e a m ' | CALL GETCC,%1|)
(s t r e a m f | CMPU v a l u e)
(s t r e a m ' | BNE | f a i l)
(s t r e a m '| B j p a s s)
(s t r e a m f a i l

1 I : DISPLAY #|
module
' | f # 2 ; F a i l e d c o n d i t i o n code t e s t |)

(s t r e a m pass f jj : |)))
(m a k e - l a b e l f CCP)
(m a k e - l a b e l f C C F)))

PAGE 40
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

5.5 Level I Validation System Specific Primitive Functions

S T R E A M Takes any number of arguments. Each argument is output to the instruction

stream in the following manner.

1. L i teral . Causes the string to be emitted into the instruction stream

literally. The string is to be enclosed in double quotes.

2. Number . Causing the text equivalent of that number to be emitted

into the instruction stream.

3. E M I T - E X P R . The entries of the EMIT-EXPR (argument) are placed, at

the point of reference, into the instruction stream.

4. A M E X P R - L I S T . In this case the EMIT-EXPR from the AMEXPR-LIST

is placed, at the point of reference, into the instruction stream.

5. Var iab le . Containing either a literal, a number, an EMIT-EXPR, or an

AMEXPR-LIST.

A M E X P R

A L L O C A T E

D E A L L O C A T E

A M -

AM +

AM*

Takes two arguments: an emit-list and a value-list. This function creates an

Expression for the AM object (AMEXPR).

Takes three arguments: a type, a range and a size. This function creates a value-

list from its arguments.

Takes one argument: a type. This function deallocates all allocations made to that

type.

Takes any number of arguments. Each argument can be either a number an

AMEXPR or a VALUE-LIST. This subtracts the first argument from the other

arguments.

Takes any number of arguments. Each argument can be either a number an

AMEXPR or a VALUE-LIST. This function adds the first argument to the other

arguments.

Takes any number of arguments. Each argument can be either a number an

AMEXPR or a VALUE-LIST. This function multiplies the first argument with the

other arguments.

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 41

M A K E - L A B E L Takes one argument. This function generates labels for the assembly language

program. It does this by creating a symbol which consists of a unique number

appended to the argument.

PAGE 42 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

5.6 Level I Table Definitions

In most instances, these tables are used in the "mapping" of certain constants in the Level I

Programs to the code emitted in the Level 0 (target assembly language) Program.

5.6.1 Condit ion Code Definit ion Tab le

The valid CC-pre-exec-state and post-exec-state specifiers for the NEBULA architecture are

defined as doted pairs. The first element is the name of the exec-state specifier. The second element

is numerical representation (to be emitted) of that specifier as reflected in the condition codes. The

exec-state specifiers for the NEBULA architecture would be defined as follows:

(p . " t X O ")
(z . " t X l ")
(n . n t X 2 ")
(zn . " t X 3 ")
(p - t . " №)
(t . " t X 5 ")
(n - t . " t X 6 ")
(z n - t . "tX7")
(p - c . "tX8")
(z - c . " t X 9 ")
(n - c . "+X0A")
(z n - c . " t X O B ")
(p - t c . " t X O C ")
(z - t c . " tXOD")
(t c . "*X0E")
(z n - t c . " t X O F ")

5.6.2 Except ion Code Definit ion Tab les

The definition of the EXCEPTION state specifiers is similar to that of the C C state specifiers. The

valid NEBULA EXCEPTION state specifiers are as follows:

FIRST LEVEL V A L I D A T I O N PROGRAM TEMPLATE PAGE 43

(S p e c i f i c a t i o n - E r r o r . " t . l ")
(I l l e g a l - M o d e . " t . 2 ")
(I l l e g a l - P a r a m e t e r . " t . 3 ")
(I l l e g a l - R e g i s t e r . " t , 4 ")
(I l l e g a l - W r i t e . " t . 6 ")
(I l l e g a l - S i z e . " t . 6 ")
(I l l e g a l - A d d r e s s . " t . 7 ")
(O p e r a n d - S i z e . " t . 8 ")
(C o n t e x t - A l i g n m e n t . " t . 9 ")
(C o n t e x t - B a s e . " t . l O ")
(S e g m e n t - S p e c i f i e r . " t . l l ")
(S u p e r v i s o r - C h e c k . " t . 1 2 ")
(T a s k - L o a d - E r r o r . " t . 1 3 ")

(I l l e g a l - D i v i s o r . " t . 1 6 ")
(T r u n c a t i o n . " f . 1 7 ")
(R a n g e - E r r o r . " t . 1 8 ")
(I n v a l i d - O p e r a t i o n . "+.19")
(D i v i d e - B y - Z e r o . M t . 2 0 M)
(F l o a t i n g - O v e r f l o w . " * . 2 1 ")
(F l o a t i n g - U n d e r f l o w . " t . 2 2 " -)
(F l o a t i n g - I n e x a c t . " t . 2 3 ")
(U n o r d e r e d . " t . 2 4 ")

(T a s k - F a i l u r e . " t . 3 2 ")
(B reak . " t . 3 3 ")
(I n s t r u c t i o n - B r e a k . " t . 3 4 ")
(C a l l - B r e a k . " t . 3 5 ")

p A G E 4 4 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

A PROGRAM E X A M P L E PAGE 45

6. A Program Example

6.1 Level il Program

The following is a Level II validation template for the NEBULA ADD instruction in which the

condition code results should be positive.

(e q u a t i o n a d d - p o s i t i v e (s l - r a n g e s l - s i z e s l - v a l u e s2 - r a n g e s 2 - s i z e s 2 - v a l u e
d - r a n g e d - s i z e d - v a l u e c c - r a n g e c c - p r e c c - p o s t)

(l i s t ' N O - E X C E P T I O N - - S - S - D " A D D
(l i s t ' quote (l i s t

(l i s t 'AM
(l i s t (== s l - s i z e (SET-INRANGE s l - v a l u e s l - r a n g e))

(== s l - v a l u e (- d - v a l u e s 2 - v a l u e)))
(l i s t (== s 2 - s i z e (SET-IMRANGE s 2 - v a l u e s 2 - r a n g e))

(== s 2 - v a l u e (RANGE (cons 0 d - v a l u e))))
(l i s t (== d - s i z e (SET d - r a n g e))

(== d - v a l u e
(RANGE (cons 1

(1 - (CDRASSQ d - s i z e b h w - s i z e)))))))
(l i s t f CC

(== c c - p r e (SET c c - r a n g e))
(== CC-POST ' p))))))

The following is a Level II program which makes use of the above Level II template.

Read t h i s i n t o ' H L V to make a ' M L V program.

(r e a d f u n s) ;
(r e a d t a b l e) ;
(r e a d eq) ;

(f u n c t i o n m a k e - l l v ()

random LISP f u n c t i o n s t h a t are ' n o t p r imops '
Leve l I I TABLES.
Leve l I I PROGRAM.

(p r o g n
(p r i n t !
(p r i n t l
(p r i n t !
(p r i n t l
(p r i n t l
(p r i n t s !
(p r i n t l
(r e p e a t

(p r i n t l
(p r i n t l

random LISP f u n c t i o n s t h a t are ' n o t p r i m o p s ' .
; L e v e l I ' I n s t r u c t i o n ' p r o d u c t i o n d e f i n i t i o n f i l e .
Leve l I 'Access Mode' p r o d u c t i o n d e f i n i t i o n f i l e .

Leve l I 'P re and P o s t ' p r o d u c t i o n d e f i n i t i o n f i l e .
Leve l I 'Top L e v e l ' p r o d u c t i o n s and f u n c t i o n s .

a L v l 0 prog

' (r e a d f u n s))
' (r e a d i n s t r))
' (r e a d am)) ;
' (r e a d p p)) ;
' (r e a d t o p)) ;

' (f i l e | ! ! v . n e b |)) ; The L v l I program w i l l produce
' [((' m o d u l e ' p r e ' n o - e x c e p t i o n s) 1 m o d u l e - n o) |)
10

(p r i n t l (a d d - p o s i t i v e range-bhw '&NIL '&NIL
range-bhw '&NIL '&NIL
bhw '&NIL '&NIL
c c - a l l '&NIL ' & N I L)))

' (((' m o d u l e ' p o s t ' n o - e x c e p t i o n s) m o d u l e - n o) |)
' (c l o s e)))) ; C l o s e the Leve l 0 program t h a t was j u s t c r e a t e d ,

PA GE 46 A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

(f i l e makl1v)
(m a k e - l l v) ;
(c l o s e) ;

Make a ' L e v e l I ' p rogram.
Invoke the above f u n c t i o n .
C l o s e the Leve l I program t h a t was j u s t c r e a t e d .

6.2 Level I Result

The following is one instance of a Level I Validation Program that would be produced, by the

validation system, from the above Level II Validation Program. Many such instances will be produced,

by the validation system, to realize a complete validation program.

(READ FUNS)
(READ INSTR)
(READ AM)
(READ PP)
(READ TOP)
(F I L E | l l v . n e b |)
((' m o d u l e ' p r e ' n o - e x c e p t i o n s) 1 modu le -no)
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (WORD 52103075) (WORD 127824650) (WORD 179927725)) (CC Z -TC P)))
(NO-EXCEPT I O N - - S - S - D 'ADD

' ((A M (BYTE 54) (WORD 93) (BYTE 147)) (CC P-TC P)))
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (HALFWORD 3657) (HALFWORD 20148) (HALFWORD 23805)) (CC Z -TC P)))
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (WORD 4379) (HALFWORD 3327) (HALFWORD 7706)) (CC P-C P)))
(NO-EXCEPT I O N - - S - S - D 'ADD

' ((A M (WORD 96) (HALFWORD 492) (HALFWORD 588)) (CC Z -TC P)))
(NO-EXCEPT I O N - - S - S - D 'ADD

' ((A M (WORD 3270609) (WORD 802639) (WORD 4073248)) (CC N-TC P)))
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (BYTE 197) (WORD 6357)' (HALFWORD 6554)) (CC P-T P)))
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (WORD 1896) (WORD 15903) (HALFWORD 17799)) (CC P-TC P))) '
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (WORD 8321) (HALFWORD 2274) (HALFWORD 10595)) (CC N-C P)))
(N O - E X C E P T I O N - - S - S - D 'ADD

' ((A M (WORD 6781824) (WORD 24707157) (WORD 31488981)) (CC Z P)))
((' m o d u l e ' p o s t ' n o - e x c e p t i o n s) modu le -no)
(CLOSE)
6.3 Target Result

The following is an example of a Validation program for the NEBULA computer architecture. The

program is produced by the Validation System from the Level I validation programs. The Validation

program is output, by the Validation system, in the assembly language for the target architecture. The

NEBULA code segment between the ellipsis is the code sequence generated, by the validation

system, from the above First level validation program.

A P R O G R A M E X A M P L E PAGE 47

; Machine Generated D i a g n o s t i c program f o r the NEBULA a r c h i t e c t u r e .
; T e s t Module Number 100.
; Module g e n e r a t e d in 1 p a s s e s .

.=tX100060 ; O r i g i n : program runs in s u p e r v i s o r s t a t e

•

; Rout ine t o access the C o n d i t i o n Codes of the c a l l e r . . .
GETCC:

. ENTRY NP=1, REG=1
SPSW %1
LSH #-"f. 19,7.1, %1
AND #tX0F,7ol
MOVL %1,?1
RET

START:

.ENTRY REG=15, NP=0, SUPV, NOAE

MOVL #52103075tV/,874tW
MOVL #1297880708tW,7.12
MOVL #-324470065tW,880tW
SETCC #tXD

ADD 1246 i -W[#-93tB]tW,#127824650tW,-84(7o l2) tW[880tW]tW
CALL GETCC, 7.1
CMPU %l ,#tX0
BEQL CCPS1

DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t o s t
CCP$1:

CMP #179927725 , -84(7o l2) tW[880tW]tW
BNE AMF$3
B AMP$2

AMFS3: DISPLAY #100.#1 ;
AMP$2:

MOVL # 5 4 t B , 7 3 * B
MOVL #-1862536012tW,%5
MOVL #1862536095tW,7.13
MOVL #93i-W,488tW
MOVL #-1958666778tW,7.8
MOVL #1958667266tW,534tW
MOVL #422tW,7olO
MOVL #2 44 tW, 7.14
SETCC #tXC

F a i l e d access mode t e s t

ADD -10(%5) tB[%13] tB ,@%8tW(112(%10) tW)tW, -16(%14) tB
CALL GETCC, 7.1
CMPU 7ol,#tX0
BNE CCFS5
B CCPS4

CCF$5: DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t
CCP$4:

CMP # 1 4 7 , - 1 6 (% 1 4)tB
BEQL AMP$6
DISPLAY #100,#1 ; F a i l e d access mode t e s t

PAGE 48
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

AMPS6:
MOVL # 3 6 5 7 t H , 3 4 2 î H
MOVL #467tW,%9
MOVL # - 1 2 5 t B , 6 5 4 î B
MOVL #654tV/,%4
MOVL # 2 0 1 4 8 t H , 3 9 t H

MOVL #1485843947tW,263tW

MOVL //263tW,%12

MOVL #-1966732779tW,%5
SETCC #tXD
ADD @%9tH(@7o4tB)i-H,-1485843908tH(@7ol2i-W)tH, 1966732821 (%5)tH
CALL GETCC,%1
CMPU 7.1,#tX0
BNE CCFS8
B CCP$7

C C F S 8 : DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t
CCPS7:

CMP #23805,1966732821(%5)tH
BEQL AMPS9

DISPLAY #100,#1 ; F a i l e d access mode t e s t
AMPS9:

MOVL #4379tW,480tW
MOVL #299200269tW,7,8
MOVL # 7 4 î B , 6 9 5 T B
MOVL #695tW,%15
MOVL # 3 3 2 7 t H , 8 6 7 t H
MOVL #-1757526795tW,7.5
MOVL # - 1 3 9 9 5 t H , 2 6 t H
MOVL # - 4 t W , 7 , l l
SETCC #tX8
ADD -299199863(7 .8) tW(@7o l5tB) tW,867tH , 1757541180(7o5) tH(30(7 .11) tH) tH
CALL GETCC.7.1
CMPU 7.1,#tX0
BEQL CCPS10

DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t
CCPS10:

CMP #7706,1757541180(7.5) t H (30 (7.11) t H) t H

BEQL A M P S l l

DISPLAY #100,#1 ; F a i l e d access mode t e s t
A M P S l l :

MOVL #96tW,566tW
MOVL #566*W,7.4
MOVL #224tW,7.12
SETCC #tXD
ADD @7.4tW,#492tH,100(7.12)tH
CALL GETCC.7.1
CMPU %l,#tX0*
BEQL CCPS12

DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t
CCPS12:

CMP #588,100(%12)tH
BNE AMF$14
B AMPS13

AMFS14: DISPLAY #100,#1 ; F a i l e d access mode t e s t
AMPS13:

A P R O G R A M E X A M P L E PAGE 49

MOVL #802639tW,%13
MOVL #-523630373tW,%9
SETCC #tXE
ADD #3270609tW,%13,523630563(%9)tW
CALL GETCC,7.1
CMPU %l ,#tX0
BNE CCFS16
B CCPS15

CCFS16: DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t
CCP$15:

CMP #4073248,523630563(%9)tW
BEQL AMPS17
DISPLAY #100,#1 ; F a i l e d access mode t e s t

AMPS17:
MOVL #197tB,784tB
MOVL #1696351218tW,%15
MOVL #28179tH,532tH
MOVL #412tW,%8
MOVL #6357tW,1018tW
MOVL #956tW,%12
MOVL #62tB,809tB
MOVL #719tW,%13
MOVL #-1222422648-rW,%14
MOVL #611211503tW,%5
SETCC #tX4
ADD -1696378613(7 ,15)tB(120(7o8) tH) tB ,@7ol2i -W(90(%13)tB) tW, -105(7 .14) tH[7 .5] tH
CALL GETCC, 7.1
CMPU %1,#îX0
BNE CCF$19
B CCPS18

CCFS19: DISPLAY #100 t#2 ; F a i l e d c o n d i t i o n code t e s t
CCPS18:

CMP #6554,-105(7 .14) tH[7o5] tH
BNE AMF$21
B AMPS20

AMFS21: DISPLAY #100,#1 ; F a i l e d access mode t e s t
AMPS20:

MOVL #1896tW,810tW
MOVL #34tB,545tB
MOVL #1702625594tW,7oll
MOVL #15903tW,972tW
MOVL #198tW,7.13
MOVL #102tB,816tB
MOVL #816tW,7.7
SETCC #tXC
ADD 776tW(-1702625049(7ol l) tB) tW,972tW, -128(7ol3) tH[@7 .7 tB] tH
CALL GETCC, 7.1
CMPU 7ol ,#tX0
BEQL CCP$22
DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t

CCPS22:
CMP #17799,-128(7 .13) tH[@%7tB] tH
BNE AMFS24
B AMPS23

AMFS24: DISPLAY #100,#1 ; F a i l e d access mode t e s t

PAGE 50
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

AMPS23:
MOVL #8321tW,7.9
MOVL #2274tH, 1351-H
MOVL #2031628647tW,7.10
MOVL #-18367tH,258tH
MOVL #257 tW, 7.5
MOVL #753 tW, 7.7
MOVL # -49rB ,137tB
MOVL #137tW,7.11
SETCC #tXA
ADD 7 .9 , -2031591778(7 .10) tH [l(7 .5) t l l] tH , -108(7 .7) tH[@7 .11tB] tH
CALL GETCC.7.1
CMPU 7 .1,#tX0
BNE CCFS26
B CCPS25

CCFS26: DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t
CCPS25:

CMP # 1 0 5 9 5 , - 1 0 8 (% 7) t H [S % l l t B] t H
BNE AMFS28
B AMP$27

AMF$28: DISPLAY #100,#1 ; F a i l e d access mode t e s t
AMPS27:

MOVL #6781824tW,%6
MOVL #24707157tW,657tW
MOVL #657tW,7.10
MOVL #-1141531414tW,%4
SETCC # t X l
ADD 7.6 , @7.101W, 1141531596 (7.4) *W
CALL GETCC.7.1
CMPU 7 .1,#tX0
BEQL CCPS29
DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t

CCPS29:
CMP #31488981,1141531596(7.4)tW
BEQL AMPS30
DISPLAY #100,#1 ; F a i l e d access mode t e s t

AMPS30:
DISPLAY #100,#0 ; S u c c e s s f u l T e r m i n a t i o n
. END START+1-X80000001 ; Run i n S u p e r v i s o r space .

10 PAGE 51

7. I0

7.1 READ

The READ function takes the form:

(R E A D d e v i c e r n a m e . e x t e n s i o n)

All the Symbolic Expressions (Sexpr) contained in the referenced file are evaluated.

7.2 FILE

The FILE function takes the form:

(F I L E d e v 1 c e : n a m e . e x t e n s i o n)

This function causes all future output to be directed to the specified file. If the file specification is

T ' then output is directed to the terminal. This command has the side effect of preforming a C L O S E

on previous file.

7.3 CLOSE

The C L O S E function takes the form:

(C L O S E)

The file which is currently open for output is closed and all future IO is directed to the terminal. If

the currently opened file is the terminal this command has no effect.

7.4 PRINT

The PRINT function takes the form:

(P R I N T S e x p r)

The Sexpr is output to the file named in the FILE command. Special characters are not printed with

vertical bars.

P A G E 52
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M

7.5 PRINTL

The PRINTL function takes the form:

(P R I N T L S e x p r)

The Sexpr is output to the file named in the FILE command. Special characters are not printed with

vertical bars. An end of line character is then output to the file named in the FILE command.

7.6 PRINTS

The PRINTS function takes the form:

(P R I N T S S e x p r)

The Sexpr is output to the file named in the FILE command. Special characters are printed with

vertical bars.

7.7 PRINTSL

The PRINTSL function takes the form:

(P R I N T S L S e x p r)

The Sexpr is output to the file named in the FILE command. Special characters are printed with

vertical bars. An end of line character is then output to the file named in the FILE command.

IO PAGE 53

Notes

PAGE 54

References

1. PDP-11 Handbook. Digital Equipment Corporation, Maynard, Massachusetts, 1969.

2. Dahl, Dijkstra, Hoare. Structured Programming. Academic Press, 1972.

3. Hoare, C. A. R. "An Axomatic Basis for Computer Programming." Communications of the ACM

12, 10 (October 1969).

4. Barbacci, Barnes, Cattell, and Sieworek. Symbolic Manipulation of Computer Descriptions. Dept.

of Computer Science, Carnegie- Mellon Univ., 1978.

5. King, James C. "Symbolic Execution and Program Testing." Communications of the ACM 79,7

(July 1976).

6. Lai, Larry Kwok-woon. Error-oriented architecture testing. Proceedings of the NCC, National

Computer Conf rence, 1979.

7. McCarthy, John; Abrahams, Paul W.; Edwards, Daniel J . ; Hart, Timothy P.; and Levin, Michael I..

LISP 1.5 Programmer's Manual. MIT Press, CAMBRIDGE, 1962.

8. Moon, David. MacLISP Reference Manual, Revision 0. M.l.T. Project MAC, CAMBRIDGE, April

1974.

9. John Oakley. Symbolic Execution of Formal Machine Descriptions. Dept. of Computer Science,

Carnegie- Mellon Univ., 1979.

10. Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Art of the Interpreter; or, The Modularity

Complex (Parts Zero, One, and Two). Al Memo 453, MIT Artificial Intelligence Lab., CAMBRIDGE,

May, 1978.

