
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 3 3 - 1 1 8

An Efficient Program

for Many-Body Simulations

(or, Cray Performance from a VAX)

Andrew W. Appcl

March 1983

Abstract

The simulation of N particles interacting in a gravitational force field is useful in astrophysics, but such

simulations become costly for large N. Represent ing the universe as a tree structure with the particles at the

leaves and internal nodes labelled with the centers of mass of their descendants allows several simultaneous

attacks on the computat ion time required by the problem. These approaches range from algorithmic changes

(replacing an OiN1) algorithm with an 0(N log N) algorithm) to data structure modifications, code-tuning,

and hardware modifications. The changes reduced the running time of a large problem (N= 10,000) by a

factor of four hundred . This paper describes both the particular program and the methodology underlying

such speedups.

This research was supported by an N S F Graduate Student Fellowship and by O N R Grant # N00014-76-C-0370.

AN FFFIC1FNT PROGRAM FOR M A N Y - B O D Y S I M U L A T I O N S

1 . Introduction
Isaac Newton calculated the behavior of two particles interacting through the force of gravity, but he was

unable to solve the equations for three particles. In this he was not alone [6, p. 6J4], and systems of three or

more particles can be solved only numerically. Iterative methods arc usually used, computing at each discrete

time interval the force on each particle, and then computing the new velocities and positions for each particle.

A naive implementat ion of an iterative many-body simulator is computationally very expensive for large

numbers of particles, where "expensive" means days of Cray-1 time or a year of VAX time. This paper

describes the development of an efficient program in which several aspects of the computat ion were made

faster. The initial step was the use of a new algorithm with lower asymptotic time complexity; the use of a

better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are OiN2) interactions to

compute for every iteration. Fur thermore , for the same reasons that the closed form integral diverges for

small distances (since the force is proportional to the inverse square of the distance between two bodies), the

discrete time interval must be made extremely small in the case that two particles pass very close to each

other. These are the two problems on which the algorithmic attack concentrated. By the use of an

appropriate data structure, each iteration can be done in 0(N log N) time, and the time intervals may be

made much larger, thus reducing the number of iterations required. The algoridim is applicable to N-body

problems in any force field with no dipole moments .

Using an algorithm with a better asymptotic dme complexity yielded a significant improvement in running

time. Four additional attacks on the problem were also undertaken, each of which yielded at least a factor of

two improvement in speed. These attacks ranged from insights into the physics down to hand-coding a

routine in assembly language. By finding savings at many design levels, the execution time of a large

simulation was reduced from (an estimated) 8000 hours to 20 (actual) hours. The program was used to

investigate open problems in cosmology, giving evidence to support a model of the universe with random

initial mass distribution and high mass density.

This paper describes the problem and its solution, considered from the point of view of a computer scientist

approaching a software engineering problem. Thus, only a brief overview of the physics is given; the

emphasis is on techniques of writing efficient software. Section 2 explains the nature of the cosmological

questions that can be answered by many-body simulations. Section 3 describes some old algorithms for such

simulations, Section 4 introduces the data structure and the algorithm to reduce the time per iteration, and

Section 5 shows how to use the data structure to reduce the number of iterations. Section 6 shows how to

create the structure and how to keep it from becoming distorted. Section 7 describes an implementat ion of

2 A N D R L W W . A P P L L 13 APRIL 1983

the algorithm. The techniques used to attain specdups at various design levels are described. These spcedups

are summarized, and die design methodology leading to them is discussed, in Section 8.

2. Applications in Astrophysics
The search for a foster algorithm to compute many-body interactions in a gravitational force field was

motivated by two important questions in cosmology that can be investigated by simulating gravitational

interactions of tens of thousands of galaxies. An efficient computer program has made it feasible to do such

simulations. This section describes the cosmological applications, and die remaining sections describe the

program.

2 . 1 . How Did Galaxies Form?

It is generally believed that the early universe was radiat ion-dominated, that is, that most of the energy of

the universe was in the form of photons, and the forces on a typical particle were primarily electromagnetic.

The present universe, however, is mass-dominated, with most of the energy condensed into massive bodies

(such as stars), and the primary interaction between these bodies being gravitational (the gravitational force

between the Farth and the Sun, for example, completely dominates the "solar wind" of photons pushing the

Fai th away from the Sun).

The transition between a radiat ion-dominated and a mass-dominated universe probably took place

relatively suddenly; after that, massive bodies such as galaxies began to form (they would have been torn

apart in a radiadon-dominated universe). Two of the competing theories describing the formation of

galaxies [20] may be characterized as " top-down" and "bo t tom-up ," respectively.

In the " top-down" theory [21], galaxy clusters formed as a result of long-range pressure waves left over

from the radiat ion-dominated universe. A pressure wave contains alternating regions of high and low density.

When the universe "condensed" and the radiation disappeared, there would be no medium to support the

waves, bu t the regions of high and low mass-density would remain. It is proposed that the regions of high

density became super-clusters of galaxies; tiiat galaxies formed within these super-clusters; and that stars

formed within the galaxies. Two-dimensional simulations under diese assumptions have shown a cell-like

structuring of the clusters [7]; it is not clear whether the dimensionality of the simulation is responsible. It

may be that these cells exist in the present universe [12], bu t the observations at large distances are not

conclusive.

In the "bo t tom-up" theory [16], there were no pressure waves, and the universe immediately after

condensat ion consisted of randomly distributed hydrogen molecules. In a r andom distribution, there will be

AN LLLIC1LNT P R O G R A M LOR M A N Y - B O D Y S I M U L A T I O N S 3

local fluctuations in mass density, and as the universe expands, the denser regions will tend to cohere, while

the regions of lower density will expand. This will tend to increase die size of die fluctuations, forming stars.

More expansion will increase the size of the fluctuations to that of galaxies and eventually of clusters and

super-clusters of galaxies. The clusters will have a more random structure than in the " top-down" model .

In both theories, die only significant interactions between galaxies after the condensation are gravitational.

A simulation of the motion of many particles with gravitational interactions can therefore test these theories.

A tcn-thousand-galaxy, three-dimensional simulation testing the "bo t tom-up" theory (that is, starting with a

uniform random distribution of particle positions) has been done using die techniques described in the

remainder of tliis paper. The result of the simulation is clustering consistent with tfiat observed by

astronomers (see Figure 2-1 for a picture of the simulation's output) . A similar test of the " top-down" theory

has not yet been done, but since this theory differs from the "bo t tom-up" theory primarily in its specification

of the distribution of the initial placement of die particles, it could be simulated easily using the same

algorithm.

The large-scale simulations done using die program described in Sections 3 tiirough 6 of this paper seem to

imply that the bot tom-up model can explain die present mass distribution of die universe quite well, without

the complicated assumptions inherent in the top-down model .

2 . 2 . Is the Universe Open or Closed?

One of the fundamental questions in cosmology is whedier the universe will continue expanding forever, or

whether it will eventually collapse in a gigantic reversal of the Big Bang. One way to answer this question is to

look at die mass density of the universe. If the universe is below a certain "critical density" then expansion

will continue forever; otherwise it will contract. Unfortunately, it is difficult to measure the mass density of

the universe. Astrophysicists have been able to make estimates; most observational estimates put the mass

density at about a tenth of the critical density. Since Truth, Beauty, and Simplicity demand that die density of

the universe be equal to the critical density [15], a great astronomical search has been on for the "missing

mass." The search is complicated by the fact that many forms of mass (such as black holes) are difficult to

observe directly.

This problem can be avoided by approaches that do not involve direct observation of the mass density.

One such approach is dirough simulation of the gravitational interactions of galaxies under different

assumptions about the mass density. Gro th el al [10] observed in small simulations that low mass densities

will not lead to the amount of clustering actually observed, and that the critical density would lead to such

clustering. T h e ten-thousand-body, three-dimensional simulation using the program described later in this

4 A N D R K W W. APPEL 13 APRIL 1983

Figure 2-1: Result of a Simulation

An initial randomly generated configuration of 10,000 galaxies, and the result of simulating the gravitational interactions of this

configuration as the universe expands by a factor of 7.12, with mass density p = p crit 3 5 a parameter of the simulation.

The particles are in a three-dimensional space which has been projected into two dimensions for this picture. A periodic coordinate

system is used in which the two extreme points in each dimension are identified. The pictures are scaled to the expansion factor of the

simulated universe.

paper was for the higher-density case; large-scale clustering was observed, lending suppor t to this theory. T h e

lower-density case can be examined by the same techniques.

3. Previous Algorithms
Because the N-body problem cannot be done in closed form, the calculation must be done numerically.

Tha t is, at each time /, the gravitational forces of each mass on each of the others may be computed by

Newton 's laws. (For an appropriate range of distances -- say, between one and a few hundred million

light-years - Newton 's laws are a good approximation to Genera l Relativity.) Using the inverse-square force

law, an approximation to the true acceleration and velocity of each particle over a time dt can be computed .

By many iterations of this method, the position of each particle after an arbitrary length of time may be

found.

AN LFL1CIHNT P R O G R A M I OR M A N Y - B O D Y S I M U L A T I O N S 5

3 . 1 . A Simple Algorithm

Newton's law of gravity states that the force between any pair of particles is proportional to die product of

their masses divided by the square of the distance between .them. Stated as a vector equation,

1 1 Ur^iP

where r, is the position vector of particle /, r", is the acceleration vector of particle /, and G is the universal

gravitational constant.

When there arc many particles, the acceleration of each particle is given by the sum of the accelerations (as

computed by Newton's law) for all the other particles. This is simply a large set of differential equations. For

two bodies, it is solvable in closed form; however, for more than two bodies no closed form solution exists.

The differential equation can be integrated numerically using a "naive" algorithm. At each iteration,

compute the acceleration acting upon each particle; from this, compute a modified velocity over the next time

increment, and then compute the position of each particle at the end of the time increment by calculating

r n e w = r o l d + v ' < # .

The time increment dt must be made small enough that-the accelerations do not greatly change between / and

t+dt.

There arc two problems with this algorithm. The first is that the number of interactions is large as a

function of the number of particles. In particular, the gravitational action of each particle on every other

particle must be computed every iteration, requiring a total of A ^ - N operations. When N is large (physicists

would like to simulate tens of thousands of particles, al though they are rarely able to do so), an O(A^)

algorithm is extremely costly to execute.

The second problem in many-body simulations is that it usually happens that some pairs of particles in

such a system will pass very close to each other. Nearby particles in a gravitational field usually move at high

speed with respect to each other; the combinat ion of high velocities and small distances necessitates an

extremely small time increment between iterations.

One approach to these problems is to use an extremely fast computer . The Cray-1 computer is very fast at

algorithms that have a "vectorizable" formulation: that is, problems which can be expressed in terms of

element-by-element arithmetic operations on long arrays of numbers . The acceleration computat ion can be

formulated in terms of such large vectors. If the vector instructions of the Cray-1 are used to advantage

(either by hand-coding, or by using the Cray For t ran compiler with a good understanding of what sorts of

6 A N D R H W W. APPLL 13 APRIL 1983

programs the compiler can generate efficient code r or) , the time required to calculate die acceleration

between two bodies can be estimated at 100 clock cycles (40 of which arc needed for a calculation of a

periodic distance function peculiar to the many-galaxy problem [3]). The time for one clock cycle is 12

nanoseconds [18], and the number of pairs of bodies is / W 2 , so the time for one iteration can be estimated at

.6/V2 microseconds. Using scalar instructions, or using vector instructions with inefficient pipeline behavior,

would more than double the time taken per iteration.

Using a similar program to simulate ten diousand bodies over one tiiousand iterations requires

approximately 8000 hours of VAX time (this was extrapolated from observations of 100-particlc simulations).

Table 3-1 gives the times required for various implementat ions of a straightforward simulator. Even on a fast

vector processor like die Cray-1, this simulation takes several hours. The disadvantage to running the

simulation on the Cray computer is that the Cray-1 is enormously expensive: at a cost of eight to ten million

dollars it is about 40 times as expensive as a large minicomputer such as a VAX. A solution whereby the

problem can be solved in tens of hours on the VAX would obviously be preferable to any of the points in the

solution space described in the table below.

VAX-11/780 Cray-1 (estimated)

Optimizing Compiler 8000 30

Hand-opt imized 5000 16

Table 3-1: Running times, in hours, of an OiN2) p rogram

for 10,000 bodies over 1,000 iterations.

3 . 2 . Other Algori thms in the L i terature

Two approaches have been taken to reduce the computat ional cost of solving the N-body problem. O n e

approach is to represent the problem in a position-velocity.phase space, and transform the force field using a

Fast Fourier Transform into a form where it can be applied in linear time [13,14]. This takes 0(N log N)

d m c (dominated by the Fourier Transform) per iteration. However, the phase space must be discrete. This

means that all positions must be multiples of some lattice size a, and that all velocities must be less than some

maximum / Thus, the (physically interesting) effects of tight clusters cannot be modelled.

Another approach is to keep track, for each particle, of the sets of "nearby" particles and "faraway"

particles [1]. The "faraway" particles may be integrated with larger t ime-steps than the "nearby" particles.

W h e n the particles are uniformly distributed, this has an asymptotic complexity of 0 (A ^ 5) . Unfortunately,

when clustering occurs, the n u m b e r of "nearby" particles is in the same order of magni tude as the total

n u m b e r of particles, and the asymptotic complexity is again OiN2). T h e problem of small time-steps is

attacked by using a special-case technique for close two-body interactions, bu t this technique cannot be

AN HLL1C1LNT PROGRAM 1 OR M A N Y - B O D Y S I M U L A T I O N S 7

applied for tight clusters of tiifce or more particles.

Another similar approach is to divide the universe into cells, comput ing the particle-particle interactions

within the cell, and then the cell-cell interactions [11]. This also has complexity OiN15) for a uniform

distribution, and also degrades to a quadratic time-complexity when clustering occurs.

With none of these algorithms is the problem of the vanishingly small discrete time-step solved; in the

discrete phase-space approach, the time steps cannot be made smaller and tiius information is lost, while in

the second and third approaches, the problem is essentially die same as with die "naive" algorithm.

4. Reducing the Complexity of Each Iteration
To compute the force of gravity on an apple exerted by the Eartii, it suffices to treat the Karth as a point

mass; it is not necessary to sum die forces exerted by each atom of the Earth. This is a consequence of die

spherical symmetry of the Earth; Newton invented the integral calculus to prove this fact.

When an attracting body is not spherically symmetric, die result obtained by treating it is a point mass is no

longer exact, bu t it is a good approximation. This approximation - in which, one attraction between a pair of

point masses is calculated, ratiier than all the attractions between all their constituent particles - is the key to

reducing the asymptotic complexity of computing the accelerations from O(A^) to 0(N log N).

4 . 1 . The Monopole Approximat ion

A dividc-and-conquer algorithm can solve the many-body problem in 0(N log N) time per iteration, and

requires significantly fewer iterations. This order time has not been proved, but a reasonable argument is

given; furthermore, experience with an implementat ion of the algorithm has shown that it runs as quickly as

expected.

The algorithm relics upon the following approximation: suppose there are two particles, mx and m 2 , each

no more than dr from their center of mass (see Figure 4-1). The gravitational attraction they exert upon an

observer situated a distance r from the center of mass will be

Gm,(r + dr,) Cm ?(r + dr?) = G{m +m,)r 2

h | r + drx | 3 |r + dr 2 | 3 | r | 3 v '

Because there is no term in dr in this equation, the approximation is good to first order.

Now consider the arrangement of masses shown in Figure 4-2, which we will suppose to be a subset of the

particles in a many-body simulation. To compute the acceleration of each particle on every other, we may

break the computat ion into three parts: those interactions of two particles which are in the left-hand c lump,

8 A N D R L W W. APPEL 13 APRIL 1983

observer

Figure 4-1: The Monopole Approximation

those interaction: of which both particles are in the r ight-hand clump, and the interactions of a particle from

each c lump. The latter interactions may be approximated to order (dr/r)2 by using the approximation

described in the previous paragraph: by comput ing one interaction, as if each of the two clumps were one

large mass. The number of computat ions required to calculate the inter-clump interaction has thus been

reduced from n{-n2 to 1; the intra-clump calculation remains unchanged.

Had the two clumps been closer together, then the approximation would no longer have been as good,

since it depends on the value of dr/r. In that case, more calculations would have had to be done.

4 . 2 . A Data S t ructure

A method is needed for finding subsets of the particles for which the approximation can be made . This is

made easier by the introduction of an appropriate data structure - a binary tree whose leaves are particles and

whose internal nodes represent clumps of particles. Every node will have an associated mass and position.

T h e leaves will have the mass and position of the particles they represent; each internal node will have a mass

equal to the sum of the masses of its two child nodes, and a position equal to the center of mass of its child

nodes. Also associated with each c lump (internal node) will be the approximate radius of the c lump.

It is now a simple matter to compute all of the gravitational interactions between two clumps that are small

n1 bodies n2 bodies

Figure 4-2: Two clumps to which the approximation can be applied

AN HITICILN'l P R O G R A M LOR M A N Y - B O D Y S I M U L A T I O N S 9

relative to their separation, that is,

dr{/r<8 and dr2/r<8

for some fixed criterion of accuracy 5 . The parameters drx and dr2 are stored in the tree; the positions need

only be subtracted and multiplied by the total masses of each c lump (also stored in the tree).

If die accuracy criterion is not satisfied, that is, if the c lumps are large and close together, then the

calculation of die interaction of each of the two subclumps of one c lump with each of the two subclumps of

the other c lump must be made. It is not always necessary to "break u p " both clumps for this calculation; see

Figure 4-3 for an example in which one c lump satisfies the criterion and need not be split, while the other

c lump is split into two pieces.

\

Figure 4-3: An example of the calculation of c lump interaction

s 1

4 . 3 . The Algorithm

This algorithm can be coded as the following pair of pseudo-Pascal recursive procedures procedure

ComputeAccel computes all of the accelerations internal to one c lump, and procedure T w o N o d e computes

the interactions between two clumps.

procedure ComputeAccel (B)

begin if B is a nontrivial c lump

then begin C o m p u t e A c c e l (5 l e f t . c h i l d)

C o m p u t c A c c e l (5 r i g h t . c h i i d)

T w o N o d c (5 l e f t . c h i l d l 5 r i g h t . c h i l d)
end

end

10 A N D R K W W. APPLL 13 APRIL 1983

procedure TwoNode(/ i , B)

begin d <- r ^ - r ^

if (drA/d>8) and (drA>drB)

then begin I w o N o d c (/ l i c f l . c h i l (i , ^)

T w o N o d c (/ l r i g h l . c h i l d f / ?)

end

else if drB/d> 5

then begin TwoNodc(/l,/?i cft-Chiid)

TwoNodc(/l l / ir ight-child)

end

else begin Acc^ «- Acc^ + Gmtfi/d2

AccB <- Accg — GmAd/d*
end

end

One detail that for clarity has so far been omitted from the description of the algorithm pertains to the

representation of position, velocity, and acceleration vectors. Rather than storing at each node die absolute

position of die c lump associated with that node, the position vector from the node's parent to the node is

stored. (The same applies to velocities and accelerations.) This is done in order to minimize round-off errors

in subtractions, which will be discussed in section 7. The absolute position of a particle or c lump may be

computed by taking the sum of the position offsets of all its ancestors up to the root, though it is rarely

necessary to compute absolute positions. No te tiiat the algorithm assigns accelerations throughout the data

structure, taking advantage of the relativization of acceleration vectors.

4 . 4 . Analysis of T ime Complexi ty

If the parameter 5 is set to zero, then the T w o N o d e procedure will always recur down to the level of

individual particles, and the accelerations assigned to the internal nodes will be zero. If 5 is not equal to zero,

then the absolute acceleration of a single particle will be an approximation to the true acceleration. For values

of 5 between 0 and 1, the time complexity of ComputcAccel is estimated (and observed) to be 0(N log N).

To see this, consider the number of times a particle X is compared with other c lumps for the purposes of

adding to an acceleration vector. Suppose there is a spherical shell a round X of radius r and thickness Sr. If

this shell is filled with c lumps of diameter 5-r, then there will be 4 / S 2 c lumps in the shell. The smallest sphere

will have a size such that the expected n u m b e r of galaxies contained within it is 1; the largest will enclose a

volume such that the expected n u m b e r of galaxies within it is N. The quot ient of the radii of the largest and

smallest spheres will therefore be A^ / 3 . This will be equal to (1 + 8) * where k is the n u m b e r of shells. T h e n

AN Kl FICIHNT P R O G R A M TOR M A N Y - B O D Y SIMULATIONS 11

k= log(iV)/3 l og (l + 5), and die number of c lumps for which there must be calculation of accelerations .vith

respect to particle X is approximately

4 1ogW
3 5 2 l o g (l + S) '

Note that this number overestimates the number of calculations done, in that some of the calculation will

involve not die comparison of X with another clump, but the comparison of an enclosing clump of X with

another c lump. That calculation would also be counted in this analysis as a calculation for A"s sibling clump,

and all other subclumps of die encompassing clump. However, this will do no more than change the constant

of proportionality: for each of the N galaxies, 0(log N) calculations must be done, giving a total execution

time for fixed 5 of 0{N log N).

4 . 5 . Accuracy of the Algorithm

The parameter 5 is a measure of the accuracy of the calculation. When one clump is compared with

another, and die ratio of diameter to separation is less than 5, dicn die computed acceleration will have a

fractional error less dian 5 2 . When all the accelerations diat c lump X feels from other c lumps arc summed,

the error in acceleration should be proportional to 5 2 divided by the square root of the number of clumps

compared with (assuming random directions of the error vector). A more intuitive explanation of this

statistical argument is that larger c lumps will tend to approach some sort of spherically symmetric

distribution, simply because of the large number of randomly positioned particles. In a perfectly spherical

distribution, die error made in assuming that all the mass is positioned at the center is exactly zero. Thus the

error in acceleration, on the average, should be significantly less than S 2 .

In fact, the distribution of errors, shown in Figure 4-4, is such that diere is a maximum absolute error

range, such that for most particles the error is quite small on an absolute scale. For particles with large

accelerations, the proportional error is practically zero. Figure 4-4 was computed by taking a random

distribution of particles and using the (exact) results computed by running the algorithm with 5 = 0 as the

"Actual" acceleration components , and using die results computed with 5 = 0.3 as the "Computed"

acceleration components . The absolute errors are the deviations from the line y-x, the scatterplot shows a

good bound on the absolute error.

In those calculadons where the exact final positions of the particles is not as important as statistics about

their configurations, a relatively large value of 5 can be used (such as \) , greatly reducing the constant factor

in the running d m e of the 0(N log N) program.

It is useful to note that al though the OiN1) algorithm has theoretically complete accuracy in comput ing

12 A N D R I i W W . A P P l . i L 13 APRIL 1983

accelerations, the fact that the time intervals must be made discrete introduces approximations into any

numerical calculation of the /V-body problem. By choosing the parameters so that the errors introduced by

each part (the c lump approximation and the discrete-time approximation) are equal, the resulting error is

about equal to that of the standard algoritiim.

Since the use of a clumping algorithm to study the formation of galaxy clusters might conceivably be a

cause of systematic error, die result of a simulation using this algorithm in which no clustering occurred is of

interest. In this simulation, the galaxies were given higher initial velocities than predicted by theory, and no

measurable clustering occurred (as seen both by the human eye and by a correlation function of intcrparticle

distance).

5. Reducing the Number of I terat ions
When two particles come very close to each other in an inverse-square force field, their accelerations

become extremely high. To model their behavior accurately, extremely small time steps arc required. In any

simulation with a large number of particles, there arc bound to be a few such pairs at any given t ime; these

pairs require the time increments of die simulation to be so small that the number of iterations required to

integrate over a significant interval of time becomes prohibitively large.

One widely used solution to this problem modifies the force law to limit the accelerations at small

distances. The inherent problem with this approach in the modelling of galaxy clustering is that the clustering

occurs (and should be examined by the simulation) over all distance scales. T o tamper with the force law at

small distances makes any conclusions about clustering at these distances suspect.

Fortunately, the data structure introduced in the previous section leads to a solution to this problem that

preserves the inverse-square propert ies of the force law at all distance scales. In section 5.1 an aspect of the

calculation open to algorithmic attack is described, and the attack itself is explained in sections 5.2 and 5.3.

5 . 1 . Character is t ic T imes

The dme increment dt between iterations is de termined after each iteration. The usual approach is to use a

global dt for all particles. In order to avoid gross inaccuracies at very small distances, the m i n i m u m

characteristic dme over all particles must be used for dt. T h e characteristic time of an object is a measure of

how long it takes for that object's acceleration to change significantly; the dme will be much shorter for a

particle dghtly orbiting a neighbor. The occasional tight pairs and threesomes require an expensively small

value for dt in the naive algorithm.

http://ANDRIiWW.APPl.iL

AN FFFICIFNT P R O G R A M FOR M A N Y - B O D Y S I M U L A T I O N S 13

Figure 4-4: Scattcrplot of components of

actual vs. computed accelerations for 5 = 0.3

The characteristic d m e for a c lump C is the time in which a child of C will move a distance of

approximately 5 times the child's distance from C s center of mass. This is easy to calculate, since die position

vector of each is stored as the vector from (the center of mass of) C. So the characteristic time of C is the min

over both children of / v and ta, where

8X\P\ = / y X | K |

8x\P\ = \A\x\ta\

(Note that P, V, and A are the position, velocity, and acceleration vectors of the children relative to the center

14 A N D R L W W. APPKL 13 APRIL 1983

of mass of C.) In each iteration, the accelerations are computed by ComputeAccel , the min imum

characteristic time dt is found, and then Move calculates die new positions and velocities. Calculating the

min imum characteristic time over the entire universe leads to an exceedingly small dt, however. Suppose two

or three galaxies get into a tight orbit around each other; their characteristic time may be an order of

magni tude shorter than the characteristic time of any other object in the universe.

It would be nice to be able to iterate small, very tight clusters at shorter time intervals than die rest of die

universe, saving a large amount of calculation. This is not too difficult; what is needed is a concise criterion to

distinguish such clumps.

5 . 2 . Indivisible Clumps

Let such a c lump be considered to be one object, indivisible, of nonzero radius. Indivisibility will be

defined as follows: a c lump is indivisible if for all c lumps outside it, its ratio of size to distance is less than S.

Wha t indivisibility effectively means is that an indivisible c lump will never -- tiiroughout the course of the

acceleration calculations for one iteration - be "split" by procedure T w o N o d e to calculate accelerations of its

subclumps with respect to any other c lump. This is easy to detect simply mark c lump A in die first then

clause or c lump B in die second then clause of procedure T w o N o d e . Any c lump that is never marked during

the process of comput ing all die accelerations is indivisible.

The reason that this criterion is chosen is that it characterizes very well die set of clumps such that the

external gravitational field acting upon them is an almost constant function of position within the c lump. In

fact, the monopole approximation has the effect of assuming that this field is constant, and the improved

moving algorithm described below takes advantage of this fact.

Procedure Move, procedure ComputeAccel , and the procedure that determines dt will be altered so that

they never look at the internal structure of such a c lump. No te that T w o N o d e need not be altered, since the

way indivisible c lumps are defined implies that TwoNode never looks at their internal structure. N o w the

problem is gone: the small, tight cluster of galaxies has become a point (al though with nonzero radius). T h e

time increment dt will be much larger dian it could have been otherwise.

T h e internal motions and accelerations of these tight c lumps will have to be computed every iteration, and

in fact it will take several local iterations of the tight c lump to compute its mot ion over the t ime interval dt.

However, these iterations of three or four objects are replacing iterations over the entire universe.

A N LLFICILNT P R O G R A M I OR M A N Y - B O D Y S I M U L A T I O N S 15

5 .3 . Closed Form Calculat ions

When an indivisible object itself is a c lump containing two indivisible subclumps (these will usually be

simply individual galaxies), then its orbit may be solved in closed form. In this case, the calculations to

resolve internal motion may be postponed until another c lump gets near enough to sec die internal structure

of the object. This may be many iterations of the universe later and many times more iterations of the tight

pair, which typically has a much shorter characteristic time. Only one calculation needs to be made in closed

form to replace these many iterations; furthermore, this calculation will be exceedingly accurate, since no

approximations arc being made internally to the subsystem.

Since indivisibility may occur at several distance scales (indivisible c lumps may contain c lumps which

themselves contain indivisible clumps, and so on)), the dght-clump calculations (of which the two-body closed

form calculation is a special case) may done recursively.

6. Managing the Data Structure

The efficiency of all parts of the algorithm depends on having the structure of die tree of clumps accurately

reflect the structure of die particles in the simulated space. U n d e r the influence of gravity, the particles move,

distorting the tree. The structure must be maintained and the distortions removed regularly. Fortunately, this

can be done in a simple way.

6 . 1 . Reorganizing the Tree

After moving clumps diat are not indivisible, die coordinates of a c lump will no longer correspond exactly

to the center of mass of the two subclumps. This is due to a nearby object attracting one subclump more

strongly than the other. It is a simple matter, however, to adjust the position of each c lump after its

subclumps have been moved. Sometimes, however, another subclump will intrude into a c lump so that the

clumps no longer represent disjoint (in the simulated diree-spacc) clusters. In this case, it is necessary that the

clumps be rearranged (while keeping the actual galaxies fixed). The condit ion to aim for is this: for every

c lump C, the closest c lump to C external to C shall be its parent c lump. Let Closcst(C) be the nearest c lump

with which C is compared during the execution of procedure TwoNode . If the distance from C to C loscs t (Q

is less than the distance from C to its parent, then a new c lump W will be formed, which will become the

subclump of P a r e n t (Q in place of C. W will contain as subclumps C and Closest(C). Now the old parent

c lump of Closest(C) has only one subclump, so it can be liquidated, "promot ing" its subclump. This process

is represented in Figure 6-1.

These adjustments (which shall be known as Grabs) take place immediately after procedure ComputeAccel

finishes running. Each G r a b is a purely local phenomenon in the data structure (only affecting four nodes),

16 A N D R H W W . APPEL 13 APRIL 1983

Figure 6-1: Rearrangement of C lumps

and preserves the positions, velocities, accelerations, and all other important data of die c lumps involved. T h e

process of Grabb ing guarantees that close pairs will be subclumps of the same c lump, and that the clumps will

be close to optimally arranged for quickly comput ing accelerations. Although the G r a b algorithm docs not

find the "best" ar rangement of clumps, it has been observed to do a fairly good job in a very short time (see

Figure 6-2).

The T w o N o d e procedure that calculates die accelerations throughout the tree also stores information which

is used by the rearrangement algoritiim in finding candidates for Grabs . The rearrangement is done after

every iteration; it takes time linear in the n u m b e r of particles.

6 . 2 . Creat ing the T ree

While grabbing is very useful in maintaining die c lump structure in the face of distortions, it will not be

able to create one in the first place from a randomly arranged set of galaxies. This will be done as follows.

T h e universal c lump -- which contains all the galaxies - will be divided initially into two subclumps chosen so

that the first contains all galaxies whose x coordinate is less than the median x coordinate, and the other

subclump will contain all galaxies with x larger than or equal to the median x.

Each of those subclumps will be divided into two sub-subclumps using the median y as die splitting

criterion. Each lower level of c lump will be split on z, then then y9 then z, until the c lumps consist of one

galaxy each. No te that this procedure does not require that the n u m b e r of c lumps be a power of two,

a l though that might seem most natural.

This structure is known as a k-d tree [4]. It has a variety of applications in mult idimensional problems,

including searching, nearest-neighbor calculations, classification, numerical integration, and comput ing

A N LFFICILNT P R O G R A M 1 OR M A N Y - B O D Y SIMULATIONS 17

Figure 6-2: Effect of the G r a b Algorithm

Figure 6-2 illustrates the effect of the grab algorithm on a two-dimensional universe. The diagram on the left depicts the clump

structure as first created, by alternately splitting at the median x and y. The diagram on the right shows the structure after several

iterations of Grab. Note that the particles are in the same positions, but the structure is cleaner - close pairs are now all linked directly

together. This improved structure may be measured by the fact that the acceleration calculation on the improved structure is empirically

observed to be about twice as efficient as on the original structure.

min imum spanning trees [8, 5, 9]. Fo r a many-body application, a standard k-d tree will be far from optimal

-- nearby objects will not be in the same c lump much of the time. The G r a b procedure, though its behavior is

difficult to analyze theoretically, has been observed to do a very good job of cleaning up the structure in just

two or three iterations (see Figure 6-2).

7. Implementat ion of the Program

Various algoridimic attacks using die center-of-mass tree structure have been described in the preceding

sections. It is inappropriate to stop seeking reductions in running time after a good algorithm has been found,

however; significant efficiencies can be achieved in the implementat ion of a given algoridim.

The algorithm as described was first implemented in about 1200 lines of Pascal on a VAX-11/780. For a

problem size of 10,000 galaxies, this first implementat ion a in s in about forty minutes per iteration, and about

500 iterations are required to simulate the expansion of the universe by a factor of 100. U n d e r the Genera l

Relativistic assumptions made, letting / run from 1 to 1000 causes the distance scales to run from 1 to 100,

18 A N D R E W W. APPEL 13 APRIL 1983

because distance is proport ional to / 2 / 3 . Accelerations arc transformed at each iteration to correspond with the

changing distance scale. [3] Thus , 340 hours of execution t ime would be needed for this program, as opposed

to 8000 for die OiN1) algorithm. T h e times given throughout this paper arc for a slight modification of the

algorithm to simulate a periodic distance function, which was necessary in the initial application. This adds a

small constant factor to all distance calculations (eighteen floating point instructions, or about 25% of the

running time).

A profiler was used to identify those parts of the program tiiat consumed most of the processing time [19].

T h e profiler operates by asynchronously sampling die computer ' s program counter 60 times per second and

incrementing the appropriate bin of a distr ibution function. The results showed that all bu t two percent of

the execution time was spent in the T w o N o d e procedure . This is not unexpected, as T w o N o d e is the only

part of the algorithm with an order time of 0(N l o g N) ; the rest of the procedures run in O(N) t ime. Since

T w o N o d e is rcladvcly small, hand optimization of die machine code was an obvious step. Writing tiiis

procedure in assembly language resulted in a speedup by a factor of two and a half. This rewriting used

s tandard techniques, such as keeping more quantit ies in registers, putt ing procedure calls in-line, and using

the addressing modes of the VAX more effectively.

At this point we found that die use of the Floating Point Accelerator option on the VAX significantly

improves the performance of the program. T h e program was sped up by a factor of two by moving the

calculations to a VAX on which an Accelerator had been installed.

Many-body calculations usually requi re double-precision arithmetic because of the wide range of distances

involved. Close orbits are often more than four orders of magni tude - a dozen binary digits - closer than the

distance to a far-away galaxy. Since the improved algorithm stores all positions relative to the parent c lump,

this problem disappears - typically only one order of magni tude , or less, is involved in the difference between

the size of a c lump and the size of its parent c lump. T h e use of 32-bit floating point numbers in place of

64-bit floating point halved the running time of the algoridim.

T h e factors of two in speed from the use of the Float ing Point Accelerator and from the use of single

precision are approximate and in terdependent . Table 7-1 shows the running t ime as a function of these

variables.

Since tight, "indivisible" c lumps are recognized and their small time constant does not affect the time

constant of the universe, far fewer iterations are required. Typically, such c lumps are iterated about four

times for each iteration of the universal c lump. Each of those iterations would have been a global iteration in

die straightforward algorithm, as in that algori thm there is no way to detect a tight c lump. A conservative

AN FFFICIFNT P R O G R A M FOR M A N Y - B O D Y S I M U L A T I O N S 19

is brings the running time of the algorithm on a relatively small and inexpensive computer such as the

down to what it would be on a large, extremely fast, and expensive Cray-1. Of this speedup, a factor of

32-bit Floating Point 64-bit Floating Point

With FPA Hardware 16 28

Without FPA Hardware 25 74

Tabic 7-1: Running times, in seconds, of an acceleration calculation

for 1,000 bodies on a VAX-11/780.

estimate of the number of iterations saved is 50% - a factor of two speedup.

In the astrophysical applications described in Section 2, in which galaxy clustering occurs, the development

of clusters among the particles simulated leads to greater opportunit ies for procedure T w o N o d c to apply its

approximation. The resulting gain is an empirically observed two-fold speedup in computat ion of

accelerations.

The program that resulted from these modifications to a very simple iteration method succeeded in

reducing the running time of a simulation from 4000 hours to 20 hours - a factor of two hundred (for ten

thousand bodies, with 5 2 = 0.3). This saving was achieved by attacking the problem from several angles at

once.

8, Conclusions

It is often very difficult to make one change in a program that makes it faster by more tiian one order of

magni tude. In this case, even a change that reduced the order time of the algorithm from 0 0 V 2) to

0(N log N) increased die efficiency for a typical problem size by only a factor of 12 -- one order of

magni tude. The four-hundred-fold reduction in running time was die product of savings at all levels of the

conceptual hierarchy, from the idea that some galaxies are in systems by themselves, to the idea tiiat keeping

certain pointers in registers saves memory references (see Table 8-1). They are in some sense independent

- improving the efficiency of one level of the hierarchy docs not preclude improving the efficiency of

another. Most importantly, all of the savings arc multiplied together.

Rcddy and Newell [17] have characterized the type of problem for which this muldplicative speedup can be

expected: such a problem has four to eight layers of implementat ion, such as computer technology,

architecture, algorithm, et cetera. This paper has been concerned with ways to avoid changes in the

technology and architecture layers (i.e., using a Cray-1) because of their expense. Rather, the algoridims,

"knowledge sources," and implementat ion layers have been attacked.

20 A N D R E W W. APPEL 13 APRIL 1983

Level Speedup Factor Description

Algorithm 12 Changing to the 0(N log N) algoridim

Problem-Specific 2 Iterating indivisible clumps by themselves and using
Knowledge closed-form solutions, thus halving the number of global iterations.

Algorithm 2 Clustering behavior in the simulation produces a c lump

(Problem-Specific) structure well-suited to the algoridim

System-Independent 2 Use of single precision floating point rather dian double

Code Tuning precision, made possible by the data structure

System-Dependent 2.5 Hand-coding die routine where most of the time was spent

Hardware 2 Use of the Floating-Point Accelerator

Table 8-1: Summary of the spcedups attained at various levels

about two was attributable to technology (the use of die Floating Point Accelerator) and two to

implementat ion (hand coding a critical routine) -- tiicsc could be done for any program, probably with similar

results. The other factor of a hundred (for ten thousand bodies) came from die exploitation of die data

structure in various ways. The use of a good data structure to provide an asymptotically fast algorithm is

especially important for large problems.

Since the layers of the problem are relatively independent , the technology and architecture layers are still

available for additional speedup factors. If the program were run on a Cray-1 or a Cyber 7600, the 20 hours

of runt ime might be reduced to 1 or 2 hours, since most of the efficiency improvements described in this

paper are machine- independent , and these computers are much faster than the VAX (and almost

proportionally more expensive).

T h e data structure is a variant of one already known in the literature (the k-d tree), bu t the reorganization

of the tree with the G r a b procedure changes it substantially -- it loses the useful (for some applications)

property of being split along planes of constant x,y, and z, and gains the useful (for this application) property

of joining mutually nearest neighbors at all levels of the hierarchy. F o r the simulation of gravitational

attractions, this turned out to better than halve die number of calculations. Reorganized trees may have other

applications as well; for example, the recognition of individual objects from the point set obtained from a

television camera might be facilitated by an algorithm that could group points together in 0(N log N) t ime.

Some sorts of nearest-neighbor searching might also be made easier.

AN FFF1CIFNT P R O G R A M FOR M A N Y - B O D Y S I M U L A T I O N S 21

It is difficult to analyze die properties of the G r a b algorithm. It is low-level in nature: when two points are

found to be closer to each other than to their parent nodes, a local rearrangement is done without regard for

the global structure of die tree. Tha t it works as well as it docs was difficult to predict. Its behavior is

dependent on 5, since these closest pairs arc detected during the T w o N o d c procedure; the question of what 5

to use to most efficiently produce a reorganized tree (independent of gravitational considerations) might be

investigated if reorganized trees are found to be useful in other applications.

22 A N D R E W W. APPEL L3 APRIL 1983

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Svcrrc J. Aarscth, J. Richard Go t t III, and Edwin L. Turner , N-body Simulations of Galaxy Clustering;

I. Initial Conditions and Galaxy Collapse Times, Astrophysical Journal , 228 (1979), pp. 664-683.

Alfred V. Aho, John H. Hopcroft, and Jeffrey D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Weslcy, Reading, MA, 1974.

Andrew W. Appel, An Investigation of Galaxy Clustering Using an Asymptotically Fast N-body

Algorithm, Undergraduate Thesis , Princeton University, Princeton, NJ, April 1981.

Jon Louis Bcntley, Multidimensional binary search trees used for associative searching, C o m m . A C M ,

18 (1975), pp . 509-517.

Jon Louis Bentlcy and Jerome H. Fr iedman, Fast Algorithms for Constmcting Minimum Spanning

Trees in Coordinate Spaces, IEEE Transactions on Computers , C-27 (1978), pp. 97ff.

Edward A. Desloge, Classical Mechanics, John Wiley & Sons, New York, NY, 1982.

A. G . Doroshkevich, E. V. Kotok, I. D . Novikov, A. N . Polyudov, Yu. G. Sigov, and S. F . Shandarin,

Dvumernaya model obrazovaniya krupnomasshtabnoi struktury vselennoi(A Two-Dimensional Model of

the Formation of Large-Scale Structures of the Universe), Preprint 83, IPM AN SSSR (Institute for

Problems of Mechanics, Academy of Science, USSR) , Moscow, USSR, 1978.

Jerome H. Fr iedman, Jon Louis Rentley, and Raphael Ari Finkel, An Algorithm for Finding Best

Matches in Logarithmic Expected Time, A C M Transactions on Mathematical Software, 3 (1977), pp .

209ff.

Jerome H. Fr iedman and Margaret H. Wright, A Nested Partitioning Procedure for Numerical Multiple

Integration, A C M Transactions on Mathematical Software, 7 (1981), pp . 76ff.

Edward J. Gro th , P. James E. Peebles, Michael Seldner, and R a y m o n d M.'Soneira, The Clustering of

Galaxies, Scientific American, 237 (1977), pp . 76 ff.

in]

AN EFFICIENT P R O G R A M FOR M A N Y - B O D Y S I M U L A T I O N S 23

Roger W. Hockncy and James W. Eastwood, Computer Simulation Using Particles, McGraw-Hil l ,

New York, NY, 1981.

M. Jocvecr, J. Einasto, and E. Tago, Yacheiskaya Struktura Vselennoi (The Cell Structure of the

Universe), Preprint A- l , AN Estonskoi SSR, Tartu, Estonian SSR, USSR, 1977.

R. H. Miller and K. H. Prcndergast, Stellar Dynamics in a Discrete Phase Space, Astrophysical

Journal , 151 (1968), pp. 699ff.

R. H. Miller, K. H. Prcndergast, and William J. Quirk, Numerical Experiments on Spiral Structure,
Astrophysical Journal, 161 (1970), pp . 903-916.

Charles W. Misner, Kip S. Thorne , and John Archibald Wheeler, Gravitation, W. H. Freeman & Co.,

San Francisco, CA, 1973.

P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press, Princeton, NJ,

1980.

R. Reddy and Allen Newell, Multiplicative Speedup of Systems, Perspectives on Compute r Science,

A. K. Jones, cd., Academic Press, New York, NY, 1977, pp . 183-198.

Richard M. Russell, The CRA Y-l Computer System, Compute r Structures: Principles and Examples,

Siewiorek, Daniel P., Bell, C. Gordon , Newell, Allen, ed., McGraw-Hil l , New York, NY, 1982, pp.

743-752.

Unix Programmer ' s Manual , Compute r Science Division, Depar tment of Electrical Engineering and

Compute r Science, University of California, Berkeley, CA. Sections prof(l) , pc(l) , and profil(2)

contain information about the execution profiler.

M. Mitchell Waldrop, The Large-Scale Structure of the Universe, Science, 219 (1983), pp . 1050-1052.

Ya. B. Zeldovich, The Theory of the Large Scale Structure of the Universe, IAU Symposium # 7 9 ,

International Astronomical Union, Dordrecht , Holland, 1978, pp . 409 ff.

