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Preface 

An overview and background to the system is presented in the Introduction. The latter portion of 

this document is a users manual to be used to construct computer architecture validation programs. 

Please address all comments concerning this document to the author at ARPANET address 

KOLLAR@CMU-CS -C . 
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1. Introduct ion 

1 . 1 The Problem of Computer Architecture Validation. 

The problem of computer architecture1 validation is simply the problem of proving the equivalence 

of incarnations of the same computer architecture. Since computer architectures are essentially 

algorithms, the problem becomes one of proving the equivalence of algorithms. This latter problem is 

dealt with under the heading of 'Program Verification'. Program verification attempts to determine 

whether the program description is implemented via the formal programming language. 

There are several approaches to program verification that should be understood before attempting 

computer architecture validation. In addition there are constraints that the physical computer 

architecture imposes that are not found in program verification. The following will briefly discuss the 

current schools of thought of program verification (Section 1.2). After this a brief overview of the 

current schools of thought of computer architecture validation will be discussed (Section 1.3) noting 

the similarities between the two. 

1 . 2 Program Verification. 

Program Verification techniques are divided along the lines of how much formal understanding of 

the problem is used. There are three current divisions that are described, in order of decreasing 

formal understanding, as follows: 

1.2.1 Formal Ana lys i s . 

Here the program is described as a mathematical model and analyzed axiomatically. This 

formalization allows general assertions about value/set interactions to be demonstrated. Hoare [3] 

describes a program as possessing a precondition, a function and an assertion. The precondition 

describes the state that is necessary to invoke the function. The function describes the action that is 

necessary to produce the assertion. The assertion is the action of the function. Hoare points out that 

this approach does not detect failure to terminate due to an infinite loop. It should be interpreted as: 

"provided that the program successfully terminates, the properties of its results are described by the 

assertion." Hoare's axioms and rules are not implementation dependent. Rather, they focus on the 

™ I n l h . e o l ° m . P U t e r a r c h i t e c t u r e i s d e f i n e d " t h a t *me independent aspect of a computer implementation that the 
programmer sees. ' 
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"conditional" correctness of a program, "relying on an implementation to give a warning if it has had 

to abandon execution of the program as a result of violation of any implementation limit." He makes 

mention of including these implementation dependencies but warns of their "reflection in the 

complexity of the underlying axioms." 

The method is general and it is not surprising that the results are likewise general. 

1.2.2 Symbol ic Execut ion . 

The program is executed symbolically in an effort to understand the data paths through the 

program. A data path is described by a set of symbolic inputs that derive a set of symbolic outputs. In 

symbolic program execution, the set of all inputs is divided into classes or subsets of inputs. The 

classes are selected by analyzing the program control flow. The control flow is determined by 

representing the program in the form of a flow diagram or network structure. One class corresponds 

to one path along the flow diagram or network. The symbolic program execution method is not a 

formal correctness proof as is the formal analysis method, since the program is not analyzed 

axiomatically. The halting problem is not satisfied since, as stated by King [5]: "Often the set of input 

classes is determined only by those inputs in the control flow". 

The term "symbolic" arises from the fact that the real data for program execution is not used. Each 

symbol corresponds to a set of real data. The input is symbolic and therefore the output is symbolic. 

1.2.3 Tes t Data Se lect ion . 

The least general, and least formal, method is that of manual test data selection. Here input is 

selected to cover certain "intuitively chosen" problem cases. The method does not satisfy the 

general Halting problem in that typically only a subset of the input criteria is considered. Therefore it 

is not valid in demonstrating the existence of errors for all input that produces output as does the 

formal analysis method. This problem was recognized by Dijkstra [2]. "Program testing can be used 

to show the presence of bugs but never to show their absence." 

1.2.3.1 Computer Arch i tec ture Tes t Data Se lect ion . 

Several problem areas relating to computer architecture validation have been presented by Lai [6]. 

His experiments attempt to determine where ambiguities are most likely to occur in the specification 

of a computer architecture. He discusses several likely sources of errors. These are: 

1. Incomplete and imprecise specification: Where the "Hardware for any implementation 

does something for the unspecified operations." 
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2. Interdependent side-effects: "An instruction consisting of multiple operations is 
inherently ambiguous if the order of the operations is not clearly specified and the effect 
of the instruction depends on this order." 

3. Boundary values: "Input values that are at the boundaries of different decision regions in 
the input domain of the instruction." 

4. Missing features: "Relatively simple features are left out of an implementation due to the 
oversight or lack of experience of its designers." 

1.2.4 Summary 

The first approach is considered useful for only the simplest of programs. Therefore, this approach 

does not lend itself to the validation of computer architectures. Some work has been conducted on 

the second approach (in relation to computer architectures). A simulator for a computer architecture 

written in ISPS [4] for the PDP-11 [1] has been analyzed in this manner by Oakley [9]. This involves 

the creation of an input/output assertion description from the procedural ISPS description. The 

procedural description has the advantage of being more easily analyzed by humans, while the 

assertion description gives a clearer understanding of the paths through the computer architecture. 

If the test data by intuition method is to become more complete, less intuition and more formalization 

will be required. However if this method is used the problem areas, as discussed by Lai, should be 

exercised thoroughly. 

1.3 Architecture Validation 

Due to the physical nature of most computer architectures, validation takes place along one of two 

lines. The first line requires the hardware implementation of the computer to be modified so that 

certain machine state is made available. A second computer architecture description (perhaps 

written in a procedural language such as ISP) is created and declared the "standard" to which all 

other implementations of this architecture are compared. Machine state of the "standard" and the 

implementation to be validated are compared as each executes the same series of instructions. This 

approach has the disadvantage of requiring extra machinery to produce the comparisons. The 

advantage of this approach is that instructions are "validated" at a high rate. This approach can be 

categorized as one of brute force. There is usually little attempt to single out potential problem areas 

and concentrate on them; instructions are typically selected at random. The high instruction 

throughput and the random selection lead to a 'certain' degree of confidence. 
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The second method is characterized by low instruction/data throughput but a high degree of 

concentration on what are considered the problem areas. These are the features of the architecture 

that should be most prone to implementation error. A typical approach assumes orthogonality of the 

access modes and the instruction functionality. This allows instructions that modify data 'exclusively' 

to be tested in a table driven format. This assumption decreases the complexity of the validation 

program which allows it to be more easily declared correct 2 . In contrast to the first approach, the 

second approach provides low instruction throughput and a high degree of selection to give a 

'certain' degree of confidence. 

Confidence is not easily quantified. 

1.4 The Proposed Approach. 

The following approach allows the computer architecture to be tested along different data paths. 

As such it should be used in conjunction with the symbolic execution of a procedural description of 

the computer architecture to be validated. The approach requires the construction of one 'validation 

program' for each of the input/output assertion paths described by the symbolic execution 3 (See 

Section 1.2.2.). The issue of 'what actual data to select' within the sets described by the input/output 

assertions is in part answered by providing tools for the creator of the validation programs. The tools 

allow the input/output assertion sets to be further divided into sets, with a probability selection 

distribution associated with each set. This allows the architecture to be described at a somewhat 

lower input/output assertion level than could be provided by the assertion description for the 

architecture. The necessity for this arises from the knowledge that the procedural or assertion 

description does indeed describe the physical architecture at a relatively. *igh level. 

Assuming the validity of the data paths described by the high level description with respect to the 

physical implementation, it becomes necessary to describe the sub-paths. The system discussed 

within allows these sub-paths to be described yet it does not claim to find them. Since these.sub-

paths are architecture dependent, and indeed implementation dependent, they must be found 

through a more in-depth knowledge of the structure of the physical implementation. Lacking this, it is 

necessary to make assumptions about the underlying data paths based on intuition. These 

2 A problem with this approach is having to 'prove' the validation program correct (the first approach uses no program per 

se). 

3 lndeed, it is possible to proceed without an input/output assertion description generated from a procedural description. 
This simply requires the input/output description to be generated from scratch. 
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assumptions could include choosing the more complicated addressing modes to be used more often 

than the less complicated, or subseting data paths along the lines of the storage sizes (i.e. word, byte, 

halfword) of the architecture. The work of Lai (See Section 1.2.3.1.) suggests other sources of 

implementation error. 

1.5 Summary 

A system has been devised to generate program modules whose data and addressing modes are 

chosen with given probabilities. The programs themselves are generated automatically from 

'templates'. Each 'template' describes one input/output assertion path through the architecture. The 

potential data set of the instruction is divided into weighted subsets, as are the potential access 

modes of the instruction to be validated. 

In addition, the automation of this process allows certain methods to be employed that would 

otherwise be too tedious and time consuming to 'hand cede'. These methods include the execution 

of different instruction sequences to add a dimension of instruction interaction to the testing. For 

example, a result produced by the previous instruction can be used as a source operand for the 

instruction currently being validated. The use of several methods to both set and test operands, 

either sources or destinations, decreases reliance on the 'functionality' of any one method of testing 

or path through the architecture. In this manner different paths through the architecture are used in 

areas of the program that are 'assumed' 4 to be previously validated. 

4 
Instruction sequences that are used to "validate" other instructions should themselves be valid. 
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2. Val idation System 

2.1 Justification of the Approach 

For the purposes of the system of validation used here it is necessary to think of a computer as a 

finite state machine. The state of the machine can be characterized by the value of all architecture 

variables such as the program counter, the registers, the memory, as well as architecture variables 

not available directly to the programmer. The exact definition of a state for our purposes will be 

qualified below. In addition it is necessary to effect a state transformation via a state transformation 

function. The state transformation function will be defined as requiring two inputs, a state and an 

event, and producing as output a state. That is: 

N E X T - S T A T E ( S . , EVENT) => S j 
Or simply: 

E V E N T ( S 1 ) => S j 

Which states that it is the event itself which is responsible for the state transformation and is thus the 
state transformation function. 

To continue this discussion it will be necessary to define several terms. A pre-condition consists of 

the machine state prior to the occurrences of some event. A post-condition consists of the machine 

state at the termination of some event. An event is therefore a means of effecting a state change in the 

computer. An event would include: the execution of an instruction, the execution of some portion of 

an instruction, or some action initiated external to the computer such as a I/O request. That is: 

E V E N T ( S p r e ) - > S p o s t 

This being the case, the task of validating the computer architecture may be described as follows: 

Given all possible events it is necessary to determine that all possible pre-conditions of these events 

produce the "expected" post-conditions. To effect this it will be necessary to: 

1. Find a means to capture machine states. 

2. Find a means to compare machine states. 

3. Find a means to initiate an event. 

The method chosen here to capture and compare machines states as well as to initiate events 5 has 

been determined, in part, by a constraint placed on the validation system: no external hardware 

5 
As well as the exact definition of a state and event for our purposes. 
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probes are permitted to examine states on the "sub-instruction" level. Therefore states must be 

captured and compared at the "instruction" level. This determines what may be considered a "state" 

for validation purposes. Here the "state" consists of those aspects of a computer architecture which 

may be examined and compared at the instruction level of the architecture. If the system is permitted 

to ignore I/O events, the events which may be initiated are those of the instruction level. A scheme 

must therefore be devised for establishing a state (as we have defined it) as well as testing for the 

existence of a state after the event of an instruction execution. 

Several assumptions have been made which allow this task to become manageable. These are: 

1. Instructions which are used to establish the required pre-condition are indeed valid (will 

modify the intended state variables correctly) and will produce no "unexpected" side 

effects. 

2. The instruction subject to validation will modify only those state variables that it is 

"expected" to modify (though it may not modify these correctly), and in doing so will 

produce no "unexpected" side effects. 

That is an instruction which is "expected" to modify only the value of the state variables, the 

operand, and the condition codes t
6 would not unexpectedly add 5 to the stack pointer and place the 

result in virtual memory address 5432 hex. 

These assumptions about instruction execution behavior permit the architecture validation system 

to proceed in the following manner: 

1. The required precondition S p r e may be established by applying several instruction level 

state transformations to a known current state S c u r r e n t . That is: 

E V E N T ( S c u r r e n t ) = > S k 
E V E N T ( S k ) => . . . 
E V E N T ( . . . ) => S p r e 

This follows from the first assumption in that the state transformation function is 

guaranteed to produce the desired result with no "unexpected" side effects. 

2. The expected post-condition S p o s t may be tested for by examining only those state 

variables which the instruction is "expected" to modify. This follows from the second 

assumption in that the state transformation function under test is guaranteed to effect 

only these state variables. 

6 F o r example, the NEBULA INC instruction which is expected to modify an operand (by incrementing it's value), and modify 

the condition codes (based on the resulting value of the operand). 
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2.2 Overview 

The state of the architecture which an instruction under test may modify is sub-divided along 

certain conceptual divisions or boundaries. Currently these boundaries or sub-states 7 are: 

I . T h e memory and registers (MR), which are modified by the instruction through the 
operand fetch mechanism, or access mode (AM). 

2. The condition codes (CC), which are modified by the instruction directly. 

3. The program counter (PC), which is modified by the instruction directly. 

4. Exception has been generated (EX), which is modified by the instruction directly. 

The instruction manipulates data (effects change in state of the memory and registers (MR)) 

through the AM's. For example, given a three operand instruction of the form: 

INSTR A M I , AM2, AM3 

Two pieces of data, located in the memory or register (MR) state variables, might be fetched 

through AM1 and AM2 with the result returned through AM3. In the instance where instructions 

produce arithmetic results it is clear that the CC's are an integral part of the true result8 . The CC's 

exist in part due to the problems associated with implementing the mathematical concept of a 

number. This is true in particular for the truncate and carry CC's. However for validation purposes 

the condition codes CC's are treated as a separate state variable. 

The effect of state modification by an instruction execution event which is under test 
T E S T - E V E N T ( S n r J => S n n c +  v pre' post 

can be divided along the aforementioned state divisions. That is: 

T E S T - E V E N T ( S M R ) - > S t 

T E S T - E V E N T ( S C C . f e ) - > S P
0 

T E S T - E V E N T ( S p c . J r e ) - > S ^ 

Accordingly the required state precondition S x maybe realized as follows: 

V NT ^ - c u r r e n t -I'" ^ E V E N T ( S p c . c u r r e n t ) => . . . => E V E N T ( S p c . p r e ) 

7 These particular sub-states were chosen as a result of their being easily accessed or monitored at the NEBULA computer 
architecture instruction level. In somes sense this issue is architecture dependent. However the state of most architectures 
can be subdivided into, at least, the first three sub-states. These are the MR, CC, and PC sub-states. 

g 
True result in the mathematical sense of an operation such as "add" or "subtract" 
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In addition serial events may be initiated to verify the post-conditions: S M R . p o s t , Sec -pos t ' ^ P C - p o s t ' 

and S E X s t . The only restraint placed on these events is that they do not perturb any state that has 

already been established as part of the precondition, or has not already been verified as part of the 

expected post-condition. 

This results in three sub-divisions of the validation procedure: the setup, the execution, and the 

check. For example, a particular AM is chosen from the list of legal AM's for an instruction according 

to a given probability distribution. The AM has a value associated with it (the MR state modified) 

according to a given probability distribution. The setup involves the generation of code sequences 

that cause the AM to fetch the associated value (MR value) at instruction execution. The setup also 

includes the generation of code to establish the proper C C state, as well as the proper PC state. The 

execution phase causes a code sequence for the instruction to be generated that reflects the chosen 

AM's (MR state) and PC state. In the check phase, a code sequence is generated that determines 

whether the instruction execution produced the expected resulting state. 

In like fashion each potential state modification of the instruction undergoes one or all of the above 

sub-division phases. Sub-division phases, for all divisions, take place at one time. That is the setup 

phases for all divisions take place, then the execution phases, and then the check phases. 
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3. The Interpreter 

The validation system interpreter is written in a dialect LISP [7]. The kernel of the validation system 

is a modified LISP interpreter. It was derived from one described by Steele and Sussman [10]. 

The modifications include: 

o Implementing the original interpreter in MacLISP [8], a dialect of LISP developed at MIT. 

• Adding a production construct: 

© Adding an equation solving construct. 

© Adding certain primitive operations which are to be used by the validation system. These 
primitive operations are divided into two categories as follows. 

o General LISP primitive operations. 

o Validation system specific primitive operations which are described in the following 
chapters. 

The interpreters I/O capabilities are described in Chapter 7. 
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3.1 Functions 
A function definition is a list consisting of: the keyword F U N C T I O N , the Function Name Fname, a 

list of Format Parameters FPj, and an Symbolic Expression Sexpr. That is: 

( F U N C T I O N Fname (FP1 FP2 . . . ) Sexpr) 

The arguments to a function, the Actual Parameters, are bound to the Formal parameters at the 

time of the functions evaluation. 

Functions are composed of calls to General Primitive, Validation System Specific Primitive, or User 

defined functions. Several Primitive Functions currently exist and are enumerated in Section 3.1.3. 

The Validation System Specific Primitive functions are described in the following chapters. 

3.1.1 Funct ion Call 

A Function call is distinguished from a Production call in that the first element in the function call 

must evaluate to an ATOM which corresponds to the function name. That is, a function call is a list 

consisting of: a Function Name Fname followed by some number of Actual Parameters ActPj. That is: 

{Fname ActP1 ActP2 . . . ) 

A production call is a list consisting of: a list of Activation Parameters APn followed by some 

number of Actual Parameters ActPn. That is: 

((AP1 AP2 . . . ) ActP1 ActP2 . . . ) 

3.1.2 Special Forms 

The following is a list of special forms which are of general use. 

Takes any number of arguments and evaluates the arguments in the order given. 

The value returned is that of the last function evaluated. 

Takes any number of arguments. The first argument is a repeat count. The 

remaining arguments are evaluated in PROGN fashion the number of times 

specified by the repeat count. If the repeat count is less than one the remaining 

arguments are NOT evaluated. 

Function call binding mechanism without the function name (As in LISP). 

PROGN 

REPEAT 

LAMBDA 

SETQ Takes two arguments. The first argument is not evaluated. The value of 

second argument is assigned to the first argument. 
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C O N D The traditional LISP conditional mechanism. 

3.1.3 Genera! Primitive Funct ions 

The following is a list of primitive functions which are of general use. 

EQ Takes two arguments. Returns T if the arguments are identical, otherwise it 
returns'NIL'. 

C O N S 

L IST 

C A R 

CDR 

A S S O 

N U L L 

Takes two arguments and returns the CONS of the arguments. 

Takes any number of arguments and returns a list of the arguments. 

Takes one argument and returns the left hand portion of its CONS cell. 

Takes one argument and returns the right hand portion of its CONS cell. 

Takes two arguments. The first argument must evaluate to an atom. The second 

argument is a list of CONS cells. The function scans the CAR of each CONS cell 

until one matches the first argument. The function then returns that CONS cell. 

Takes one argument and returns T ' if the value of the argument is 'NIL5, otherwise 
it returns'NIL'. 

Q U O T E Takes one argument, an item to be quoted. The item quoted is not evaluated. That 
is the character string that is quoted (argument) is to be taken as a literal. 

Takes one or more arguments. If one argument is c'.ven the two's complement 
negative of that argument is returned. If more than one arguments are given then 
the first argument has subtracted from it all the remaining arguments. The 
subtraction is two's complement. 

+ Takes two or more arguments. The arguments are added together and their sum is 
returned. 

1 - Takes one argument. The value returned is that of the argument minus one. 

1 + Takes one argument. The value returned is that of the argument plus one. 

* Takes two or more arguments. The arguments are multiplied together and their 
product is returned. 



PAGE 16 
A R C H I T E C T U R E V A L I D A T I O N S Y S T E M 

// Takes one or more arguments. If one argument is given, it's reciprocal is 

returned. If more than one argument is given, the first argument is divided by the 

following arguments and the quotient is returned. 

\ Takes two arguments. The remainder of the first argument divided by the second 

argument is returned. 

\\ Takes two arguments. The value returned is the greatest common denominator of 

the arguments. 

t Takes two arguments. The value returned is that of the first argument raised to the 

power of the second argument. 

ROT Takes three arguments. The first argument is rotated by the value specified by the 

second argument. If the second argument is positive then the first argument is 

rotated right. If the second argument is negative then the first argument is rotated 

left. The third argument specifies the size of the register that the rotation takes 

place in as a power of two. 

LSH Takes two arguments. The first argument is shifted by the value specified by the 

second argument. If the second argument is positive then the first argument is 

multiplied by two raised to the power of the second argument. If the second 

argument is negative then the first argument is divided by two raised to the power 

of the second argument. 

C O B Takes one argument. The value returned is the count of the powers of two that the 

argument is composed of. 9 

ABS Takes one argument. The value returned is the absolute value of the argument. 

N O T Takes one argument. The value returned is the ones complement negative of the 

argument. 

AND Takes three arguments. The value returned is the logical AND of the first and 

second arguments. The third argument specifies the size of the register that the 

AND operation takes place in. 

OR Takes three arguments. The value returned is the logical OR of the first and 

second arguments. The third argument specifies the size of the register that the 

OR operation takes place in. 

9 
Historically count one bits. 
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Takes three arguments. The value returned is the logical XOR of the first and 
second arguments. The third argument specifies the size of the register that the 
XOR operation takes place in. 
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3.2 Production Construct 

A production definition is a list consisting of: the keyword P R O D U C T I O N , a list of Activation 

Parameters APn, a list of Formal Parameters FPn, and an Symbolic Expression Sexpr. That is: 

( P R O D U C T I O N (AP1 AP2 . . . ) (FP1 FP2 . . . ) Sexpr) 

3.2.1 Act ivat ion Parameters 

The Activation Parameters in the production definition are compared, considered as (unordered) 

sets, with the Activation Parameters in a production call. A list of productions is constructed whose 

AP's are equal (as a set) to the production call AP's. From this list one production is selected and 

executed. If no production can be found with the above properties a list is constructed corresponding 

to the productions whos AP's are a superset of the production call AP's. From this list one production 

is selected and executed. If no production can be found with the above properties an error is 

generated. 

3.2.2 Formal Parameters 

The Formal Parameters are bound to the Actual Parameters when the production is invoked. 

3.2.3 Product ion Cal l 

A production call is a list consisting of: a list of Activation Parameters APn followed by some 

number of Actual Parameters ActPn. That is: 

((AP1 AP2 . . . ) ActP1 ActP2 . . . ) 

3.2.4 Example 

The production call: 

( ( 1 f r 1 e n d - o f ' g e o r g e ) C l y d e ) 

will invoke a production from the set of productions which contain 'friend-of and 'george' in their 

activation parameters. 

Of the following production definitions only the first two productions will be in this set (Here nc 

exact match is found). One will be chosen arbitrarily for execution. 

(PRODUCTION ( g e o r g e sam f r i e n d - o f n e i g h b o r ) ( p e r s o n ) S9xpr) 
(PRODUCTION ( f r i e n d - o f george guy ) ( p a l ) S o x p r ) 
(PRODUCTION ( f r i e n d - o f sam guy ) ( p e r s o n ) S e x p r ) 
(PRODUCTION ( p o t - o f sam) (name) S o x p r ) 



THE INTERPRETER PAGE 19 

Of the following production definitions only the last production will be in the set (Here an exact 

match is found). It will be chosen for execution. 

(PRODUCTION ( g e o r g e sam f r i e n d - o f n e i g h b o r ) ( p e r s o n ) S e x p r ) 
(PRODUCTION ( f r i e n d - o f george guy ) ( p a l ) S e x p r ) 
(PRODUCTION ( f r i e n d - o f sam guy ) ( p e r s o n ) S e x p r ) 
(PRODUCTION ( p o t - o f sam) (name) S e x p r ) 
(PRODUCTION ( g e o r g e f r i e n d - o f ) ( p e r s o n ) S e x p r ) 
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3.3 Equation Solving 

An Equation definition consists of the string E Q U A T I O N followed by the Equation Key eq-key 

followed by a list of Formal Parameters FPn followed by the Equation Form eq-form. 

( E Q U A T I O N eq-key (FP1 FP2 . . . ) eq-form) 

The eq-key is used to refer to the equation definition in an invocation or call. A call consists of a list 

containing the Equation Key eq-key followed by the Actual Parameters APn. The value of the Actual 

Parameters APn are bound to the Formal Parameters FPn in the Equation form eq-form of the 

instruction definition. 

(eq-key AP1 AP2 . . . ) 

The Equation Form is a Symbolic Expression (Sexpr) which contains function calls and 

assignments (a special function). The special function ' = = ' (the assignment) allows assignment to 

Formal Parameters FPn (variables) within the Equation Form. All variables are local to the Equation 

Form. Assignment may only take place if the value of the Actual Parameter bound to the Formal 

Parameter in the equation is '&NIU and in addition assignment only takes place once. 

The functions and assignments in the Equation Form are "solved" by iteration over the Equation 

Form. When the system encounters a function it will be executed "produce a non-&NIL result" only 

when all of it's parameters are bound to a non-&NIL value (otherwise it produces &MIL). There is 

therefore no explicit ordering of execution. This iterating over the Equation Form continues until all 

the Formal Parameter bindings are non-&NIL at the end of an iteration (The maximum number 

iterations is one greater than the number of Formal Parameters. When this number if iterations is 

exceeded an error is generated.). 

3.3.1 Example 

The following example describes an equation which will produce a result which is dependent upon 

the values of the actual parameters of the call. 

( E Q U A T I O N x (a b C) 
( L I S T 

( « a (COHD ( ( p r i m e - p b) ' p r i m e ) ( T ' n o t - p r i m e ) ) ) 
(== b (random c ) ) ) ) 

If the call is of the form: 

( x '&NIL '&NIL 1024) 

on the first iteration the actual parameter bound to 'a' is &NIL but the equation ' = = a' depends on 
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the result of the equation ' = = b' (the value of 'b' is &N1L), therefore insufficient information is 

available to solve this equation. The actual parameter bound to 'b' is &NIL so the equation ' = = b' is 

solved for (since 'c' has a non &NIL binding). On the second iteration 'b' has a non &NIL binding and 

the equation ' = = a' may be solved. A list will be produced the first item of which is either 'PRIME' or 

'NOT-PRIME', depending on the value of the function 'prime-p' (this function returns T if the 

argument is a prime number or NIL if the argument is not a prime number). The second item of the list 

will be a number selected randomly in the range '0' to 'c-1'. 

If the call is of the form: 

( x '&NIL 20 1024) 

On the first iteration the actual parameter bound to 'a' is &NIL and 'b' has a non &NIL bind, therefore 

the equation ' = = a' is solved. The actual parameter bound to 'b' is non &NIL (the equation has been 

"solved previously") so the equation ' = = b' is NOT solved. A list will be produced whose first item is 

'NOT-PRIME' and whose second item item is the number 20. That is: 

(NOT-PRIME 20) 
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4 . Second Level Val idation Program Template 

4.1 The Validation Program 

The Level II Validation Program consists of several parts which are described in the following 

sections. The parts which constitute a program may be placed directly in the program or in separate 

files, being referenced through the READ function (See Section 7). The extension of a Second Level 

Validation Program file shall be HLV. 
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4.2 Level II Instruction Definitions 

The Level II Instruction Definitions file shall have the extension L2. A Level II Instruction Definition 

consists of Equations. 

An example of a Level II Instruction Definition for the NEBULA INC instruction which specifies a 
post condition of a positive condition code, where no exception should take place is as follows: 

( e q u a t i o n 1nc -p ( s i z e v a l u e - p r e v a l u e - p o s t c c - p r e c c - p o s t ) 
( l i s t 1 n o - e x c e p t i o n - - s d ' * i n c 

( l i s t ' q u o t e ( l i s t 
( l i s t 'am 

( l i s t ( « s i z e (SET bhw)) 
(== v a l u e - p r e ( - v a l u e - p o s t 1 ) ) 
( « v a l u e - p o s t (RANGE 1 ( 1 - (CDRASSQ s i z e b h w - s i z e ) ) ) ) ) ) 

( l i s t »cc 
( « c c - p r e (SET c c - a l l ) ) 
(== c c - p o s t ' p ) ) ) ) ) ) 

The above equation may be invoked with the following, 

( i n c - p '&NIL '&NIL '&NIL 1 &NIL ' & N I L ) 

The equations will be solved to produce a Level I Instruction Definition which is actually a function 

call. It is important to note that each Level II instruction Definition represents a "set" of Level I 

Instruction Definitions (one-to-many), only one of which is produced for each Level H Instruction Call. 

One possible Level I Instruction Definition produced from the above Level It Instruction Definition 

above is as follows: 
(NO-EXCEPTION—SD ' I N C ' ( ( A M (BYTE 5 6 ) ) (CC N P ) ) ) 
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4.3 Level I! Validation System Specific Primitive Function! 
SET Takes one argument which is a list. The function returns a randomly chosen top 

level element of the list. 

RANGE 

C D R A S S Q 

Takes one argument which is a list. The elements of the list are CONS cells. The 
values of a CONS cell describes a range. The CAR of the cell describes a lower 
limit. The CDR of the cell describes an upper limit. The function randomly chooses 
one of the CONS cells of the list. It then returns a randomly chosen number in the 
range described by that CONS cell. 

A short hand notation for the following. 

(CDR (ASSQ i tem l i s t ) ) 

R A N G E - E Q C A R Takes two arguments, an ATOM key and a list. If the key is EQ to the CAR of a 

'sublist' of the list then the RANGE opération is done on the CDR of the 'sublist'. 

S E T - I N R A N G E 

A F F E C T 

Takes two arguments, a NUMERIC key and a list. If the numeric key is IN the 

RANGE of the CAR of a 'sublist' (the CAR of the 'sublist' is a CONS cell which 

contains a range pair) then the SET operation is done on the CDR of the 'sublist'. 

Takes three arguments, an ATOM code, an ATOM code modifier, and an Affect 
list. If the code is EQ to the CAR of a 'sublist' of the list and the list represented by 
the CADR of the 'sublist' contains the code modifier then the CADDR of the 
'sublist' is returned. 
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4.4 Level II Table Definitions 

The following tables are used by the Level II Validation System Specific Functions described above. 

These tables are designed for the NEBULA architecture and do not constitute all the tables used to 

validate the NEBULA architecture. These tables are included here to give some flavor of the types of 

data structures which are necessary to construct Level II Validation systems. 

4.4.1 Condit ion Code Tab les 

These are used to group similar condition codes into sets. In general it is necessary to select one 

condition code from the set. This is done with the SET function. Some NEBULA specific examples of 

condition code tables are. 

; ; ; L i s t o f a l l the NEBULA c o n d i t i o n c o d e s : 

( s e t q c c - a l l *( 
p p - c p - t p - t c 
z z - c z - t z - t c 
n n - c n - t n - t c 
zn z n - c z n - t z n - t c ) ) 

• • • 
> » • 

; ; ; L i s t o f a l l the NEBULA c o n d i t i o n codes t h a t a re NOT z e r o : 

( s e t q c c - t z 1 ( 
p p - c p - t p - t c 
n n -c n - t n - t c 
zn z n - c z n - t z n - t c ) ) 

4.4.2 Size Range T a b l e s 

It is sometimes necessary to select a number from a range which corresponds to the different data 

sizes that the architecture supports. This is done with the RANGE function. Some NEBULA specific 

examples are. 

» I » 

Range d i s t r i b u t i o n t a b l e , 

( s e t q r a n g e - s i z e 1 ( 
(0 . 127) 
(128 . 32767) 
(32768 . 214748367))) 
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4.4.3 Value Size C o r r e s p o n d e n c e Tab les 

It is sometimes necessary to determine which addressing mode sizes will accommodate a particular 

value. This is done through the S E T - I N R A N G E function. Some NEBULA specific examples are. 

( s e t q range-bhw 1 ( 
( ( 0 . 127) b y t e h a l f w o r d word) 
( (128 • 32787) h a l f w o r d word) 
( (32768 . 214748367) w o r d ) ) ) 

( s e t q r a n g e - b h ' ( 
( ( 0 . 127) b y t e h a l f w o r d ) 
( (128 . 32767) h a l f w o r d ) ) ) 

4.4.4 Maximum Value for a Size Tab les 

It is sometimes necessary to determine what the maximum value for a particular access mode size 

is. Or what is the greatest power of two of a value that a size will accommodate. This is done through 

the function CDR A S S Q . Some NEBULA specific examples are. 

t i ! 

; ; ; S i z e t a b l e , 

( s e t q bhw-s1ze f ( 
( b y t e . 255) 
( h a l f w o r d . 32767) 
(word . 214748367))) 

; ; ; What power o f two ( w t 2 ) t a b l e . . . 

( s e t q bhw-amt2 f ( 
( b y t e . 8 . ) 
( h a l f w o r d . 1 6 . ) 
(word . 3 2 . ) ) ) 

4.4.5 A c c e s s Mode Size Tab les 

It is sometimes necessary to choose a particular access mode size. This is done through the SET 

function. Some NEBULA specific examples are. 

( s e t q bhw ' ( b y t e h a l f w o r d w o r d ) ) 

4.4.6 Condit ion Code Affect table 

It is sometimes necessary to modify a condition code to reflect some aspects of another condition 

code. This is done through the function A F F E C T . Some NEBULA specific examples are: 
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( s e t q c c - a f f e c t ' ( 
p - t t ( p - t c n - t c z - t c z n - ' 
n-n ( p - t c n - t c z - t c z n - ' 

p-n ( p - c n -c z -•c z n - c ) 
n - t t ( p - c n -c z -•c z n - c ) 

z 
• • • 

(p n z z n ) z ) 
zn (p n z z n ) z n ) 

-n • • • 

( p - t c p - c ) p - c ) 
- * t ( z n - t z n ) z n ) 

- t ( p - t c p - c ) p - t c ) 
; - t ( p - t p) p - t ) 
; - t ( z n - t z n ) z n - t ) ) ) 
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5. First Level Val idation Program Template 

5.1 The Validation Program 

The Level I Validation Program consists of several parts which are described in the following 

sections. The parts which comprise the program may either be placed directly in the program or in 

separate files and referenced through the READ function (See Section 7). The Level I Validation 

program file shall have the extension MLV. 
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5.2 Level I Instruction Definitions 

The Level I Instruction Definition is a function call to an Instruction Type function. One Instruction 

Type function should exist for each "type" of instruction. This "type" classification reflects various 

broad aspects of an instruction. Some of the aspects reflected in the "type" for the NEBULA 

architecture might be. 

• The instructions takes exceptions. 

© The instructions does NOT take exceptions. 

• The instruction takes branches. 

© The instruction does not take branches. 

© The instruction has one source and one destination. 

© The instruction has two sources and one destination. 

• The instruction has one source. 

5.2.1 Instruct ion T y p e Funct ion 

This function is used to determine the "order of execution" of the productions which process the 

assertions about the instruction (state) to be validated. The following is an example of an Instruction 

Type Function for the NEBULA architecture to handle Level I Programs of the form: 

( n o - e x c e p t i o n - - s - s - d name 
( (am (sizepre-condition-value) 

(size pre-condition-value) 
(size post-condition-value)) 

( c c pre-condition post-condition))) 

The instruction "type" reflected here has the following constraints: 

• The instructions must take no exceptions. 

• The operand type is of the form: Source, Source, Destination. 

The Instruction Type Function is as follows: 
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( f u n c t i o n n o - e x c e p t i o n - - s - s - d (name fo rm) 
( p r o g n 

( d e a l l o c a t e ' r e g i s t e r ) ; F ree up the r e g i s t e r s between t e s t s 
( ( l ambda (ami am2 am3 c c l cc2) 

( ( lambda ( s i s2 d) 
( p r o g n 

( ( ' c c ' p r e ' n o - e x c e p t i o n ) ( c d r ( a s s o c c c l c c - t a b l e ) ) ) 
( ( ' n o - e x c e p t i o n — s - s - d name) s i s2 d) 
( ( ' c c ' p o s t ' n o - e x c e p t i o n ) ( c d r ( a s s o c cc2 c c - t a b l e ) ) 

modu le -no ) 
( ( ' a m ' p o s t ' s i g n e d ) ( c a d r am3) d m o d u l e - n o ) ) ) 

( ( ' a m ' v a l u e ' s o u r c e ( c a r a m i ) ) ( c a d r a m i ) ) 
( ( ' a m ' v a l u e ' s o u r c e ( c a r am2)) ( c a d r am2)) 
( ( ' a m ' d e s t i n a t i o n ( c a r a m 3 ) ) ) ) ) 

( c a r ( c d a r f o r m ) ) 
( c a d r ( c d a r f o r m ) ) 
( c a d d r ( c d a r f o r m ) ) 
( c a r ( c d a d r f o r m ) ) 
( c a d r ( c d a d r f o r m ) ) ) 

name)) 

The instructions of a certain type are specified by a production which contains, as the activation 

parameter, the "type" and the instruction name. Some examples of this for the NEBULA architecture 

are. 
• • • 

; ; ; p r o d u c t i o n s o f true fo rm ' N O - E X C E P T I O H - - S - S - D ' . . . 

( p r o d u c t i o n ( n o - e x c e p t i o n - - s - s - d add) ( s i s2 d) 
( s t r e a m *| ADD | s i ' | , | s2 • 

( p r o d u c t i o n ( n o - e x c e p t i o n — s - s - d 
( s t r e a m •| SUB | s i *| ,| s2 ' 

( p r o d u c t i o n ( n o - e x c e p t i o n — s - s - d 
( s t r e a m ' | MUL | s i ' J , | s2 ' 

( p r o d u c t i o n ( n o - e x c e p t i o n — s - s - d 
( s t r e a m *| DIV | s i ' | , | s2 ' 

( p r o d u c t i o n ( n o - e x c e p t i o n - - s - s - d 
( s t r e a m ' J MOD | s i ' | , | s2 ' 

d ) ) 

sub) ( s i s2 d) 
.1 d ) ) 

mul) ( s i s2 d) 
.1 d ) ) 

d i v ) ( s i 32 d) 
.1 d ) ) 

mod) ( s i s2 d) 
.1 d ) ) 

5.2.2 State Descr ip tors 

The State Descriptors are used to specify the assertion about that state. There is no general form 

for the State Descriptor since an Instruction Type function may be constructed to handle any form. 

Some examples of State Descriptors for the NEBULA architecture are. 

• The following is.an AM State Descriptor for instructions which have one access mode of 
type: Source-Destination. 
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(am ( s i z e p r e - c o n d i t i o n - v a l u e ) 
( s i z e p o s t - c o n d i t i o n - v a l u e ) ) 

• The following is an AM State Descriptor for instructions which have two access modes of 

type: Source, Source-destination. 

(am ( s i z e p r e - c o n d i t i o n - v a l u e ) 
( s i z e p r e - c o n d i t i o n - v a l u e p o s t - c o n d i t i o n - v a l u e ) ) 

© The following is an AM State Descriptor for instructions which have three access modes 

of type: Source, Source, Destination. 

(am ( s i z e p r e - c o n d i t i o n - v a l u e ) 
( s i z e p r e - c o n d i t i o n - v a l u e ) 
( s i z e p o s t - c o n d i t i o n - v a l u e ) ) 

© The following is a CC State Descriptor for instructions which modify the condition codes. 

(CC c c - p r e - c o n d i t i o n c c - p o s t - c o n d i t i o n ) 

Some of the valid States for the NEBULA architecture are. • 

AM The memory/register (access mode) state key. 

B R A N C H The take branch state key (boolean). 

C C The condition code state key. 

E X C E P T I O N The take exception state key (boolean). 

5.2.3 Code Sequence 

The Code Sequence is typically composed of STREAM function calls. The STREAM function is 

used to generate the Level 0 Validation Program text. The Code Sequence may also contain 

Production Cails and Level I Function calls. 

5.2.4 Product ion Class i f icat ion 

The machine specific code can be divided as follows: 

1. Pre -d iagnost ic code. Code emitted at the beginning of the diagnostic program module. 

This code can set the starting address of the program, specify a starting label or 

whatever. 

2. Post -d iagnost ic code . Code emitted at the end of the diagnostic program module. For 
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example, the assembler may require an end statement and a starting address for the 
diagnostic program module. 

3. Set code. Code used to place a value at a certain location, or set the precondition of a 
certain state. The location can be a memory address, a register, the condition codes, or 
whatever. 

4. Target inst ruct ion . The code here is the instruction under test. 

5. Check code. Code used to verify that a location contains a certain value, or check the 
post condition of a certain state. The location can be a memory address, a register, the 
condition codes, or whatever. 

In general productions are created to handle the above areas (See Section 5.4 and 5.3). 
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5.3 Access Mode Productions 

The function of an access mode (addressing mode) is to retrieve certain data from the MR 

(Memory/Register) state, for use by the processor. The validation program has the responsibility of 

setting up access modes to point to certain pieces of data (value range) in the MR space. That is, 

given a certain piece of data (value) and an access mode, the system must Emit the appropriate 

sequence of instructions to cause that access mode to 'evaluate to' the specified data (value) when 

the instruction is executed. The access mode definitions are created to do just this. However, rather 

than pointing to just one piece of data, the AM is given a "range" of values that it will theoretically be 

allowed to point or evaluate to. The "value range" is therefore a set of values. 

5.3.1 Format of a Value Range 

The value range is a list of three items: the type, the value, and the size. The type is created by the 

first attempt to allocate it. That is, there are no 'wired in' types. Some types used in the NEBULA 

architecture are. 

1. NUMBER - type number or literal. 

2. MEMORY - type memory address. 

3. REGISTER - type register. 

The value is a list that designates the form that the value is to take. The value may be a range of 

values, or it may be one value. A range of values is described by a list beginning with the identifier 

'RANGE' and followed by range-pair<s>^°/probability list. That is: 

( R A N G E (range-pair<s> prob) . . . (range-pair<s> prob)) 

The range-pair is a dotted pair 1 1 consisting of the (inclusive) lower bound followed by the 

(inclusive) upper bound of the range. That is: 

(lower-bound. upper-bound) 

The probability fields are interpreted as being relative to the other probabilities specified. Actual 

selection probabilities are determined by normalizing the numbers given. The probability may be 

omitted, leaving only the range-pair<s>. In this case the range descriptor takes on the form: 

One or more range-pair. 

1 1 A left parenthesis followed by a value followed by a period followed by a value followed by a right parenthesis. 
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( R A N G E range-pair<s>) 

In this case the probability of selection is evenly distributed over the range-pair<s>. 

The single value form consists of a list whose first element is the identifier 'VALUE' followed by the 

numeric value. This can be seen as a special case of the range form, and is included for the sake of 

convenience. That is: 

( V A L U E 790) 
( R A N G E (790. 790)) 
( R A N G E ( 790.790) (790.790) ) 

all mean the same thing. 

The size is a number which describes the size in bytes that the value will occupy in the memory or 

register array. The size of a value located in a memory byte would be 1, in a half word 2, in a word 4, 

and in a double word 8. 

The value range corresponding to a number whose value is 5 and is located in a half word would 

be: 

( N U M B E R ( V A L U E 5) 2) 

The value range corresponding to the number whose range is -8 through 123 and is located in a word 

would be: 

( N U M B E R ( R A N G E ( - 8 . 7 2 3 ) ) 4) 

5.3.2 AM Form 

The AM form (or AM) is defined as a Lisp EXPR with one variable. The variable is the RANGE that 

the AM evaluates to upon instruction execution. The function must return an expression known as an 

AMEXPR-LIST. The AMEXPR-LIST is a list containing two lists, these are the EMIT-EXPR and the 

RANGE-EXPR. 

The EMIT-EXPR is a list that describes how the AM is placed or emitted into the instruction stream. 

The list consists only of literal expressions. 

The RANGE-EXPR has a form similar to the range and, in general, points to that place, in the MR 

state, where the RANGE has been stored. Thus a range (that may be a range of one value) is 

associated with an AM. The AM is said to evaluate to this range or fetch the value of (or pointed to by) 

the RANGE-EXPR range. 
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A function named AMEXPR is provided that will produce an AMEXPR-LIST from other AMEXPR-

LISTS as well as literal expressions and numeric values. The AMEXPR is a function of two variables, 

an EMIT-EXPR (or list of EMIT-EXPR's) and RANGE-EXPR. The EMIT-EXPR can contain any of the 

following: 

1. L i teral . Causes a string to be emitted literally. The string is to be enclosed in double 

quotes ("). 

2. E M I T - E X P R . The entries of the EMIT-EXPR (argument) are placed, at the point of 

reference, into the EMIT-EXPR that the AMEXPR function generates. 

3. A M E X P R - L I S T . In this case the EMIT-EXPR from the AMEXPR-LIST is placed, at the 

point of reference, into the EMIT-EXPR that the AMEXPR function generates. 

The RANGE-EXPR may be any one of the following: 

1. R A N G E - E X P R . 

2. A M E X P R - L I S T . In this case the RANGE-EXPR form the AMEXPR-LIST is extracted. The 

AMEXPR-LIST found here is typically produced be another AM form. 

An example of an AM definition for the NEBULA memory byte, register, and register indirect byte 

mode is as follows: 
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(PRODUCTION (am memory b y t e v a l u e s o u r c e s o u r c e - d e s t i n a t i o n i n d e x ) 
( r a n g e ) 

((LAMBDA ($1) 
((LAMBDA ($2) 

(PROGN 
(STREAM '| MOVL | ( ( ' a m ' l i t e r a l ' b y t e ) range ) ' | t | $2) 
$ 2 ) ) 

(AMEXPR ( l i s t $1 ' t B ) $ 1 ) ) ) 
(ALLOCATE 'memory 

( l i s t 'RANGE (cons b u f f e r - b o t t o m b u f f e r - t o p ) ) 
b y t e - s i z e ) ) ) 

(PRODUCTION (am r e g i s t e r v/ord v a l u e s o u r c e s o u r c e - d e s t i n a t i o n i n d e x ) 
( r a n g e ) 

((LAMBDA ($1 $2) 
((LAMBDA ($3) 

(PROGN 
(STREAM ' j MOVL | $1 ' | , | $3) 
$ 3 ) ) 

(AMEXPR ( l i s t '% $2) $ 2 ) ) ) 
( ( ' a m ' l i t e r a l 'word ' v a l u e ) range ) 
(ALLOCATE ' r e g i s t e r 

( l i s t 1 RANGE (cons r e g i s t e r - b o t t o m r e g i s t e r - t o p ) ) 
r e g i s t e r - s i z e ) ) ) 

(PRODUCTION (am i n d i r e c t b y t e v a l u e source s o u r c e - d e s t i n a t i o n i n d e x ) 
( r a n g e ) 

((LAMBDA ($1) 
(AMEXPR ( l i s t '@ ( ( ' a m ' r e g i s t e r 'word ' v a l u e ) $1) '*B) $ 1 ) ) 

( ( ' a m 'memory ' b y t e ' v a l u e ) r a n g e ) ) ) 

In this example of the register indirect byte mode, the range is placed in a memory byte location. A 

register then takes on the range of the evaluation of that memory byte. The EMIT-EXPR is the " @ " 

followed by the EMIT-EXPR of the AMEXPR-LIST generated by the 'register' production followed by 

the literal " t B " . The RANGE-EXPR is the RANGE-EXPR of the AMEXPR-LIST of the evaluation of the 

'memory byte' production. 
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5.4 Setup and Check Productions 

In the set and check routines, implementing more than one method of accomplishing the appointed 

task is recommended. 

It is necessary to exercise as many different paths in the architecture as possible to build 

confidence in the check and set code sequences. 

5.4.1 A c c e s s Mode Checking 

For example, the following code may be used for an AM check of the NEBULA architecture 1 2 . 

(PRODUCTION (am p o s t s i g n e d ) ( v a l u e address modulo) 
((LAMBDA ( l a b e l ) 

(PROGN 
(STREAM ' | CMP #| v a l u e •|,| a d d r e s s ) 
(STREAM ' J BEQL | l a b e l ) 
(STREAM 'I DISPLAY #| 

module 
* ; F a i l e d access mode t e s t | ) 

(STREAM l a b e l ' | : | ) ) ) 
(MAKE-LABEL ' a m p ) ) ) 

In this code sequence access -mode and value are both E M I T - E X P R ' s . The purpose of this code 

is to compare the literal value with the contents of the location and halt if they are different. Another 

code sequence that performs this task could be written as: 

(PRODUCTION (am p o s t s i g n e d ) ( v a l u e address module) 
((LAMBDA ( p a s s f a i l ) 

(PROGN 
(STREAM *| CMP #| v a l u e ' | , | a d d r e s s ) 
(STREAM 'I BNE | f a i l ) 
(STREAM 'I B I p a s s ) 
(STREAM f a i l 

•|: DISPLAY ff\ 
module 
'\,ffl ; F a i l e d access mode t e s t | ) 

(STREAM pass ' I : I))) 
(MAKE-LABEL 'AMP) 
(MAKE-LABEL ' A M F ) ) ) 

1 2 U s e of both methods above will catch errors in which the conditional branches always branch. 
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5.4.2 Condit ion Code Setup and Checking 

The following productions may be used for the Condition Code Setup for the NEBULA architecture. 

( p r o d u c t i o n ( c c pre n o - e x c e p t i o n ) ( v a l u e ) 
( s t r e a m '| SETCC #| v a l u e ) ) 

( p r o d u c t i o n ( c c pre e x c e p t i o n ) ( v a l u e ) 
( s t r e a m '| SETCC #| v a l u e 1 | . O R . t X 1 0 | ) ) 

The following productions may be used for the Condition Code Checking for the NEBULA 

architecture. 

( p r o d u c t i o n ( c c pos t n o - e x c e p t i o n ) ( v a l u e module) 
( ( lambda ( l a b e l ) 

( p r o g n 
( s t r e a m ' | CALL GETCC,%1|) 
( s t r e a m 1 j CMPU v a l u e ) 
( s t r e a m 1 j BEQL | l a b e l ) 
( s t r e a m ' j DISPLAY #\ 

module 
' |,#2 ; F a i l e d c o n d i t i o n code t e s t j ) 

( s t r e a m l a b e l •1 : | ) ) ) 
( m a k e - l a b e l f C C P ) ) ) 

( p r o d u c t i o n ( c c post n o - e x c e p t i o n ) ( v a l u e module) 
( ( l ambda (pass f a i l ) 

( p r o g n 
( s t r e a m ' | CALL GETCC,%1|) 
( s t r e a m f | CMPU v a l u e ) 
( s t r e a m ' | BNE | f a i l ) 
( s t r e a m '| B j p a s s ) 
( s t r e a m f a i l 

1 I : DISPLAY #| 
module 
' | f # 2 ; F a i l e d c o n d i t i o n code t e s t | ) 

( s t r e a m pass f jj : | ))) 
( m a k e - l a b e l f CCP) 
( m a k e - l a b e l f C C F ) ) ) 
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5.5 Level I Validation System Specific Primitive Functions 

S T R E A M Takes any number of arguments. Each argument is output to the instruction 

stream in the following manner. 

1. L i teral . Causes the string to be emitted into the instruction stream 

literally. The string is to be enclosed in double quotes. 

2. Number . Causing the text equivalent of that number to be emitted 

into the instruction stream. 

3. E M I T - E X P R . The entries of the EMIT-EXPR (argument) are placed, at 

the point of reference, into the instruction stream. 

4. A M E X P R - L I S T . In this case the EMIT-EXPR from the AMEXPR-LIST 

is placed, at the point of reference, into the instruction stream. 

5. Var iab le . Containing either a literal, a number, an EMIT-EXPR, or an 

AMEXPR-LIST. 

A M E X P R 

A L L O C A T E 

D E A L L O C A T E 

A M -

AM + 

AM* 

Takes two arguments: an emit-list and a value-list. This function creates an 

Expression for the AM object (AMEXPR). 

Takes three arguments: a type, a range and a size. This function creates a value-

list from its arguments. 

Takes one argument: a type. This function deallocates all allocations made to that 

type. 

Takes any number of arguments. Each argument can be either a number an 

AMEXPR or a VALUE-LIST. This subtracts the first argument from the other 

arguments. 

Takes any number of arguments. Each argument can be either a number an 

AMEXPR or a VALUE-LIST. This function adds the first argument to the other 

arguments. 

Takes any number of arguments. Each argument can be either a number an 

AMEXPR or a VALUE-LIST. This function multiplies the first argument with the 

other arguments. 
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M A K E - L A B E L Takes one argument. This function generates labels for the assembly language 

program. It does this by creating a symbol which consists of a unique number 

appended to the argument. 
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5.6 Level I Table Definitions 

In most instances, these tables are used in the "mapping" of certain constants in the Level I 

Programs to the code emitted in the Level 0 (target assembly language) Program. 

5.6.1 Condit ion Code Definit ion Tab le 

The valid CC-pre-exec-state and post-exec-state specifiers for the NEBULA architecture are 

defined as doted pairs. The first element is the name of the exec-state specifier. The second element 

is numerical representation (to be emitted) of that specifier as reflected in the condition codes. The 

exec-state specifiers for the NEBULA architecture would be defined as follows: 

(p . " t X O " ) 
(z . " t X l " ) 
(n . n t X 2 " ) 
(zn . " t X 3 " ) 
( p - t . " № ) 
( t . " t X 5 " ) 
( n - t . " t X 6 " ) 
( z n - t . "tX7") 
( p - c . "tX8") 
( z - c . " t X 9 " ) 
( n - c . "+X0A") 
( z n - c . " t X O B " ) 
( p - t c . " t X O C " ) 
( z - t c . " tXOD" ) 
( t c . "*X0E") 
( z n - t c . " t X O F " ) 

5.6.2 Except ion Code Definit ion Tab les 

The definition of the EXCEPTION state specifiers is similar to that of the C C state specifiers. The 

valid NEBULA EXCEPTION state specifiers are as follows: 
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( S p e c i f i c a t i o n - E r r o r . " t . l " ) 
( I l l e g a l - M o d e . " t . 2 " ) 
( I l l e g a l - P a r a m e t e r . " t . 3 " ) 
( I l l e g a l - R e g i s t e r . " t , 4 " ) 
( I l l e g a l - W r i t e . " t . 6 " ) 
( I l l e g a l - S i z e . " t . 6 " ) 
( I l l e g a l - A d d r e s s . " t . 7 " ) 
( O p e r a n d - S i z e . " t . 8 " ) 
( C o n t e x t - A l i g n m e n t . " t . 9 " ) 
( C o n t e x t - B a s e . " t . l O " ) 
( S e g m e n t - S p e c i f i e r . " t . l l " ) 
( S u p e r v i s o r - C h e c k . " t . 1 2 " ) 
( T a s k - L o a d - E r r o r . " t . 1 3 " ) 

( I l l e g a l - D i v i s o r . " t . 1 6 " ) 
( T r u n c a t i o n . " f . 1 7 " ) 
( R a n g e - E r r o r . " t . 1 8 " ) 
( I n v a l i d - O p e r a t i o n . "+.19") 
( D i v i d e - B y - Z e r o . M t . 2 0 M ) 
( F l o a t i n g - O v e r f l o w . " * . 2 1 " ) 
( F l o a t i n g - U n d e r f l o w . " t . 2 2 " - ) 
( F l o a t i n g - I n e x a c t . " t . 2 3 " ) 
( U n o r d e r e d . " t . 2 4 " ) 

( T a s k - F a i l u r e . " t . 3 2 " ) 
(B reak . " t . 3 3 " ) 
( I n s t r u c t i o n - B r e a k . " t . 3 4 " ) 
( C a l l - B r e a k . " t . 3 5 " ) 
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6. A Program Example 

6.1 Level il Program 

The following is a Level II validation template for the NEBULA ADD instruction in which the 

condition code results should be positive. 

( e q u a t i o n a d d - p o s i t i v e ( s l - r a n g e s l - s i z e s l - v a l u e s2 - r a n g e s 2 - s i z e s 2 - v a l u e 
d - r a n g e d - s i z e d - v a l u e c c - r a n g e c c - p r e c c - p o s t ) 

( l i s t ' N O - E X C E P T I O N - - S - S - D " A D D 
( l i s t ' quote ( l i s t 

( l i s t 'AM 
( l i s t (== s l - s i z e (SET-INRANGE s l - v a l u e s l - r a n g e ) ) 

(== s l - v a l u e ( - d - v a l u e s 2 - v a l u e ) ) ) 
( l i s t (== s 2 - s i z e (SET-IMRANGE s 2 - v a l u e s 2 - r a n g e ) ) 

(== s 2 - v a l u e (RANGE (cons 0 d - v a l u e ) ) ) ) 
( l i s t (== d - s i z e (SET d - r a n g e ) ) 

(== d - v a l u e 
(RANGE (cons 1 

( 1 - (CDRASSQ d - s i z e b h w - s i z e ) ) ) ) ) ) ) 
( l i s t f CC 

(== c c - p r e (SET c c - r a n g e ) ) 
(== CC-POST ' p ) ) ) ) ) ) 

The following is a Level II program which makes use of the above Level II template. 

Read t h i s i n t o ' H L V to make a ' M L V program. 

( r e a d f u n s ) ; 
( r e a d t a b l e ) ; 
( r e a d eq) ; 

( f u n c t i o n m a k e - l l v ( ) 

random LISP f u n c t i o n s t h a t are ' n o t p r imops ' 
Leve l I I TABLES. 
Leve l I I PROGRAM. 

( p r o g n 
( p r i n t ! 
( p r i n t l 
( p r i n t ! 
( p r i n t l 
( p r i n t l 
( p r i n t s ! 
( p r i n t l 
( r e p e a t 

( p r i n t l 
( p r i n t l 

random LISP f u n c t i o n s t h a t are ' n o t p r i m o p s ' . 
; L e v e l I ' I n s t r u c t i o n ' p r o d u c t i o n d e f i n i t i o n f i l e . 
Leve l I 'Access Mode' p r o d u c t i o n d e f i n i t i o n f i l e . 

Leve l I 'P re and P o s t ' p r o d u c t i o n d e f i n i t i o n f i l e . 
Leve l I 'Top L e v e l ' p r o d u c t i o n s and f u n c t i o n s . 

a L v l 0 prog 

' ( r e a d f u n s ) ) 
' ( r e a d i n s t r ) ) 
' ( r e a d am)) ; 
' ( r e a d p p ) ) ; 
' ( r e a d t o p ) ) ; 

' ( f i l e | ! ! v . n e b | ) ) ; The L v l I program w i l l produce 
' [ ( ( ' m o d u l e ' p r e ' n o - e x c e p t i o n s ) 1 m o d u l e - n o ) | ) 
10 

( p r i n t l ( a d d - p o s i t i v e range-bhw '&NIL '&NIL 
range-bhw '&NIL '&NIL 
bhw '&NIL '&NIL 
c c - a l l '&NIL ' & N I L ) ) ) 

' ( ( ( ' m o d u l e ' p o s t ' n o - e x c e p t i o n s ) m o d u l e - n o ) | ) 
' ( c l o s e ) ) ) ) ; C l o s e the Leve l 0 program t h a t was j u s t c r e a t e d , 
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( f i l e makl1v) 
( m a k e - l l v ) ; 
( c l o s e ) ; 

Make a ' L e v e l I ' p rogram. 
Invoke the above f u n c t i o n . 
C l o s e the Leve l I program t h a t was j u s t c r e a t e d . 

6.2 Level I Result 

The following is one instance of a Level I Validation Program that would be produced, by the 

validation system, from the above Level II Validation Program. Many such instances will be produced, 

by the validation system, to realize a complete validation program. 

(READ FUNS) 
(READ INSTR) 
(READ AM) 
(READ PP) 
(READ TOP) 
( F I L E | l l v . n e b | ) 
( ( ' m o d u l e ' p r e ' n o - e x c e p t i o n s ) 1 modu le -no ) 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (WORD 52103075) (WORD 127824650) (WORD 179927725)) (CC Z -TC P ) ) ) 
(NO-EXCEPT I O N - - S - S - D 'ADD 

' ( ( A M (BYTE 54) (WORD 93) (BYTE 147)) (CC P-TC P ) ) ) 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (HALFWORD 3657) (HALFWORD 20148) (HALFWORD 23805)) (CC Z -TC P ) ) ) 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (WORD 4379) (HALFWORD 3327) (HALFWORD 7706)) (CC P-C P ) ) ) 
(NO-EXCEPT I O N - - S - S - D 'ADD 

' ( ( A M (WORD 96) (HALFWORD 492) (HALFWORD 588)) (CC Z -TC P ) ) ) 
(NO-EXCEPT I O N - - S - S - D 'ADD 

' ( ( A M (WORD 3270609) (WORD 802639) (WORD 4073248)) (CC N-TC P ) ) ) 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (BYTE 197) (WORD 6357)' (HALFWORD 6554)) (CC P-T P ) ) ) 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (WORD 1896) (WORD 15903) (HALFWORD 17799)) (CC P-TC P ) ) ) ' 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (WORD 8321) (HALFWORD 2274) (HALFWORD 10595)) (CC N-C P ) ) ) 
( N O - E X C E P T I O N - - S - S - D 'ADD 

' ( ( A M (WORD 6781824) (WORD 24707157) (WORD 31488981)) (CC Z P ) ) ) 
( ( ' m o d u l e ' p o s t ' n o - e x c e p t i o n s ) modu le -no ) 
(CLOSE) 
6.3 Target Result 

The following is an example of a Validation program for the NEBULA computer architecture. The 

program is produced by the Validation System from the Level I validation programs. The Validation 

program is output, by the Validation system, in the assembly language for the target architecture. The 

NEBULA code segment between the ellipsis is the code sequence generated, by the validation 

system, from the above First level validation program. 
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; Machine Generated D i a g n o s t i c program f o r the NEBULA a r c h i t e c t u r e . 
; T e s t Module Number 100. 
; Module g e n e r a t e d in 1 p a s s e s . 

.=tX100060 ; O r i g i n : program runs in s u p e r v i s o r s t a t e 

• 

; Rout ine t o access the C o n d i t i o n Codes of the c a l l e r . . . 
GETCC: 

. ENTRY NP=1, REG=1 
SPSW %1 
LSH #-"f. 19,7.1, %1 
AND #tX0F,7ol 
MOVL %1,?1 
RET 

START: 

.ENTRY REG=15, NP=0, SUPV, NOAE 

MOVL #52103075tV/,874tW 
MOVL #1297880708tW,7.12 
MOVL #-324470065tW,880tW 
SETCC #tXD 

ADD 1246 i -W[#-93tB]tW,#127824650tW,-84(7o l2) tW[880tW]tW 
CALL GETCC, 7.1 
CMPU %l ,#tX0 
BEQL CCPS1 

DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t o s t 
CCP$1: 

CMP #179927725 , -84(7o l2) tW[880tW]tW 
BNE AMF$3 
B AMP$2 

AMFS3: DISPLAY #100.#1 ; 
AMP$2: 

MOVL # 5 4 t B , 7 3 * B 
MOVL #-1862536012tW,%5 
MOVL #1862536095tW,7.13 
MOVL #93i-W,488tW 
MOVL #-1958666778tW,7.8 
MOVL #1958667266tW,534tW 
MOVL #422tW,7olO 
MOVL #2 44 tW, 7.14 
SETCC #tXC 

F a i l e d access mode t e s t 

ADD -10(%5) tB[%13] tB ,@%8tW(112(%10) tW)tW, -16(%14) tB 
CALL GETCC, 7.1 
CMPU 7ol,#tX0 
BNE CCFS5 
B CCPS4 

CCF$5: DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 
CCP$4: 

CMP # 1 4 7 , - 1 6 ( % 1 4)tB 
BEQL AMP$6 
DISPLAY #100,#1 ; F a i l e d access mode t e s t 
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AMPS6: 
MOVL # 3 6 5 7 t H , 3 4 2 î H 
MOVL #467tW,%9 
MOVL # - 1 2 5 t B , 6 5 4 î B 
MOVL #654tV/,%4 
MOVL # 2 0 1 4 8 t H , 3 9 t H 

MOVL #1485843947tW,263tW 

MOVL //263tW,%12 

MOVL #-1966732779tW,%5 
SETCC #tXD 
ADD @%9tH(@7o4tB)i-H,-1485843908tH(@7ol2i-W)tH, 1966732821 (%5)tH 
CALL GETCC,%1 
CMPU 7.1,#tX0 
BNE CCFS8 
B CCP$7 

C C F S 8 : DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 
CCPS7: 

CMP #23805,1966732821(%5)tH 
BEQL AMPS9 

DISPLAY #100,#1 ; F a i l e d access mode t e s t 
AMPS9: 

MOVL #4379tW,480tW 
MOVL #299200269tW,7,8 
MOVL # 7 4 î B , 6 9 5 T B 
MOVL #695tW,%15 
MOVL # 3 3 2 7 t H , 8 6 7 t H 
MOVL #-1757526795tW,7.5 
MOVL # - 1 3 9 9 5 t H , 2 6 t H 
MOVL # - 4 t W , 7 , l l 
SETCC #tX8 
ADD -299199863(7 .8) tW(@7o l5tB) tW,867tH , 1757541180(7o5) tH(30(7 .11) tH) tH 
CALL GETCC.7.1 
CMPU 7.1,#tX0 
BEQL CCPS10 

DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 
CCPS10: 

CMP #7706,1757541180(7.5 ) t H ( 30 (7.11 ) t H ) t H 

BEQL A M P S l l 

DISPLAY #100,#1 ; F a i l e d access mode t e s t 
A M P S l l : 

MOVL #96tW,566tW 
MOVL #566*W,7.4 
MOVL #224tW,7.12 
SETCC #tXD 
ADD @7.4tW,#492tH,100(7.12)tH 
CALL GETCC.7.1 
CMPU %l,#tX0* 
BEQL CCPS12 

DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 
CCPS12: 

CMP #588,100(%12)tH 
BNE AMF$14 
B AMPS13 

AMFS14: DISPLAY #100,#1 ; F a i l e d access mode t e s t 
AMPS13: 
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MOVL #802639tW,%13 
MOVL #-523630373tW,%9 
SETCC #tXE 
ADD #3270609tW,%13,523630563(%9)tW 
CALL GETCC,7.1 
CMPU %l ,#tX0 
BNE CCFS16 
B CCPS15 

CCFS16: DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 
CCP$15: 

CMP #4073248,523630563(%9)tW 
BEQL AMPS17 
DISPLAY #100,#1 ; F a i l e d access mode t e s t 

AMPS17: 
MOVL #197tB,784tB 
MOVL #1696351218tW,%15 
MOVL #28179tH,532tH 
MOVL #412tW,%8 
MOVL #6357tW,1018tW 
MOVL #956tW,%12 
MOVL #62tB,809tB 
MOVL #719tW,%13 
MOVL #-1222422648-rW,%14 
MOVL #611211503tW,%5 
SETCC #tX4 
ADD -1696378613(7 ,15)tB( 120(7o8 ) tH) tB ,@7ol2i -W(90(%13)tB) tW, -105(7 .14) tH[7 .5 ] tH 
CALL GETCC, 7.1 
CMPU %1,#îX0 
BNE CCF$19 
B CCPS18 

CCFS19: DISPLAY #100 t#2 ; F a i l e d c o n d i t i o n code t e s t 
CCPS18: 

CMP #6554,-105(7 .14) tH[7o5 ] tH 
BNE AMF$21 
B AMPS20 

AMFS21: DISPLAY #100,#1 ; F a i l e d access mode t e s t 
AMPS20: 

MOVL #1896tW,810tW 
MOVL #34tB,545tB 
MOVL #1702625594tW,7oll 
MOVL #15903tW,972tW 
MOVL #198tW,7.13 
MOVL #102tB,816tB 
MOVL #816tW,7.7 
SETCC #tXC 
ADD 776tW( -1702625049(7ol l ) tB ) tW,972tW, -128(7ol3 ) tH[@7 .7 tB] tH 
CALL GETCC, 7.1 
CMPU 7ol ,#tX0 
BEQL CCP$22 
DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 

CCPS22: 
CMP #17799,-128(7 .13) tH[@%7tB] tH 
BNE AMFS24 
B AMPS23 

AMFS24: DISPLAY #100,#1 ; F a i l e d access mode t e s t 
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AMPS23: 
MOVL #8321tW,7.9 
MOVL #2274tH, 1351-H 
MOVL #2031628647tW,7.10 
MOVL #-18367tH,258tH 
MOVL #257 tW, 7.5 
MOVL #753 tW, 7.7 
MOVL # -49rB ,137tB 
MOVL #137tW,7.11 
SETCC #tXA 
ADD 7 .9 , -2031591778(7 .10 ) tH [ l(7 .5 ) t l l ] tH , -108(7 .7 ) tH[@7 .11tB ] tH 
CALL GETCC.7.1 
CMPU 7 .1,#tX0 
BNE CCFS26 
B CCPS25 

CCFS26: DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 
CCPS25: 

CMP # 1 0 5 9 5 , - 1 0 8 ( % 7 ) t H [ S % l l t B ] t H 
BNE AMFS28 
B AMP$27 

AMF$28: DISPLAY #100,#1 ; F a i l e d access mode t e s t 
AMPS27: 

MOVL #6781824tW,%6 
MOVL #24707157tW,657tW 
MOVL #657tW,7.10 
MOVL #-1141531414tW,%4 
SETCC # t X l 
ADD 7.6 , @7.101W, 1141531596 (7.4 ) *W 
CALL GETCC.7.1 
CMPU 7 .1,#tX0 
BEQL CCPS29 
DISPLAY #100,#2 ; F a i l e d c o n d i t i o n code t e s t 

CCPS29: 
CMP #31488981,1141531596(7.4)tW 
BEQL AMPS30 
DISPLAY #100,#1 ; F a i l e d access mode t e s t 

AMPS30: 
DISPLAY #100,#0 ; S u c c e s s f u l T e r m i n a t i o n 
. END START+1-X80000001 ; Run i n S u p e r v i s o r space . 
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7. I0 

7.1 READ 

The READ function takes the form: 

( R E A D d e v i c e r n a m e . e x t e n s i o n ) 

All the Symbolic Expressions (Sexpr) contained in the referenced file are evaluated. 

7.2 FILE 

The FILE function takes the form: 

( F I L E d e v 1 c e : n a m e . e x t e n s i o n ) 

This function causes all future output to be directed to the specified file. If the file specification is 

T ' then output is directed to the terminal. This command has the side effect of preforming a C L O S E 

on previous file. 

7.3 CLOSE 

The C L O S E function takes the form: 

( C L O S E ) 

The file which is currently open for output is closed and all future IO is directed to the terminal. If 

the currently opened file is the terminal this command has no effect. 

7.4 PRINT 

The PRINT function takes the form: 

( P R I N T S e x p r ) 

The Sexpr is output to the file named in the FILE command. Special characters are not printed with 

vertical bars. 
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7.5 PRINTL 

The PRINTL function takes the form: 

( P R I N T L S e x p r ) 

The Sexpr is output to the file named in the FILE command. Special characters are not printed with 

vertical bars. An end of line character is then output to the file named in the FILE command. 

7.6 PRINTS 

The PRINTS function takes the form: 

( P R I N T S S e x p r ) 

The Sexpr is output to the file named in the FILE command. Special characters are printed with 

vertical bars. 

7.7 PRINTSL 

The PRINTSL function takes the form: 

( P R I N T S L S e x p r ) 

The Sexpr is output to the file named in the FILE command. Special characters are printed with 

vertical bars. An end of line character is then output to the file named in the FILE command. 
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