
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-134

A Semantics and Proof System
for

Communicating Processes

Stephen D. Brookes
Computer Science Department

Carnegie-Mellon University-
Pittsburgh, Pa.

May 1983

A version of this paper was presented at the 1983 NSF/ONR Workshop on Logics of Programs,
Pittsburgh, May 1983. References should cite the Proceedings, published by Springer Verlag.

The research reported in this paper was supported in part by funds from the Computer Science
Department of Carnegie-Mellon University, and by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-81-K-1539. The views and conclusions contained in it are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

A SEMANTICS AND PROOF SYSTEM FOR COMMUNICATING PROCESSES.

Stephen D. Brookes
Carnegie-Mellon University

Pittsburgh
Pennsylvania 15213

USA.

0. Introduction.

In this paper we describe a semantic model for communicating sequential processes extending
the so-called failures model of CSP which appears in [Bl,2], [HBR] and [R]. We also give a proof
system for proving semantic equivalence of processes. This provides an axiomatic characterisation
of our semantics.

The failures model of processes represents the behaviour of a sequential process as a set of
failures, each of which is a finite piece of information about a possible behaviour of the process.
A failure consists of a trace, recording a possible finite sequence of actions, and a refusal set,
representing a set of events which the process may decide to refuse at the next step. The idea of
using traces to represent process behaviour appeared in [H2], where the inability of traces alone to
model deadlock was also noted.

Each failure is essentially a potential result of a nondeterministic decision by the process.
This model is well suited to reasoning about the potential deadlock behaviour of a process, since
the possibility of deadlock is represented explicitly by the ability to refuse all sets of actions.
As described in the above references, the failures model can be given the structure of a complete
semi-lattice under the superset ordering, which corresponds to a measure of nondeterminism: if the
failure set of process P contains as a subset the failure set of Q, then every possible nondeterministic
decision of Q is also possible for P, and we may say that P is more nondeterministic than Q. Since
the space of failure sets, under this ordering, has the structure of a complete semi-lattice, we know
that limits of chains of processes exists, and every non-empty set of processes has a greatest lower
bound. Moreover, applying well-known arguments of fixed point theory (see [LNS] for example),
we know that every monotone function on failure sets has a least fixed point; we may therefore
give semantics to recursively defined processes, provided that the operations used in constructing
processes are all monotone. This is the case for a wide variety of operations whose definitions are
suggested by CSP.

The failures model has been used to give a semantics to a language based on Hoare's CSP
in [HBR]. However, there are some undesirable aspects to this model. Notably, the behaviour of
processes which may diverge, or engage in infinite internal chatter, is not adequately modelled by a
failure set. Internal chatter is the phenomenon of a process continuously engaging in a sequence of
actions which are internal or hidden from the environment in which the process is operating: that
environment has no control or influence on the process while the process is continuing to perform
invisible actions, and the process may never respond to requests from the environment. This type

1

of behaviour arises when, for example, two processes are connected and allowed to communicate
along a channel which the outside world cannot affect; the communications which may occur along
this channel are hidden from the environment. If there is a potentially unbounded sequence of
communications along the hidden link then the two processes may indulge in infinite internal
chatter.

Attempts were made to treat divergent behaviour by identifying it with either deadlock
(STOP) or wholly arbitrary behaviour (CHAOS), as described in [HBR,B,R], but none of these
is satisfactory. It is possible to extend the failures model in a fairly straightforward way which
does model divergence more satisfyingly. The new model, whose development first appeared in
[B1,R], still enjoys the order-theoretical properties of a complete semi-lattice, and is therefore well
suited to provide a semantic basis for a language of processes. Moreover, we find that we can
axiomatize the semantics of a language like CSP by giving a set of axioms and inference rules
sound and complete for proving semantic equivalence of terms in the language. Thus we will
describe a semantics for processes in both the denotational style and axiomatically.

The language with which we are concerned is a derivative of Hoare's CSP [HI]. To begin
with, we will discuss a simple sub-language called here FCSP (for "Finite CSP"), whose terms will
denote processes with finite behaviour. For these terms the possibility of divergence does not exist,
and we will introduce a failure semantics for this language. The associated logical language will
contain assertions of the form P C Q or P = Q, with the interpretation that P semantically
approximates Q or is semantically equivalent to Q. We will give a set of axioms and inference rules
for proving such assertions, and show that the system is both sound and complete; under the given
interpretation of assertions, every provable assertion is true and every true assertion is provable.

Next we make the transition to a more general language of processes, by allowing recursive
terms. Now terms may denote processes with infinite behaviour. We show how to modify the
previous proof system to obtain a new system complete and sound for the larger language.
Essentially, we use the well known ideas of syntactic approximation of terms, and use the fact
that the failure semantics of an infinite process is uniquely determined by its finite syntactic
approximants. A new inference rule is added which states this fact and basically allows us to
reason about infinite terms by manipulating their finite approximations. Crucial to this work
is the fact that all of the process operations in the language are continuous with respect to the
nondeterminism ordering. Similar techniques were used by Hennessy and de Nicola [HN] to give a
proof system for Milner's language CCS [M].

Bearing in mind our earlier problems with the notion of divergence, we have made the proof
system sufficiently general to cope with divergent processes, by adding to the language a term JL
(representing divergence) and augmenting the failure set model with a divergence set component.
A similar augmentation of the failures model was suggested by Roscoe [R]. The special case of
well-behaved (divergence-free) processes turns out to correspond to the sublanguage of all terms in
which no recursive subterm has an unguarded occurrence of its bound variable, and in which there
is no sub-term ±. As a corollary, the proof system is also complete for the old failures ordering on
well-behaved processes.

Throughout this paper we will use P , Q, R to stand for terms in the variant of CSP currently
under consideration. We are not necessarily assuming that the universal alphabet E is finite, but

2

every term will only use a finite set of events. As usual, refusal sets are finite; we use pE for the
finite powerset of E. We will use X, Y, Z to range over pE. Finally, s, t,u range over E* and a, 6,c
over E.

1. A simple subset of CSP.

Let FCSP (Finite CSP) be the language generated by the following syntax:

P::= STOP | (a — P) \ PQP | PHP,

where a ranges over E. STOP denotes a process which is unable to perform any event, and
represents deadlock. The process (a —> P) must first perform event a and thereafter behaves
like P. The combinator D is a conditional choice operator: P D Q can behave either like P or like
Q, and the environment of the process can influence this choice by offering an action at the first
step which only one of the two is able to perform then. In contrast, PH Q behaves either like P
or like Q but does not allow its decision to be affected by the desires of its environment; this is an
uncontrollable choice. (The reader familiar with Hoare's CSP will recognise the connection with
guarded commands: the two forms of choice arise when the guards are communications or purely
boolean.)

The semantic function 7 maps terms to failure sets, and is defined by structural induction as
usual, one clause for each syntactic construct of FCSP. This is a denotational semantic definition,
because the semantics of a term is built up from the semantics of its syntactic constituents.

JIST0P1 = { (() , X) | X C S }

7* -*P\ = U(),X) I a ?X} U {(as,X) \ (s,X) G TfP\}

HPUQl = {{(),x)\ ((),x) e j\p\ n HQ\}
u{(s,x)\s^{) & (a,x)e?munQM

Note that these clauses capture the intuitive definitions of the syntactic constructs stated
above. For instance, (a —• P) must initially perform a because this event does not belong to any
of the refusal sets of 7\a —• P\\ and P [] Q refuses a set initially only if both P and Q can refuse
it, but once an event has occurred it behaves either like P or like Q.

We will use $ to stand for a failure set. Recall that in [HBR] a failure set is a subset of
E* X pE such that

(i) dom($) is non-empty and prefix-closed,
(ii) [s,x) e c x => {S,Y) e
(iii) {s, X) E {sa, 0) y * (a, JT U { a }) € *.

3

These conditions state that (i) the empty trace is always a possible trace of a process, and whenever
st is a trace of a process so is s; (ii) if P can refuse X after doing 8 then at the same time it could
refuse any subset 7 of J ; (Hi) an impossible event can always be included in a refusal set. These
are intuitively reasonable properties. It is easy to check that our semantic function does indeed
map terms to failure sets satisfying these conditions.

The semantic ordering on failure sets is <&i C $2 <=> $1 2 We will write P C Q to mean
7\P\ C where no confusion can arise. In case this relation holds we say that P is at least
as nondeterministic as Q9 since failures represent consequences of nondeterministic decisions by a
process.

Now we introduce the proof system. The logical language is built from FCSP terms and two
binary relation symbols C and = . Each formula in the language has the form P C Q or P = Q.
The intended interpretation of P C Q is that P semantically approximates Q, and = is interpreted
as semantic identity.

We include axioms on idempotence, symmetry, associativity of n and Q distribution of these
two operators over each other, and some interactions with prefixing. The inference rules assert
monotonicity of the operators with respect to C, and state that C is a partial order and = the
associated equivalence. The following table lists the axioms and rules:

4

(Al) PHP = P

(A2) p [] p = p

(A3) pnQ = QnP

(A4) PDQ = QDP

(A5) Pn{QnR) = {PnQ)r\R

(A6) PU{QDR) = {PUQ)nR

(A7) Pn{QDR) = {PnQ)0{PnR)

(A8) PD{QnR) = {pnQ)n{PUR)

(A9) PDSTOP = P

(A10) PHQCP

(All) (a - P) n (a - Q) = (a - P n Q)

(A12) (a-*P)U(a^Q) = (a^PnQ)

(01) P C Q CP
P = Q

(02) P = Q
PCQCP

(03) PCQCR
PCR

(Ml) P C Q
(a-+P)Q(a->Q)

(M2) Pi C Qi & P2 C Q 2

P i n p 2 E Qin<? 2

(M3) Pi c <?i & p 2 c Q 2

PlLJP 2 QQ1UQ2

Table 1

5

Soundness.

In order to prove soundness of the system, it is enough to show that all the axioms are valid
and that the inference rules are sound. Each axiom has already appeared in [HBR] and [Bl], where
proofs of validity were given; similarly all of the operators were shown to be monotonic, so the
inference rules (M1)-(M3) are valid. For details the reader is referred to [Bl]. We know, therefore,
that every provable formula is true. We write h- P C Q when the formula P C Q is provable.
The following theorem states that the proof system is sound.

Theorem 1.1: For all terms P,Q
Y-PQQ => rm^HQl

Derived laws.

The following laws are derivable, and hence valid. They will be useful in establishing com
pleteness. The first states the connection between nondeterministic choice and the ordering. The
second says that nondeterministic choice allows more failures in general than conditional choice,
in accordance with our intuition and earlier results on these operators. These laws will be heavily
used in establishing the existence of normal forms.

Lemma 1.2:

The following formulae can be derived in the above proof system:
(Dl) PHQ = P<=>PQQ
(D2) PHQQPUQ
(D3) Pn{QDR) Q PQQ.

Proof. For (Dl) we have
. h P H Q c p

by (A10). And if we assume P C Q is provable,' we have:
PCQ i- PHPQPQQ,

by (M2). The result follows by (Al) and (01).

For (D2):
{PNQ)N{PDQ) = {{PnQ)NP)D{{PNQ)NQ) b y(A7)

= {PR\Q)U(PNQ) by(Al)
= PV\Q by(A2)

The result follows from (Dl).

For (D3) we have
PR\(QUR) = (PUQ)U(PUR) by(A7)

C (P • Q) • P by (M3), (A10) and (D2)
= (PDP)DQ by(A6)
= PUQ by(A2)

That completes the proof. I
6

Completeness.

We will show that whenever the failures of P include the failures of Q the formula P C Q
is provable. For the proof we use a normal form theorem. We define a class of normal forms and
show that every term is provably equivalent to a unique term in normal form. Moreover, we show
that whenever the failures of one normal form include the failures of another, the corresponding
formula is provable.

Essentially, a normal form will be a term with a uniform structure, rather like a nondeter-
ministic composition of a collection of guarded terms. In order to get uniqueness of normal forms
we will require certain closure conditions on the sets of guards appearing at each position in the
term; these conditions amount to a convexity requirement. In addition, we will require that in a
normal form every subterm guarded by a particular event be identical and also in normal form.
This means that every normal form is itself built up from normal forms in a simple way that
facilitates proofs. Formally, these constraints are defined as follows.

Normal forms.

Definition 1.3: A subset B is convex iff it is non-empty and

Note that a convex set is closed under (finite) unions as well as the convex containment relation
(ii). We will write con(S) for the smallest convex set containing S, and refer to the convex closure
of B.

There are clear connections between this form of convexity on sets of sets of events and the
"saturated" condition of [HN], a fact which is not surprising in view of the close connections which
can be found between their models and ours (see [Bl,2] for example).

Examples.

Example 1. The set A = { 0, { a, 6 } } is not convex, because

but { a } is not in A.

Example 2. The set B = { 0, { a }, { b } } is not convex, because it does not contain { a, 6 }.

Example 3. The smallest convex set containing A and B is the set

(i)
(ii) A,CE

A,B EB =*A[JBE8,
B &ACBCC=*BEB.

J C { o } C {A,B}

C = {0,{a},{6},{a,6}}.

We have CON(A) = con(S) = C.

EXAMPLE 4. For any set B C S the powerset of B IS convex.

7

Now we can define normal form:

Definition 1.4: A term P is in normal form iff it has the structure
either P = STOP
or P = HBEB D 6eb(6 —• Pb)

for some convex set B, and each Pb is also in normal form.

Note that although a normal form P may have "disjuncts " PB and PQ with some initials in
common, say

Pb = Q,€b(&-A)
Pc = Dcec(c - Pc)

the definition forces these two processes to have identical derivatives Pa for all a £ B fl C. Some
examples will help.

Examples.

Example 5. P = STOP n [a -* STOP) is in normal form: here S is the convex set { 0, { a } }
and Pa = STOP.

Example 6. P = {a-+{b -> STOP)) n ((a -> STOP) • (6 -> STOP)) is not in normal form,
because the two subterms guarded by a are distinct.

The next result is the basis of our completeness theorem.

Lemma 1.5: Any term P can be transformed using the proof system into a normal form.

Proof. By induction on the length of the term.

The base case, when P = STOP, is trivial; the case when P = (a —• Q) is also straightforward.
In the remaining two cases, we must show that if P and Q are normal forms then P\~]Q and PQQ
can be put into normal form. To this end, suppose the two normal forms are:

P = riBesBbeBib - Pb)
Q = HcecDcecic -> Qc).

Write PB = DbeB{b -+ Pb) and Qc = Dcec{c Qc), so that
P = nBeBPB
Q = ncecQc-

Then it is easily provable that
PHQ = HBEB HCECPB n Qc-

Let A = B U C, and define the terms i? a for a € A by:
Ra=Pa if a € S - C ,

= Q a if a G C - B ,
= p a n Q a i f a e s n c .

8

Using the obvious notation, it is clear that the statements
PB n QC = RB n RC

are provable, and hence that
H f n Q s rue A .

To complete the proof in this case we use the convexity laws to replace A by its convex closure.
The following identities are deducible from (D1)-(D3) and show that replacement of A by con(A)
is valid here:

RAHRB^RAHRBHRAUB,

RA n RC = RA n RB n RC> if A C P c c.

Finally we must reduce P • Q to normal form. Again it is easy to show that

and (using the same notation as above) that
H PBUQC = RBUC

It follows that
h P D Q = nA6̂ Da€>l(a - RA),

where X = con({5U C \ B G 8,C 6 C }). I

The following result states that every true statement about normal forms is provable.

Lemma 1.6: Given two normal forms P* and Q*}

Proof. Let the two normal forms be
P* = riBeflQeB(& -+ A)

• Q* == HCECUCECIC - Qc).
Write PB and QC for the sub terms:

PB = QeB(6^A),
QC = UCEC{C ->

Then P* = naeS^s and Q* = HCECQC-

By definition of normal form, the sets B and C are convex, and each and Q c is also in
normal form. We will use an induction on the length of the normal forms. The base case, when
both P and Q have zero length, is trivial; both terms are STOP. For the inductive step, we argue
as follows. First we show that

HP1 2 HQ1 CCB & VCECEC.T\PC\ 2 HQD (i).

To this end, assume that 7\P*\ D 7\Q% Let B0 = \JB and C 0 = [JC be the initials of P* and
Q*. Then we know that

BQ D Co*
Since P* and Q* have unique c-derivatives PC and QE respectively, for all cGBoH Co, we must
have

9

for all such c. All we need to show now is that C C B. If this does not hold, let X = BQ—C. Then
((),X) must be a failure of P*. By hypothesis, this is also a failure of Q*. But this happens only
if there is a B 6 S with

s n x = 5 n (5 o ~ c) = 0.
Equivalently, B C C. But C C CQ C 2?0, and the sets B and i?o belong to B [B by assumption
and 3 by convexity). Thus we find that C 6 S, contradicting our assumption. It must therefore
be the case that C C S, as required. The truth of (1) has now been established.

Now the inductive hypothesis applied to the terms Pc and Qe gives

for all c € |J C. This implies that, for each C 6 C,
h- Pc E Qc-

Then, since C C S, we may use (A10) and (M2) to show

as required. That completes the proof. |

Corollary 1.7: For all terms P and Q,

Proof. By Lemmas 1.5 and 1.6. 1

2. Extending to infinite processes.

In this section we modify the language FCSP, adding process variables, recursion and a new
constant J_, which is intended to denote a process whose only capability is to diverge. Such a
pathological process will turn out to correspond precisely to the terms in which a badly constructed
recursion appears. We will be mainly interested in terms without free process variables, so-called
closed terms. The semantics we use for this language is based on failure sets but has an extra
component called a divergence set in order to allow us to distinguish between deadlock and
divergence.

Let RCSP ("Recursive CSP") be the language generated by the following syntax:

P ::= STOP | (a -> P) | PUP \ PHP \ ± \ x \ fix.P

where a £ E and x ranges over a set of process variables or identifiers.

Let F be the domain of failure sets, ordered by D . Now we introduce D, the domain of
divergence sets, which is just the powerset P(E*), ordered also by D . The semantics of terms
in RCSP will be given via two semantic functions, one for failures and onefor divergence. Since
terms may contain occurrences of identifiers we will use an environment in the semantics, which
binds each identifier to the failure set and divergence set it is intended to denote. Let Ide be the

10

Thus 6n = a nE*, for each n, and the intersection of these sets is empty: D^px.(a —• x)^u is the
empty set.

Example 8. The recursion \ix.x is obviously not well-guarded. This process diverges on all
traces:

D\PX.X\U = E*.

Example 9. The term fix.((a —• x)D(M2/.y)) is not well-guarded, because of the subterm./43/.y.
One can check that the divergence set of this term is E*.

The semantic function for failures is also given by structural induction, and it makes use of D.
For the most part, the definition is exactly as in [HBR,B1,B2,R], but extended to make it consistent
with the notion that divergence is catastrophic: when a process is diverging we can guarantee no
aspect of its behaviour; thus we make the operations (except prefixing) strict, so that a process
constructed from divergent components can diverge too.

Definition 2.2: The failures semantic function is:

7 : RCSP -+U->F

7 I S T 0 P ^ = { (() , X) | X C E }

ri±}U = E* X pE

7\A -> P\U = {{{),X) | a #X}\J{{AA,X) | (s,X) € 7\P\U}

H P U Q H = Z* x p e , if O e P l P D Q K
J\P D Q H = { «) , X) I ({), X) 6 7\P\U n TLQFC }

U{(s,X)\sy£() & { 8 , X) E N P H U H Q H }

otherwise

7LFIX.PLU = fix(X^.7^P]](u + 0]))

Again we can prove that all operations on failure sets used here are continuous, and therefore
the least fixed point of any construction exists and is given by the limit:

oo

n=0
where 4>0 = S* X PE,
and = ? |P] | («+[*•-*«])•

12

file:///ix.x

set of identifiers. Then the domain of environments is

U = Ide -> (F X D).

For an environment u which maps identifiers to pairs, we will use the conventional notation (u[x]])i
and (u[x|])2 to refer to the components of pairs.

The semantic function D maps terms to divergence sets, relative to an environment. It is
defined in the usual way, by structural induction:

Definition 2.1: The divergence semantic function is:
D : RCSP — U — D .

P[[STOP]]t* = 0

D\a - P\u = {as\se D\P\u}

VlPnQ\u = DlP\u\jVlQ\u

D\pxJ*\u = &x{\S.DlPl{u + [x >-> 6]));

It is easy to see that all of the operations induced on divergence sets by the above definitions
are continuous with respect to the superset ordering and hence that the fixed point used in the
semantics of recursion will always exists. The usual fixpoint characterisation as a limit is expressed
in:

oo
Difix.piu= n 6n,

n=0
where 6Q = E* = P|[±]|ii,
and <5n+i = P[P]|(tt + [i h Sn]) for n > 0.

Notice also that the only terms with a non-trivial divergence set are those with a subterm _L or
with an unguarded recursion, i.e. a subterm of the form fxx.P in which there is an occurrence
of x appearing in P without a guard. This fact could be proved by a structural induction, once
we have defined rigorously the notion of well-guardedness. Finally, our definition guarantees that
whenever a particular trace s belongs to a divergence set then all extensions of that trace are also
included:

s e DlP^u => st£ P[P]K for all *.

Examples.

Example 7. The recursion fix.(a -> x) is guarded. Applying the previous definition, we have

where 6Q = H*9

and, for each n, £n_|_i = { as \ s £ Sn } .

11

Example.

Example 10. If the alphabet E is finite, then the term

P = /xx. nBCE (Qefl(& -> *))

is expressible in RCSP. This denotes a process which never diverges, but which can perform or
refuse to perform any sequence of events. This is the same process as was called CHAOS in [HBR].
We have, for this term P,

7\P\u = E* X pE,

We say that P may diverge on s if s is a trace in the divergence set of P. Notice that we have
defined the semantics of terms in such a way that the following conditions hold:

(i) • € V\P\u => Vt,X.{st,X) E 7\P\u.
pi) s E DlPJu => Vt.at G V\P\u.

Intuitively, (i) says that a divergent process is totally unpredictable: we cannot be sure that it will
or will not ever stop diverging and allow some sequence of actions. Condition (ii) says that once a
process starts to diverge it cannot "recover" by performing a visible action: divergence continues
forever. Thus, a pair (<&, 6) is a reasonable model for a process iff the following conditions hold:

(1) dom($) is non-empty and prefix-closed
(2) {8,X)E$,Y C X = > (5 , y) e $
(3) {S,X)E*, (« a , 0) ^ = > (s , X U { a }) 6 $
(4) SES => st E 6, for all t
(5) S E S => {st,X) G for all t,X.

This more general model of processes is thus seen to be derived from the old failures model by
adding divergence sets and requiring a kind of consistency between failures and divergences. Indeed,
the processes with empty divergence sets form a space isomorphic to the failures model. Notice
that the limit of a directed set of pairs ($t-, S{) is the intersection and the greatest lower bound of
a non-empty set of pairs is again the union. As with the set of failures, the new model forms a
complete semi-lattice with respect to the (pairwise) superset ordering. We will write P C Q to
mean that the failures of P contain those of Q and the divergence set of P contains the divergence
set of Q. All of the operations considered in this section are continuous with respect to this ordering.
This fact justifies our use of fixpoints in the semantics of recursively defined processes.

Syntactic approximation.

Before we introduce a complete axiom system for the new model, we will need some impor
tant results which allow us to reason about a (possibly) infinite process in terms of its (finite)
approximations. Beginning with the standard definition of syntactic approximation on terms, we
define the set of finite approximants of an arbitrary term and show that the semantics of any term
is uniquely determined from the semantics of its finite approximants.

13

The notion of syntactic approximation on terms is well known (see, for oxample, [Gu]). The
following presentation is typical of the general style.

Definition 2.3: The relation -< on terms is the smallest relation satisfying:
fl) L < P
(ii) P < P
(iii) P<Q<R=*P<R
(iv) P <Q^{a^P) <{a^Q)
(v) Pi -< Qu P2 -< Q2 =• Pi D P 2 -< QiD^2
(vi) Pi -< Qu P 2 -< Q 2 =» P x n Qi •< P 2 n Q 2

(vii) P[(/ii.P) \ x] •< flX.P
We have used the notation P[Q \ x] to denote the result of replacing every free occurrence of
x in P by Q, taking care to. avoid name clashes.

If P -< Q we say that P approximates Q. An easy structural induction shows that for all P
and Q syntactic approximation implies semantic approximation:

P •< Q =• P C Q.

A term P is /imfe iff it does not contain any subterm of the form fix.Q. For any term P, the
set of finite approximants is

FIN(P) = {Q | Q < P & Qis finite}.

It should be noted that FIN(P) is directed with respect to -< .

The common notion of unrolling or unwinding a recursive term is intimately connected with
finite approximation. The result of unrolling the term P n times will be denoted P(n\ The formal

(0 p(0)
(") g T O p(n+l)
(iii) (a - P)< n + 1>
(iv) (PDQ)< n + 1>
(v) (PnQ)< n + 1)

(vi) xln+l)
(vii) (/xx.P)(n+1^

Every finite approximation to a term P is also a
term:

Lemma 2.4: If Q € FIN(P) then there is an n such that Q -< P<n>.

Proo/. See [Gu]. I

Corollary: For all P, FIN(P) = IXL 0 FIN(P<n>).
14

Lemma 2.5:
(i) FIN(j_) = { J.}
(ii) F I N (S T O P) = { j _ , S T O P }
(Hi) F I N (P • Q) = { ± } U { P ' • Q' I P' e F I N (P) & Q' € F I N (Q) }
(iv) F I N (P N Q) = {±) U {P' N Q' | P ' € F I N (P) & <9' E F IN(Q) }
(v) FIN(o - P) = { ± } U {(a - P ') I / * S F I N (P) }
(vi) FIN(x) = {_L,x}.

Proof. Elementary. |

In a sense, a term P is the "syntactic limit" of its finite approximation set FIN(P). Recall that
this set is directed with respect to the syntactic relation -<, and therefore the semantic images of
the finite approximations to P form a directed set with respect to the semantic order C . The
following results show that the semantics of a term is uniquely determined by the semantics of its
finite approximations, and allow us to deduce that the semantics of a term P is in fact the limit
of the semantics of its finite approximations. We omit proofs, as they follow standard lines. More
details can be found in [Bl].

Lemma 2.6: If P is finite and P C Q, then there is a finite approximation R of Q such that
PHR. .

Theorem 2.7: For all P and u,

Proof. By structural induction. I

Proof system.

All of the axioms and inference rules of Table 1 are still valid. Let L be the proof system
containing all axioms and rules of the earlier system together with the following additions:

Proof. By structural induction on P. |

Theorem 2.8: For all P and u,

(Bl)
(B2)
(B3)
(B4) P[{fix.P) \x]Q fix.P

PU± = ±
P n i = i

(R) VQ € FIN(P). Q C.R
PdR

15

The new axioms state that the two conditional combinators are strict, and that J_ is the bottom
element with respect to C . The new inference rule essentially says that any property of a term
is deducible from the properties of its finite approximations. This is an infinitary rule, because a
term may have an infinite set of syntactic approximants; in such a case one would need an infinite
number of premises in order to use rule (R). It seems unlikely that a finitary proof system could be
found which was still complete, although some interesting sublanguages (in which use of recursion
is constrained) will presumably have decidable proof systems. This remains a topic for future
work. Now we are concerned with the soundness and completeness of our enlarged proof system.

Soundness.

Under the interpretation that for closed terms P and Q, P C Q means

HPfa 2 HQfa & HP fa 2 HQfa

for all environments u, the proof system L is sound. We need merely to check that the axioms are
valid and the proof rules sound. Since the semantics was defined to make the conditional operators
strict, the new axioms are clearly valid. Soundness of rule (R) follows from Theorems 2.7 and 2.8.
It is easy to check validity of the old axioms and rules. Thus we have:

Theorem 2.9: For all closed terms P and Q, and all u,
Hi. P C Q => P C Q.

Completeness.

In order to establish that the new proof system is complete, we must first modify the definition
of normal form. Essentially, we just allow ± as well as STOP in building up normal forms.

Definition 2.10: A term P in RCSP is in normal form iff it has the structure:
either P = STOP,
or P = ±,
or P = nBeBDbeB{b -> Pb)

where S is convex and each Pb is in normal form.

It is easy to modify the proof of Lemmas 1.5 and 1.6 to show that any finite term can be
reduced to normal form using the axioms and rules, and that whenever P and Q are normal forms

P Q Q => *-L P E Q.

The completeness theorem relies on Lemma 2.6, which states that whenever P is finite and P C Q
there is a finite term R 6 FIN(Q) such that P C R.

Theorem 2.11: For all terms P and Q,
PQQ =>t-LPQQ.

16

Proof. Let P1 be a finite approximation to P and suppose P C Q , Then

P' QPQQ.

By Lemma 2.6 there is a finite approximation Qf to Q such that P1 C Q'. But then

Since for every Qf £ FIN(Q) the formula Q1 C Q is provable, we have

The result follows by an application of rule (R). I

3. Adding more CSP operations.

We may extend the proof system to encompass other CSP operations provided we add enough
axioms and rules to allow normal form reductions. We must introduce failure sets and divergence
sets for the new forms of processes, by extending the definition of D and 7 accordingly. We must
also add axioms and inference rules corresponding to these definitions, in such a way that Theorems
2.7 and 2.8 still hold. This will keep the proof system complete and consistent.

In keeping with the notion that a divergent process is totally unpredictable, and that diver
gence of a component process should also give rise to divergence of the compound process (so that a
process built from divergent components diverges) we stipulate that all operations should be strict,
in that they map ± to _L. Now we consider extending the proof system and the semantic defnitions
to include parallel composition, interleaving, and hiding. It should be clear how to include the
other operations of [HBR], with these examples as illustration of the general method. Essentially,
we make each operation strict, and include axioms for strictness and for distribution over N and
guarded terms.

Parallel composition.

For the parallel composition P| |Q, for example, we require divergence when either P or Q
diverges. This combination performs an event only if both component processes perform it, and
can refuse an event if either component can refuse it; and thus we specify:

0) = {st\se {D\P\u U DlQ\u) N (traces(P) N traces(Q))}

(ii) 7lP\\Q\u = {(s,X.UY) | (s,X) e 7\P\u & (s,Y) G 7lQ\u}
{(stJX)\seDlP\\Qlu}.

It should be evident that the semantic definition captures the intuition stated above. Again we
should check that our definition does yield a divergence set and failure set satisfying the conditions
(l)-(5) of page 12. The details are left as an exercise.

Extending the syntactic approximation relation in the obvious way, we add the clause

Pi <P2, Ql ^ <?2 =>PL| |QL <P2\\Q2
17

to Definition 2.3. Then the finite approximations of P\\Q are built up as parallel compositions of
finite approximations of P and Q :

FIN(P||Q) = {±}U{P'\\Q' | P' e FIN(P) & Q' e FIN(Q)}.

It is clear from this that Theorems 2.7 and 2.8 still hold.

We add axioms for strictness and manipulation of normal forms. In each case the axiom
is either a restatement of an earlier result which clearly still holds in the extended model, or is
self-evident. In the axioms we adopt the convention that a term PB stands for

Q e f l (6 - / \) .

(PAR 0) P\\± = ±

(PAR i) P\\[Q n*) = iP\\Q) n (P\\R)

(PAR 2) • PB\\Qc=NAEBNC(A^Pa\\Qa).

It is easy to check that these axioms enable any parallel composition of normal forms to be reduced
to normal form. Note also the special case of (PAR 2) when (7 = 0 : the axiom reduces in this
case to the identity P B | |STOP = STOP.

Interleaving.

For the interleaving operation P| | |Q we want divergence when either component process can
diverge. And at any stage a trace of P| | |Q is to be an interleaving of a trace of P with a trace of
Qy and the process can refuse an event only if both components refuse it.

(i) /?[P|||Qli* = merge(2?lPKtraces(<9)) U merge(traces(P), V\Q\u)

(ii) J[P|||Qlu = {[u,X) | 3s9t.{B9X) e J\P\u & [t,X) e HQfa € merged,*)}
U{(st9X)\seDlP\\\Qh}.

Here we have used the merge function on traces and its natural extension to sets of traces. It can
be defined inductively as follows:

merge((), t) = merge(t, ()) = {<}
merge(as, bt) = merge(6t, as) = { au9 bv \ u 6 merge(s, bt)9 v 6 merge(as, t)}.

For syntactic approximation we add to Definition 2.3:

Pi ^ P 2 , Qi -< <?2 => PilHQi -< P2IIIQ2.

Again the finite approximations of an interleaved process are formed by interleaving finite ap
proximations to the components:

FIN(P|||<?) = { ± } U { P , | | | Q / I P 'G FIN(P) & Q' e FIN(Q)}.
18

Again Theorems 2.4 and 2.5 are still true.

Our definition yields a strict operation, since P|_L ||| Qfltt = S*. Otherwise it has similar
properties to the interleaving operation of [HBR]. We add axioms:

(INTO) P | | | j . = ±

(INT 1) P\\\(Q nR) = (PH Q)\\\(P NR)

(INT 2) PsIllQc = (QeB (6- (A|||Qc)))D([]cec(c- (PB| | |Q C))) .

Again it is easy to check the validity of these axioms, and to verify that an interleaving of two
normal forms can be reduced to normal form. In particular, the special case of (INT 2) when C is
empty is to be interpreted as the identity: P B | | | S T O P = Ps .

Hiding.

For the hiding operator, we have to model the fact that hiding a potentially infinite sequence
of actions produces divergence: we are identifying the phenomenon of infinite internal chatter with
divergence. This version of hiding is closely related to the second form of hiding introduced in [B]
and in [HBR], where infinite chatter was identified with CHAOS; here a process which is chattering
has the same failure set as CHAOS, but (unlike CHAOS) can also diverge. It is simple to alter
the proofs given in [HBR] for the chaotic version of hiding, to show that this form enjoys similar
properties, such as continuity.

(i) DlP/blu = {{s\b)t | s 6 D\P\u} U {{s\b)t | Vn. sbn £ traces(P)}.

(ii) 7\Plb\u = {(s\b,X)\{s,Xu{b})e 7\P\u } U {{st,X)\ s 6 VlP/b\u } .
For finite approximations, we again add to Definition 2.3:

P' < P =* P'/b ^ P/b.
The finite approximations to a process formed by hiding are again formed by hiding:

FIN(P/6) = { ± } U { P'/b | P9 E FIN(P)}.
Our new hiding operator is strict. We add axioms:

(HIDE 0) ±/b = JL

(HIDE 1) (P N Q)/b = {P/b) N {Q/b)

(HIDE 2) (6 -> P)/c = (6 -+ P/c) if 6 ̂ c,
= P/c if b = c.

(HIDE 3) P B / c EES Q 6 B ((6 -> PL)/c), if c <?B,
= (Pc/c) N Q € B ((6 -* Pb)/c) if 6.6 C.

Again the validity of these axioms is easy to check, and one can use the axioms to produce normal
forms.

19J

Examples.

Example 11. The term P = fix.(a —• x) has finite approximations

Pn = (a

n -> ±), for all n,

using the obvious abbreviations. Thus, the term P/a has finite approximations

±, and P n / a = (a n -> J_)/a,

for all n. Using (HIDE 2) we see that, for each n,

h- (a n ±)/a = ±/a,

and so, by (HIDE 1) every finite approximation to P/a is provably equivalent to JL. By rule (R), it
follows that P/a is equivalent to J_, as expected because P/a diverges.

Example 12. A slightly more complicated argument shows that for the term

Q = fix.{{a -* x) • (6 - STOP))

Q/a is also equivalent to ±. One can also show that Q/b is equivalent to /xx.(a —• x).

4. Conclusions.

We have introduced a semantics for processes based on the concepts of failures and divergence.
The semantic mapping from terms to meanings has been described in the denotational style, in
which the denotation of a complex term is built up from the meanings of its parts. In addition,
we gave a set of axioms and proof rules characterising this semantics in the sense that two terms
in the language of processes denote identical values (have the same meaning) if and only if this
fact is provable within the formal system. The proof system contained an infinitary axiom to the
effect that the semantics of an arbitrary term is determined uniquely by its syntactically finite
approximations. It does not appear true that a finitary (and decidable) proof system exists for
the language including recursion, although we do not investigate this issue here. Our axiomatic
presentation demonstrates that the denotational semantics can be characterised by means of
algebraic relations between processes, a fact of interest in itself. An attempt to treat the failures
model (without divergence) in a similar way is reported in [N].

We have not tried in this paper to apply this proof system to problems involving large processes.
It is certainly possible to represent some interesting behavioural properties of processes within our
framework. For instance, the potential for deadlocking after performing a sequence of actions s in
an environment represented by Q would correspond to an assertion of the form

P\\{a->Q) C (s - S T O P) ,

and the inability to refuse any event in the sequence s would be represented by

P\\{s — STOP) = {s-> STOP).

20

The possibility of divergence after performing s is captured by the assertion

P | | (, - . Q) = (. - . X) .

It remains to be seen how useful our proof system is in helping to formalise proofs for complex
processes. Nevertheless, it is clear that the semantics given here both denotationally and axiomati-
cally can serve as the foundation of a theory of processes, and can be used to justify reasoning
about the behaviour of processes as in [R,B1,HBR].

It would be very interesting to extend our work to cover a language more directly derived
from Hoare's original CSP, for which there are existing Hoare-style axiom systems. In its original
formulation, CSP processes were able to perform essentially two different kinds of event: com
munication with another process, and assignment to a local variable. We have not specified the
nature of events in our model, but one can certainly specialize the model to cases where the events
are of particular forms. It is to be hoped that such an approach would help to bridge the gap
between abstract languages (such as FCSP and RCSP) and their more concrete counterparts (CSP).
In doing so, we would hope to shed some light on the existing proof systems for CSP [AFR,LG],
and on the relationships between them.

5. Acknowledgements.

I am grateful to many people for advice and encouragement during the development of this
work, which is based on part of my Ph.D. thesis. Particular thanks are due to Prof. C.A.R.
Hoare, the author's thesis advisor; and to Bill Roscoe, who commented in detail and suggested
some improvements and corrections. I have also been influenced by the work of Robin Milner,
Matthew Hennessy and Rocco de Nicola.

21

6. References.

[AFR] Apt, K.R., Francez, N., and de Roever, W.P., A Proof System for Communicating
Sequential Processes, ACM Transactions on Programming Languages and Systems, Vol 2. No. 3
(July 1980).

[Bl] Brookes, S.D., A Model for Communicating Sequential Processes, Ph.D thesis, Oxford
University (submitted 1983).

[B2] Brookes, S.D., On the Relationship of CCS and CSP, CMU Technical Report CMU-CS-
83-111, also to appear in Proceedings of ICALP 1983 (pub. Springer).

[Gu] Guessarian, I., Algebraic Semantics, Springer-Verlag Lecture Notes in Computer Science
Vol. 99 (1981).

[HI] Hoare, C.A.R., Communicating Sequential Processes, Communications of the ACM (August
1978).

[H2] Hoare, C.A.R., A Model for Communicating Sequential Processes, Technical Report PRG-
22, Oxford University Computing Laboratory, Programming Research Group (1981).

[HBR] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W., A Theory of Communicating Sequential
Processes, Technical Report PRG-16, Oxford University Computing Laboratory, Programming
Research Group (May 1981). (an extended version will appear in JACM)

[HN] Hennessy, M.C.B., and de Nicola, R., Testing Equivalences for Processes, to appear in
Proceedings of ICALP 1983.

[LG] Levin, G.M., and Gries, D., A Proof Technique for Communicating Sequential Processes,
Acta Informatica 15 (1981).

[LNS] Lassez, J.-L., Nguyen, V.L., and Sonenberg, E.A., Fixed Point Theorems and Semantics:
A Folk Tale, Information Processing Letters, Vol. 14 No. 3, May 1982.

[M] Milner, R., A Calculus of Communicating Systems, Springer-Verlag Lecture Notes in
Computer Science Vol. 92 (1980).

[N] de Nicola, R., A Complete* Set of Axioms for a Theory of Communicating Sequential
Processes, Department of Computer Science Technical Monograph, University of Edinburgh (1983).

[R] Roscoe, A.W., A Mathematical Theory of Communicating Processes, Ph. D. thesis, Oxford
University (1982).

22

