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Abstract

In recent years, Binford’s generalized cylinders have become a commonly used shape representation
scheme in computer vision. However, research involving generalized cylinders has been hampered
by a lack of analytical results at all levels, even including a lack of a precise definition of these shapes.

In this paper, a definition is presented for Generalized Cylinders and for several subciasses. Straight
Generalized Cylinders, with a linear axis, are important because the natural object-centerad
coordinates are not curved. The bulk of the paper is concerned with Straight Homogeneous
Generalized Cylinders, in which the cross-sections have constant shape but vary in size.

The resulfts begin with deriving formulae for points and surface normals for these shapes. Theorems
are presented concerning the cofrditions under which multiple descriptions can exist for a single solid
shape. Then, projections, contour generators, shadow lines, and surface normals are analyzed for
some subclasses of shapes. The strongest resuits are obtained for solids of revolution {which we
name Right Circular SHGCs), for which several closed-form methods for analyzing images are
presented.
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1. Introduc_:tion

In recent years, the generalized cylinders proposed by Binford [2] have become an increasingly
important tool for shape description in image understanding. However, generalized cylinders have in
the past been defined primarily in informal terms, leading to several different definitions for
"generatized cylinder" (or "generalized cone™) and resuiting in a lack of rigorous geometric analysis
of these shapes. In this paper, we present a formal definition of generalized cylinders and several
interesting subclasses. A number of theorems and results are then derived, including formulas for the
coordinates of the constituent points and surface normals, and several results relevant to projections

{i.e. images) of generalized cylinders.

1.1 Importance of Generalized Cylinders

Figure 1: Concept of a Generalized Cylinder

A generalized cylinder is loosely characterized by having an axis {a space curve which forms a
spine for the shape), a cross-section (a 2-D contour which sweeps along the axis), and a sweeping

rula {a rule for transforming the cross-section as it is swept along the axis) (figure 1) [2].

Generalized cylinders are an important class of shapes for several reasons. They are primarily
important because of the wide variety of man-made and natural ohjects which can be represented as
generalized cylinders. For example, many objects which stand up have a vertical axis (counteracting
gravity) and a horizontal cross-section which changes oniy slightly {if at all) as it follows the axis: a
vase, a lamp, a flower stem, a skyscraper, a cup, a blade of grass, a box (figure 2). For many of these
shapes, representation as a polyhedron requires defining many identical facets, which fails to take

into account the simplicity of the basic structure involved. In addition, machining processes may
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Figure 2: Examples of Generalized Cylinders

produce shapes which are rounded generalized cylinders, for which polyhedral or surface patch
approximations introduce undesirable edges and corners. Generalized cylinders have been used for

describing pottery types for anthropology [6] and for modelling biological cell shapes [18].
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Figure 3: Imaging and Shadow Volumes are Generalized Cylinders

Generalized cylinders are important in computer image processing because of the fact that a
region of an image corresponds to some volume in space, defined by the imaging projection
(orthography or perspective). The volume so defined is a generalized cylinder, with axis along the
optical axis of the eye or camera (figure 3). Similarly, when an object casts a shadow, there is a
volume of space behind the object which will be shaded from the light source. This volume is a
generalized cylinder. Thus, the problem of determining the shape of a shadow is equivalent to the
geometric problem of determining the intersection of a generalized cylinder with another object (such

as a planar surface).




Generalized cylinders also have several properties which render them appropriate for geometric
modeling tasks, as pointed out by Marr and Nishihara [12]: generalized cylinders are volumetric,
which means they are characterized as occupying a volume of space rather than being a collection of
flat or curved batches; they have object-centered coordinates, which allow for rotations etc. for model
instantiation or to represent motion of limbs; they have a principal axis which itself can be used as a
gross approximation to the volume represented; and they can be organized hierarchically to

represent coarse and fine details.

1.2 This Presentation

in this paper, we begin by defining several classes of solid shapes. Various definitions of
"generalized cylinder”" or "generalized cone" in the literature are identified as corresponding to
certain of these classes. A particular class, called Straight Generalized Cylinders (SGC), is
fundamental since the natural objeci-centered coordinate system has no curvature in the axes, and
hence is a linear transformation from world space coordinates. A subset of SGC, Straight
Homogeneous Generalized Cylinders (SHGC), contains those SGCs whose cross-sections have the
same shape but may vary in size; this allows a decomposition of the shape description into size and
shape functions, upon which this work is based. Several subclasses of SHGC are defined, with
particular properties which aliow stronger statements to be made about them in various situations.
The remainder of the paper consists of the elaboration of important properties of Straight

Homogeneous Generalized Cylinders and of these subclasses.

The next section presents the most important formuilae: the coordinates of points on an SHGC, and
the surfabe normal vector at each point. Two important probiems are identified: the existence of
different representations for the same solid shape, and the constancy of surface normals in certain
locations. Theorems are proven in each case, showing that the Linear SHGCs (LSHGC) (SHGCs
which expand the contour‘by a -scaling factor proportional to distance along the axis) are a very
important class by themselves. Since the imaging volumes and shadow volumes (discussed above)

are LSHGCs, these results may be especially useful.

The consequences of projection of SHGCs (i.e. imaging) are then explored. This includes a
general formulation of the imaging geometry, followed by an analysis of the problem of mapping
image points to points on the SHGC. The analysis of silhouettes of SHGCs is explored, including the
difficult problem of determing the contour generators -- points on the SHGC which are imaged on the
outline of the sithouette [11]. Next, the problem is addressed of interpreting the contour generators
from one point of view as seen from another: this arises in stereg and shadow geometry analysis. The

use of range-finder data for description of SHGCs is also discussed.



2. Classes of Shapes

We will begin by defining some classes of solid shapes. We begin with Generalized Cylinders,
which introduce the most basic ideas in the definition, then specialize this to Straight Generalized
Cylinders, Straight Homogeneous Generalized Cylinders, and several subclasses of Straight
Homogeneous Generalized Cylinders which we call Linear, Right, Circular, and Polygonal SHGCs.
The names of these classes will be capitalized when used to refer to their formal definitions. This
terminology corresponds to that of the authors in related work [16]. A summary of the symbols used

will be found in an Appendix,

2.1 Generalized Cylinders

Figure 4: Generatized Cylinder

A Generalized Cylinder (GC), as shown in figure 4, is a function which maps two parameters onto a
set of points in x-y-z space (i.e. the world). The two parameters are s, which measures distance along
the axis, and t, which indirectly measures distance along the cross-section contour; both s and t have

as domain the unit interval [0,1]. This development is similar to that of Ballard and Brown [1].

A Generalized Cylinder is specified by a three-tuple (A, E, a). A is the axis, which is a curve in

space defined in parametric form by A(s) = {x A YarZ A) {s).

The remainder of this discussion will desribe features of the shape relative to the axis itself rather

than in absolute x-y-z coordinates.

At each point A(s) on the axis, let the cross-section be described on a u-v plane, with A(s) at the



origin, and defined by the (constant) angle a. The u-axis will be the direction of steepest descent of
the u-v plane from the tangent to the axis. a, the angle of inclination, is the angle from the u-axis to
the tangent to the axis at A(s); « = 0 means that the u-axis is pointing towards A(1), and a = 7

means that the u-axis is pointing towards A(0).

On each u-v plane, the cross-section contour is defined by the envelope function E(s.t) = (uE, vE)
(s,t). On the u-v cross-section piane for each value of s, the cross-section contour is the set of points
E(s,t) for values of t from O to 1, inclusive. The contour is normally expected to be closed, i.e. E{(s,0)

= E{s,1). The union of the contours is the Generalized Cylinder.

According to this strict definition, some very peculiar shapes are admitted in GC, including those
with intersecting contours on different cross sections, those with singular points or arcs, and those
with cross-section contours which are open arcs, points, or even space-filling curves. Since our
ultimate goal is the analysis of the shapes of common objects. we will generally exclude such bizarre
cases from further consideration. However, since shapes with degenerate cross-sections (open arcs

or points) do have several important properties, we will note them when appropriate.

The class GC includes very many shapes: all for which there exists a space curve (axis) such that
each cross-section of the object on some set of planes can be defined by a single connected
component. Binford [2] defines "generalized cylinder” to be a superset of GC, aliowing rotational
sweeps and non-planar cross-sections. Since this definition includes such strange shapes as those
described above, it is fikely that some assumptions of normalcy were intended, though not explicitly
stated, by Binford. Nevatia [13) has defined "generalized cones" to be GC, with the condition that a

be equal to #/2, i.e. the cross-section planes are orthogonal to the axis.

2.2 Straight Generalized Cylinders

interesting subclasses of GC arise from imposing suitable restrictions on the various component
functions. The most important of these is the set of Straight Generalized Cyfinders (SGC), in which

the axis A is linear (figure 5). The axis is thus a line segment, and all u-v planes are parallel.

This class is important because all tangents to A(s) are parailel, as are all u-axes and all v-axes. We
can therefore define vectors 8, U, and V pointing in these directions, and assign a local (object-
centered) coordinate system using u-v-s coordinates. Such coordinates can of course be defined for
all Generalized Cylinders; however, there will be no curvature in the coordinate axes for SGCs. The

local coordinates of an SGC are a linear transformation of world (x-y-z) coordinates.
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Figure 5: Straight Generalized Cylinder

2.3 Straight Homogeneous Generalized Cylinders
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Figure 6: Straight Homogeneous Generalized Cylinder
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We define a Straight Homogeneous Generalized Cylinder (SHGC) (figure 6) to be an SGC in which
the envelope E can be decomposed into two functions by E{s,t) = r(s)C{t). The contour function Clt)
= (uc,vc) {t) describes the shapé of the cross-section; the radius function r{s) describes its size. So,
the cross-section has a constant shape but may vary in size. An SHGC is specified by a four-tuple (A,
C,r, a).

We impose the restriction that the functions A and r be continuous and differentiable everywhere,
and that the contour C be continuous and differentiable almost everywhere. It is usual, but not
required, that the u-v origin be in the interior of the contour. In addition, we will presume "uniform

. scaling" of s and t, i.e. ||dA/ds}| and {|dC/dt|| are constants.



This definition of generalized cylinder is essentially the same as Marr's "genéralized cone" [11].

The bulk of this paper describes the properties of SHGCs.

2.4 Subclasses of SHGC

Additional restrictions on the various functions give rise to several subclasses of SHGC with

particular interesting properties;
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Figure 7: Linear SHGC
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Figure 8: Circular SHGC

Linear SHGC (LSHGC) -- SHGC with r linear (figure 7)
The size of the contour varies linearly with distance along the axis. r(s) can be
written as r(s) = m (s =5 for some values of m and Sor Important relations for
LSHGCs: r(so) = Oand dr/ds = m. In the special case that r is constant, r(s) = s
for some value ro- Inthis case, dr/ds = 0. LSHMGCs are ruled surfaces as well as
being Generalized Cylinders {5].
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Figure 9: Polygonal SHGC

Right SHGC (RSHGC) -- SHGC with a = w/2
The u-v planes are normal to the axis. There is no "direction of steepest descent"
relative to the axis, so the u-axis may be chosen in any direction on the cross-
section planes. '

Circular SHGC (CSHGC) -- SHGC with C a circle centered at the origin (figure 8)
Without loss of generality, let C be a unit circle, C(t) = (uc. vC) (t) = (cos 2mt, sin
2x1). All surfaces of solids of revolution are Right Gircular SHGCs (but with open
ends unless r(0) = Oorr(1) = 0).

Polygonal SHGC (PSHGC} -- SHGC with € polygonal (piecewise linear) (figure 9)
if C(to) is a vertex for some 1, then the set of points P(s.ro)' is a crease (ridge if C
convex there, valley if concave). Otherwise, P(s t) is on a face; note that faces are
not necessarily planar in this definition. On a face, C(t) is finear, so it can be
expressed as:

cw = (uc(t), vC(t)) = (mt+ b,mt+ bv)

for some m , b, m,, and b, . If the corresponding segment of C is bounded by
vertices C(r1) = (u1,v1) and C(r2) = (u2,v2), then

mug—i——i ::1 ~and bu=—3—3—-2—rut :iu1
274 1 2
with similar definitions for m, and b, In addition, dC/dt = (duC/dt,de/dt) =
(mu,mv). By the uniform scaling assumptions, t measures distance around the
polygon,

In various situations, the consequences of these properties will be shown to be of special interest.



3. Fundamental Theorems and Problems

In this section, the formulae for the coordinates of a point and the direction of a surface normal for
an SHGC are presented. These give rise to some important problems which are explored, and several
relevant theorems are presented, These formulae and theorems provide the basis for the imaging

discussion in the next section.

3.1 Coordinates for SHGCs

For any SHGC, there is a natural u-v-s object-centered coordinate system imposed by the
preceding definitions. We will adopt the convention that the v-axis is chosen to provide a right-
handed u-v-s coordinate system. The unit vectors in the axis directions will be denoted U,V and §,

as shown in figure 10.
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Figure 10: Coordinate Axes for SHGCs

However, ULSonly if a = %/2, i.e. in a Right SHGC. Therefore, it will be convenient to define an
orthogonal w-v-s coordinate system using W perpendicular to Vand 8. W lies in the U-S plane, with
an angle of #/2 - a between Wand U. For any point (u, v, s)uVs {where wvs denotes coordinates in
the u-v-s system), the corresponding coordinates in w-v-s are (usina,v,s + ucos a)wvs. The w-v-s
coordinates are important since the axes are independent of the components of any particular

Generalized Cylinder. In an RSHGC, u-v-s and w-v-s coordinates are identical.

Except where otherwise stated, all coordinates in this paper will be given in the w-v-s system.
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3.1.1 Points on the Surface

Figure 11: Coordinates of a Point on an SHGC

For any values s and t, the point P(s, ) on the surface of the SHGC has u-v-s coordinates (figure 11)

P(s.t) = (u(t) r(s), vt rish 8)yq

and hence w-v-s coordinates

P(st) = (uC(r) r{s) sin «, vo(t) r(s), s + uc(r) r(s) cos a) (3-1)

3.2 Descriptions and Shapes

A subtle problem arises from our definition of SHGCs (and other shape classes): as We have
defined them, an SHGC is actually a description of a shape rather than being a specific solid shape
itself. Of course, each such description describes a unique shape; however, we must attempt to
decide when a single shape may have several different descriptions. Since a solid shape corresponds
to an equivalence class of descriptions (i.e. SHGCs), we will call two descriptions equivalent when

they describe the same sclid shape, as did Marr and Nishihara in [12].

There are four trivial changes possible in the s and t coordinates themselves while preserving

equivalence:

e the axis can be flipped end-over-end to yield a new SHGC (reversing the sense of the s
coordinate)

e the sense of t can be likewise reversed, and, if the contour C{t) is closed, the point at
whicht = 0 can be shifted to anywhere on the curve

 the radius function r(s) can be multiplied by any constant scale factor, while the cross-
section contour C(t) is divided by the same factor



1

¢ an RSHGC can have the u-v axes rotated about the origin arbitrarily (shifting the t
coordinate).

These transformations are sufficiently simple that no deeper discussion is needed.

There are, however, more significant variations in the possible descriptions of a specific shape as
an SHGC. We will investigate two of the principal types of variation: aftering the orientation of the

cross-section planes, and altering the direction of the axis.

3.3 The Equivaient Right SHGC Problem

Figure 12: The Equivalent Right SHGC Problem

In figure 12, we see a shape described as two different SHGCs, with cross-section planes at
different orientations. What properties of the shape make this possible? Since this question is so
general, we will limit our attention to a more restricted (but still difficult) question: For what SHGCs
are there equivalent Right SHGCs? This is interesting since the RSHGC seems to be a natural
"canonical” form of representation for a shape. We will ignore the effect of "beveled" ends resulting

from values of a not equal to #/2.
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To make this problem somewhat more tractable, we will presume that the same axis A and radius
function r are to be used for the SHGC and RSHGC. (We conjecture, but have not proven, that this
presumption implies no ioss of generality.) The problem can then be stated this way: Given an SHGC
G, = (A, C1, r, a), with C1 = (u1,v1), can some function C, = (u2,v2) be found such that the RSHGC
(32 = (A, Cz, r, w/2) contains the same points as G1?

Now for each s, and r1, we must have

P1(s1,t1) = (u1(t1) r(s1) sin o, v1(t1)r(s1), s, + u1(t1) r(s1)cos a)

= P,lspt,) = (Wylty) risyh vylty) ris ) sy

for some s,,, with P, on G, P,on G, and with CQ(I1) corresponding to C1(t1) for all ty.

Equating s-coordinates,
S, =85, + u1(t1) r(s1)cos a
Equating v-coordinates,

v1(t1)r(s1) = v2(t1) r(sz)

SO
v1(t1) _ r(s2) _ r(s1 + u1(r1)r(s1)cos a)
v2(t1) r(s1) r(s1)
Now, since
L 2wy
ds wv,(t,)

we must have

_ _E_)_ r(s, + u,(t.) r(s,) cos a)
3 r(s,)

i.e. the ratio between r(s,) and r(s1) is independent of 5. So,

1 0 , dr
'O = W(r(s,)—a-é-r(s1 + u1(r1) r(s1)cos a} - r(s, +-u1(r1)r(s1)cos o) _c;s_|51)
dr

= s, (1% uy( 2. (t,) r(s,) cos @) —]
= r(s,) 3o s + u{ Jeosa 3o st - ris, + u(t)) r(s, sa 3o st

' We can differentiate this by t, using the fact that
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d dr d dr
E—d;_ s2 E; gls1+u1(t1)r(s1)cosa
du1 dr du | d?
= r(s,)cos a at |l1 F,s1+u1(t1)r(s1)cosa = r(s,)cos a dr M g2 is2
to obtain the condition:
du d?r r d dr
_ 2 1 = el
O=rs)cosa |t1d2|s2 + r(s,) cos a IS18 (u (t)dslsz) :
dr
_I_
- r{s,) cos
{s,) cos a '" ds |51 dsl
dr d2r

1

L]

r(s1-)2cosa ’n d 5 |s2 + r(s, Yu nt )cosa—-—’—l

du
2 1

r(s,)*cos

! - dt

'u E?lsz (1 + “1“1}¥|s1)

S0, one of the above terms must be 0. ris) = @, G1 is degenerate (cross-section is a single point).
lfcosa = Q, G1 is already a Right SHGC, if du1/dr = Q, G1 is degenerate (C(?) is a line of constant u}.
If0 = d%r/ds?, G, is a Linear SHGC. And finally,if 0 = 1 + u,(t) dr/ds, we can differentiate by s to
yield 0 = u,(t) d*r/ds® and G is either degenerate (0 = u_ (1)) or Linear (0 = d?r/ds?).

So, if an SHGC G has an equivalent representation as an RSHGC, then either (1) G is degenerate,
() G is an LSHGC, or (3) G is already an RSHGC.

3.3.1 The Slant Theorem

The Equivalent RSHGC Problem suggests that the only nondegenerate SHGCs with equivalent
representation as RSHGCs are LSHGCs. The converse is also true: Every Linear SHGC has an
equivalent representation that is also an RSHGC In other words, the set of all LSHGCs is a subset of
all RSHGCs. '

This statement is called the S/ant Theorem, which says in effect that it doesn’t matter what direction
the cross-section planes are taken reiative to the axis of an LSHGC: for any direction, some contour

function C can be found to describe the shape (ignoring the possible beveling of the ends) (figure 13).

To prove the theorem, let G = (A, C1. r, @) be an LSHGC withr = m (s - so) and C (u1, v1).

(We will deal with the special case r(s) = r, below.) The constituent points are

P1(sT,r1) = (u1(t1)m(s1 - so)sr’n a, v1(t1)m(s1 - so). s, + u1(r1)m(s1 - so)cos a)
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Figure 13: The Slant Theorem

Now consider 62 = (A, sz r, w/2), which is an LSHGC and RSHGC with A and r as above, and 02

= (u2, "'2)' Letu, andv, be defined by:
u1(t) sin a

u,(t) =
2 1+ u1(t)mcosa

v,

1+u (r)mcosa

v2(1‘) =

(This definition violates the uniform scaling assumptlon for t; however, the contour can be deformed

along its length to eliminate this problem, and in any event this condition is not central to the
derivation being presented.) Each point of 62 has coaordinates
Py(syty) = (Wylty) r(s,), vylt)) risyh Sp)
_ ( u1(t2) m(s, - so) sin a' v1(t2)m (32 - so)
1+ u_l(tz) mcosa 1+ u1(f2)m cos a

2

Now, for each s, and t,, define s, andt, by:

Sy = 8§y + u1(t1) m (s1 - 50) cosa
t2=1‘1
Then 7
u (tymi(s, + u{t)m(s - 5. )cosa - §,) Sina
P2(32,t2) =( 1444 1 149 1 0 Q ,

1+ u1(t1) mcos a

v1(t1)m (s, + u1(r1)m (s, - So) cos a - sg)

L

1+ ui(t1)mcos a

s, + u1(r1)m (s, - So) COSa)

1
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(u,(t,)m (s, - 30) sina, v (t,)m(s, - Sgh S, + uftymis, - Sq) €05 a)

= P1(s1,t1)
Thus, for each s, and ty there exists a point Pz(sa,tz) on G2 which is the same as the point P1 (31,t1) on
G, i.e. G1 and 82 contain the same points. The beveling of the ends of G1 but not 62 is reflected in
the restriction that s, must lie in the interval [0,1].

In the special case that r(s) is constant, we have r(s} = o Then
P1(s1,t1) = (u1(t1) o sin a, vj(r1) g Sy + u1(t1) Iy COS «)

Solet u,and vy be defined by:

uz(t) u1(r) sin a
volt) = v,(t)
Then, for each s, and tys define s, and ty by:
S, =8, + u1(r1) o COS a
I =t
Then we have:;

P,(s,t,) = {u,{t,) roSina, v (t,) 1y, s,)
= P,ls, 1))

and the above conclusions hold true for this case.

So, for each LSHGC, there exists another description of the same shape which is both an LSHGC
and RSHGC, containing all the same points (but without beveled ends). In this sense, the set of
LSHGCs is a subset of the set of RSHGCs.

3.4 The Alternate Axis Problem

Having explored the issue of changing the cross-section planes, we can ask about moving the axis:
For what SHGCs are there equivalent representations with different axes, using the same cross-
section planes (figure 14)? (This is known to involve a loss of generality with respect to the question:
For what SHGCs are there equivalent representations with different axes? For example, a sphere
satisties the latter condition, but not the condition we are addressing here. We conjecture that only
shapes resembling certain regular polyhedra, of which the sphere is the limiting case, are excluded
from our analysis herein by the restriction to use the same cross-section planes.} We will begin by
restricting the problem so that the two axes intersect somewhere, and so that both axes intersect the

cross-section planes (i.e. the axes of the SHGCs are not parallel to the cross-section planes).
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Figure 14: The Alternate Axis Problem

Suppose G, = (A ” C,ry a1) and 62 = (Az, Cz‘ F o a2) are SHGCs representing the same shape,
with the same u-v planes, and with A1(so) = Az(so) for some Sy (We will presume the u-axis is
oriented identically for G1 and G, without loss of generality since the u-v axes could be rotated
without affectihg the following line of reasoning. Similarly, the exact definition of a,, is not of interest
here -- it is sufficient to note that it is iﬁ fact constant since A, is a line segment and all u-v ptanes are
parallet.)

Let 11\2(50 +1) = (”Az""Az)uwv i.e. (U Vo) are the coordinates in the u-v plane for G, of the origin
of the u-v plane for Gz’ forthe values = s, + 1. Then for any s,
Ays) = (0. 0)ysys
= (Upp (8 =Sph Vap (8= Spl g4

since the axes A1 and A2 are linear.

For any point P(s,t} on G1,
P(s,t) = (U, (t) ry(s), vy (0 ry(8) 8)ypue
= (U.I(t) r1 (S) - UA2 (S - so)v V1(r) r1(S) - VA2 (S"' so)! S)U2V2S
since the origin is translated by (uA2 (s- so), Vas (s - so)). But since P(s,t) must also be a point on G,

P(s)t) = (u,(t) ry(s), v,o(t) r(s), 8),5p0g

Equating u-coordinates,
u () ry(s) — vy, (8—5g) = uy(D) ro(s)

Ditferentiating by s,
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and differentiating by s again,

d?r d?r
1
u1(t) 12 = ua(!) Fs“g‘-

u () d‘?r1 darZ
uylt) ds®  ds?

Now differentiating by t,

,
ds? dt u,(n)

d%. d u, ()

So,
d2r d u(t
42— =0 or — ® =0
ds dt u,(t)

If d2r1/d32 = 0, G, is an LSHGC.

Suppose d2r1/d32 = 0. Thend/dtu 1(t)/u2(r) = 0, and u2(t) = Ku 1(t) for some constant k. But, we
atready know that ' ;
u2(r) ra(s) = u1(r) r1(s) - Upy (s—so)

S0

u,(t) = A BT -5

r (s) - kr2(s)

Ditferentiating by ¢, we have

du
1 .9
ot

S0 u1(r) = u, for some constant Uy- By similarly equating v-coordinates, we have v1(r) =V, for some

constant v, i.e. the cross-section is a single point, and G, is thus a degenerate Generalized Cylinder.

Thus, a nondegenerate shape can be represented as SHGCs with different (intersecting) axes only
if the shape is an LSHGC.
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3.4.1 The Pivot Theorem

possible axes

e
il
/

/ . .
— no axis possible
~_ inthis space
—_—

—

Figure 15: The Pivot Theorem

The alternate axis problem suggests that the only SHGCs with equivalent representations with
different axes are LSHGCs. The converse is also true: each LSHGC can be represented with the axis
pointing in any direction, so long as it contains the apex point of the shape (the point at which its
radius is 0) (figure 15). (We will observe a minor restriction on the direction of the axis later in this
section). This statement is called the Pivot Theorem since it states that the axis of an LSHGC can

effectively be pivoted about the apex into any direction.

To prove the theorem, let G, = (A1, C,r a1) and 62 = (A, Cz- r, “2) be LGCs describing the
same shape, with r{s) = m (s-so), with the same u-v planes {possibly rotated as in the previous

section), and with A1(So) = A2(s0). (A1(30) is the apex of the shape, since r(so) = 0.}

Let the u-v coordinates of A2(30 + 1) on the u-v plane for G, be (uA2, VA2)u1v1' Then for all s,
Ays) = (Upp (5 =5gh Vaa (S~ Splygyq '

since the axes are both linear.
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Now,letC, = {u,,v,)and C, = (u2, “'2) where:
Ynz Yaz
“2“) = u1(t) - . and vz(t) = v1(r) - -

For any point P{s,t) on G1,
P(s,t) = (u () r(s), v (1) r(S), S),qy1s _
= {u () r(s) = upy (s—55), vy () r(s) — vy, (S—54) ) o0
= (U, m(s=-sg) = up,(s=55) vi(hm (s=5g) = v, (S=5p) ) ouas

u v
= (Luy0 - —221Im (s=sp), [v,i) - 22 1m (s =30 §)

= (U,{) F(S), V,{8) 75, 5) o0
which is a point on G, S0, each point of G, is also a point of G, (and vice versa, by similar

reasoning). Thus, G, and G, describe the same shape.

By two applications of the Slant Theorem, we can eliminate the requirement that A2 pass through
the u-v planes of G, So, for any LSHGC, the axis may be defined in any direction, but must pass

through the apex.

Two additional restrictions must be noted: the shape may be beveled differently in the two
representations just as in the Equivaient RSHGC Problem; and, the u-v planes must pass completely
through the shape, so the axis is actually prevented from pointing directly away from the shape. This
latter restriction excludes the axis from belonging to the projection of the shape through its own apex
(figure 15).

3.5 Surface Normals of an SHGC

The surface normals for an. SHGC can be defined wherever the contour function C{t) is
differentiable (figure 16). |

Equation (3-1) gave the coordinates of a point P(s,t) on an SHGC. From this, we can calculate the

tangent vector to the surface in the direction of increasing s as
P (ugsna e v 2 1+ uyeos a2l )
- = u sinag-—, v.[l)—, + u_.(t)cos a —
ds c ds’ ' ds ¢ ds

and the tangent in the direction of increasing t as
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-

—~— —
Figure 16: Surface Normal of an SHGC

oP du dv du
— = { re) sin.a —5=, r(s) =S~ r(s) cos a —<~ )
ot dt dt dt

du dv du
= r(s) ( sin @ =S~ —L o5 a —%-
dt dt di

So, the outward-pointing surface normal vector N'(s,t) at P(s.t) is the cross product of these:

oP apP
N(st) = ~——X—
ot .~ 3s
dr du dv dr dv
= —_— —C _
=18 —-v.(t)cosa + + U {t)cos a )
© ( -velo ds dt dt ct ds dt
du
-sina -—C-,
dt
dr dv dr du
in oy —— P 1
-u () sina + v.(t) sin «
C() ds dt ¢ ) ds dt )
dr dv du dr
= r(s) { h(t) cos @ — + —S=, ~sina—S~, - h(t) sina—)
ds dt dt ds
where h(t), defined by
dv du u v
= < _ —< _ C o]
att) = uglh =2 ~ Vel 5 dug/dt  dv/dt

is the Wronskian of the contour functions v, and v, [14]; h() = O implies that the SHGC has a line

segment for a cross-section contour, i.e. is degenerate.

We will use N(s,f) parallel to N'(s,t), defined by



N'(s,t . dr dv du : dr
Nis,t) = (54) = (h(r)cosa— + —L- _sin a-—-g-, - h(t) sin a—)
r(s) ds dt dt ds

3.6 The Corresponding Normal Theorem

o ———

— T

—

— ~
Pl B
---.::ﬁj/ ‘/

—
—

— ~N p

N -

N e

Figu re 17: The Corresponding Normal Theorem

Figure 17 shows that the surface normals on a Linear SHGC are paraltel along contours of constant
t, and for a Polygonal SHGC they are parallel along contours of constant s within a face. This is
stated in the Corresponding Normal Theorem: An SHGC is Linear iff for all s, dN/8s = (0,0,0); an
SHGC is Polygonal iff for aimost all t, 9N/t = (0,0,0). This says that the surface normals for an
LSHGC depend only on t, and for a face of a PSHGC depend only on s.

For the first part of the theorem, we begin by noting that

oON d? d?r

.
—— = h(t)cos a—~, 0, -h(t)sin
- ( () a— 0 adsz)
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Now for an LSHGC, d?r/ds? = 0, so 3N/3s = (0,0,0) for all s.

Conversely, if 9N/9s = (0,0,0) for all s, then either h(t) = 0, sin a and cos a are both 0, or d°r/ds?

= 0. If A(t} = O, the shape is degenerate. It is impossibie for sin a and cos « to both be 0. So, the
only interesting case is that in which d?r/7ds? = 0, i.e. the shape is an LSHGC.

For the second part of the theorem, note that

N dr dh  d¥ d%u dr dn
—=(cosa——+—2c—, -sin a 2,-sina-——)
ot ds dt dt dt ds dt
where
dh d3v d%u

— gy (t)_JL - v {t _C

dt C™ a2 CQ dr?
Now for a PSHGC, dzuc/dr2 = 0and d2vC/d12 = 0 for almost all t (except at the vertices), so dh/dt =
0and gN/3t = (0,0,0).

Conversely, suppose dN/9t = (0,0,0) almost everywhere. Using the v-coordinate, since sina = 0
is impossible (it implies that a = 0, i.e. the axis is contained in the cross-section planes), it must be

that d"’uC/dr2 = 0. Then wherever gN/3t = (0,0,0), we have

oN ) dr d% dr d¥
—_—= 1+ unft)cosa— 4, 0, -vu t) sin @ — —2-
ot (« cl ds) ar? ol ds df )

So from the s-coordinate, either u(t) = 0 or dr/ds = O or d2vc/dr2 = 0. lfuu(t) = 0, the SHGC is
degenerate (planar). If dr/ds = 0, using the u-coordinate, dzvc/dr2 = 0. So, the only interesting
case is that in which d2uC/d12 = 0 and dzvc/dtz = 0, i.e. the contour C{¢) is locally linear. When this

is true for aimost all t, C(t) is piecewise linear and the shape must be a Polygonal SHGC.

The Corresponding Normal Theorem is especiaily useful in shadow geometry, since the "shadow

volume" (the volume of space shaded by an object) is an LSHGC {figure 18) [17].
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Figure 18: Surface Normals of the Shadow Volume
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4. Projections of SHGCs

In this section, we will begin by exploring the projections of SHGCs onto images. Then, we will
describe how images can be analyzed to determine the SHGCs depicted. Although the formulations
will begin with the most general cases, most of our attention will be given to the case of Right Circular
SHGCs, since these are sufficiently constrained to allow interesting analysis from imagery without

additional knowledge sources.

4.1 Projected Contour Generators

image scena

!

contour contour
generator

/

Figure 19: Contours and Contour Generators

Suppose we have an SHGC, and we project it along the direction of a vector F = (fw, for fs), as in
figure 19. The contours along which the surface is tangent to the line of sight as seen from direction
F {i.e. occlusion, or parallelism to F) wiil be projected by the ends of the SHGC, or where N L F,i.e. N
“F = 0. The points on the SHGC projected onto such contours are called contour generators [11].
(Of course, if the SHGC is opaque, some of the contours may be hidden from view.) From this point
on, we will use the term "contour"” to mean "image of a contour generator” (in the above sense), and

"cross-section function” to refer to C(t).

On the contour generators,

dr dv du dr
0=NF=f {(h{hcosa— + —=) - f_sin a —S— — f_h(t) sin a —
W( 0 ds dt ) v dt § ds

where h(t) is the contour Wronskian, as previously described.
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Figure 20: Viewing Direction and Angie

Unless otherwise stated, we will presume in the following discussion of projection and imaging that
we are dealing only with Right SHGCs, i.e. SHGCs with cross-sections perpendicular to thé axis. This
allows the simplification of rotating the w-v axes as desired; in particular, we will presume that Fis in
the W-Splane, i.e.f, = 0. Without loss of generality, we can then presume that Fis between - Wand
S, if the angle from Fto S (the viewing angle) is o, then F = (-sin ¢, 0, cos o) (figure 20). Additional
simplification arises for an RSHGC since sin a = 1 and cos a = 0. Then, for an RSHGC, the contour

generator points satisfy
dv : dr
0 = sing —<% + hit) cos o — (4-1)
dt ds
There are three interesting cases, illustrated in figure 21: end, side, and oblique views. If F|| 8
("end view"), sin ¢ = 0 and the contour generator points satisfy

0 = h(t) &
= h{t) —
ds

dr

In this case, either A(t) = 0 ord— = 0. But, A(t) = 0 only if the RSHGC is degenerate (planar), so the
5

only interesting case is dr/ds = 0, i.e. the contour generators are cross-sections at extrema (relative

maxima and minima) of r(s) (Marr’s "radial extremities" [11]).

If F]| W ("side view"), cos ¢ = 0 and the contour generator points satisfy
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: oblique view :

end view

side view

Figure 21: End, Side, and Oblique Views

0< Y

dt

So, the contour generators are at the extrema of vc(r).
If Fif Sand F{f W ("oblique view"), there is no simplification from equation (4-1).

It is easy to imagine a dichotomy for oblique views between "end-like" views and "side-like" views
as if there were an abrupt change from one to the other as F swings from Sto W. However, there is

actually no abrupt change, but rather a steady change in the contour generators.

4.1.1 Planarity of Contour Generators

A set of points {P} = {(pw, Py ps)} is planar iff there exist constants a, b, ¢, and d such that, for all
points in the set, ap,, + bpv + cpg + d = 0. We can use this to determine some conditions on

planarity of contour generators.

In an end view, 0 = dr/ds along a contour generator. Thus, the points on a contour generator

satisfyp_ = s. where dr/ds = 0. So,
s 0 85
Opw+0pv+ps—30=0
and the contour generator must therefore be planar. Further, the plane containing the contour

generator is perpendicular to the viewing direction F = (0, 0, 1) for an end view since F* P - Sy = 0.
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in a side view, 0 = dvc/dt. But this is a function of t, so dvc/dt ¢ = 0 for some t: Each such
0

value of t defines a single contour generator. On this contour generator, t = t, and

P(S!ro) = (pw’ pv’ ps) = (uc(ro) r(s), VCUO) r(s), S)
Py Velty) = P, uclty)

vC(t‘o)pw - uC(rO)p\r + Ops +0=0
so the contour generator is planar. In addition, if for such t, we have uC(rO) = 0, then the equation
can be simpilified to P, =0, i.e. the plane containing the contour generator is perpendicular to F (and

paratlel to the image plane}.

However, for oblique views, the contour generators are generally not planar. There is no easy
 method for evaluating the planarity of the contour generator defined by equation {4-1). Instead of the
above criterion, if specific functions uC(r), vc(r), and r(s) are known, the torsion of the contour

generator can be evaluated; it must be 0 for the contour generator to be planar [4].

In the special case of LSHGCs, we have r = m (s - so) and dr/ds = m. So, the contour generator

satisfies:
dv )
O =sino —th— + mh(t)cos o {4-2)

The above expression is only a function of t. Thus, for a given contour generator, the above equation
holds true for some value of to» and the contour generator is planar by the same reasoning as used for

a side view. So, for an LSHGC, every contour generator is planar.

4.2 Images of Right SHGCs

The world coordinate system is defined as shown in figure 22, by aligning X and Y horizontally and
vertically (respectively) on the image plane, and letting Z point towards the eye (or camera) The

viewing direction F is then the same as Z, i.e. F = (0,0,1)_ _ {where xyz denotes world coordinates).

Xyz
The discussion of imaging in this paper will be primarily limited to orthographic projection, in which a

world point (x’y‘z)xyz is mapped onto the image point (x,y)xy.

Suppose we are looking at an RSHGC. Without loss of generality, we can presume that Sis in the
X-Zplane, between Z and X. Then the viewing angle ¢ is measured from Ztowards S {since F = Z2).
Since W-V-S is right-handed, W is in the X-Z plane between X and - Z and V points vertically
upward, V = Y. The important vectors are then:
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Z=F

eye p S

Figure 22: Object and World Coordinate Systems

F =(-sine, 0, cosa),,, =00 1),

W=(0,020,, = (cos o, 0, ~sin cr)wz
V =0, 1,0, =0 1,0,
S =(0,0 1), = (sin o, 0, cos “)xyz

For any point P,

P = (w,v,s)ws= wW+vV+sS
= (wecoso + ssing, v, —wsing + scoso)xyz

A point P(s,t) on an RSHGC is therefore

P(s,t) = (ug() r(s), vt rls), 8),ug
= (uC(t) r(sycos ¢ + ssin g, vc(t) r(s), —uc(t) r(s)sin o + scos o)xyz

and its image under orthography is {figure 23)

Hs,t) = {x,y) (s,r)xy = (uc(t) r(s)cos o + ssin g, vc(t) r(s)) Xy

We will presume that the image of the origin of the RSHGC is (0,0)xy; gtherwise, an additional
translation of the image points will occur. In addition, we are presuming here that there is no scaling

difference between w-v-s and x-y-z coordinates.

4.2.1 Contour Generators Under Perspective Projection

While the bulk of this discussion concerns orthographic projection, in which the image of a point {x,
R z)wZ is (x, y)xy, it is also possible to analyze the contours of RSHGCs viewed under perspective

projection, in which the image of (x, y, z), IS (-x/z, - y/z)xy if the unit of measure is the focal length

xXyz
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Figure 23: Image of a Point on a Right SHGC

of the lens (this is the same coordinate system as that of Shafer et al. [15]). Since translation in space
affects a perspective image, it is necessary to generalize the imaging model used above to allow for
the position of the object in the scene, as well as the possibility that the axis of the image of the object

does not pass thrcugh the origin of the image.

eye=Pe

Figure 24: Imaging Under Perspective Projection

The contour generator analysis itself can be accomplished by considering the eye (center of the
lens) to be located at a point Pe = (we, Vg se) in the object-centered coordinate system, as in figure
24. Then, at each point P(s,t) on the surface of the object, the line of sight is the vector F(s,t) from the
eye to P(s.i), defined by:



Fis,t) = P(s,t} - Pe
= (uc(t) r(s) - W, vc(t) r(s) - Vgr$ = 8§

)

Along a contour generator, we stillhave N L F,s00 = N°F.

e

While both the imaging and contour generator problems are therefore more difficult under
perspective projection, they may still be solvable, particularly for relatively constrained cases such as
the analysis of Right Circular SHGCs.

4.3 Projection and Imaging for Right Circular SHGCs

For Right SHGCs which are also Circular SHGCs (CSHGCs), there is considerable simplification in
the orthographic projection and imaging relationships. Recali that, for a Circular SHGC,

uc(r) = cos 27t and vC(t) = sin 27t

So,
du dv
—L - _2¢sin2qt and —C. - 29 cos 2nt
dt dt
and
v du -
) = ug—2 - ve—— = 27 cos? 2ut + 2w sin? 2at
dt ct
= 29

The contour generators for an RCSHGC therefore satisfy

dr
0 = 27w sin o cos 2wt + 2wcosa—a~—
s

i.e. {figure 25)

1 1 dr
t = —cos' ( —cota—) (4-3)
29 ds

So atlong the contour generator,

dr
cos 2wt = —cot g ——

ds
sin 2@t = £ 1 —uC(r)2 == \/1 - cot? g (dr/ds)?

where vc(t)zo on the upper half of the shape, and-vc(t)go on the lower half.

uel)

Vol
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contour generator
(t as a function of )
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Figure 25: Contour Generator on a Right Circular SHGC

Now, since t is a function of s along the contour generator, the points P(s,t) aleng the contour

generator can be specified as P-5(s), a function of s only:

dr
PCG(S) = ( —cot a r{s) —, xr(s) \/1 - cot’q (dr/ds)2, s )
ds
and the contour generator includes points such that vC(r) is defined, i.e.

d
1-cot’o (-——r-)2 >0
ds-

dr
| — | < tan a|
ds
The contour generator is not generally planar in an oblique view.

On an RCSHGC, the image of a point P(s,1) is
Ks,t) = (r(s) cos 2wt cos 6 + s sin o, r(s) sin 2"”)xy (4-4)

and for a point on a contour generator,

) ’CG(S) = (XCG' YCG)(S)xy

2
cos® o dr
— + ssin o, r(s) \/1 - cot’q (d.r/ds)2 )
sing ds xy

={ -ns) (4-5)

" Further, the slope of the image contour, dyCG/dxCG, can be determined as a function of dr/ds using
the foilowing derivation:
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dx cos?a 2

d
CcG
- ris
ds sin o (()d

r dr
2 .,
+ (—) + sing
52 ds )

d’ dr
sing (1 - cot? o r(s)—5 - cot? o (—)* )
ds ds

dy . dr dr d%
Yea _\1-cor? ¢ (dr/ds® — - (1/V1-cot? o (dr/ds)? ol o ris)——
ds ‘ ds ds ds
dr d? dr

= (1/V1 - cot? o (@r/ds)? ) — (1 - cot? a Hs) —5 - cot? ¢ (—2)

. ds ds ds
dy dy ds dr '
LG, 7CG ={1/ \/s:'n2 o - cos? g (dr/ds)? ) — (4-6)
dxCG ds dxCG ds

4.3.1 Qcclusions and Singularities in image Contours

Where |dr/ds| > ltan |, there will be no points on the contour generator. This causes acclusion of

the contour generator from view, with resuiting discontinuities in the visible contours.

To study this phenomenon, suppose we begin with the object at a side view (o = #/2), and let us
study the contour generator as we rotate the object towards an end view (o = 0). At the star, tan o is
infinite and |dr/ds| < tan o for all s. There will be a single continuous contour generator on the

object, which will in fact be planar {(running along the top and bottom of the object) (figure 26).

As we rotate the object slightly, decreasing ¢ and hence tan ¢, as long as [dr/ds| < tan o towards
that end. the contour generator will still be continuous (figure 27). However, it will no fonger be
planar (uniess the object is also a Linear SHGC, which we will not consider further here). F_rom
equation (4-3), we see that where dr/ds is 0, t = 1/4, i.e. the contour generator is on "top" of the
object. (Of course, there is also an identical contour generator on the bottom.) Where dr/ds <0, >
1/4 and the contour generator is pushed away from us; where dr/ds > O, the contour generator is

pulled towards us. The variation in t as we travel along the shape is expressed by:

dt d?r
— = ( 1/2ncoso \/sin2 ¢ - cos? o (dr/ds)? )——2-
ds ds
Since |dr/ds| < |tan o| along the contour generators, the sign of dt/ds depends only on the sign of
d?r/ds?. Note also that |dr/ds| > |tan o| at the ends of the object, hence the contour generator no

longer includes the ends as the object is slightly rotated away from a side view.
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Figure 26: Contour Generator in Side View

Let us presume for the moment that the object is thinner at the near end, i.e. dr/ds < 0 everywhere.
Eventually, we rotate the object so much thatdr/ds = ~tan ¢ at some value of s, say Sy where dr/ds
is at a minimum (figure 28). At this value, since dr/ds |S = —tan o and d°r/ds? |S = 0 (because S
is a relative minimum for dr/ds), we have dxCG/ds |s r_—r.' 0 and dyCG/ds [s = 0. mThus, the contour

m m

generator is tangent to the line of sight at s m°

If we rotate the object yet farther, there will be an interval (s, s,) around S, in which dr/ds < —tan
g, i.e. for which no contour generator points exist (figure 29). What has happened is that the former,
single contour generator has been split into two separate contour generators, corresponding to
vaiues of s such that s > Sy, and s < S, Along the contour for s > Sy all points will be visible in the
image (i.e. none are occluded by the object itself in this vicinity). Further, note that the limit of
dyCG/dxCG 15 infinite as we approach Sy from above, i.e. the contour in the image becomes
asymptotically vertical as we travel towards 8y’ the contour thus "flares out" towards the vertical in

this region.
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Figure 27: Contour Generator in Near-Side View

Meanwhile, along the contour fors < s a the object itself will occlude part of the contour generator,
for values of s above some value s, (where s _ < sa) (segment X in figure 30). Suppose the contour

generator is occluded for some s, wheres_ <s,<s,. Then

Js,2s, such that x . (s,) = xggls,) and Veg(S ) = lveglsy)!
This, unfortunately, cannot be further simplified to a condition on s without some knowledge about
the behavior of r(s) (the fact that dr/ds > - tan o above S, gives no useful constraint here) -- thus,
segment X (in figure 30) is hard to characterize. in any event, r(s) can be determined for segments A,
8,and Y.

What we have seen is a single image contour splitting into two parts connected by a sort of "T"
junction; the split occurred at the point at which the contour generator was tangent to the line of
- sight. This illustrates an important kind of "special viewpoint” for curved surfaces: If a visible arc in
the scene is tangent to the line of sight, then a small variation in the viewpoint can cause a topological

change in the image of the arc.
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Figure 28: Contour Generator Singular When Tangent to Line of Sight

4.3.2 Cross-Sections Described by Fourier Coefficients

The use of Fourier coefficients for the functions uc(t) and vC(t) allows more complex cross-sections
than circuiar ones to be described, while retaining some degree of mathematical tractability.
Suppose, for example, that the cross-section of an RSHGC is described by one set of Fourier
coefficients, which allows ellipses with arbitrary position, rotation, scale, and eccentricity. Using the

notation of Kuhl and Giardina [10], we have:

Cit) = (uc. VC)(J‘) = (A0 + &, cos 2at + b, sin 2at, C0 + C,Cco8 29t + d, sin 27t)

1
S0

du
_(;;:,_ = -2ma, sin 2wt + 27wb, cos 2wt



image top view
showing contour generator

Figure 29: Contour Generator Split at Near-End View
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Figure 30: Contour Pieces Correspond to Disjaint Intervals of s

dv .
—L . —2fn'c1 sin 27t + 27rd1 cos 2ut

dt
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h{t} = 27 ( (A0d1 + Cob1)cos 27t - (Aoc1 + Coa1)sin 27t + a1<:1f1 + b1¢.:1 )
The points on the contour generators must obey:

O=sing (d1 cos 2ut - ¢, sin 2wt)

1

dr
- Ccos or-d-;- ( (A0d1 + Cob1) cos 2wt - (A0c1 + Coa1)sin 27t + a1d1 +be, )

t=(1/2m)sint ((—eg + Ve + 2 - g%)/7(e® + A))

where

dr
e= -c,sinc + (Aoc:1 + Coa1)cos o’g

dr
f= d1 sing ~ (Aod'1 + COb1) cos a:s—

dr

g = —(a,d, +b,c,) cosa?s-
Since t has been expressed here as a function of s along the contour generators, we can presumably
express points along the contour generators as P (s) and contour points as log(s). Much of the
following analysis of Right Circular SHGCs will therefore be applicable for RSHGCs with arbitrary
ellipses as cross-sections; while the closed-form e::cpressions will be complex, actual numeric analysis

should not be difficult.

For cross-sections described by two sets of Fourier coefficients (i.e. Ay ay by, b2, Co' €y Co d1,
d2), analysis is yet maore difficult but still conceivable., For additional coefficients, however, such

closed-torm analysis seems beyond tractability.

4.4 Contour and Silhouette Analysis for Right Circular SHGCs

In image understanding, we are faced with the problem of analyzing image contours rather than
predicting them. We can accomplish this task using the above description of the properties of

contour generators.

Suppose we have a line drawing consisting of visible (i.e. unoccluded) contours, each of which is
the image of some contour generator on a Right Circular SHGC. By analyzing the contours, we can

construct a description of the solid shape portrayed.
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Figure 31: Aligned Image of an SHGC

First, we need to determine the viewing angle ¢ and to align the image as in figure 31, so the
images of the endpoints of the axis A(C) and A(1) are at (O,O)XY and (sin o, 0)xy, respectively; this
conforms to the imaging model presented previously. Then, we can analyze the contours to recover
the shape; for a Right Circular SHGC, we need only determine r(s), the radius function, to have a

complete description of the shape.

We will begin by addressing the latter problem -- analysis of contours when the image is aligned

and o known. Then, we will examine how to determine ¢ and perform the alignment.

4.4.1 Contour Analysis

Along a contour generator of a Right Circular SHGC, recall that equations (4-5) and (4-6) give
xCG(s), yCG(s). and dyCG/dxCG as funqtions of s, r{s), and dr/ds. These allow us to solve for s, r(s),
and dr/ds, the shape description, as functions of xCG(s), yCG(s), and dyCG/dxCG, which can be

measured in the image. We obtain:

Xea(S) = Yegls) cos® o (dy o /dx g
sin ¢

r{s) = yCG(s) \/1 + cos’o (dyCG/dxCG)2

dr dy.
— = (sing/ \/1 + cos? o (dy e /dx ) )TCQ-

ds Xcg
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Figure 32: Contour Analysis Results in Shape Description

8o, given any contour point (xCG(s), yCG(s))xy, and the slope dyCG/dxCG of the contour at that
point, we can determine s, r(s), and dr/ds at that point. By doing this for all contour points, we can

determine as much as possible about r(s) from the image (figure 32).

As stated earlier, this analysis presumes that ¢ is known and that the image is appropriately

aligned.

4.4.2 Occluded Contours and Silhouettes

We have seen how to analyze contours to determine values of (s); now, we will discuss how much
of r(s) can be reconstructed in this manner (i.e. over what range of values of s). As we already know,
there is a contour generator only where |dr/ds| < |tan o}; values of s for which |dr/ds| > [tan o|
therefore do not correspond to any points on a contour generator, and r{s) cannot be determined for
these values by examination of image contours. In addition, as described in section 4.3.1, the object

itself may occlude portions of the contour generator from view.

For analyzing a silhouette, exactly the same methods and conditions apply, except that, using the
notation of section 4.3.1, the contour for s < S, will render invisibie the contour for s > Sy which lies to
the left of ICG(SC); thus, in figure 30, only segments A and 8 will be visible. This may be stated as

follows: The contour generator for s, is occluded or invisible if

0
Js,=s, such that x . (s,) = XealSp) and [yogis )l 2 lyoglsy)l

The only difference between this case and the above discussion fors < s o I8 that the requirement s, >

s, has been generalized to 8, * Sy Thus, silhouettes are simply images of contours in which certain

portions of some contours are not visible.

If dr/ds > 0, the situation is just the above viewed from the opposite direction (i.e. segments A, 8,
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and X in figure 30 will be visible, and segment Y will be occluded). In this case, when the contour

generator splits, the arc fors < S, is still occluded, but the arc for s > s._is a closed curve in the image

b
rather than flaring out as above. Silhouette analysis will be identical; indeed, the silhouette of an

object is identical {to within a reflection) viewed from opposite directions.

In any of these cases, there will be an interval of s over which r(s) cannot be computed, say (si, sj).
However, we can compute r(si), r(sj), dr/ds ls, and dr/ds IS. For practical image analysis, it is
, . _ i . | .
possible to estimate r(s) over (si, sj) by fitting a function which conforms to these constraints. For
example, a cubic pelynomial can be fit to the data:
r{s) = as® + bs? +cs + d

80

dr

ds

= 3as® + 2bs + ¢

Then the foliowing system of linear equations can easily be solved to determine the values of a, b, ¢,
and d:

3 2

ris) s, s, s, 1 a
i - 5 12 i
r(sj) S §; S| 1 b
dr/ds | 3s? 25 1 0]jc
dr/ds | | 822, 1 0]]|d
i .

4.4.3 Aligning the Image

The above analysis has presumed that we know the viewing angle o and have aligned the images of
the axis endpoints A(0) and A(1) onto (0,0)xy and (sin o, O)Xy, respectively. We will now address the

problems of aligning the image and determining o.

Suppose we are given an image of the contours of a Right Circular SHGC. arbitrarily scaled,
rotated, and translated, and viewed from an unknown angle. We can immediately determine the
image of the axis, since this will be an axis of symmetry in the image, and rotate the image so this is
horizontal. By translating the image, this axis can be made to line up with the x-axis. Brooks [3] and

Marr and Nishihara [12] discuss this issue of finding the image of the axis of a generalized cylinder.

We must next determine which end of the object is nearer, so this can be placed on the right as in
our imaging model. If the left end is closer, we will need to reflect the image about the y-axis, or

equivalently rotate it 180° about the origin.
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We must also determine ¢ and find the images of the axis endpoints. Ijetermining o is more
important, since it affects both the image alignment and the shape of the reconstructed function r(s).

The axis endpoints, on the other hand, affect only the scale and shiiting (along s} of r(s).

Figure 33: RCSHGC With Near End Flat

If the closer end of the object is flat as in figure 33, i.e. r(1) > 0, then the edge of the cross-section at
that end will produce a contour in the image, which will be a vertically elongated ellipse. This is a very
useful configuration, since we can easily determine which end of the object is closer. Then, we know
that the center of the ellipse must be the image of the axis endpoint A(1); further, we can compute the
viewing angle o from the eccentricity of the ellipse, using cos ¢ = b/a, where a and b are the

semimajor and semiminor axis lengths, respectively.

i the farther end of the object is flat and not occluded, i.e. r(0) > 0 and dr/ds |{J <tan g, then we will
se exactly half of an ellipse, which can be analyzed as above to determine which end of the object is

farther, the image of A(0Q), and o.

If neither end can be analyzed as above, we may be able to determine whether any "T"-shaped
occlusions occur along the contour; if so, the occluding contour generator is on the nearer portion of
the object. Failing this, we cannot frdm contours alone decide which end of the object is nearer.
Fortunately, there are many other potential sources for alignment information, such as the object’s

length or width, or surface normais as determined by photometry or range data.

It should be noted that, for a curved surface, scaling the figure along s and altering the viewing
angle ¢ are not complementary; i.e. we cannot keep the image contours constant by altering the
viewing angle and compensating with elongation of the object. The reason is that elongation does
not alter the position of the contour generators on the shape, but when the viewing angle is altered,

the contour generators "creep” along the surface to a different position. This occurs because within



42

a tocal neighborhood of a point, the angle between the surface normal N and the viewing direction F
varies. This may be contrasted, for example, with polyhedra under orthography, in which this angle is
constant, causing contour generators to remain in place, and allowing elongation and rotation of the
viewing direction to compensate to keep the image constant. The dependance of contour generator
position upon the viewing angle is the reason that s and r(s) depend upon ¢ in a complicated manner

rather than being, say, proportional to sin ¢ orcos o,

4.5 Contour and Siihouette Analysis for Other RSHGCs

There are several steps to be performed when analyzing contours of any Right SHGC, as illustrated

in the above discussion of Right Circular SHGCs:

1. Finding the image of the axis line,

2. Finding the images of the axis endpoints.
3. Deciding which end of the axis is nearer.
4. Determining the viewing angle, .

5. Determining the cross-section, C(t).

8. Determining the radius function, r{s).

Steps 1-4 are required to align the image; then, contour analysis can proceed to perform steps 5-6.

dr
If the near end of the RSHGC is flat and bounded by a sharp edge, i.e. r(1}> 0 and d_ , is finite, its

5
edge produces a contour which can be analyzed to assist in steps 1, 2, and 4, and to solve 3 and 5. If
the near end is not flat but the far end is flat and produces a visible contour, it can be used to assistin

steps 1, 2, 4, and 5, and to scive 3.

For solving step 1, we can also use the fact that, for any two points with the same s-value but
different t-values, the tangents to the surface-in the direction of increasing s will intersect at a point on

the axis (figure 34). This can be seen by noting that on an RSHGC, for given values of sand t,
P(s.t) = (ult) r(s), v (1) r(s), 8)
W) v, 1)
— = W) —— v —
os Cds' C ds

So the vector from P in the direction 9P/ 3s intersects the axis at the point
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Figure 34: Tangents at Corresponding Points Intersect on the Axis

r(s) )

(0,0 s-
dr/ds

Since this is independent of t, we can take two points with the same s-coordinate, draw the raspective
tangents dP/ds, and the intersection of these latter will be some point on the axis. In the image, the
same relationship holds, using tangents to visible contours, providing the contour generators are arcs
of constant t (so that their tangents are in fact P/3s). Of ocurse, to make use of this phenomenon,
some means would be required for finding points with the same s-coordinate. Surface markings or

knowledge of C(t) might maks this possible.

4.5.1 Contours of Right Linear SHGCs

Right Linear SHGCs have some additional properties that can aid in contour analysis. First, recall
that equation (4-2) gives the condition satisfied by points on the contour generator of a Right Linear
SHGC. This is a condition only on ¢, so the contour generators are curves of constant t. This is
implied also by the Corresponding Normal Theorem, gN/9s = (0,0,0) for an LSHGC.

So, each contour generator is a straight line of constant ¢ an the surface. These lines must all pass
through the apex of the shape, so any two such contours in the image must intersect at the image of
the apex. This is one point on the axis; by the the Pivot Theorem, the axis can then be defined in any
direction passing through this point. On the other hand, it may be very difficult to determine ¢ unless
the cross-section function C{t) is known in advance, since so little information is contained in the

image contours,

interestingly, the contour generators in an oblique view need not correspend to relative maxima
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Figure 35: Contour Generators Need Not Be At Vertical Extrema

and minima of vC(r), i.e. the contour generators need not be on the "top" and "bottom" of the shape,
but may occur where de/dr = 0. For example, figure 35 shows a cone with a vertical stripe. In an

oblique or end view, parts éf the surface will be visible on both sides of the stripe.

On a Right Linear SHGC, there will be no partially occluded contours (except possibly at the near

end of the shape), since all contour generators are linear.

4.5.2 Contours of Right Polygonal SHGCs

A Right Polygonal SHGC has two types of contour generators: faces tangent to the line of sight,
and creases. A contour generator on a face obeys0 = N F,so

dr m_ tan o

ds mubv - mvjbu

Figure 36: Crease Contours for a Right Polygonal SHGC
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In addition, each vertex of the polygonal cross-section creates a crease on the surface which might
be visibie in the image, so each crease is in effect a contour generator (though not normally tangent
to the line of sight) (figure 386). If C(to) = (”0' vo) is a vertex, then

P(s,ro) = PCG(S) = (u0 r(s), Yy r(s}, s)

I(s,to) = ICG(S) = (xCG,yCG) (s)xy = (uD r(sycoso + ssinw, Yo r(s))xy
Since crease contours provide so much infermation in the image of a Right Polygonal SHGC, we will

limit our attention to creases in the following discussion.

First, we note that tangents to crease contours for corresponding points intersect at a point on the
image of the axis, just as described above for contour generators on an RSHGC. !t is especially easy
to find pairs of corresponding points on a Polygonal RSHGC, as in figure 37. Suppose C(r1) = (u1, "'1)
and C(t,) = (u,, v,) are vertices corresponding to visible crease contours. Then for any s, the slope

of the image line joining .'(s,r1) and f(s,t,) is:

Ay Vs r(s) — v ] r(s) v v

= _ 2~ "1
AX u, r(s)cos o + ssino - u, ris)coso - ssing (u2 - u1)cosa
N N
—
/ \ .
=== 17
P e
et /

Figure 37: Tangents of Crease Contours Intersect on the Axis

which is independent of s. Thus, the slope of the line joining corresponding points on the two crease
contours is constant. By examining either end of the PRSHGC, we can pick two vertices, find the
slope of the line joining these, and thus find pairs of corresponding paints all along the associated
crease contours. In this way, the image of the axis can be found. This will only fail in the event that
the crease contours have constant siope, i.e. the shape is also a Linear SHGC. In such a case,

however, as described above, the apex is easily found, and other points on the axis can be arbitrary.
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Unfortunately, there seems to be little direct evidence in the crease contours to indicate the viewing
angle o. Similarly, while the authors believe the images of the axis endpoints ocught to be easily
determined, no direct method has yet been found. Perhaps this problem is deceptive in its apparent
simplicity. In any event, at the present time, outside knowledge seems necessary in order to align the

image for contour analysis.

Supposing that the image has in fact been aligned in accordance with our imaging model, the
analysis of the crease contours is straightforward, and is based on these formulae:

dx dr
—CG. -y cosg— + sing

ds 0 ds

Yee _, O

ds  O%ds

dy v, (dr/ds)
cos o (dr/ds)

dxCG sino + ug

So, at any point I,,(s) = (x.5Yeg) ()

Va xCG(s) - Uy Yepls)cos o

s =
Yo sineg
.
s) = Ycals)
Yo
Er_ _ sinc (dyCG/dxCG)
ds Vg - Uycos e (dyCG/dXCG)

A "special viewpoint” will not normally arise with crease contours, since a crease contour is

tangent to the line of sight only if dxCG/ds = 0and dyCG/ds = 0, i.e. in one of two situations:

edr/ds = 0and ¢ = 0: an end view

oV, = Oand dr/ds = —-tan o / Uy a vertex on the u-axis, which creates a horizontal
crease whose image cannot occlude (nor be occluded by) that of any other crease.
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4.6 Contour Generators in Two Views

- eye 1 eye 2

Py contour contour faN

generator 2 generator 1

Figure 38: Contour Generators From Twa Points of View

image scene

eye

Figure 39: Shadow Line is a Contour Generator for the Light Source

Suppose we have an object which is being viewed by two cameras, from two different directions.
What will the contour generators from one point of view lock like in the image as seen from the other

point of view? This is an important question for image understanding, since it bears on three different
imaging situations:

e Stereo -- Commonly, two different cameras are viewing the same scene, and
corresponding points in the two views must be found. However, the contour generators
from one view generally do not match the contour generators from the other view (figure

38). So, we need to determine how the contour generators from one image appear in the
other image.

¢ Range Finders -- A common type of range-finder has a separate illuminator and camera,
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and uses trianguiation to determine the distance to various points in the scene. However,
points occluded from illumination are generally not the same as the points occluded from
the camera. Since the boundaries of occluded areas are the projections of contour
generators onto background objects, we want to know how the contour generators as
pertains to the illuminator are viewed by the camera.

» Shadow Geometry -- In images with strong light sources and low ambient ("diffuse”) light
levels, shadows will frequently appear. If an object is illuminated, there will appear a
(usually highly visible} "shadow line” (also called “"terminator") separating the
illuminated part of the abject from the self-shaded part of the object (the part facing away
from the light spurce) (figure 39). This shadow line is simply a contour generator from the
point of view of the light source, and we want to know how to analyze its image as seen by
the camera.

Ao

- O - light source
TN

Figure 40: Two Angles Define the lltumination Direction

Since this last situation is highly intuitive, we will couch the following discussion in terms of
shadows. We willuse L = (/ ./, ls) to denote the direction pointing at the light source. The angle of
ilumination, A, will represent the angle from L to 8, and 8 will be the dihedral angle at S from the S-F

plane to the S-L plane (figure 40). Then

L={ I}y = (- cos f8sin A, sin 8 sin A, cos A)

{
w' 'yv''s
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On a Right SHGC, the shadow ilines mustobey N L L, i.e.

0=N"L

dv du dr
= cos B sin A—5 4 sin B sin A —= 4 h(t) cos A —
dt dt ds

shadow line

Figure 41: Shadow Line on a Right Circular SHGC

In the case of a Right Circular SHGC, as shown in figure 41, the shadow line condition simplifies to:

dr
0 = sinAcos (2nt - B) + cos ?\d—-
s

B 1 dr

t =— + —éos" { —cotA—)
27 27 ds

This is similar to the relation between s and t for contour generators seen from F, except for the

addition of the term 8/2# which represents the shift in t-coordinates due to the dihedral illumination

angle relative to the axis. On the shadow line,

‘ _ dr P >
uc(t) = ¢cos 2wt = —cos Bcot ?\—d—- - sin B \/1 - cot“ A (dr/ds)
s

vel) = sin2mt = V1 - u(0)?

- Veos? B ~ cos 28 cot® A (dr/ds)? - sin 28 cot? A (dr/ds)? [1 - cot® A (dr/ds)?] /2

From this point, while derivation of P(s), I(s), and dx/ds is achievable, the derivation of dy/ds, and
hence dy/dx, s, r(s), and dr/ds seems to be very difficult. The exhaustive analysis of such image
- contours is thus beyond our reach at present, even for the relatively simple case of Right Circular
SHGCs.
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One conclusion, however, can be reached: since the interval of uncertainty-of r(s) decreases with
an increase in the viewing angle o or the illumination angle A, we get additional information from the
shadow line for Right Circular SHGC only when A > o, i.e. the illumination direction is mare nearly

perpendicular to the axis than is the line of sight.

Under perspective projection from the second (iilluminator) point of view, for example if the light -
source is a point source rather than being infinitely far away, the illumination direction becomes L{s.f),

a function of s and t, and shadow-line analysis is far more difficult.

4.7 Analysis of Surface Normals

In an image understanding situation, information about surface normals may be avaiiable from
such sources as photometric analysis, texture analysis, shadow geometry, or range-finder data.

Surface normals can be used to aid in the analysis of an image of an SHGC.

4.7.1 Individual Surface Normalis of an RCSHGC

w scena

T

Figure 42: Knowledge of a Single Surface Normal

We will begin with the simplest case: a single surface normal of a Right Circular SHGC (figure 42).
With the image aligned as above, let i(s,t) be the image point at which the surface normal is given.

Equation (4-4) above gives l(s,i} as a function of s, t, r(s), and a.

The surface normal itself has two degrees of freedom, specifying its direction, since its length is

irrelevant. The surface normal of an RCSHGC is:
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N(s,t) = (cos2at) W + (sin27t) V - (dr/ds) S

o dr dr
= (cos ocos2nt - sinog —,

sin2nt, - sinocos 2wt — cos o —)
ds oz

We can describe the direction of the normal by its gradient [15]: if the normal vector is N(s,t} = (nx,
ny nz) (s,t)xyz, then its gradient is

G(S,f) = (PIQ) (S!t)

n sin o (dr/ds) - cos o cos 2qt

pls,t) = =% = — : (4-7)
n. sin o cos 2ut + cos o (dr/ds)
n — sin 2nt

qis.t) = L = (4-8)
n, sin o cos 2wt + cos o {dr/ds)

When Ks,t) and G(s,t) are known, therefore, we have four equations {x, vy, p, g) in five unknowns (s,

t, r(s), dr/ds, o). Thus, if one of the unknowns is given, the other four can be determined.

Suppose, for example, that the viewing angle ¢ has been determined by some other means. Then

we can solve for the four remaining unknowns: first p and g are used to determine t and dr/ds; then y
is used to determine r(s); finally, x is used to solve for s. The resulting equations are:

xq — ycos ¢ (pcos g - sin g)
s =

gsino
=-—1—sm1 g
2 vk
y Vk
r{s) =
dr -1-sino(pcoso - sina)
ds

coS o K172

where

k= (pcoseo - sino)2 +q2

Thus, from a single surface normal on a Right Circular SHGC, when the viewing angie is known, we

can determine the position of the corresponding point on the surface (s and t), the radius at that point
{r(s)), and the derivative of the radius function at that point (dr/ds) (figure 43).
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image x,y,p.q description r(s)

dr/ds

CE__}//\/

Figure 43: Analyzing a Single Surface Normal

4.7.2 Aligning the Image for Analysis of Surface Normals

The above analysis holds only when the image is aligned in accordance with these rules:
1. Thé image of the axis is on the-horizontal x-axis in the image.
2. The viewing angle ¢ is known.
3. The image of the far axis endpoint is at (O,O)X'y, and the near endpoint image is at (sin
o,O)xy. )
In general, condition (1) will not be difficult to estabiish, but conditions (2) and (3) may require
considerable analysis. We will call an image partially aligned it it conforms to {1), and aligned or
completely aligned if it conforms to (1)-(3). In addition, for partial alignment, we will require that the
images of the axis endpoints are at (O,D)xpyp and (1 ,0)x oyp (figure 44). If the coordinates of a partially
aligned image are denoted Xy and Yo then they are related to aligned coordinates x and y by the
formula;
XV Y
sine sino

(xp’yp)xpvp = (

The division of both coordinates is required to preserve the relative proportions of the shape and its

description.

To completely align an image which is already partially aligned, it is necessary to determine the
endpoints of the axis and the viewing angle. The axis endpoints may be completely invisible, thus
presenting an unavoidable ambiguity; also, in the event that the axis endpoints cannot in fact be
determinéd. the only penalty is a translation and scaling of r(s) relative to s, which is probably only a
minor problem for shape recognition. However, the determination of the viewing angle is an
_interesting problem in its own right, and the penalty for guessing wrong may be a considerable

distortion of r(s). Therefore, we will concentrate on the problem of determining the viewing angle.
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Figure 44: Complete and Partial Alignment of the Image

texture gradients shadew geometry
i — N
range data

Figure 45: Sources of Knowledge About Surface Normals

in real images, where surface normals of curved surfaces are being analyzed, one or more of the

following types of information are frequently being used (figure 45):
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e texture gradients -- Using texture gradients, including photometric' analysis, a one-
dimensional constraint can be determined between the components p and g of the
surface gradient [7, 8, 9].

e shadow geometry -- Using shadow geometry, the surface normal can be determined at
every point ajong the shadow line {17].

e range data -- Using a range-finder, the raw distance data can be used to determine
approximate surface normals at many points (almost every point) in the image.

While analysis of the constraints produced by texture gradients is beyond the scope of this paper,
the following sections explore the latter two kinds of information and how they can be used to
determine the viewing angle o.

The discussion herein will be limited to Right Circular SHGCs, for the sake of simplicity.

4.7.3 Cross-Sections For a Given Surface Normal

Suppose we have a partially aligned image of a Right Circular SHGC, and suppose further that we

are given a single surface normal. We know its position in the image, given by:
x(s,t) = r{s)cotocos 2wt + s

r(s) sin 2t

y(st) = ——————
sSinao

and the gradient of the surface normal, p and g as previously defined. (Note that p and g are the same

for aligned and partially aligned images.)

Figure 46: Cross-Section of a Right Circular SHGC Through a Point

As shown in figure 46, the cross-section of the shape through this point, an arc of constant s on the
surface, is a circle whose projection in the image is an ellipse. We can determine its equation using x

and y. First, we determine:



ysina X -8
and cos 24t = —
r(s) r(s)cot o

sin 2wt =

So

(x - s)sino \, (ysinrr)2

+
r{s)cos o r(s)
which is the equation of an ellipse with center at (5,0}, vertical semimajor axis of r(s) / sin ¢, and

horizontal semiminor axis of r{s) cos o / sin o.

We cannot yet determine the specific paramaters of the ellipse yet, since we do not know s, r(s), or
¢. However, we do have a surface normal given by N = {(p, g, 1) with p and g defined by equations
{4-7) and (4-8) above. Using x, y, p, and g, we can soive far s, ¢, r{s}, and dr/ds all as functions of the

unknown viewing angle, o, for a partially aligned image of an RCSHGC:

k= (pcoso - sfncr)2 +q2

xq - ycoso(pcoso - sinag)
S =

q
27 v
y sino VK
r(s}) = —————
q

dr -1 -sine(pcoso - sina)
ds cos o k2

Thus, given a single surface normal in a partially aligned image, the image of the corresponding

cross-section is an ellipse; this ellipse is determined as a function of the viewing angle, @.

4.7.4 Shadow Geometry for RCSHGCs

In figure 47, we have a line drawing of a Right Circular SHGC, whose shadow is visible and is cast
upon a flat surface. If the direction of illumination is known, we can determine the surface normals
along the shadow line [17]. This information can be combined with the occluding contour of the

RCSHGC, to determine the viewing angle.

We begin by partially aligning the image. Now, select a single point I = (x,y) along the shadow

Xpyp
line. At this point, the surface gradient (p,q} can be obtained.



Figure 47: Shadow Geometry Provides Surface Normals Along Shadow Line

For each vaiue of the viewing angie ¢, we can compute the implied vaiues of s, t, r(s), and dr/ds at

1. Now we can easily derive the following formulas for | the image of the contour generatorin a

CGxpyp'
partially aligned image, from the previously seen equations for I.,, the image of the contour

generator in an aligned image:

leaxpyp = ¥caYoa xpye

() 0052 0 — + §
Xmm = =r{8)cos“0c—— + §
cG ds
ris
g = _( ) \/‘l - cot? ¢ (dr/ds)?
sinc
d dr
_.yQG_ = (1 /\/sinzc - 60820"(df/d3)2 )_
clxce| ds

Now, if |tan o] > |dr/ds|, there must be some point on the contour generator corresponding to the
value of s at the given point I (figure 48}. At this point, the values of Xoor Yoo and dyce/dxce can be
determined by substituting for s, r(s), and dr/ds in the above equations, to yield:

ycoso{sina + cos? o [sin ¢ — pcos o))
X = X +
cG q

y([q2 + 2] sinfg - 2psineocoso - 1)1/2

Y = .
ca gsing


file:///Jsin2
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dycdd)‘:g
Pcg

Figure 48: Corresponding Point on Tangency Contour Generator

e -psing —cosc

with & defined as above.

possible points Pcg
with slopes dy/dx indicated

only matching Pcg and slope
~

incorrect——
slope

Figure 49: At Most One Corresponding Point Exists

In an image of a Right Circular SHGC, it is guaranteed that at most one point on the occluding
contour (and, of course, its reflection about the x-axis) will correspond to the same value of s as the
given point I. Thus, it is possible to search along the points (xCG,yCG) for all values of ¢, as shown in

figure 48, looking for a point which lies on the outline of the shape in the image. There may be more
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than one such point on the outline; however, at most one such point will have the correct contour
siope dyCG/dxCG in the image. When this point is found, the value of ¢ which determined it is.the

viewing angle for image. Fulil alignment can now be completed, and recovery of r(s} can proceed.

A summary of the process is this: An image of an RCSHGC is partially aligned. Now, given a
surface normal at a specific point, the corresponding point (and slope) of the occluding contour for
the same value of s can be determined as a function of the viewing angle ¢. By searching the image
for these points for ail values of o, looking for a crossing of the occluding contour exhibiting the
predicted slope, the viewing angle ¢ can be determined. The image can then be compietely aligned

for more detailed analysis of the shape.

4.7.5 Range Data Analysis for RCSHGCs

- s s \
- N
<\{¢i \‘:x\’T/&/

Figure 50: Range Data Yields an Image of Surface Normals

When a range finder is used to produce an image, the result is a set of distances to points in the
field of view. By fitting local tangent planes, surface orientations (e.g. gradients) can be determined
at many points in the image -- almost at every pixel (but with some gaps, if a common triangulation-
based range finder is used) (figure 50). The redundancy provided by such a large number of surface
gradients can be used to estimate the viewing angle in a partially aligned image. Here, as above, the

discussion will be limited to Right Circular SHGCs for simplicity.

4.7.5.1 Method of Minimizing Derivatives

Suppose we have used a range finder to determine the surface gradient at many points in a partiaily
aligned image of an RCSHGC. For each value of the viewing angle o, we can compute the

- corresponding values of s, ¢, r(s), and dr/ds at each surface normal, using the above formulae.
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image x,y.p.q description r(s)

dr/ds

00—

Figure 51: Two Surface Normals on the Same Cross-Section

If we had any two surface normals corresponding to exactly the same value of s, as in figure 51, we
could determine the viewing angle as that value of ¢ for which the two normais 'produced identical
values of s, r(s), and dr/ds. (The authers speculate that this vaiue will be unique.) In general,
however, we cannot assume that such a pair of surface normals will be present in the range data.
Instead, we can use each pair of surface normals to indicate the value of o which produces the best
consistency between the corresponding estimates of s, r(s), and dr/ds. Then, using some voting
scheme, the most preferred value of o can be selected for performing complete alignment of the

image and further analysis of the shape.

image x,y,p.q ) description r{s)

Y /T<T\/

—> [ 1

s1 52

Figure 52: Two Surface Normals on Different Cross-Sections

Consider a pair of points .'1 and 12 at which the surface gradients {i.e. normals) (p1, q1) and (pa' q2)
are known, as shown in figure 52. For any value of the viewing angle g, we can compute Sy, r(s1),
dr/ds 17 S r{s2), and dr/ds .2’ We would like to define a "complexity" measurement for r(s); then,
we can determine the value of ¢ which minimizes this complexity, and say that this value of ¢ is the

value indicated by our pair of surface normals.

Now, for any value of o, there exist an infinite number of functions r(s) which correspond to the
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constraints at s, and S, A useful kind of complexity might be the highest-order non-zero derivative of

r(s): the function r(s) with the fewest non-zero derivatives might be catled the "simpilest”.

With four constaints on r(s) (r{s) at two paints, and dr/ds at two points), the function with the fewest

non-zero derivatives will be a cubic polynomial, with three non-zero derivatives, of the form:
r(s) = as® + bs? + ¢cs + d
with the coeffecients a, b, ¢, and d determined as in section 4.4.2. Thus, for each value of ¢, the

coefficients a, b, ¢, and d can be determined for the cubic polynamial function r(s) relating two

surface normals.

We wish to select the value of o minimizing complexity, i.e. minimizing the number of non-zero
derivatives. Thus, we can choose among those cubic functions some "least complex” function, and
let the corresponding value of ¢ be the value indicated by our pair of surface normals. One measure
of complexity for these cubics might be |a|; since the third derivative d%/ds® = 6a, minimizing |a} is
equivalent to minimizing the magnitude of the third derivative of r(s). Ideally, we would hope to find a
value of o for which |a| = 0, i.e. a quadratic function r(s) sufficient to account for our pair of surface

normals.

Unfortunately, the expression for a is a complicated function:

L lspms) (dr/ds|_, + dr/ds| ) + 2(r(s,) = ris)

Substituting for s, r(s), and dr/ds in terms of o does not yield any simplification of the above result.
Because it seems difficult to find a usefu! analytic formula for ¢, some numeric technique to minimize

|a| may be necessary.

On the other hand, not every pair of surface normals need be analyzed. Only those surface
normals at points with similar values of s need be considered to prorfride meaningful constraint; this is
equivalent to saying that the assumption that r(s) is quadratic should only be applied locally, over
small intervals of s. As an approximation to this criterion, only surface normals at points with similar

values of x need be compared (figure 53).

The proposed method for the analysis of range finder images of Right Circular SHGCs is thus:
First, fit local surfaces to the range data, to yield an image of surface orientations. Partially align this
image. Now examine each pair of surface normals at points within vertical bands of some size (i.e.

with similar x-coordinates). For each such pair, determine the value of ¢ which minimizes la] (i.e. the
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Figure 53: Only Compare Surface Normals with Similar Values of x

magnitude of the third derivative of the cubic approximation to r(s)); that pair of surface normals will
"vote" for this value of o, possibly weighted by some confidence measure such as the computed

value of |s1 - 3 Find the value of o with the strongest support; assume this is the true viewing

2k
angle. Now, the image can be completely aligned for more detailed reconstruction of the RCSHGC

description.

While this method involves considerable assumptians about the true nature of the object being
observed, it is still significant that the analysis is attempting to minimize a viewpoint-independent

measure of the complexity of the object.

4.7.5.2 Method of Iinterpolating Normals

There is an alternative approach to analyzng range data, which avoids the approximation to r(s) in
the previous method, relying instéad on a smoothing assumption. In this tecnhique, processing relies
on a surface normal interpolation function, capable of determining the (approximate) gradient of the
surface normal anywhere in the object’s image, by interpolating between known values of the
gradient. '

With sﬁch a function availabie, whole ellipses can be fit to the data. Consider a surface normal
whose gradient (p,q) at a point (x,y) in a partially aligned image is known. Now, for each value of the
(unknown) viewing angle o, not only is the elliptic image of the cross-section through (x,y)
determined, but aiso the gradient at each point on this ellipse is determined {figure 54). For, at any

value of t, the corresponding image point (xt,yt) and gradient (pt,qt) are given by:
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Figure 54: Fitting Ellipses to Interpolated Surface Normais

ycoso (.'(1/2 cos 2wt + sino - pCcos o)

X, =X +

g

¥ K2 sin 2art -

W=
q
cos 20
py= -tane - > , 72
cosa (1 +sinolpcosa - sino + k'’ cos2nut])
- k"2 sin 2t
%

1+sineg{pcoso - sino + k2 cos 27t)

where k = (p cos ¢ - sin 0)2 + q?. {These are obtained from the formulae in section 4.7.3,

substituting the equations for s, r(s), and dr/ds into those for x, y, p, and q.)

At any such point (xt,yt), the interpolated gradient (p.l,qri) can he determined from the interpolation
function, using the image data in that neighborhood. An error measure can then be derived to
indicate how far the (interpolated) data is from the data predicted from the given point and the

assumed viewing angle o. One such error measure might be the angle between the predicted normal

Nt = (pt,ql,1) and the interpoiated normal N = (pi,qi,1), given by:

E(o,t) = cos’’ ———-‘—N N a PP+ a9 + 1

L— = ¢cos
NN GZ+aZ+ )2 (pF+ a2+ 1)




For a given value of o, an error measure E(o) might be computed by taking the average of E{a,t)
over some range of values of ¢ between approx. 1/4 and 3/4 (i.e. on the near side of the chject). Note
that, for some values of t, the object’'s surface might be occluded. The point (x,y) used to determine
all the values of E(¢) might then "vote” for that value of ¢ which minimizes £(a).

This method for analyzing range finder images is this: First, fit local surfaces ta the range data, to
yield a (sparse) image of surface orientations. Partially align this image. Now, for each surface
normal in some set of surface normals, determine the value of ¢ which minimizes E(c¢), the average
angle between the surface normals prediced by the selected normal and the interpolated normals
determined from the surrounding data. Each of the selected normals will "vote" for the indicated
value of ¢. Select the value of o receiving the strongest support; assume this is the true viewing

angle. Now, the image can be completely aligned for more detailed analysis.

This method makes weaker assumptions about r(s) than the previous technique, and probably
requires less computation. However, it does depend upon the existence of an interpolation function

for surface normals, and might also be more sensitive to noise in the data.



5. Conclusions

in this paper, we have presented several kinds of results. First, there have been specific
observations and formulae relating to:

o Parameterization of shapes, in particular Straight Homogeneous Generalized Cylinders.

e Theorems about equivaience of descriptions, and behavior of surface normals, for
SHGCs. .

e Formulae for several attributes of SHGCs, such as coordinates of points, surface
normals, and images of these.

+ Observations about contour generators, such as planarity and points of singularity.
These ohservations were derived for SHGCs, but in general will apply to more complex
shapes as well.

» Analysis techniques for tangency contours and surface normals of Right Circular SHGCs
and Right Polygonal SHGCs, including line drawings, images with shadows, and range-
finder data. .

This work has been theoretical, unaccompanied so far by implementation; it might be thought of as

preliminary, exploratory work aimed at outlining goails for eventual implementation efforts.

In addition to thaese specific observations, a methodalogy has been produced and demonstrated for
analyzing the imaging properties of shapes described parametrically:

1. Parameterize the shape using some set of functions.

2. Parameterize the surface of the shape by s and t.

3. Assign a local (surface-based) coordinate system and find points P(s,f) and surface
normals N(s,1).

4. Assign a global (object-centered) coordinate system and convert P and N to global
coordinates.

5. Invoke a tangency argument with viewing direction F (in global coordinates) to determine
the condition on contour generators.

6. Imbed the object in the world coordinate system {x-y-z) with F = Z.

7. Determine equations for the images of points i(s,t), note the specialization to tangency
contours, and solve for shape parameters in terms of image contours.

8. For surface normal analysis, convert N to world coordinates, soive for gradient {or other
representation), solve for shape parameters at arbitrary point in terms of / and image of N.

This methodology is being applied to shapes other than SGCs, in work in progress by the authors.

Finally, it has been discovered that there are several problems whose solutions are very difficuit to
grasp intuitively; analysis has revealed some important facts not suspected by the authors based on

their own intuition. These problems include:
» The conditions for uniqueness or equivalence of shape descriptions.
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¢ The planarity (or lack thereof) for contour generators.
& The conditions under which contour generators exhibit singularities.
o The characterization of the image contours in pictures of even relatively simple shapes.

5.1 Future Work

Although intended applications must guide the direction of future development of such theogretical
work as this, there are several open areas already revealed by this research. The analysis of contours
has been carried out in some detail for Right Circular SHGCs; it- would be useful to extend these
results to other types of Generalized Cylinders as well. In addition, no specific algorithms I'!ave been
suggested for analyzing arbitrary image contours, even if the object being viewed is of a known type.
The resuits will all be more useful when extended to images under perspective projection. The
analysis of contour generators from two viewpoints should be able to provide at least some cues as to
the solid shape. All of these suggestions pertain to generalizing the results in this paper; in situations
where the authors have been daunted by mathematical tractability, the use of some symbol-

manipulation system such as MACSYMA might allow for further achievement.

Of equal interest, some considerable space has been devoted in this paper to the description of
images and image analysis for Right Circular SHGCs (i.e. solids of revolution), yet several problems
are still unsoived. The'se problems include characterizing and analyzing shading and highlights,
analyzing the position of the shadow line in detail, and finding the images of the axis endpoints in an
image. This kind of very detailed analysis of simple shapes may vield quite interesting insights for

image understanding in general.

Finally, implementation is important as an embodiment of these theoretical resuits, and for
providing feedback for directing further analysis. An important problem to deal with will be that of
deciding whether an object is in fact a member of a specific shape class, a problem which is not

addressed in this paper.
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. Symbols

Constants and coordinates are shown in italics (s, W), functions are in boldface italics (r, N).

Scalar values are in lower-case {1, uc), vector or n-tuple values in upper case (G, P), angles in Greek

letters (a, o).

GC
SGC
SHGC

A(s)
r(s)

uv

P(s,f)
pW,pV’pS

Generalized Cylinders

Generalized Cylinder

Classes of Shapes

Generalized Cylinders LSHGC Linear SHGCs
Straight Generalized Cylinders RSHGC  Right SHGCs
Straight Homogeneous GCs CSHGC  Circular SHGCs

PSHGC Polygonal SHGCs

Components of a Generalized Cylinder

axis function E(s,f) envelope function
radius function C{t) contour function
angle of inclination UaVg components of contour

Coordinates of a Generalized Cylinder

axis vector

horizontal on ¢ross-section
vertical on cross-section
normatized horizontal

distance along axis
distance along contour
cross-section coordinates
normalized u

T<CO

Measures of a Generalized Cylinder

point on surface ' Ni(s,h) surface normal
coordinates of point A, components of normal
slope of r(s) for LSHGC h(t) contour Wronskian

Projections of Generalized Cylinders

viewing direction X horizontal in image

viewing direction coordinates Y vertical in image

viewing angle (Fto 8) Z direction of eye

ilumination direction X.¥.Z world and image coordinates
illum. direction coordinates Ks,t) image of point on SHGC
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ilfumination angle
dihedral.illumination angle

69

x(s,1),y(s,t) image coardinates of SHGC point
G=(p,q) surface gradient
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II. Properties of SHGCs

1.1 Straight Homogeneous GC: SHGC

Definition
G={ACra)
axis A(s) linear
contour C{t) = (uC,vé}(r) continuous
radius r(s) differentiable
inclination a constant

Description

GC with straight axis, all cross-section planes parailel, all
cross-sections of same shape but varying size.

Point on the Surface

P(s 1) = (uC(f) r(s) sin a, vc{t) r(s), s + uc(r) r{s) cos a)

Contour Wronskian

dv T du
h(t) = u(t) —S= — v (1) —
0 = vl —Z= - Vel =
h(f) = 0iff the SHGC can be imbedded in a plane.

Surface Normal
dr dv du dr
Nist) = { hlt) cos a — + —S, ~sina—S<, —h(t)sina—)
ds dt dt ds
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I1.2 Right SHGC: RSHGC

Definition

G =(AC,r,u/2)
A, C, r as for SHGC.

Description

SHGC with cross-section planes perpendicular to axis.
Special Properties
There is no preferred direction for v and v axes on cross-section planes, so imaging

geometry can be simplified. Also, U = W.

Point on the Surface

P(s.t) = (un(t) ris) v () r(s), s)

Contour Wronskian

Same as SHGC -- no simplification.

Surface Normal

dv du dr
Nist) = J.., _.J_, - h(t) —
(s.8) = ( , = ()ds)

Image of a Point

i(s,t) = (x,¥) (s,r)xy = (uc(r) r(s)cos o + ssinwo, vc(r) r(s))xy

World Coordinates

P = (w, v,s)wv5 = (WC0So + S8ing, v, —WS§Ing + 8CO0§ cr)wz

Oblique View Contour Generator Condition

dv dr
0 = sin g - & h(fycos o —
. dt ds

Oblique View Contour Generator Domain

Intractable.



Oblique View Contour Generator Point

Intractabie.

Oblique View Contour Generator Planarity

Intractable.
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I[.3 Linear SHGC: LSHGC

Definition

G=(ACra0
r(s) = m(s-s,)
A, C, a as for SHGC.

Description

SHGC with linear radius function. Apexisats = Sy

Special Properties:

o Slant Theorem: Can describe an LSHGC with cross-section planes at any orientation (as
long as they cut completely through shape).

e Pivot Theorem: Can describe an LSHGC with any axis passing through apex (excluding
projection of shape through apex).

e Corresponding Normal Theorem: dN/ds = (0,0,0)

Point on the Surface

P{st) = (m(s- So) uc(r) sina, m(s -~ So) vc(t), s+ mi(s "Sa) uC(r) cos a)

Contour Wronskian

Same as SHGC -- no simplification.

Surface Normal

' dv du
Nt = {mh(t)cos a + -—df—, -sina —_df— -mh(t)sina )

Right LSHGC:

Image of a Point

I(s,t) = (x,y) (s,r)xy = (m (s -so) uC(t) cos o + ssino, m(s- so) vc(t))xy

Oblique View Contour Generator Condition !

dv .
0 =sina—ar9—+ mh{t)coso
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Oblique View Contour Generator Domain
t satisfying above condition.

Obilique View Contour Generator Point

Intractable.

Oblique View Contour Generator Planarity

Always.
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.4 Circular SHGC: CSHGC

Definition
G=(ACraoa
C(t) = (uC.vC) (t) = (cos 2mt, sin 271)
A, r, a as for SHGC.

Description

SHGC with circular cross-section.

Point on the Surface

P(s,t) = (r(s) sin a cos 2nt, r(s) sin 2at, s + r(s) cos a cos 2xt)

Contour Wronskian

hi{t) = 2x

Surface Normal

dr dr
Nis,t) = ( 27 (cos 2nt + cos a —é—-—), 27 sin a sin 2wt, -2w7 sin a d—- )
: s s

Right CHGC:

Image of a Point

fs.t) = (x.y) sut), = (r(s) cos o cos 2wt + ssin a, r(s) sin 2mh),,

Oblique View Contour Generator Condition

1 dr
- — Y _cotg—
o cos ( cot g " )

Obligue View Contour Generator Domain

dr
|—|<|tan o |
ds

Oblique View Contour Generator Point

d
P(s\) = Pos(9) = ( cot o r(s) _d_r_ r(s) \/1 - cot? g (dr/ds)?, s )
s

Obiique View Contour Generator Planarity

Difficult to evaluate.



76

Oblique View Contour

Iogls) = (xgaVeg) By
2

cos“o dr
= (- r(s) ———-— + ssin g, r(s) \/ 1 - cot? o (dr/ds)? )
sino ds Xy
d dr
Hee = (1 / \/sin2 o - cos?e (dr/ds)2 ) —_—
dxcG : ds

Ohiique View Contour Analysis

_ xCG(s) - yCG(s) cosleo (dyCG/dxCG)
sing

rs) = yogls) V1 + cos?o (dyca/xee)’?

dr dy
— = (sing/ \/1 + cos? o (dygq/dxog)? ) —8-
ds dXeg
Image of a Surface Normal
dr dr
Nis,t) = (cos o cos 2wt - sin g —, sin 2xt, —sin g cos 2nt - coS @ ---)
ds . ds Y%

Surface Gradient
G(s.\t) = (p.g) (s,1)

sin o (dr/ds) - cos ¢ cos 2wt

plst) = —
sin o cos 2wt + cos ¢ (dr/ds)

- 5in 27t

g(st) = _
sin ¢ cos 2wt + cos ¢ {dr/ds)


file:///Jsin2
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Surface Normal Analysis
k=(pcoso - sina)2 + q2

xq - ycoso(pcoso - sina)

s =
gsing

t = —-1—sm1 J

2w \/1_(-

y Vk
ris) =
q

dr -1 -sino (pcos o ~ sin o)

ds cos o k.V 2



78

11.5 Polygonal SHGC: PSHGC

Definition
G=(ACra)
Cci) = (uC,vC) {t) is piecewise linear
Between vertices, C(t) = (uc,vc) () = (mut +b,mt+ bv)
A, r, a as for SHGC.

Description

SHGC with polygonal cross-section.

Special Properties

Corresponding Normal Theorem: 9N/3t = (0,0,0) on face.

Point on the Surface

P(s,f) = ((mt + bu) r(s) sina, (Mt + bv) r(s), s + (mt + bu) r(s) cos a)

Contour Wronskian for a Face

h(t) = mvbu - mub\;

Surface Normal for a Face
dr dr

N(s,t) = (m‘r + (mvbu - m;bv) cos a?s-’ -m, sin a, (mubV - mvbu) sin a—d-;-)
Right PSHGC:

Image of a Point

Ks,t) = {x,¥) (s,t)xy = ((mt + bu) r(s)cos ¢ + ssing, (mt + b)) r(s))xy

Oblique View Contour Generator Condition for a Face

dr m, tan o

ds mubv -mp,
Obligue View Contour Generator Domain for a Face

s, satistying above condition

Oblique View Contour Generator Point for a Face

Intractable
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Oblique View Contour Generator Planarity for a Face

Difficult to determine

Image of a Point on a Crease

l(s,to) = ICG(s) = (xCG.yCG) (,s)xy = (.u0 r(sycos @ + s sin o, Y r(s))xy

Oblique View Contour Analysis for a Crease

. Yy xCG(s) - Uy yCG(s) cos o

s
Yo sino
Yre(S)
3) = o ¢ ¢ Ak
Yo
dr sino {dyCG/dxCG)

ds Vg — UgCOS @ (dyCG/dxCG)
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Abstract

A number of researchers have used generalized cylinders {or generalized cones) for shape
representation, but different people have defined these terms in different ways. There has been no
standardization of the meaning of these terms, and research results are sometimes limited to
subclasses for which there is no terminology.

In this paper, a proposal is made for a definition of Generalized Cylinder, for the definition of a
number of interesting subclasses, and for the description of the "ends"” of such shapes. A
corresponding terminology is presented, including abbreviations for the names of these shape
classes. Finally, this terminology is used to compare the shape classes used in past research, and to
describe common mathematical shapes such as "solid of revolution”.
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1. Introduction

Since the introduction of generalized cylinders by Binford in 1971 [3], a number of researchers
have used this scheme for representation of solid shapes (1,6, 7,8, 9, 11, 12, 13, 14, 15]. However,
different people have used the term to refer to somewhat different classes of shapes; indeed, an
alternate term, generalized cone, has been used by some. There has been nog clear-cut definition of
these terms which might be universaily accepted, nor has there even been a suitable terminology for

expressing the different shape classes referred to by different researchers using these terms.

In this paper, a set of terminology is introduced far describing generalized cylinders and several
subsets and supersets thereof, along with a notation for naming these shape classes. The

presentation takes the form of a taxonomy of shapes.

It is hoped and intended that this set of terms will be sufficiently general to allow the definition and
comparison of the various shape classes used in past and present research efforts. To illustrate the
sufficiency of this terminology, the shape classes used by several researchers are described using the
terms presented herein. Finally, the terms for several commen mathematical ctasses, such as

cylinders and solids of revolution, are presented, as defined in this taxonomy,

It is beyond the scope of this work to address such issues as the parameterization of specific
shapes, or the existence of multiple descriptions of the same shape. However, this terminology may
contribute to the future investigation of these problems by facilitating a precise formulation of the
guestions involved.



2. The Taxonomy

The taxonomy begins with the definition of Generalized Cylinders. This definition involves four
parts: by impasing suitable restrictions on each part, a number of subclasses are defined. By allowing

generalizations, supersets are defined.

The terminology uses Generalized Cylinders as a basis; this class of shapes may be abbreviated
"GC". Each subclass introduces a new adjective (e.g. "Circular”); the name of that shape class is
thus "Circular Generalized Cylinders". Frequently, it will be desirable to cascade such adjectives, as
in "Right Circular Generalized Cylinders”. Each adjective is normally abbreviated with a single letter;
the name of the class may be abbreviated in part or in full, as desired, for example, "RCGC", "Right
CGC", "Circular RGC", and "Right Circular Generalized Cylinders” are all terms for the same shape
class. (The second and third terms might be useful for emphasizing a particular property of the class
in some situations.) The names of shape classes will be capitalized when used to refer 1o the

definitions presented herein.

As noted in the taxonomy, certain restrictions imply others. In such cases, the redundant terms
may be omitted. For example, all Circular GCs are also Homogeneous GCs. Thus, "Circular GC" is

another name for "Circular Homogeneous GC".

In addition to the basic taxonomy of shapes, definitions are presented for describing the ends of a

Generalized Cylinder. These allow a somewhat finer grain of description than the basic terminclogy.

2.1 Generalized Cylinders

A Generalized Cylinder (GC) is defined by four parts:

e There is a space curve, called the axis of the shape.

e At each point on the axis, at some fixed angle to the tangent to the axis, there is a
cross-section plane defined.

e On _each such cross-section plane, there a planar curve which constitutes the
cross-section of the object on that plane.

e There is a transformation rufe which specifies the transformation of the cross-section as
the cross-section plane is swept along the axis. This rule always imposes (at least) the
constraint that the cross-section changes smoothly.



The surface of the object is the union of the cross-sections. This is a generérr‘ve definition, rather

than a descriptive definition, of Generalized Cylinders. '

The term Generalized Cone may be considered synonymous with Generalized Cylinder, since there

has been no clear distinction between the two in the past.

2.2 Subsets of GC

The various subclasses of Generalized Cylinders are formed by imposing restrictions upon the four

parts of the definition above.

WG Skewed GC

\/\

Layered GC

transformation
rule

axis cross

Ccross .
sections

section
planes
SGC TGC RGC CGC PGC OGC HGC BLGC
LGC
UGC

Figure 1: Taxonomy of Generalized Cylinders

The taxonomy is illustrated in Figure 1, in which the nodes are shape classes. The lower classes
are subsets of those above them. Adjacent branches are not generally mutually exclusive; thus, the

figure is a sort of abbreviated set diagram rather than a strict "tree".



2.2.1 Restricting the Axis

Straight GC (SGC) (opposite: Curved)
A Straight Generalized Cylinder has a line segment in space for its axis,

Toroidal GC (TGC) A Toroidal Generalized Cylinder has a closed curve in space as its axis.

2.2.2 Restricting the Cross-Section Planes

Right GC (RGC) {opposite: Oblique)
A Right Generalized Cylinder has cross-section planes perpendicular to the
tangent to the axis. (In a Straight GC, perpendicular to the axis itself.)

2.2.3 Restricting the Cross-Section

Circular GC (CGC} A Circular Generalized Cylinder has cross-sections which are all circles: Circular
GCs are thus also Rounded and Closed (see below). The axis is generally defined
to pass through the centers of the circles, in which case the Circular GC is also
Homogeneous (see below).

Polygonai GC (PGC) (opposite: Rounded)
A Polygonal Generalized Cylinder has cross-sections which are piecewise lingar.

Open GC (OGC) (opposite: Closed)
An Open Generalized Cylinder has cross-sections which are not Jordan curves,
i.e. the cross-section is not a simple closed curve. Usually, an Open GC will have
a cross-section which is some arc on the cross-section plane; the shape is thus a
piece of a warped sheet in space.

2.2.4 Restricting the Transformation Rule

Homogeneous GC (HGC) (opposite: Heterogeneous)
A Homogeneous Generalized Cylinder has a transformation rule which allows only
uniform scaling of the cross-section as it is swept along the axis; thus, all cross-
sections have the same shape, but may vary in size.

Linear GC (LGC) A Linear Generalized Cylinder is a Homogeneous Generalized Cylinder in which
the size of the cross-section is proportional to distance along the axis, measured
from some point called the apex of the shape.

Uniform GC (UGC) A Uniform Generalized Cylinder is a Linear Generalized Cylinder in which all
cross-sections are identical in size as well as shape.



Bilinear GC (BLGC)

2.3 Supersets

A. Bilinear Generalized Cylinder is a Generalized Cylinder in which the cross-
section size varies with distance from the apex, but the two orthogenal directions
on the cross-section planes have different factors of proportionaiity, i.e. the cross-
section shape is scaled differently.in the two directions.

of GC

The following are generalizations of Generalized Cylinders:

Warped GC (WGC)

A Warped Generalized Cylinder is defined in a similar manner to a Generalized

- Cylinder, but the cross-sections need not be planar. The cross-sections are thus

Skewed GC

Layered GC

space curves defined relative to the cross-section planes, but need not be
contained within them. This is the class of shapes originally defined as
"generélized cylinders"” by Binford [3]. It may be interesting to discover whether
each shape that is a Warped GC may also be described as a GC (aside from the
obvicus difference in the planarity of the ends of the shape); if so, WGC = GC.
The author conjectures that this is true.

A Skewed Generalized Cylinder is defined similarly to a Generalized Cylinder, but
the cross-section planes need not all be at the same angle with respect to the axis.
This allows "rotational sweeps” of the cross-section planes, as well as translation
of the cross-section planes along the axis.

A Layered Generalized Cylinder is a Skewed GC in which the cross-section
planes, while not at a fixed angle to the axis, are parallel to each other. This
situation arises, for example, when examining serial sections of Curved GCs.
Layered GCs do not actually constitute a superset of GCs: a Layered GC with a
straight {linear) axis is a Straight GC; whereas a Layered GC with a non-linear axis
is a Skewed GC but not a GC.

2.4 Describing the Ends of a Generalized Cylinder

Each end of a Generalized Cylinder may be characterized, independently of the characterization of

the shape as a whole.

Blunt

Fiat

An end of a GC is Blunt if the surface normals converge in orientation to be
perpendicular to the hnal cross-section plane at that end (i.e. the surface
smoothly approaches the final cross-section).

An end of a GC is Flat if it is not Blunt, and the final cross-section is a closed



curve. The surface normals are discontinuous along the final ¢ross-section, i.e.
between the side(s) of the shape and the Flat end.

Chiseled An end of a GC is Chiseled if it is not Blunt, and the final cross-section is an arc.
The surface normals are discontinuous along the final cross-section arc.

Pointed An end of a GC is Pointed if it is not Blunt and if the final cross-section consists of
a single point. The surface normal at this point is undefined.

it is especially interesting to note that a Linear GC always has one end Flat, and the ather end may
be either Flat or Pointed (but not Blunt or Chiseled). A Uniform GC always has iwo Flat ends. A
Bilinear GC may have one Flat and the other Flat, Chiseled, or Pointed; or it may have both ends
Chiseled. The ends of other GCs may be of any type.



3. Application of the Taxonomy

3.1 Common Mathematical Shape Classes

This terminology can be used to define several common mathematical shape classes. In general,

the terms used to restrict those mathematical classes are the same terms presented here for

restricting the class of Generalized Cylinders (i.e. Right, Circular).

cylinder

cone

frustrum

solid of revolution

parallelopiped

pyramid

torus

2-1/2 D shape

A cylinder is a Straight Uniform Generalized Cylinder, i.e. SUGC. Subclasses:
right, circular.

A cone is a Non-Uniform Straight Linear GC (Non-Uniform SLGC), with one end
(the apex) Pointed. Subclasses: right, circular.

A frustrum is a Non-Uniform Straight Linear GC (Non-Uniform SLGC) with both
ends Flat.

A solid of revolution is a Straight Right Circular Generalized Cylinder (SRCGC).

A parallelopiped is a Straight Uniform Polygonal Generaiized Cylinder (SUPGC).
Subclasses: right.

A pyramid is a Non-Uniform Linear Polygonal Straight Right Generalized Cylinder
{(Non-Uniform LPSRGC), with one end Painted.

A torus is a Uniform Right Toroidal Generalized Cylinder (URTGC). The shape of
the axis and the cross-section must be described separately; in this terminoclogy, a
"Circular URTGC" implies that the cross-section is circular, but does not
constrain the axis to be a circle.

The two-and-a-half-D shape class used in CAD/CAM is somewhat loosely defined,
but usuaily consists of two polygonal faces linked by quadrilateral or triangular
facets [5]. This corresponds to Polygonal Straight GCs with Flat ends, usually
Right, but possibly Obliqgue and with nonparaliel ends. Sometimes, shapes with
curved axes are also calied 2-1/2 D shapes. This type of shape should not be
confused with the 2-1/2 D sketch, a representational scheme used by Marr [9].



3.2 Shape Classes Used in Past Research

The terms generah"zed cylinder and generalized cone have been used in past research, to refer to
various shape classes. Binford [3] defined "generalized cylinders” to be the ¢lass here called
Warped GCs. Agin [1] defined the term similarly, but his results were limited to Right Circular Linear
GCs, i.e. those with circular cross-section perpendicuiar to the axis, and linear scaling of the cross-
section, but with any space curve as axis. Hoilerbach [7] defined "generalized cylinder" as RGC, and
limited his attention to HRGCs whose axes were planar (but not necessarily straight). Ballard and
Brown [2] defined "generalized cylinder” to be Closed GC, i.e. GCs with cross-sections which are
closed arcs; Shani {13] defined "generalized cylinders” as Closed RGCs, i.e. GCs with cross-sections

which are closed arcs and lie at right angles with the axis.

Nevatia and Binford {11], and Miyamoto and Binford [10], used the term “generalized cone" to
indicate Right GCs, i.e. GCs with cross-sections perpendicular to the axis. Marr and Nishihara [9]
used the same term to indicate Homogeneous GCs, those whose cross-sections have constant shape
but varying size, but Marr in [8] added the restriction that the axis be straight (i.e. SHGCs). Woodham
[15] also referred to SHGCs as "generalized cones”.

In describing the ACRONYM program, Brooks [6] uses the term "generalized cone”, defined (as

here) to be GC. The program’s repertoire of shapes, however, is limited to those GCs which are:
1. Either Circular or Polygonal.
2. Bilinear (including Linear and Uniform as special cases).
3. Either Straight; or Right Toroidal with circular axis.

However, Brooks’' co-researcher Binford [4] uses the term “generalized cylinder” to refer to
ACRONYM's shape descriptions.

Soroka [14] defined "Elliptical Cones” to be SBLGC with elliptical cross-sections; i.e. GCs with
straight axes and elliptical cross-sections scaled independently (but linearly} in two orthogonal

directions. Soroka allowed both Right and Oblique GCs. -

In research related to this paper, Shafer and Kanade [12] use the terminology described herein.
Their attention is limited to Straight Homogeneous GCs, for which they present fundamental theorems

derived from the definition, and an analysis of image contours and surface normals for SHGCs.



4. Summary

This paper is intended to be a step towards the development of a precise set of terms to be used for
describing shape classes. These might be used to compare or describe the classes of shapes dealt
with by various researchers; they might even be used to help formulate some of the more difficult

problems involved in shape description.

To this end, a taxonomy and terminology have been presented for the shapes known as
generalized cylinders. The taxonomy begins with the definition of Generalized Cylinders, and
includes subsets and supersets of this class of shapes. The terminology introduces terms and

abbreviations for each shape class.

Common mathematical shape classes are equivalent to some of these classes, and the shapes
dealt with by other researchers can be described in this terminology. Doing so may allow the reader

to better understand what assumptions have been made in various research efforts.
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