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As an object moves relative to aK viewpoint, its appearance changes. In this paper we analyze the 

topological constraints on the changing appearance of line drawings of objects as the objects or the 

camera move. We start with a Huffman-Clowes junction dictionary. We show a way of deriving vertex 

types from junction types by inference rather than by table look-upf and develop a set of transition 

tables, showing the change in appearance of vertices as the viewpoint changes. We derive three 

constraints on the change in appearance of an object: conservation of vertices, conservation of 

vertex type, and conservation of adjacencies. Using these constraints, we develop a matching 

algorithm that traces vertices from one image to the next. Examples are given showing correct 

matching for simple objects, including partially visible objects and multiple objects in the same scene. 
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1 . Introduction 

1.1 Motivation and Assumptions 

In this paper we present a method for matching vertices in line drawings of multiple views of 

objects. First, we examine the appearance of tr ihedral vertices from different viewpoints. This 

analysis is used to derive the effects of changing viewing position on the appearance of line drawings 

of trihedral objects. That in turn helps solve the problem of identifying the same vertices in different 

pictures. 

The first part of this paper examines the change in appearance of a vertex as the viewing angle 

changes. We show the correspondence between three-dimensional vertices and the Huffman-Clowes 

labels attached to image junct ions. We then develop a "transit ion table" , showing how the image of a 

vertex can change from one type of junct ion to another as the viewpoint changes. 

The objects we consider are trihedral blocks; that is three planar sides meet at each vertex. The 

drawings are initially presumed to be perfect. The change in viewing position can come either from 

moving the camera, as in stereo vision, or from moving objects. One reason for working in the 

tr ihedral blocks world is to understand the effects of motion in an idealized case, separate from the 

problems of feature extract ion. Another reason is that in analysis of aerial images of urban scenes, 

many of the main features are trihedral bui ldings. 

In the second part we show a matching process that relies on topology to identify the same vertices 

in two line drawings of the same scene. The only information used is line labels and connectivity. 

These give us three constraints: conservation of vertices, conservation of adjacencies, and 

conservation of vertex types. This process works for scenes with more than one object or with only 

part of an object visible. We discuss simplif ications and extensions and show several simple 

examples. 
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2. Trihedral Vertices 

2.1 Introduction: Huffman-Clowes Junction Dictionaries 

Huffman [5] and Clowes [3] independently developed " junct ion d ict ionar ies" , lists of possible 

appearances in line drawings of all conf igurat ions of tr ihedral vertices. They first note that there are 

only two types of edges: concave and convex. The two planes that form the edge divide space into 

four sections, with the edge appearing topo log ica l ^ different from each sect ion. In the case of a 

concave edge, the edge will be obscured from three of the sections and will appear simply as a 

concave edge from the fourth, labeled " - " by Huffman. For a convex edge, the edge will be visible 

from three sections. From the front, it will appear as a convex edge, designated with a " + ". From 

either side, it will appear as an occluding (obscuring) edge, with the nearer surface blocking the 

farther surface from view. Huffman labels occluding edges with an arrow along the edge such that 

the surface on the right of the arrow occludes the surface on the left. 

Trihedral vertices are formed by the intersection of three surfaces, which is also the intersection of 

three edges. The three surface planes divide space into eight sections, usually called octants without 

implying that they must be of equal size or of similar shape. Some of the octants can be filled and the 

rest left empty. The combinat ions of filled and empty octants that give single, connected objects with 

three surfaces meeting at the center have one, three, five, or seven filled octants. These vertex types 

are usually named by Roman numerals according to the number of filled octants. Each edge that 

meets at a vertex can be either convex or concave. In a type I vertex, all three edges are convex. In a 

type III vertex, there are two convex and one concave. Type V vertices have one convex and two 

concave edges, and all three edges of a type VII vertex are concave. 

Huffman and Clowes point out that each type of vertex can be viewed from each of the empty 

octants. The image of a vertex is called a junct ion. By viewing all vertex types from all empty octants 

they construct a " junct ion dict ionary" showing all topological ly different types of junct ions that can 

occur in the trihedral wor ld. Table 1 shows all junct ions, each listed by type of vertex of which it is an 

image. 

2.2 Reasoning From Junction Type to Vertex Type 

Notice in table 1 that each junct ion type can result from only one kind of vertex. For instance, the 

arrow-shaped junct ion with one + and two > labels can only be the image of a convex-convex-convex 



T a b l e 1 : Summary Of Junct ion Types (From [5]) 

(type I) vertex. So if the labels of all l ines on a junct ion are known, it is possible to tell what three-

dimensional conf igurat ion must be pictured. 

There is a straightforward explanation in terms of edge types. Remember that a convex edge can 

take any of three labels: + , >, or <. A concave edge, on the other hand, can only be labeled with a 

minus. So lines with arrow or + labels must be convex. This means that every junct ion with three 

lines visible and labeled is easily traceable to the type of vertex that formed it. For instance, the Y 

junct ion labeled with two arrows and one minus must come from the type III conf igurat ion, since two 

of its edges are convex and one concave. 
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This reasoning relies on the visibility of all three edges at a junct ion. Thus, more analysis is 

required for L junct ions. The key is to find where the hidden third edge must be. This gives the 

location of the hidden surface or surfaces, and thus gives the edge types. 

The first case is when the edge is within the angle ABC (figure 1), and there is only one surface 

visible. Since the third edge is hidden, the area within arc ABC must be the one visible surface. Then 

AB and BC both appear as occluding edges, which means that they are both convex. The object 

must lie below the arc ABC, and the two hidden surfaces must meet in a convex edge. So this is the 

all-convex vertex, type I. 

B 

Figu re 1 : L Junct ion With One Surface Visible 

If the hidden edge is within the arc DBE, the opposite situation exists. The one visible surface is the 

area outside of arc ABC (figure 2). Edges AB and BC are still occ luding, and hence convex, but the 

direction of their labeling arrows is reversed. The object lies entirely under the visible surface, and 

the invisible surfaces must meet in a concave edge. This must be a type III vertex. 

\ \ / 
\ \ 

/ 

A C 

Figu re 2 : L Junct ion With The Opposite Area Visible 
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As the hidden edge swings around into arc ABD (or, in the mirror image, arc CBE), one of the 

hidden surfaces now becomes partly visible (f igure 3). The newly visible surface 1 joins the " t o p " 

surface 2 along edge BC; that edge is then labeled with a plus rather than an arrow. The one 

remaining hidden surface meets surface 2 along edge AB and must extend back underneath it. Its 

intersection with surface 1 along the hidden edge will then be concave. These must also be formed 

by vertices with two convex and one concave edge, again type III. 

D E D E 

\ Surface 2 /* \ Surface 2 / 

Figu re 3: Two Surfaces Visible, Hidden Edge In Arc ABD Or Arc CBE 

The final case is two surfaces visible and the third edge hidden by surface 1. The hidden edge is 

formed by the third surface and surface 2. Since this edge is under surface 1, surface 1 must be in 

front of surface 2 at that point. This means that the intersection of surfaces 1 and 2 must be concave, 

since surface 1 sticks out over surface 2. The other edge of surface 1 must then be occluding. Then 

the hidden surface must run from the occluding edge to the hidden edge, and must form a concave 

edge with surface 2. This is the one convex two concave (type V) case. The two symmetric cases of 

this are shown in f igure 4. 

Note that there are a series of constraints that may be interchanged. It is not necessary to know 

line labels, surface visibilities, and hidden edge location in order to derive vertex type. For instance, 

in f igure 1, it would be sufficient to know that there is a surface within arc ABC and none outside. In 

that case, all the rest of the information would be constrained. More information than just surface 

visibility would be needed to dist inguish between cases like figures 3 and 4, but even there line label 

information could be traded for knowledge of hidden line posit ion. This information could come from 

other sources, such as intensity or orientat ion. For instance, in urban scenes there is very often a 

vertical edge at each vertex. If the camera geometry is known, it is possible to predict the direction in 
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D E D E 

\ Surface 2 / \ Surface 2 / 

F igu re 4 : Two Surfaces Visible, Hidden Edge In Arc ABC 

the image of the vertical edge. If the vertical edge is the missing one in an L junct ion, it would be 

possible to determine the type of the vertex. 

2.3 Effect of Motion on Appearance of Trihedral Vert ices 

As the viewpoint moves relative to the vertex, the appearance of the vertex may change. As long as 

the viewpoint stays in one octant, the image of that vertex remains the same type of junct ion. But 

when the viewpoint crosses into another octant, the vertex will appear as a different junct ion type. 

There are several constraints on the change in junct ion type. The first is conservation of vertex type. 

Since the underlying vertex type remains the same, the junct ions must all be images of that type of 

vertex. So, for instance, a junct ion in row I of table 1 can become, due to viewpoint change, any other 

junct ion in row I, but cannot become a junct ion from rows III, V, or VII. The second constraint is that 

each octant is adjacent to three other octants. As the viewpoint changes, it can only go from an 

octant to one of the three adjacent octants. So the junct ion type can only change to the junct ion type 

derived from an adjacent octant. These two constraints give a transit ion graph, showing all possible 

junct ion type transit ions, as in f igures 5 and 6. The conservation of type constraint splits the graph 

into four disjoint parts, one for each type of vertex. Each part of the graph has eight nodes, one for 

each octant, with 1, 3, 5, or 7 of the nodes marked " invis ib le" because they correspond to viewing 

positions behind the object. 

Another constraint comes from the direct ion of the change. Changing octants means crossing one 

of the three planes that meet at the vertex. If the motion of the camera is known to be parallel to one 

of the planes, or is known not to be large enough to cross a plane, the possible junct ion type 



7 

F igu re 5 : Transit ion Table, Type I and Type III 

transit ions are constrained. This is often the case in stereo analysis of aerial photographs of urban 

scenes. For bui ldings with horizontal roofs, the camera is always above the plane of the roofs. If the 

bui ldings also have vertical walls, it is easy to tell on which side of the plane of the walls the camera 

lies. Note that this does not guarantee the appearance of a given type of vertex, because the 

orientation of the vertex is not constrained. For instance, a type III vertex can be oriented as an " L " 

on its side, as an upright " L " , or as an inverted " L " . So "above the plane of the roofs" can still be in 
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invisible } 

'^invisible ) 

^invisible ) 

w invisible j 

F igu re 6 : Transit ion Table, Type V and Type VII 

any of the octants relative to the vertex. However, given two images of the same bui lding, it is 

possible to tell if the viewpoint crossed the plane of either wall . This constrains the change in 

appearance of the junct ion. 



9 

2.4 Orthogonal Trihedral Vert ices 

Another type of constraint is available when all vertices are composed of orthogonal edges. Under 

perspective project ion, all lines parallel in the scene will pass through a common "vanishing point" in 

the image plane. If all lines are aligned in one of three orthogonal direct ions, it is easy to find the 

vanishing points and then to classify each line. Then the orientation of each vertex relative to the 

camera can be established and junct ion labeling is greatly constrained. 

Liebes' treatment of orthogonal tr ihedral vertices [7] ignores line labels and uses only line 

directions. The advantage of this approach is that a junct ion can be catalogued by itself, without 

looking at adjacent junct ions, since only the direct ion of the lines at that junct ion matters. The effect 

is that the appearance of that vertex in another view can be predicted, but it is not possible to tell 

whether it will be self-obscured. As an example, consider an arrow-shaped junct ion pointing " d o w n " . 

If this is an image of an orthogonal trihedral vertex, it could be either a top view of a type V vertex or 

an inverted view of a type I vertex. There are two ways to tell which is correct. First, other 

information, such as constraints from neighboring junct ions, can be used to label the lines. Second, 

the vertex can be viewed from an octant from which one type of vertex would be visible but the others 

self-obscured. Since Liebes does not use the first type of information, he cannot make predict ions 

about the second type of constraint. 
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3. Correspondence 

In this part of the paper, we show how to find correspondences consistent with the topological and 

line-label constraints. The cbrrespondence problem is identifying the same three-dimensional point 

in two different images of the same scene. Finding matching points is an essential step in tracking 

object motion and in calculat ing depth from stereo images. This paper deals with tracking the 

vertices of trihedral blocks from one line drawing to another. The two views can come from either 

stereo or from object motion. We make no assumptions about camera geometry (such as known 

epipolar lines), fixed relations among objects, or magnitude of the change between images. We 

assume that some other process has done Huffman-Clowes labeling on each image. This carries with 

it implicit assumptions of completeness of the scene and of a "general v iewpoint" , that is, no 

coincidentala l ignments in the image. 

The main reason we are interested in using topological information by itself is to understand the 

constraints it provides. We can then make better use of those constraints when we combine them 

with quantitative information. 

3.1 Constraints 

The object of correspondence is to find a match in the second image for each junct ion in the first 

image. There are three constraints that a complete, consistent set of matches has to satisfy: 

conservation of vertices, conservation of type, and conservation of adjacencies. 

Conservation of vertices means that since the same objects are in each image, the same vertices 

must also be present. They may not be visible in each image, however. Under perspective project ion, 

it would even be possible to have all vertices that are visible in one image invisible in the other. For 

instance, one view could be looking at a cube from straight in front, so only the front face and the 

front vertices are visible, and the other view could be from directly behind the cube, with only the back 

face and vertices visible. Under orthography, at least some vertices must be visible in both images, 

but there may still be other vertices that are invisible in both of the images. Even though they are not 

visible, the other vertices are still present in the scene, and have to be accounted for. 

Conservation of type means that a vertex must always keep the same shape. Although its 

appearance may change, that change is constrained (see section 2.3). Since we assume that all lines 

are labeled, every junct ion's type is known. A junct ion in one image can therefore only match a 

junct ion in the second image that is the image of the same type of vertex. 
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Conservation of adjacency is really conservation of edges. If two junct ions in one image are 

directly connected by an edge, the junct ions they match in the second image must have a line 

connect ing them or the possibility of an invisible edge between them. 

These constraints allow some types of noise in the scene. Missing lines can be handled by the 

"invisible edge" cr i ter ion. Extra lines cannot be handled. Changing angles can be tolerated, since 

quantitative geometry is not important, but they must not change from concave to convex or vice 

versa, since vertex types, and thus edge types, must remain f ixed. Changing line length is permitted, 

which may be especially useful in real scenes. But polygonal approximations to curved surfaces will 

probably not work, since it is diff icult to guarantee the same number of vertices in two different 

polygon fits. 

3.2 Matching Algorithms 

E O 

F igu re 7 : Two Labeled Pictures of an L Block 

3 .2 .1 C o r r e s p o n d e n c e G r a p h 

Our matching algorithms are based on a central data structure, the correspondence graph. Each 

node in the correspondence graph is composed of a junct ion from one image and a junct ion from the 

second image, where the two junct ions may be images of the same actual vertex. Node formation 
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uses the "conservat ion of type" constraint. In f igure 7, junct ions B and T are both images of a type I 

vertex, so BT would be a node. Junct ion U is an image of a type III vertex. Since B and U come from 

different types of vertices, they cannot match, so BU would not be a node. 

Invisible vertices must also be allowed for in the graph. Unless we know otherwise from outside 

sources of information, we must assume that there can be any number of invisible vertices and that 

they can be of any type. We create the special junct ion (invisible) that can match any or all of the 

junct ions. Figure 8 shows all the nodes formed from the L blocks in f igure 7. 

AL, AM, AN, AO, AP, AR, AS, AT, AV, A(invisible), 

BL, BM, BN, BO, BP, BR, BS, BT, BV, B(invisible), 

CQ, CU, C(invisible), 

DL, DM, DN, DO, DP, DR, DS, DT, DV, D(invisible), 

EL, EM, EN, EO, EP, ER, ES, ET, EV, E(invisible), 

FL, FM, FN, FO, FP, FR, FS, FT, FV, F(invisible), 

GL, GM, GN, GO, GP, GR, GS, GT, GV, G(invisible), 

HL, HM, HN, HO, HP, HR, HS, HT, HV, H(invisible), 

IL, IM, IN, IO, IP, IR, IS, IT, IV, l(invisible), 

JQ, JU, J(invisible), 

KL, KM, KN, KO, KP, KR, KS, KT, KV, K(invisible), 

(invisible)L, (invisible)M, (invisible)N, (invisible)O, (invisible)P, (invisible)Q, 

(invisible)R, (invisible)S, (invisible)T, (invisible)U, (invisible)V, (invisible)(invisible) 

F igu re 8 : Nodes Formed From Picture of L Block 

Links in the graph connect nodes that are "consistent" . Consistent means that both nodes could 

be part of the same overall match. Inconsistent means that if one node is correct, the other is 

incorrect. Consistency is defined using the "conservat ion of adjacency" constraint and its logical 

implications. We define the distance between two vertices to be the smallest number of edges that 

must be traversed to get from one vertex to the other. If all vertices and all edges were visible in an 

image as junct ions and lines, it would be straightforward to determine the distance between two 

junct ions. Then, given two nodes XX' and Y Y \ they would be consistent only if the distance from X to 

Y in one image was exactly the same as the distance from X' to Y' in the other image. For instance, 

node AL is consistent with node IR since the distance from A to I (two edges) is the same as the 

distance from L to R. The diff iculty with this is that all vertices might not be visible, so it might not be 

possible to tell what the shortest distance is between two junct ions. The way we handle this is to 

calculate the upper and lower bounds of the distance. The upper bound is the shortest distance 

using only visible lines. The lower bound uses invisible lines wherever they could possibly run. Then 
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the criterion for compatibi l i ty is that the range of distances must overlap. That is, the lower bound of 

the distance from X to Y must not exceed the upper bound of the distance from X' to Y' and the upper 

bound from X to Y must be greater than or equal to the lower bound from X' to Y \ 

In f igure 7, the upper bound on the distance from A to E is 4. In order to calculate the lower bound, 

we have to decide if there could be an edge directly connect ing A and E. This takes some reasoning 

about the planes that form the surfaces of an object. If the lines are labeled, it is easy to tell which 

lines and points lie in the same plane. A line labeled + or - lies in the planes visible on either side of it. 

An occluding line lies in the hidden plane and the occluding plane but not the occluded plane. Then 

in the example, lines FK and KJ lie in the same plane. So do lines J l , IH, and HG. So points F, G, H, I, 

J, and K all lie in a plane, called plane 1. Similarly, if there is an edge from E to A, then A, E, F, G, and 

H all lie in a plane, plane 2. Since F, G, and H all lie in both plane 1 and plane 2, the planes must be 

identical. ABIH is also a plane, and since A, I, and H are in plane 1, B must also be. So must C and 

D. But then the whole figure lies in plane 1, and is not a tr ihedral f igure at all. This argument can be 

formalized and extended to show that in a line drawing of a trihedral object there can never be just 

one junct ion with only two lines accounted for. If there were a line from A to E, G would be the only 

vertex with two known edges. Since this is impossible, we infer that there must be at least one hidden 

vertex, and no direct connect ion from A to E. So the lower bound on the distance from A to E is two. 

The lower bound on the distance from (invisible) to a junct ion is the distance from that junct ion to 

the nearest junct ion with less than three lines, plus one. The upper bound is infinite, since the 

connect ions between invisible junct ions are unknown. Figure 9 shows all the links for node AL. 

BM, BT, BS, 

CU, C(invisible), 

DO, DV, D(invisible), 

EN, EO, EP, ER, EV, E(invisible), 

FO, FV, F(invisible), 

GN, GR, G(invisible), 

HM, HT, HS, 

IN, IR, l(invisible), 

JQ, J(invisible), 

KP, K(invisible), 

(invisible)M, (invisible)N, (invisible)O, (invisible)P, (invisible)Q, (invisible)R, 

(invisible)S, (invisible)T, (invisible)U, (invisible)V, (invisible)(invisible) 

F igu re 9 : Links of Node AL 
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3 .2 .2 S e a r c h i n g t h e C o r r e s p o n d e n c e G r a p h 

A complete match consists of a subgraph of the correspondence graph such that the nodes 

contain every junct ion in each scene and are all l inked to each other. Such a completely connected 

subgraph is called a cl ique. Finding cl iques of a given size is NP-complete, which strongly suggests 

that the best algorithms will be exponential . 

We define two sets of nodes, the set I of instantiated nodes (the clique) and the set P of possible 

nodes (to extend I). Initially I is empty and P is the correspondence graph. At each step some node n 

from P is considered for being moved to I. There are two cases: either n is included in I or it is 

excluded. If it is excluded, it is removed from P. The new I is the old I and the new P is the old P minus 

n. If it is included, the new I is the old I plus n. To generate the new P, we take the old P minus n 

intersected with the links of n. This guarantees that all-members of P are always linked to all members 

of I, and all members of I are linked to each other. Each case (n included and excluded) is generated 

and passed recursively to the search procedure. If at any point the union of I and P does not contain 

nodes that contain each junct ion, the conservation of vertices constraint is violated and that branch 

of the search terminates. Since we don' t know in advance how many junct ions match (invisible), we 

don' t know the size of the cl ique we're looking for. It must be greater than the maximum number of 

junct ions in each image less than the sum of the number of junct ions in each image plus known 

invisible vertices. Figure 10 summarizes the algori thm, and figure 11 traces its execution for a few 

steps, fol lowing the " inc lus ion" branches. 

3 .2 .3 S i m p l i f i c a t i o n s 

Generating the correspondence graph and searching it do not have to be separate steps. One 

simplif ication is to generate nodes but not links. Instead of the conservation of adjacency constraint 

being applied at the beginning, to set up links, it is applied dur ing the search. And instead of being 

used to calculate distances between every pair of junct ions, it is only applied to adjacent junct ions. 

When a node XX 1 is moved from P to I dur ing the search, we consider all nodes YY' in P. There are 

three cases. 

1. X not adjacent to Y and X* not adjacent to Y \ There is no information from adjacencies, 

so we retain node YY 1 . 

2. X adjacent to Y, X' not adjacent to Y' (or, equivalents, X' and Y' adjacent but not X.and 

Y). The conservation of adjacency constraint is violated, so we delete Y Y \ 

3. X adjacent to Y, and X' adjacent to Y \ The constraint is satisfied, YY' is retained. 
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P r o c e d u r e include-node (P, I, J) 

n = first node in P 

P = (P - n) f l links of n 

I = I + n 

search (P, I, J) 

P r o c e d u r e exclude-node (P, I, J) 

n = first node in P 

P = P - n 

search (P, I, J) 

P r o c e d u r e search (P, I, J) 

for each junct ion j in J 

if j not found in P U I 

return (fail) 

if P empty then 

print I 

return (success) 

include-node (P, I, J) 

exclude-node (P, I, J) 

P r o c e d u r e start-search 

P = correspondence graph 

I = empty 

J = junct ions from image 1 U junct ions from image 2 

search (P, I, J) 

In each procedure, the declarat ions are 

set-of-nodes P 

set-of-nodes I 

set-of-junctions J 

node n 

junct ion j 

F igu re 10: Summary of Search Algori thm 

This algorithm has the same effect as the previous algori thm, since a sequence of adjacencies 

contains the same information as links in the correspondence graph. There is a savings in space and 

in preprocessing t ime, since no links have to be created. And dur ing the search, most nodes will not 

have to be checked since neither of their junct ions are adjacent to junct ions in the node being moved 
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Start: I = { } 
P = entire correspondence graph 

Links from Node AL 

New I = 
NewP = 

AL 
BM BT BS 
CU C inv 
DO DV Dinv 
EN EO EP ER Einv 
FO FV Finv 
GN GR G inv 
HM HT HS 
IN IR I inv 
JQ J inv 
KP K inv 
(inv) to all except L 

BM BT BS 
CU Cinv 

DV D inv 
EO EP ER 
FV F inv 
GR G inv 
HT HS 

IN IR I inv 
JQ J inv 
KP K inv 
(inv) to all except L 

DO 
EN 
FO 
GN 
HM 

E inv 

Links from node BT 
AL AR 
CU 
DM DV DS 
EN EP E inv 
FO Finv 
GN GP Ginv 
HM HV HS 
IL IR 
JQ 
KN KP Kinv 
(inv) to MNOPQSV 

New I = AL BT 

NewP = CU 
DV 
EN 
FO 
GN 
HM 
IR 
JQ 
KP 

EP Einv 
F inv 
G inv 
HS 

K inv 
(inv) to MNOPQSV 

Links from node CU 
AL AN AP AR 
BT BV 
CU 
DT DV 
EL EN EP ER 
FM FO FS 
G inv 
HM HO HS 
IL IN IP IR 
JQ 
KL KN KP KR 
(inv) to MOS 

New I = AL BT CU 
Figu re 1 1 : First Steps of Search 
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into I. At the same t ime, however, fewer nodes are deleted at each step, so there are more left to be 

examined at the next step. Which method is more efficient probably depends on the implementation. 

3 . 2 . 4 I n v i s i b l e V e r t i c e s 

In either of these cases invisible vertices must be handled as a special case. Normally, a vertex is 

al lowed to have only one match. For the special symbol (invisible), however, more than one match 

must be allowed because there may be more than one invisible vertex. On the other hand, a visible 

vertex only has a limited number of invisible neighbors. There is a special check that, if X matches X' 

and X has some number i of invisible neighbors, only i of the neighbors of X' may match (invisible). 

Without this check we would generate matches such as A matches L and everything else matches 

(invisible). Yet we know that, given A matching L, one of L's neighbors must match B, one must 

match H, and only one of L's neighbors can match (invisible). 

3.3 Comments and Extensions 

There may be more than one possible complete, consistent match for a pair of objects. One cube, 

for example, can match another in 24 legitimate ways. One vertex can match any of eight others. 

Having fixed that, the cube can be rotated to 3 different posit ions. These matches are all t opo log ica l ^ 

valid. 

The algorithm will also produce 24 incorrect matches for the cube, each the mirror image of a 

correct match. Since the only information used is connectivity, and not sidedness, any object with a 

plane of topological symmetry will have spurious mirror image matches. These can be eliminated 

using simple geometr ic constraints. If a match is correct, the vertices listed clockwise around a 

polygon in one image will match the vertices, also listed clockwise, around a polygon in the second 

image. If the match is a mirror image, the matching vertices will go clockwise in one image but 

counterclockwise in the second image. The necessary information could be supplied by quantitative 

data on vertex posit ion, or interactively by the user. It is interesting to note that if the objects are 

complete wire frames with no occlusion, both possibilit ies are potentially correct since there is«no 

clear front or back. A clockwise sequence of vertices seen from the front becomes a counter

clockwise sequence if that face is really a back face. 

The constraints used make no assumptions about all parts of an object being visible. So without 

modif ication the routines can be used to match part of an object with an object template or with 

another partial view of the object. There are two caveats. First, incomplete images are usually harder 
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to label with Huffman-Clowes line labels. This may cause ambiguit ies in the matching (see below). 

Second, incomplete images have more invisible vertices and more invisible edges. This allows lots of 

matches where only a few vertices are matched and all the rest match (invisible). These are all 

legitimate possibilit ies, and examples can be constructed in which they are the only correct matches. 

But if it is known in advance that most of the vertices in the incomplete image are visible in the other 

image, either the search can return the possibilit ies with the fewest invisible matches or an upper 

bound can be set on the number of invisible matches. 

It is not always possible to assign unique Huffman-Clowes labels to an image. If more than one 

possible labeling exists, the correspondence process can be run separately with each possible 

labeling. Then incorrect labelings may have no possible match, or only the match all(invisible). So 

correspondence can be used to refine line labels if multiple views are available. 

Trihedrality is at the basis of the assumptions about invisible lines. Extending the algorithm to deal 

with non-trihedral objects would be possible, but the number of complete, correct matches possible 

for a pair of images would increase unmanageably unless other constraints were added. Addit ional 

information could include, for example, knowing which vertices were non-tr ihedral, or knowing how 

many non-trihedral vertices there were. 

If quantitative data is available, it can be used in several ways. Conceptually, the matching process 

could be run just using topological data, and the quantitative information used in a post-processing 

step to find the most likely match or matches. It would be equivalent, but probably more efficient, to 

include all the data from the beginning. One scenario is that vertex positions are known to within 

some distance, or to within so many pixels of an epipolar line. Then the possible matches are 

constrained, and many fewer nodes would have to be created and searched. If posit ions are known 

precisely, they can be used to check the validity of the match. Ullman [8], Aggarwal et al. [ 1 , 9 ] , 

Ganapathy [4], and Lawton [6], have all worked with various numbers of points visible in two or more 

images, and the available constraints. Asada, Yachida, and Tsuji present a partial transit ion table and 

use it with quantitative data in [2] . 

3-4 Examples 

We have implemented and tested both the original correspondence algorithm and the simplif ied 

version. Results are identical for the two. We have implemented and tested the correspondence 

algorithm. Here we show the results for a few simple f igures. In each case, the images were labeled 

(with Huffman-Clowes line labels) by hand. Each of these simple images has a plane of symmetry, so 
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the mirror-image program was run to remove reflections from the output. All the resulting matches 

are topo log ica l^ correct. 

For the L blocks of f igure 7, the program found five possible matches (see table 2). The first match 

is the obvious one, which can be visualized as rotating the block approximately thirty degrees about a 

vertical axis. The second match is the same as the first, except that it presumes that there are 

addit ional invisible vertices seen in neither view. The third match can be thought of as t ipping the 

block onto its back, so that the horizontal part of the L becomes the vertical part and vice versa, then 

rotating it some 60 degrees. The last two matches have no vertices visible in both images. The 

dif ference between these two is that the last one allows for vertices that are not visible in either image. 

1. AL BT CU DV EN FO G(invisibie) HS IR JQ KP (invisible)M 

2. AL BT CU DV EN FO G(invisible) HS IR JQ KP (invisible)M (invisible)(invisible) 

3. AO BP CQ DR ES FL GM HN IV JU KT (invisible)(invisible) 

4. A(invisible) B(invisible) C(invisible) D(invisible) E(invisible) F(invisible) G(invisible) 

H(invisible) l(invisible) J(invisible) K(invisible) (invisible)L (invisible)M (invisible)N 

(invisible)O (invisible)P (invisible)Q (invisible)R (invisible)S (invisible)T (invisible)U 

(invisible)V 

5. A(invisible) B(invisible) C(invisible) D(invisible) E(invisible) F(invisible) G(invisible) 

H(invisible) l(invisible) J(invisible) K(invisible) (invisible)L (invisible)M (invisible)N 

(invisible)O (invisible)P (invisible)Q (invisible)R (invisible)S (invisible)T (invisible)U 

(invisible)V (invisible)(invisible) 

T a b l e 2 : Matches for Figure 7 

Figure 12 shows the same L-shaped blocks as f igure 7, but with only part of the left-hand block 

visible. The addit ional constraint was given that there was a total of 6 invisible vertices. This 

eliminated matches in which one or two vertices from the partial block matched visible junct ions in 

the r ight-hand image and all other vertices matched (invisible). The first two matches correspond to 

match 1 in table 2, and the second two to match 3. The dif ference between matches 1 and 2 is in the 

match for H. Without quantitative information, it is impossible to tell whether H matches S (as in match 

2) or T (as in match 1). The same holds for matches 3 and 4. 

Figure 13 shows a block with "a corner cut out. It was matched against itself, with the extra 

constraint given to the program that there were no invisible type VII vertices. This is a strong 

constraint, since it forces M to match itself. The results are shown in table 4. 
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o 

Figu re 1 2 : Part of an L Block 

1. L(inv) M(inv) N(inv) OF PK QJ Rl S(inv) TH UC VD (inv)(inv) 

2. L(inv) M(inv) N(inv) OF PK QJ Rl SH T(inv) UC VD (inv)(inv) 

3. LF M(inv) N(inv) O(inv) PH QC RD S(inv) TK UJ VI (inv)(inv) 

4. LF M(inv) NH O(inv) P(inv) QC RD S(inv) TK UJ VI (inv)(inv) 

T a b l e 3 : Matches for Part of an L Block 

Finally, in f igure 14 each image contains two objects, the L block and the block with the corner cut 

out. The program was told that there were no more than seven invisible vertices. It generated 18 

matches: the three for the cutout block, t imes three for the L blocks (the last two L-block matches 

were eliminated because of the limit on invisible vertices), times a factor of two for different 

interpretations of the hidden part of the cutout block in the left image. There were three incorrect 

mirror images for each correct match, since the L block and the cutout block each have their own 

plane of symmetry. 
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A 

D 
Figu re 1 3 : Block With One Corner Cut Out 

1. Aa Bb Cc Dd Ee Ff Gg Hh li Jj Kk LI Mm (invisible)(invisible) 

2. Ac Bd Ce Df Ea Fb Gi Hj Ik Jl Kg Lh Mm (invisible)(invisible) 

3. Ae Bf Ca Cb Ec Fd Gk HI Ig Jh Ki Lj Mm (invisible)(invisible) 

Ta b le 4 : Matches for Cut-Out Block 



Fîg u re 14 : Two Objects 
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4. Summary 

In this paper, we have presented some constraints that come from junct ion types and edges, and 

have shown how they can be used to help solve the correspondence problem for either stereo or 

motion. We have shown a way of inferring vertex type from junct ion appearance, even for L junct ions 

where one of the legs is invisible. In some cases, an L junct ion can be correctly and uniquely labeled 

based on surface visibilities or location of the hidden edge. 

We have developed transit ion tables that show the allowable changes in junct ion appearance as 

the viewpoint moves. A matching algorithm has been presented which uses three constraints: 

conservation of vertices, conservation of vertex type, and conservation of adjacency. The algorithm 

also uses some simple reasoning about hidden vertices. The matching algorithm does not in general 

give a unique match. Rather, it gives all the matches that satisfy all the topological constraints. A 

practical matcher could incorporate the constraints developed here as well as quantitative data and 

other knowledge. 
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