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Abstract 
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1 Introduction 

Object replication on distributed computing systems has the goals of increased parallelism, reduced 

communications costs, and increased resilience to failures. In particular, replication can permit increased data 

availability - continued access to objects despite failures of one or more storage nodes. Unfortunately, it is 

difficult to achieve increased performance and reliability while ensuring that the semantics of replicated data 

objects arc identical with their non-replicated counterparts. 

This paper presents a scheme for replicating directories that permits concurrent operations and arbitrarily 

high data availability. The semantics of the replicated directory arc typical of directories that are stored on a 

single site. Briefly, directories contain a collection of entries, each of which contains a (key, value) pair with a 

unique key. The replicated directory has operations similar to the following: 

Lookup(K:Key) Rcturns(Boolcan, Value), Insert(K:Kcy, V: Value), Updatc(K:Key, V: Value), and 

Dclete(K:Key). Trivial modifications of this algorithm may be used to implement sets or similar abstractions. 

The replication algorithm that we present is similar to Gifford's weighted voting algorithm [Gifford 

79, Gifford 81], and thus, has the same performance and reliability advantages. However, unlike Gifford's 

algorithm, our algorithm uses a new technique to associate a version number with each possible key at every 

replica. This technique permits concurrent operations on different entries and solves certain problems in the 

implementation of the deletion operation. Unlike most replication algorithms, which arc concerned with 

simple objects having only read and write operations, this algorithm uses the semantic properties of 

directories, and thereby gains increased performance. 

This work on replication is part of a larger research project studying distributed systems that use a 

transaction facility to support operations on shared abstract data types [Schwarz 82, Spector 83]. The 

replicated directory described in this paper is an example of a distributed abstract data type whose 

construction is facilitated by having a flexible underlying transaction mechanism available. Additional 

components of our research address synchronization, recovery, and communication issues. Groups at MIT 

and Georgia Institute of Technology are also investigating the wider use of transactions [Liskov 82, Wcihl 

83, Allchin 82, Allchin 83]. 

In the following section of this paper, we survey related replication work and motivate the development of 
our algorithm. We then describe the algorithm in detail and present performance data that we obtained via 
simulation. Finally, we discuss additional ways to make the replication algorithm function with greater 
efficiency and concurrency. 
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2 Related Work and Motivation 

This section discusses the application of existing replication algorithms to the problem of replicated 

directories, and informally develops the proposed replication strategy. First, unanimous update and 

primary/secondary copy strategies arc briefly discussed. (See Lindsay for a brief survey of these 

strategics [Lindsay 79].) Then, weighted voting is considered and adapted for use in directory replication. 

In the unanimous update strategy, any update operation must be done on all replicas, but reads may be 

directed to any replica. This replication strategy guarantees data consistency if the systems storing each 

replica guarantee data consistency locally. Unfortunately, the availability for updates of any object is poor 

when large numbers of replicas are used. There have been attempts to increase update availability by using 

the communication system to buffer updates to replicas that are not available. The SDD-1 distributed 

database system uses an approach like this [Rothnie 77], 

In replication strategics based on keeping primary and secondary copies of data, the primary copy receives 

all updates and then relays the updates; to secondary copies. An inquiry may be sent to a secondary copy, but 

the result may not reflect the most current updates. Because responses to inquiries might not reflect recent 

updates, it is difficult for a primary/secondary copy replication strategy to duplicate the semantics of a 

npn-rcplicatcd object Techniques for lessening this problem have been developed; for example, the Locus 

system uses a synchronization site [Popek 81]. 

Gifford designed a strategy for replication of files, which is based on a scheme called weighted 

voting [Gifford 79, Gifford 81]. This algorithm assigns some number of votes and a version number to each 

representative (or replica) of a replicated fde suite. Write operations modify each representative in a write 

quorum of W votes and increment the version number of each representative in the quorum. Read operations 

read from each representative in a read quorum of R votes and return data from the representative with the 

largest version number. The sizes of the read and write quorums are chosen so that R + W is greater than the 

sum of votes assigned to all representatives. Thus, every read quorum has a non-null intersection with every 

write quorum and each inquiry is guaranteed to access at least one current copy of the data. 

Weighted voting has several attributes that make it particularly appealing as the basis for the design of a 

replicated directory. First, the sizes of the read and write quorums may be varied to adjust the relative cost 

and availability of reads and writes. A unanimous update strategy may be specified if desired. Second, 

representatives with zero votes may be used as hints [Lampson 79]. Third, consistency and recovery are 

mainly the responsibility of transactional storage systems, which are assumed to hold each representative. 

Because concurrent operations are synchronized by the transaction system storing each representative, there 

can be considerable flexibility in the specification and implementation of concurrency control. 
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Figure 1: A 3-2-2 Directory Suite - Initial Configuration 
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Figure 2: Directory Suite After Inserting M b" 

For example, consider a 3-representative directory suite having a read quorum of 2 and a write quorum of 

2: we call this a 3-2-2 directory.1 Initially, each representative in the suite contains entries "a", and "c", and 

e notation x-y-z will refer to a directory having x representatives, a read quorum of y and a write quorum of z. For simplicity, all 
examples in this paper assume that each representative is assigned one vote. 

While weighted voting is an appealing approach to directory replication, the basic algorithm can not be 

applied to directories without undesirable concurrency limitations. Even though the semantics of directory 

operations permit concurrent modifications to different entries, only a single transaction could modify the 

directory at any time if a directory were stored as a replicated file suite. This is because each representative 

has a single version number, which causes the serialization of operations that modify the directory. 

It might seem that these concurrency limitations could be overcome if each entry in a directory 

representative were assigned a separate version number. However, with such an approach, representatives 

might not have a version number for an entry that is stored on other representatives. Because of this, it may 

not be possible to examine an arbitrary read quorum and determine whether an entry for a particular key 

exists. 
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Figure 3: Directory Suite After Deleting "b" 

each entry has version number 1 as in Figure l 2 . Subsequently entry "b" is inserted into representatives A 

and B with version number 1 (Figure 2). If a "Lookup("b")" request is sent to representatives A and C at this 

point, representative A will respond with "present with version number 1", and representative C will reply 

"not present". If entry "b" is then deleted from representatives B and C (Figure 3), "Lookup("b")" requests 

to representatives A and C will still elicit "present with version number 1", and "not present" responses. 

Thus, if a directory representative fails to associate a version number with keys for which it has no entry, the 

responses from a read quorum may not be sufficient to determine if there is an entry in the directory suite for 

a given key. 

The ambiguity demonstrated above is associated with deletions and will not occur if deletions arc not 

permitted. Entries could be updated to indicate that they are "deleted", but the space occupied by "deleted" 

entries could not easily be reclaimed. An alternative strategy is to eliminate the ambiguity by consulting an 

additional representative whenever one representative replies "present with version number JC" and another 

representative replies "not present" This approach may be applied to any directory suite configuration, but it 

results in reduced availability. 

As has been demonstrated, associating a version number only with existing entries fails to capture 

important information about the version numbers of keys for which there arc not entries. If, however, a single 

version number per representative is used, concurrency is limited. A solution is to partition the space of 

possible keys and to associate a separate version number with each partition. 

A directory could be partitioned by placing each key for which there is an entry in a separate partition, and 

maintaining a single additional partition for all keys that do not have entries. Such a directory keeps a version 

value field is omitted fromjall figures to save space. 
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number with each entry and keeps an additional version number for use with "not present" responses. Under 

such a partitioning, deletions must increment the "not present" version number. Since the "not present" 

version number applies to a very large set of keys, this approach suffers from concurrency limitations that are 

similar to the single version number per representative approach. Alternatively, deletions could be 

implemented by marking entries to be deleted and then performing a "garbage collection" operation 

periodically. However, that operation is complex and would itself be a concurrency bottleneck. 

This paper will consider partitioning the key space into a set of disjoint ranges by imposing an ordering 

relation on the keys. The simplest approach is to Use a static partitioning; however, the additional 

concurrency that is achieved might be less than expected. If a small number of ranges were used, then at most 

that number of transactions could modify a directory concurrently. Also, if transactions modify entries in 

more than one range, concurrency will be further limited. Even if a large number of ranges were used, an 

uneven distribution of accesses could limit concurrency. 

Below, we concentrate on a technique in which the ranges of keys associated with version numbers change 

dynamically. A dynamic technique such as this might be desirable for directories having sizes or access 

patterns that vary widely over time. In this dynamic approach, each directory entry, and, consequently, its 

key, is in a range by itself with its own version number. Each range of keys between directory entries, called a 

gap, is a separate range with a separate version number. 

Because each entry in a directory representative is in a range by itself, lookup operations on such entries 

return the version number associated with the entry. Lookup operations on keys not in a directory 

representative return the version number of the gap in which the key appears. Update operations increment 

the version number of the range containing the entry being updated; insertion operations split a gap; and 

deletions coalesce the gaps and entries in a range of keys into a single gap. For example, using this approach, 

entry "b" would be inserted into representatives A and B (of Figure 1) with version number 1, which is one 

greater than the version number of the gap between "a" and "c" (Figure 4) 3. If a "Lookup("b")" request 

were sent to representatives A and C at this point, representative. A will respond with "present with version 

number 1," and representative B will reply "not present with version number 0." Using these responses, a 

client may determine that there is an entry for "b" since that response has the larger version number. If "b" is 

subsequently deleted from representatives B and C, then the two gaps on either side of "b" on representative 

B are coalesced; then on both representatives, the gap between "a" and "c" is assigned version number 2. 

(Figure 5). 

3The directory representatives in Figure 4 contain the special keys LOW and IHGII, which delimit the first and last gaps in the 
representatives. 
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Figure 4: Directory Suite After Inserting "b" 

The following section discusses this replication algorithm in more detail. 

3 Details of the Algorithm 

This section presents the details of the approach to directory replication sketched in the previous section. 

The descriptions given here arc illustrated with program text in a Pascal-like language that allows procedures 

to return multiple values and includes a remote procedure call primitive. Remote procedure calls arc written 

as "Send(<procedure invocation>) to(<objcct instance>)M and are assumed to return values in the same 

fashion as a normal procedure invocation. These remote procedure calls are similar in semantics to those of 

ARGUS [Liskov 82], except that error responses, such as timeouts, are not considered in these examples. 

Qarity is emphasized over performance in these descriptions and an inventive reader will find many 

improvements. 

There are three parts to the descriptions given here. First, the operations on directory representatives are 
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Figure 5: Directory Suite After Deleting "b" 

identified. Second, the operations on directory suites are described and illustrated and finally, some 
correctness arguments are given. 

3.1 Directory R e p r e s e n t a t i v e s 

J n a replicated directory, each directory representative is an instance of an abstract object that stores one 

copy of the directory data. Arbitrarily complex atomic transactions may be constructed using the basic 

operations provided by directory representatives. Thus, directory representatives must synchronize 

concurrent operations performed by different transactions and store critical information in. a fashion that 

recovers from failures. GifFord's weighted voting algorithm makes similar requirements on its file 

representatives. 

Every instance of a directory representative contains two distinguished keys: HIGH and LOW. HIGH is 

greater than any key that can be inserted into the representative, and LOW is less than any key. HIGH and 

LOW simplify the directory suite delete operation by ensuring that all keys have a real successor and real 
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DlpRepLookup(x:key) R e t u r n s ( b o o l e a n . v e r s i o n . v a l u e ) ; 
{ I f there 1s an entry for x return TRUE, the 

v e r s i o n number of the e n t r y , and I t s 
v a l u e ; o therwise return FALSE and the 
v e r s i o n number of the gap c o n t a i n i n g x . 

Locks RepLookup(x f x) . } 

D1rRepPredecessor(x:key) Returns(key , v e r s i o n , v e r s i o n ) ; 
{ Returns the key and v e r s i o n number of the 

entry with the l a r g e s t key l e s s than x. 
Also re turns the v e r s i o n number of the 
gap between x and I t s p r e d e c e s s o r . There ' 
need not be an entry for x. 

Locks RepLookup(y t x) where y 1s the key 
re turned . } 

D1rRepSuccessor(x:key) 
R e t u r n s ( k e y . v e r s i o n . v e r s i o n ) ; 

{ Returns the key and v e r s i o n number of the 
entry with s m a l l e s t key g r e a t e r than x. 
Also re turns the v e r s i o n number of the gap 
between x and I t s s u c c e s s o r . There need 
not be an entry f o r x. 

Locks RepLookup(x.y) where y 1s the key 
r e t u r n e d . } 

D 1 r R e p I n s e r t ( x : k e y , v : v e r s 1 o n . z : v a l u e ) ; 
{ Creates an entry for key x with v e r s i o n 

number v and va lue z . Updates the entry 
for key x 1f one a lready e x i s t s * . 

Locks RepMod1fy(x t x) . } 

D 1 r R e p C o a l e s c e ( l : k e y , h : k e y , v : v e r s i o n ) ; 
{ D e l e t e s e n t r i e s for any keys between (but 

not Inc lud ing ) 1 and h. The r e s u l t i n g gap 
1s a s s igned v e r s i o n number v . An error 1s 
Ind ica ted 1f e n t r i e s do not e x i s t for keys 
1 and h. 

Locks RepModl fy ( l .h ) , } 

Figure 6: Directory Representative Operations 

predecessor in the directory. Real predecessor and real successor have an intuitive meaning, but are defined 

precisely in Section 3.2. 

Directory representatives provide typical directory primitives: DirRepLookup and DirRepInsert. In 

addition, directory representatives provide specialized operations that are used to implement the directory 
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suite deletion operation: DirRcpPrcdecessor, DirRcpSucccssor, and DirRcpCoalcscc. DirRcpPrcdecessor 

returns the key and version number of the entry in die representative that is the immediate predecessor of the 

key passed as an argument; it also returns the version number of the gap between the keys. DirRcpSucccssor 

is analogous to DirRcpPrcdecessor. Deletions arc performed on a directory representative using the 

DirRcpCoalcscc operation, which deletes any entries appearing in a range between two specified entries and 

assigns a single version number to the resultant gap. Thus, DirRcpCoalcscc coalesces a range of keys into a 

single gap. Figure 6 gives sample procedure headings for each of these operations. 

Each directory representative must synchronize the concurrent operations of different transactions. While 

this might be accomplished in many ways, the discussion presented here will assume that typc?specific locking 

is used [Schwarz 82]. In type-specific locking, every operation on an abstract object acquires a lock that is a 

member of the set of locks associated with that object. A lock compatibility relation is used to determine 

whether a lock may be acquired by a particular transaction. 

The lock classes used in synchronizing a directory representative arc the obvious analogs of the lock classes 

for a single-copy directory (given by Schwarz [Schwarz 82]). However, instead of locking single keys, the lock 

classes are generalized to lock an entire range of keys and the granting of a lock depends on whether a range 

of keys to be locked intersects the range of keys already locked by some other transaction. Inquiry operations 

(DirRepLookup, DirRcpPrcdecessor, and DirRcpSucccssor) set RcpLookup(a.r) locks, where the range of 

keys explicitly or implicitly accessed by the operation is those keys greater than or equal to a and less than or 

equal to T . A RcpModify(a.T) lock is obtained on the keys of entries modified by the DirRcpInscrt and 

DirRcpCoalcscc operations. 

The lock compatibility relation for operations on directory representatives is illustrated in Figure 7. In the 

figure, [<T...T] and [<T\..T'] are arbitrary non-intersecting ranges of keys, and [a...r] and [<J ,\..T"] arc arbitrary 

intersecting key ranges. Locks are compatible except that a RcpModify lock may not specify a range which 

intersects the range already specified by another RcpModify lock, a RcpModify lock may not specify a range 

which intersects the range already specified by a RepLookup lock, and a RcpLookup lock may not specify a 

range which intersects a range already specified by a RcpModify lock. For example, the compatibility relation 

specifies that a transaction may not be granted a RepModifyfaV") lock if another transaction already holds a 

RepModify(a,T) lock. 

As specified, the lock compatibility relation is sufficiently strong to guarantee that the actions of 

transactions operating on a directory representative are scrializablc [Traiger 82], providing that two phase 

locking is used. This form of synchronization simplifies correctness arguments given in Section 3.3. 



10 

Lock Requested None 
Lock Held 

RcpModify(a,T) RepLookup(a,r) 

RepModilMaV") 
RcpModify(a ,,r) 
RcpLookup(<T'\<r") 
RepLookupfaV) 

OK 
OK 
OK 
OK 

No 
OK 
No 
OK 

No 
OK 
OK 
OK 

Note: I <T..T] intersects [<J'\.T"] and[a..r] does not intersect [a \ .r ] 

Figure 7: Compatibility of Directory Representative Lock Classes 

3.2 Directory Su i tes 

Directory suites consist of a set of directory representatives, a distribution of votes, and the read and write 

quorum sizes R and W. Operations on directory representatives are combined to implement a replicated 

directory based on the weighted voting rules described in Section 2. A Directory suite implements the 

operations DirSuiteLookup, DirSuitelnsert, DirSuitcUpdatc, and DirSuitcDclcte. 

The DirSuiteLookup operation sends DirRcpLookup requests to a read quorum of representatives and 

returns the results4 of the reply with the largest version number. Code for this operation is given in Figure 8. 

Directory suite modification operations must ensure that the version number of the modified entry is 

higher than any version number that had been previously associated with the entry's key. In addition, the 

DirSuitcDclcte operation must exercise care so that it does not inadvertently give a higher version number to 

non-current data. 

The DirSuitelnsert operation is quite simple. DirSuitelnsert first looks up the key to be inserted in a read 

quorum and uses one greater than the highest version number as the version number for the new entry. The 

entry is then inserted in a write quorum of representatives. Figure 9 illustrates this operation. The 

DirSuitcUpdatc operation is analogous. 

DirSuitcDclcte must delete an entry from a write quorum by coalescing a range of keys that includes the 

entry to be deleted and assigning a higher version number to the resulting gaps. To avoid assigning higher 

version numbers to data that is not current, the range to be coalesced may not contain directory suite entries 

V i g u r e 8 shows DirSuiteLookup returning a version number as well as a boolean and the value of the entry. The version number is 
used by the procedures RealPredc$essor, DirSuitelnsert, and DirSuitcModify. A user would ignore this number. 
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D1rSu1teLookup(x:key) R e t u r n s ( b o o l e a n . v e r s i o n , v a l u e ) 

var 
{ read quorum has R members } 
quorum : a r r a y [ l . . R ] of DlrRep; 
v , b e s t v : v e r s i o n ; 
v a l , b e s t v a l : v a l u e ; 
1s1n, b e s t l s l n : boo lean; 
1 : I n t e g e r ; 

begin 
{ c o l l e c t a read quorum for t h i s o p e r a t i o n } 
quorum :» Col lectReadQuorum(); 

b e s t v :» LowestVerslon; { a c o n s t a n t } 
{ send I n q u i r i e s to each quorum member } 
for 1:» 1 t o R do 

begin 
1s1n t v f va l :«Send(D1rRepLookup(x ) ) 

t o quorum[1]; 
1f v>bestv then 

begin 
b e s t v : « v ; 
b e s t v a l : - v a l ; 
b e s t 1 s 1 n : « 1 s 1 n ; 

end; 
end; { of for 1} 

r e t u r n ( b e s t 1 s 1 n , b e s t v , b e s t v a l ) ; 
end; { of D1rSu1teLookup } 

Figure 8: DirSuitcLookup Operation 

other than the one to be deleted. To possess this property, the range must extend from the real predecessor of 

the key to be deleted to its real successor. The real predecessor of a key, is the entry with the largest key less 

than x that appears in a write quorum of representatives. The real successor of a key is defined similarly. 

Locating the real predecessor and real successor of an entry that is to be deleted is complex. There may be 

ghosts of entries located between the deleted key and its real predecessor or real successor. A ghost is defined 

as an entry for a key that is no longer present in the directory suite. In addition, the real predecessor or real 

successor of a key might not be present in some members of the write quorum. 

These problems are illustrated in Figure 10. In this figure, the real successor of the entry "a" is the entry 
Mbb". However "bb" does not appear in representative C, and the ghost of entry "b" appears between "a" 

and M bb" in representative A. To delete "a" from representative A and C, the real successor, "tab", must first 

be located and then copied to representative C The coalescing of the range from LOW to "bb" eliminates the 

ghost of entry "b" from representative A, as shown in Figure 11. 



12 

D 1 r S u l t e I n s e r t ( x : k e y , z : v a l u e ) ; 

var 
{ w r i t e quorum has W members } 
quorum : a r r a y [ l . . W ] of DlrRep; 
1 : I n t e g e r ; 
k : key; 
v : v e r s i o n ; 
val : v a l u e ; 
1s1n: boo lean; 

begin 
{ f i r s t , lookup the key to f i n d the } 
{ current v e r s i o n number } 
1 s 1 n , v e r , v a l : a D1rSu1teLookup(x); 
{ val Ignored } 
1f 1s1n then ReportError( ) ; 

{ f ind a w r i t e quorum } 
quorum : • Co1lectWr1teQuorum(); 

{ The new e n t r y ' s v e r s i o n number must be } 
{ higher than I t s prev ious v e r s i o n number } 
{ as returned by the DirSuiteLookup c a l l } 
v e r : » v e r + l ; 

{ I n s e r t the entry 1n each quorum member } 
for 1:« 1 t o W do 

S e n d ( D 1 r R e p I n s e r t ( x , v e r , z ) ) 
to (quorum[1] ) ; 

end; {o f D i r S u i t e l n s e r t } 
Figure 9: DirSuitelnsert Operation 

A straightforward implementation of the procedure RealPredccessor, which locates the real predecessor of 

a key, is shown in Figure 12. Because of ghost entries, this procedure may have to examine many keys before 

finding the real predecessor. However, measurements reported in Section 4 indicate that this is not a problem 

in practice. The DirSuiteDeletc operation uses this procedure and the analogous procedure: RcalSuccessor. 

DirSuitcDclcte locates the real successor and real predecessor of an entry to be deleted, and inserts entries for 

the real successor and real predecessor into any member of the write quorum where they do not appear. It 

then determines the version number to be assigned to the new gap and coalesces the range in each member of 

the write quorum. DirSuitcDclcte is illustrated in Figure 13. 
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Figure 10: Directory Suite from Figure 5 After Inserting "bb" 

3,3 Correctness Arguments 

The correctness of a directory suite's operations depends on DirSuiteLookup always returning current 

information about a key. Because every read quorum intersects every write quorum, DirSuiteLookup will 

return current information as long as that information has a version number greater than that of any non-

current information and as long as there are no concurrency anomalies. These correctness conditions are the 

same as those required for Gifford's file replication algorithm. 

Two phase locking and the lock compatibility matrices specified in Section 3.1 are strong enough to 

guarantee the scrializability of transactions at any single representative. Traiger et al. [Traigcr 82] have shown 

that if all nodes participating in distributed transaction execution follow two phase locking protocols that 

guarantee the scrializability of transactions at individual nodes, then the resulting global schedule is 

equivalent to some serial schedule of transactions. 
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Figure 11: Directory Suite from Figure 10 After Deleting "a" 

The DirSuitelnsert and DirSuitcUpdatc operations both set the version number of the entries they modify 

to be greater than the greatest version number previously associated with the keys of those entries. Therefore, 

the current data for each key has a version number greater than that of any non-current data for that key. 

DirSuitcDclcte coalesces the range between the real predecessor and real successor of the key to be deleted. 

By the definition of real predecessor and real predecessor, there can be no current entries (other than the 

entry to be deleted) in the range to be coalesced. The operation assigns to the coalesced range a new version 

number that is higher than any version number previously associated with every key in that range. Therefore, 

as with DirSuitelnsert and DirSuitcUpdatc the current data for each key has a version number greater than 

that of any non-current data for that key. 
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R e a l P r e d e c e s s o r ( x i k e y ) 
R e t u r n s ( k e y . v a l u e , v e r s i o n , v e r s i o n ) ; 
{ r e t u r n s key , v a l u e , and v e r s i o n number } 
{ of x ' s rea l p r e d e c e s s o r , and the l a r g e s t } 
{ gap v e r s i o n encountered w h i l e s e a r c h i n g } 

var 
{read quorum has R members } 
quorum a r r a y [ l . . R ] of DlrRep; 
pred, k, pk: key; 
pver , t v , v , v t , maxv: v e r s i o n ; 
p v a l u e : v a l u e ; 
1: I n t e g e r ; 
1s1n: boo lean; 

begin 
{ c o l l e c t a read quorum } 

quorum:»Col1ectReadQuorum(); 
k:«x; 
1 s 1 n : - f a l s e ; 
maxv:»LowestVers1on; {a c o n s t a n t } 
w h i l e not 1s1n do 

begin 
pred:»LowestKey; {a c o n s t a n t } 
for 1:»1 t o R do 

begin 
pk, t v , v :«Send(D1rRepPredecessor(k) ) 

t o ( q u o r u m [ 1 ] ) ; { t v , Ignored } 
pred :» Max(pk, p r e d ) ; 
maxv :« Max(v, maxv); 

end; {o f f o r 1} 
1 s1n ,pver ,pva lue :»D1rSu1teLookup(pred) ; 
1f not 1s1n then 

k:*pred; 
end; { o f wh i l e do } 

R e t u r n ( p r e d , p v a l u e , p v e r , m a x v ) ; 
end; { o f Real Predecessor } 

Figure 12: RcalPrcdccessor Operation 

4 Performance Characterization 

This section presents the results of simulations of this directory replication strategy. There are many 
statistics that characterize the performance of this algorithm, but only three were selected for the 
measurements presented here. 

The first statistic is labeled "Entries in ranges coalesced" and is the average number of entries (per 

representative) that lie between the real predecessor and real successor of a deleted key. This statistic counts 

the entry to be deleted, if it appears in a representative, and any ghosts that may be in the range to be 
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D 1 r S u 1 t e D e l e t e ( x : k e y ) ; 

var 
{ w r i t e quorum has W members } 
quorum : a r r a y [ l . . W ] of DirRep; 
1 : i n t e g e r ; 
1s1n: boolean 
s u c c , pred 9 k: key; 
p v a l , s v a l , v a l : v a l u e ; 
pver , s v e r , v , v e r : v e r s i o n ; 

begin 
{ f i n d a w r i t e quorum } 
quorum :» CollectWr1teQuorum(); 

{ Find the predecessor and s u c c e s s o r of x } 
s u c c , s v a l , s v e r , v e r :» R e a l S u c c e s s o r ( x ) ; 
p r e d , p v a l , p v e r , v :» R e a l P r e d e c e s s o r ( x ) ; 

{ The v e r s i o n number of the c o a l e s c e d gap } 
{ must be higher than the maximum of any } 
{ v e r s i o n numbers 1n the range c o a l e s c e d } 
ver :» Max(v, v e r ) ; 
1 s1n ,v ,va l :*D1rSu1teLookup(x ) ; { 1s1n, val Ignored } 
ver Max(v, v e r ) ; 

{ make sure the predeces sor and s u c c e s s o r } 
{ e x i s t 1n every member of the quorum) 
for 1 :» 1 to W do 

begin 
1 s 1 n , v . v a l : « Send(D1rRepLookup(succ)) 

to (quorum[1] ) ; 
{ v . v a l Ignored} 
1f not 1s1n then 

S e n d ( D 1 r R e p I n s e r t ( s u c c 9 s v e r , s v a l u e ) ) 
t o (quorum[1]) ; 

1 s 1 n f v f v a l : « Send(D1rRepLookup(pred)) 
to (quorum[1] ) ; 

{ v f v a l Ignored} 
1f not 1s1n then 

S e n d ( D 1 r R e p I n s e r t ( p r e d t p v e r , p v a l u e ) ) 
t o (quorum[1]) ; 

end; { f o r 1 } 

{ c o a l e s c e the range 1n each member } 
for 1 : - 1 t o W do 

Send(D1rRepCoa1esce (pred 9 succ ,ver+1) ) 
t o (quorum[1]) ; 

end; {o f D1rSu1teDelete } 
Figure 13: DirSuiteDelete Operation 

coalesced. Entries for the real predecessors and real successors arc not included. This statistic reflects the 

number of entries that must be examined when the DirSuitcDclcte operation is locating the real predecessor 

and real successor of a entry. 
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Figure 14: Simulation Results for Various Directory Suites 

The second and third statistics, labeled "Insertions while coalescing," and "Deletions while coalescing," are 

the average numbers of insertions and extra deletions (per suite) performed during each DirSuitcDelcte 

operation. The insertion statistic counts the number of real predecessors and real successors that must be 

inserted on representatives, and the deletion statistic counts the number of ghost entries that must be deleted. 

These statistics reflect the extra work done by DirSuitcDelcte in addition to the work that would be done by 

the deletion operation of a unanimous update strategy having the number of replicas in a write quorum. 

Figure 14 shows the average results of simulations using directory sizes of approximately one hundred 

entries with varying numbers of directory representatives and varying sizes of read and write quorums. The 

duration of each simulation was ten thousand operations, and the members of quorums and the keys to insert, 

update, or delete were selected randomly from a uniform distribution. 

More detailed results for 3-2-2 directories with one hundred, one thousand, and ten thousand entries are 

shown in Figure 15. The duration of each of these simulations was one hundred thousand operations. The 
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maximums and standard deviations that arc shown indicate the statistics do not vary significantly with 

directory size. 

1000 Entries 

Ave Max Std Dcv 
1.33 9 0.87 

Entries in ranges coalesced 

Ave Max Std Dcv 
1.32 12 0.86 

Ave Max Std Dev 
1.20 9 0.76 

Ave Max Std Dev 
0.88 8 1.05 

Deletions while coalescing 
c 

Ave Max Std Dcv 
0.87 11 1.04 

Avg Max Std Dcv 
0.67 9 0.90 

Ave Max Std Dcv 
0.44 2 0.59 

Insertions while coalescing 

Avg Max Std Dcv 
0.45 2 0.59 

Avg Max Std Dcv 
0.53 2 0.64 

Figure 15: Detailed Simulation Results for three 3-2-2 Directory Suites 

The measurements of the first statistic indicate that the real predecessor and real successor of a key to be 

deleted will be located quickly if the simulation assumptions hold. For instance, if each member of a read 

quorum sends the results of three successive DirRcpPrcdcccssor and DirRepSucccssor operations in a single 

message, the real predecessor and real successor will often be located using one remote procedure call to each 

member of the quorum. The results for the second and third statistics indicate that the weighted voting 

algorithm docs little extra work during deletions, compared with a unanimous update strategy. 

5 Discussion 

Though the previous sections motivate and describe the basic replication algorithm, there arc many 

performance issues worthy of mention. First, it is interesting to note that if the memberships of write 

quorums change infrequently, coalescing during deletions will not be costly. Thus, the statistics presented in 

the previous section are worse than could be achieved, because quorum members were selected randomly. In 

some ways, the algorithm behaves similarly to a moving primary update strategy [Alsberg 76] when write 

quorums change infrequently. 

If transactions that operate on a directory exhibit locality of reference with respect to keys, quorums can be 

5 We believe that the statistics for the ten thousand entry directory do not reflect steady state behavior. 
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In read quorums for 
keys: 1-50 

In write quorums for 
keys: 1-75 

in read quorums for 
keys: 1-50 

In write quorums for 
keys 1-50, 76-100 

Representative A1 Representative A2 

In read quorums for 
keys: 51-100 

In write quorums for 
keys: 1-25, 51-100 

In read quorums for 
keys: 51-100 

In write quorums for 
keys: 26-100 

Representative B1 Representative B2 

Figure 16: A 4-2-3 Directory Suite Partitioned for Locality 

If transactions that operate on a directory exhibit locality of reference with respect to keys, quorums can be 

chosen that permit reads to be done locally and non-local writes to be distributed among all the non-local 

representatives.6 For example, consider a 4-2-3 directory suite with key values in the range of 1 to 100, and 

locality such that transactions of Type A operate on entries having keys 1 to 50, and transactions of Type B 

operate on entries having keys 51 to 100. We assume that representatives Al and A2 are local to transactions 

of Type A and representatives Bl and B2 are local to transactions of Type B. As shown in Figure 16, Type A 

transactions read from representatives Al and A2 and direct their updates to Al, A2, and cither Bl or B2. 

Transactions of type B behave similarly. In this example, all inquiries can be done locally and the non-local 

write that is required for modification operations is evenly distributed among the remote representatives. 

With respect to the implementation of the replication algorithm, the sketches we have provided are 

pcdagogically sound, but not the most efficient Locking rules can be modified to permit greater concurrency 

without sacrificing scrializability. Additionally, inter-rcprcscntativc message traffic can be reduced by 

combining certain remote procedure calls. Wc envision that directories could be represented as 

B-trecs [Comer 79]. Version numbers for gaps could be stored in fields in their bounding entries. For some 

applications, version numbers containing 48 or more bits may be required to prevent version numbers from 

cycling. 

The performance characterizations presented in this paper arc based on simulations, however initial work 

on an analytical treatment indicates that we can obtain similar results from simple analytic models. Further 

simulations and practical experience are needed in order to quantify the additional concurrency permitted by 

this directory replication algorithm. We plan to implement this algorithm as well as Gifford's weighted voting 

Of course, failures that require.the quorums to change will result only in a performance loss. 
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algorithm for files using a prototype transaction-based system wc arc constructing on a modified version of 

the Accent kernel [Rashid 81]. 

In summary, this paper has presented a replication algorithm for directories that exhibits favorable 

performance and availability properties. As is the case with Gifford's algorithm, the exact configuration of 

suites can be tailored to provide higher or lower availability, and higher or lower performance. This 

algorithm achieves high concurrency while maintaining consistency by dynamically partitioning the directory 

by range and associating a version number with each range. Simulation results show the extra costs associated 

with maintaining the consistency of a directory replicated Using our algorithm is low. 
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