
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-33-111

On the relationship of CCS and CSP

Stephen D. Brookes
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pa.

March 1983

A version of this paper will appear in Proceedings of ICALP 198S.

The research reported in this paper was supported in part by funds from the Computer Science
Department of Carnegie-Mellon University, and by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-81-K-1539. The views and conclusions contained in it are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

ON THE RELATIONSHIP OF CCS AND CSP

Stephen D. Brookes
Department of Computer Science

Carnegie-Mellon University
Pittsburgh

Pennsylvania 15213

Abstract.

This paper compares two models of concurrency, Milner's Calculus of Communicating Systems
(CCS) and the failures model of Communicating Sequential Processes (CSP) developed by Hoare,
Brookes and Roscoe. By adapting Milner's synchronisation trees to serve as notation for both
CCS and CSP, we are able to define a representation mapping for CSP processes. We define an
equivalence relation on synchronisation trees which corresponds precisely to the notion of failure
equivalence. This equivalence relation identifies two trees if and only if the processes represented by
the trees have identical failure sets. Milner's calculus is founded on a different notion, observation
equivalence. We show how these two equivalences are related. Just as Milner's equivalence can be
characterised as the smallest relation satisfying a set of axioms, we find a suitable set of axioms
for the failures equivalence relation. This again makes explicit the differences between the two
systems, as well as revealing that the semantic models underlying CCS and CSP are comparable.

1.0. Introduction.

This paper considers the similarities and differences between two abstract models of concurrent
behaviour, Milner's synchronisation trees for CCS [1], and the failures model of CSP (Hoare,
Brookes, Roscoe [2]). In order to make the paper relatively self-contained, we begin by listing the
principal characteristics of the two systems. Milner's original formulation of his calculus introduced
synchronisation trees, with arcs labelled by action names drawn from an alphabet £ or by a special
symbol r standing for an invisible action; paths through a tree then correspond to a sequence of
visible actions, possibly with some invisible actions occurring on the way. Each node of a tree
defines a possible sequence of visible actions up to some moment, and the subtree rooted there
represents a possible future behaviour. Milner defines a notion of behaviour for synchronisation
trees and constructs an equivalence relation on trees known as observation equivalence. Terms
in the language CCS can then be taken to denote equivalence classes of trees under observation
equivalence.

In the failures model of Hoare, Brookes and Roscoe the behaviour of a process is defined in
terms of the sequences of visible actions the process may perform, and the sets of actions the
process may (as the result of making a nondeterministic decision) refuse to perform. A failure is
simply a pair consisting of a finite sequence of visible actions possible for the process and a set of

1

actions which the process may be able to refuse on the next step after this sequence. The behaviour
of a process is then determined by its failure set. There is a natural partial order on behaviours
which captures precisely the notion of nondeterminism and turns the set of all process behaviours
into a complete semi-lattice. Terms in the language CSP can then be taken to denote failure sets.

We will give an alternative formulation of processes equivalent to the failures definition. The
new version is designed in order to facilitate comparison with CCS. Specifically, we define a mapping
from CSP to synchronisation trees, and an equivalence relation (called failure equivalence) on trees
which reflects the failure semantics of processes. Two processes have the same failure sets if and
only if the trees representing them are identified by the failure equivalence relation. We also define
operations on synchronisation trees which mirror the process operations of CSP. This leads to a
discussion of which CSP operations are definable in terms of Milner's CCS operations. We also
show that the failure equivalence relation is the relation characterised by a set of axioms, and
compare these axioms with the defining axioms of observation equivalence.

1.1. Milner's synchronisation trees.

This section contains a summary of the definitions and results of Milner. More details can
be found in [1]. We begin with a set E of actions, also known as events. This set is called the
alphabet. There is also a special symbol r, which does not belong to E : r represents an invisible
action. The set E U { r } will be called the extended alphabet, and we use meta-variables arb to
range over the alphabet, and X, /x to range over the extended alphabet. The meta-variables s, t, u
range over finite sequences of events, and w ranges over finite sequences of extended events.

A synchronisation tree S is an rooted, unordered, finitely branching tree all of whose arcs are
labelled with either r or an event. We use the notation

n

for the tree whose initial arcs are labelled /z i , . . . , /x n, and which has subtrees Ti,..., Tn at the ends
of these arcs. The trivial tree with no arcs is denoted NIL, and the result of joining two trees S and
T at their roots is denoted S + T. The meta-variables 5 , T, U range over trees. The branches of a
tree are defined in the usual way. Note that NIL has no non-trivial branches, and the non-trivial
branches of S + T are either branches of S or of T. The following axioms reflect our assumption
that a tree is uniquely determined by its set of branches.

PROPOSITION 1.1.1. Addition is commutative, idempotent and associative; NIL is an additive
identity element

(Al) S + r = T + S
(A2) {S + T) + U = S + {T + U)
(AS) S + S = S
(A4) S + NIL = S

If S has a branch of the form wT, we write

and say that S has a w-branch (to T.) As far as an observer of a tree is concerned, the r actions
are invisible; we use the notation w / r for the sequence of visible actions obtained by deleting all
occurrences of r from w, and write

S ===• T
when S has a branch to T on which the sequence of visible actions is t; we say that S has a
t-derivation (to T). A ^-derivation represents a possible behaviour in which the sequence of visible
actions t occurs and where the behaviour thereafter may be any consistent with T. The behaviour
of a process will be modelled by a synchronisation tree, and two processes will be distinguishable
only if their possible derivations differ. In making this more precise, Milner defines a sequence of
equivalence relations { « n | n > 0 } on trees, with the idea being that the nth relation represents
equivalence up to depth n.

DEFINITION 1.1.2. The equivalence relations « n (n > 0) are defined by:

(i) 5 « 0 T for all 5 , T.
(ii) S « w + 1 T iff, for all s € E*,

(a) s =S=» s' => G R . R R & S ' » N R

(b) R =^=> R =» 35 ' .5 =̂ => s' & 5 # « N R .

It is clear that each of these relations is indeed an equivalence, and that they form a decreasing
chain of finer and finer relations:

~n+i C ~ n > for all n.

Milner regards two trees as observationally equivalent if and only if they cannot be distin
guished by any finite experiment; this is the case when no « n relation can distinguish between
them. This motivates the following definition.

DEFINITION 1.1.3. Two trees S and'T are observationally equivalent iff, for all n > 0, S « n T.
The observation equivalence relation « is defined by:

OO

« = f] «„ .
N = 0

It is obvious that observation equivalence is indeed an equivalence relation:

(i) 5 « S
(ii) S « T =* T « S
(in) 5 « r « f / = > 5 « C / .

Milner notes the following laws of observation equivalence [1]. They are easily verified;
uses induction on n to prove that the appropriate pairs of trees are n-equivalent for all n.

PROPOSITION 1.1.4. The following laws hold for observation equivalence:

(1) S + TS^TS
(2) TS » S
(S) nS + /x(r5 + T) « [I{TS + T)

Milner also defines an inference rule, known as guarded inference.

PROPOSITION 1.1.5. The following inference rule, (R), is valid:

fR)

 S ~ T

(J fiS + U^fiT + U

As Milner shows, there is a sense in which these laws and inference rule characterize observation
equivalence, at least on finite trees. One can use these laws to prove every true equivalence on
finite trees, provided one allows use of laws (1) and (3), (A1)-(A4), in any additive context. Law
(2), however, is not valid in all contexts, so its use must be restricted. The following proposition
states this fact more precisely.

PROPOSITION 1.1.6. The following set of axioms, together with rule (R) and laws (A1)-(A4), is
complete for observation equivalence of finite trees.

(Ml) S + TS + TX*TS + T

(M2) r S « S
(M3) /xS + /z(rS + T) + U « /z(rS + T) + U

Proof. These are (essentially) Milner's r-laws, and the completeness result is stated in [1]. |

These results for CCS are well known. Later we will show that similar results can be obtained
for CSP, with a different axiomatic system.

Milner uses synchronisation trees and the observation equivalence relation in constructing a
mathematical model of concurrent processes. He introduces a simple language, called CCS, whose
terms can be taken to denote (equivalence classes of) synchronisation trees. For our purposes, the
terms in this language can be thought of as being generated by the following grammar:

S : := ML | aS | Si + S 2 | Si | S 2 | S \ a I S l a \ b\-

We have already dealt with the first three forms. Milner calls S | T the composition of S and T,
and for trees

n

m

t=l

with \i, fij G S U { T }, the composition is defined by

S\T=J2 HSi \T)+J2 H(S I T3) + rCft | 7V).

Here the events a and a are matching or complementary actions. It will simplify our presen
tation without losing any generality to assume that the only actions which have complements are

4

visible actions, and that a = a for all visible actions a. The final two types of CCS process are
interpreted thus, using the same notation as above for S :

S\b = £ X,(5 t\6),

n
S[a\b] = ^\i[a\b]Si[a\b],

where for an event /x, fi[a \ b] is a if JJL = b and ft otherwise. These operations are called restriction
(\b) and relabelling ([a \ b}) by Milner. Restricting prunes away branches involving the particular
event 6, while relabelling replaces all occurrences of one label by another. Note that these operations
are defined recursively, and these definitions can be thought of as expansion theorems which allow
a term involving composition, relabelling or restriction to be manipulated into a summation form.
Milner shows that addition of these expansion laws to the logical system of Proposition 1.1.6
produces a complete system for the full language of (finite) CCS terms.

It is important to note that Milner's observation equivalence is not quite a congruence with
respect to his operations. In particular, it is not an additive congruence, in that there are trees
which are observationally equivalent but can be put in a context where they are no longer equivalent.
For example, it is always true that S « rS, but obviously not generally true that S + T « rS H-T.
Addition is the only operation which causes problems here; all other CCS operations preserve
observation equivalence.

1.2. The failures model of CSP.

In the failures model of process behaviour, a process is characterised as a failure set Each
possible failure of a process represents a finite piece of behaviour in which the process has engaged
in a sequence of visible actions up to some moment and has since then refused to participate in
some set of actions, i.e. the process has refused a set of actions. This refusal comes about as the
result of an autonomous decision by the process, and models the possibility of nondeterministic
behaviour. Failures are intended to capture precisely the situations in which a process can deadlock.

Again we begin with a set £ of events, and events stand for process actions which are
visible to the process's environment. In the CSP model we are thinking of events as standing
for synchronised communications or interactions between a process and its environment. Instead
of using r as a special symbol for an unobservable action, and allowing occurrences of r to represent
nondeterministic behaviour, the presence of nondeterminism manifests itself as follows. After each
finite sequence of visible actions, a process has a set of refusal sets which represents the possible
consequences, for the next step, of the various nondeterministic decisions available to the process.
We imagine that a nondeterministic decision has the effect of removing a set of events from the
set of actions in which the process might have participated on the next step. In other words,
each nondeterministic decision restricts the process's future behaviour. Thus it is appropriate to
represent this effect as a refusal set

A failure is a pair consisting of a sequence s of events and a set Xof events. We will refer to
s as the trace and X as the refusal set Intuitively, if a particular failure {s7X) is possible for a

process then the process may, once it has performed the sequence s, refuse to participate in any
event in X on the next step. Thus we say that the process may do s and then refuse X. If {s,X)
is a possible failure of a process and the process is run in an environment in which the sequence
of events s is allowed and then the environment only allows events in X as the next step, there is
a possibility of deadlock: the process can refuse all of the events which the environment is willing
to perform next.

A process P will be characterised as a set of failures, or (equivalently) as a relation between
traces and refusal sets. The domain dom(P) of this relation will define the trace set of the process.

DEFINITION 1.2.1. A process is a set of failures P satisfying:

(PI) « > , 0) € P
(P2) {st,0)EP=>{s,0)EP
(P3) X C Y &{s,Y)6P=>{s,X)EP
(P4) (s ,X) E P & s{b) g"dom(P) =* (s , I U { b}) 6 P

The above definition says that the traces of a process form a non-empty set (PI), which is also
prefix-closed (P2). If P can refuse a set Y at some stage then it can also refuse any subset X of
Y (P3). An impossible event can always be included in a refusal set (P4). These conditions are
intuitively appealing, given our model of behaviour.

DEFINITION 1.2.2. For any set P of failures,

(i) traces(P) = { s | (a, 0) 6 P }
(ii) refusals(P) = { X | ((), X) £ P }
(iii) initials(P) = { a \ (a) € traces(P) }

If P and Q are two processes such that P D Q, then every possible failure of Q is also possible
for P . Intuitively this means that it is possible for P to behave like Q, but it may also be the case
that P can behave in a manner impossible for Q, either by refusing or performing more than Q
could at the same stage. In such circumstances we say that P is more nondeterministic than Q,
and write P C Q. It is easy to see that processes are partially ordered by this relation. In fact the
set of processes becomes a complete semi-lattice under this ordering.

is a PROPOSITION 1.2.3. Processes, ordered by C , form a complete semi-lattice; that is, C
partial order, there is a least element (known as CHAOS), every non-empty set of processes has a
greatest lower bound, and every directed set of processes has a least upper bound.

Proof. The union of any non-empty set of processes is again a process, and the intersection of
any directed set of processes is a process. The bottom element is CHAOS = £* X ^(S) . Details
can be found in [2]. I

In [2] we introduced a denotational semantics for a simplified version of Hoare's CSP/language,
in which CSP processes were identified with failure sets. We defined a set of operations on failure

6

sets which correspond to the syntactic constructs of the language, and sHowed that all of these
operations are continuous with respect to the nondeterminism ordering. This fact justified our use
in [2] of recursively defined processes, since least fixed points of continuous functions on complete
semi-lattices exist. For the purposes of this paper, the following is a summary of the relevant work.

The syntax of the language is simple. The syntactic category of processes P is defined thus:

P : : = S T O P | (a - P) \ PHP \ PQP \ P\\P
I 1̂11̂ I P/b

STOP is intended to be a process which is unable to perform any action; this corresponds
to deadlock. We refer to the other syntactic constructs as prefixing, unkind choice, kind choice,
strict parallel composition, interleaving and hiding. The result of prefixing an event a to a process
P is a process which must initially perform a and then behaves like P. The difference between
the two forms of choice operation manifests itself only on the initial step: P D Q is not allowed
to refuse an event unless both constituent processes refuse it; P H Q can refuse an event if either
of the constituents chooses to do so. In both forms of choice, once an event has occurred, only
one of the constituent processes is still active. The reader familiar with Hoare's original language
might recognise that a kind choice corresponds to a guarded command in which all the guards are
communications, so that the process's environment must be consulted before determining which
guard to pass; likewise, an unkind choice represents the case where all guards are purely boolean,
so that a guard can be passed without consulting the environment. The process P\\Q is a form
of parallel composition in which each event occurs only if both constituents perform it together;
this obviously represents a very tightly coupled form of parallelism. In contrast, the interleaving
of two processes allows them to execute events independently of each other, so that the traces of
P\\\Q will be obtained by interleaving traces from P and Q. The hiding operator renders an event
invisible to the environment, and allows its action to take place nondeterministically. For further
details the reader is referred to [2].

The semantic function F maps a process P to its failure set F(P), and is defined by a structural
induction in the usual way. Thus for the "terminal" cases (x.e. STOP) we define the failures
explicitly while in general the failures of P are built up from the failures of its immediate syntactic
components.

DEFINITION 1.2.4. The failures semantic function F is defined by structural induction as follows:

FHSTOP]] = { (() , X) | X C S }
Ffa-^P} = {{{),X) | agX}\j{ ((a)s,X) | (s,X) € F^P} }

FlP1nP2l = FlP1juFlP2l
FlPi • p2fl = {({), x) | ({), x) e FffPifl n FiP2i }u{(s,x)\s^()& (s, x) e F ^ } u * M }

FlPi||Pal = {(S,XUY)\ (s,X) 6 F ^ & (s, Y) € F^j }
^tt^illl^J = {(u,X) | 3s,t.(s,X) € FlPij&faX) E &u 6 merge(M)}

FlP/bj = {(s/b,X)\(s,XU{b})eFlPl}

7

Notice that the intuition behind each syntactic operation is captured in this semantic definition.
Thus, for instance, X is a refusal of (a —• P) iff X does not contain a : this process cannot refuse
a. And the difference between the two forms of choice operation is exemplified by the fact that the
process

(a ->STOP)[] (&->STOP)

must initially perform either a or 6, and cannot commit itself to one of these events over the other;
although { a } is a refusal of (b —• STOP), the other component process (a —> STOP) cannot refuse
a. On the other hand, the process

(a -+ STOP) n {b -> STOP)

can choose arbitrarily whether or not to allow a or &, and {a} and { b } are refusals of this process;
the fact that one or other of the events must occur initially is reflected in the process's inability to
refuse { a, b } .

We have given here the definition of hiding appropriate for finite processes: when the language
is extended to allow infinite processes there are several alternative definitions of hiding, all of which
agree on finite processes; it would not be appropriate to give details here, since we are only dealing
with finite terms. More details can be found in [2].

In the next section we will link the failure set semantics with the synchronisation tree model,
by defining an equivalence relation on synchronisation trees which naturally represents failure sets.
This will enable us to define a semantic mapping from CSP to (equivalence classes of) trees which
matches precisely the failure set semantics. In doing so, we will define tree operations analogous
to the syntactic CSP operations.

1.3. The failure equivalence relation on synchronisation trees.

We begin by defining some basic attributes of synchronisation trees. The traces of a tree are
simply the sequences of visible actions that appear on the branches of the tree, and (similarly) the
initials are the visible events appearing first on the branches. A tree can refuse a set X of events
if there is a r-branch from the root to a subtree whose initials are disjoint from X. Equivalently,
S can refuse X if it has an invisible transition to a tree which has no abactions, for all x £ X.
Finally, the pair [s,X) is a failure of T if T has an s-derivation to a subtree whose initials are
disjoint from X.

DEFINITION 1.3.1. For any synchronisation tree 5 ,

(i) traces(S) = { a | 3T\ S ===> T}
(ii) initials(S) = { a \ (a) E traces(S) }
(iii) refusals(S) = { X | 3T. S T &X D initials(T) = 0}
(iv) failures(S) = { {s,'X) \ IT. S T & X D initials(T) = 0 }

The failure equivalence relation on trees identifies two trees if and only if they have identical
failure sets. The formal definition is:

8

DEFINITION 1.3.2. Failure equivalence is the relation = on trees given by

It is clear that this is an equivalence relation. From the definition, a comparison with the definitions
of Milner's first and second relations shows that:

(1) 5 « i T <=» for all s € £*,
35'. 5 =S=» S' 3T'. T ===• V

(2) S = T «=> for all s € E* and X C E,
35'. S ^ S ' & X N initials(S') = 0

3T. T =£=> r & X n initials(r') = 0

(3) S « 2 r «• for all S G 2*, and t/ C E*,
35'. 5 =̂ =» S' & traces(5') = U

<=> 3 T \ T =̂ => T' & traces(T') = U

Thus it follows that failure equivalence implies trace equivalence (T^I) and is implied by s=»2 •
Hence, failure equivalence is a weaker relation than observation equivalence, because it makes more
identifications and cannot distinguish between some pairs of trees which observation equivalence
separates. Moreover, the failure relation is distinct from and « 2 , as shown by the example:

PROPOSITION 1.3.3. FAILURE EQUIVALENCE LIES BETWEEN MILNER'S FIRST AND SECOND EQUIVALENCES, AND
IS IMPLIED BY OBSERVATION EQUIVALENCE:

It is clear that we can define a pre-order C on trees which corresponds precisely to the nondeter-
minism ordering on processes, as follows.

DEFINITION 1.3.4. The pre-order C on trees is defined by

5 = T t* failurcs(5) = failures(r).

SCT <=> failures^) C failures(S).

COROLLARY 1.3.5. FOR ANY PAIR OF TREES S AND T,

S = T <=• 5 C T & T C 5 .

9

Failure equivalence, like observation equivalence, can be axiomatized. We begin with a set of
true equivalence laws and a valid rule of inference.

PROPOSITION 1.3.6. The following laws hold for failure equivalence:

{Bl) S + TT + U = T{S + T) + TT + U

$ (52) rS = S
(J53) fiS + fiT+U = fi(rS + TT) + U (// € £ U { r})
(BA) T{fjiS + T) + r{fiSf + T) = T(/X5 + /zS' + T) + r(fiS + fiS' + T')

Proof Verify for each law that the failures of the left-hand and right-hand side are identical.
The details are omitted, as the proof is straightforward. I

PROPOSITION 1.3.7. The following inference rule (R) is valid:

Note that we use the same name for this rule as for the corresponding rule in Milner's system.

As with the corresponding result for Milner's equivalence, these axioms and inference rule are
complete for establishing equivalence of finite trees, provided we again allow use of the laws of
Proposition 1.1.1 in any context. The proof that this system is complete is based on a simple
algorithm for converting a tree to a "normal form," in which the arcs at each node have a special
property known as uniformity: either the labels on the arcs are distinct and visible (i.e. not r), or
all the arcs are labelled with r. It is clear that one can use (Bl) and (B3) at a non-uniform node to
produce uniformity; in each case any non-uniformity is pushed deeper into the tree, so that this
method will definitely terminate on finite depth trees. One then shows that this process can be
continued until the tree is in a pre-normal form, in which successive r arcs have been collapsed
down to single arcs (using (B3) again), and where the tree is "convex." Convexity can best be
explained by observing that in a uniform tree each node without r arcs corresponds to a sequence
of visible events (the visible path from the root) and, conversely, each visible sequence s of actions
corresponds to a set of such s-nodes (because the same sequence of actions may occur on different
paths). Say that the set X of actions appears at an s-node of T if one of the s-nodes has arcs
labelled by the events in X. The convexity condition is that, for each s, whenever X and Z appear
at (different) s-nodes and X C Y C Z, then Y also appears at some s-node; and that whenever
X and Y appear at some s-node so does X U ^ . Axioms (Bl) and (B3) are used to fill out a tree in
this way. Finally one proves that any tree in pre-normal form can be converted, using (B4), into
a normal form in which, for each sequence s all s-nodes have identical trees attached and these
trees are also in normal form. Then it is easy to show that failure equivalence on trees in normal
form is essentially the identity relation. Thus, each tree can be proven equivalent to a unique tree
in full normal form; this establishes completeness of the system. The full proof is included in the
appendix.

PROPOSITION 1.3.8. The axiom system consisting of laws (A1)-(A4), (B1)-(B4), and rule (R) is
complete for failure equivalence on finite trees.

10

Proof. See Appendix. I

The following property of C enables us to obtain a complete proof system for the failures
preorder on finite trees, by modifying the above axiom system.

PROPOSITION 1.3.9. For all trees S,T,

S QT & TS + TT = S.

We regard each of the above axioms for = as a pair of axioms involving C, in the obvious way.
We replace rule (R) by the rule given below:

SQT -
1 ' fiS + U QfiT + U

And we add enough axioms and rules to give us that • is a pre-order satisfying Proposition 1.3.9:

(01) S QT Q S & S = T
(02) S QT QU =* S QU
(03) S Q T ^ T S + TT = S

The proof of completeness for the earlier system can easily be modified to establish the truth of
the following proposition.

PROPOSITION 1.3.10. The proof system generated by axioms (A1)-{A4), (Bl)-(B4), (Ol)-(03)
and rule (Rr), is complete for the failure pre-order on finite trees.

1.4. Mapping CSP to synchronisation trees.

Now we can define a mapping from CSP syntax to synchronisation trees. If P is a CSP process
then 7[P]] will be a synchronisation tree having the same failure set as P . This will mean that
two CSP processes have the same meaning in the failure set semantics if and only if their images
under 7 are equivalent. The mapping 7 is defined by structural induction on the syntax, as usual.

DEFINITION 1.4.1. The map 7 from CSP to synchronisation trees is given by the following
clauses:

T | S T 0 P] = ML
Tla^Pl=aTlPl

t[[PI n P2I = TTJPI]] + TT1p 2 1
T l P i D P a l = 71^11 DTllPal

n P 1 | | P 2] | = 7 |[P 1I|||7 |[P al
T [P i | | | P 2 l = 7 1 ^ 1 1 1 1 7 ^]

T H P / 6 l = 7 lP] [r \6]
where the tree operations D , ||, ||| are defined so that for the trees

n N

t=i i= i
m M

11

we have
n m N M

S • T =] T + E W " + E T ($ ' • ^) + E r (5 n r /)
i= i y=i i= i y=i

AT M

S\\T = £ a ^ H ^ + ^ ^ ' l l ^ + E ^ I I 7 /)
a»=6j t=l j— 1

n m iV M

5 | | |T = £ a , (S. | | | r) + £ M^IHTy) + £ r (5 / | | | r) + £ r (S | | | r /)
i= l j = l i= l j = l

and the tree S[r \ b] denotes the result of replacing every label b by r in 5 . This is an instance of
Milner's relabelling operation.

As examples, we can see that the trees representing the processes

(a -> STOP) • (6 - STOP) and (a -» STOP) n (6 STOP)
are aNIL + bNIL and TaNIL + rbNIL.

To show that these tree operations do correspond to the original CSP operations, first we
establish some results on the way transitions of a composite tree are built up from the transitions
of the component trees.

Firstly, it is obvious that the following hold:

a S ^ S
T S + TT^=* S

rS + TT =^=> T

The behaviour of the tree operation D is expressed by:

s ^ s ' , r ^ f => (5 • ^) ^ (5 , • ^ ,) ,
S = = > S ' , 8 ^ {) => {SUT)±*S',
T±=*T*,tj£{) =• {SUT)+=>T'.

For parallel composition we have:

s=*=>s ' , T ^ = > R = » (S \ \ T) ^ { S ' \ \ R) .

For interleaving:

S=2=>S',T±*R,umeTges8&t =• [S\\\T) (5'HIT 1).

Finally, let 5 / 6 denote the result of deleting all occurrences of b from the sequence s. Then

5 = ^ 5 ' => S [T \ 6] = ^ S ' [T \ 6] .

These facts can be used to prove the following result.

12

PROPOSITION 1.4.3 . The mapping T respects failure sets, in that for all processes P, we have

failures(TlPj) = FlPl

Proof. By structural induction on P. The base case is trivial, since T|STOP]] = ML and ML
has no non-trivial derivations. We give details for only two of the inductive steps.

Case 1. When P = Q\\R, let S and T be the trees representing Q and R respectively. The
inductive hypothesis is that

failures(S) = F\Q\,
failures^) = F\R\.

We must prove that
iaHvre&{S\\T) = F\Q\\R\.

But [s,X) is a failure of S\\T if and only if there is a U such that

(S\\T) U & X n initials(C/) = 0.

From the definition of parallel composition on trees there must be some trees S' and T" such that

U = [S'\\T') & S ===> S' & T ===• T'.

But
initials(S'||T') = initials(S') n initials(T').

Let
Y = X - initials(S')
Z = X - initials(r').

Then X = Y U Z and by definition,

(s, Y) 6 failures(5) & (s, Z) € failures(T).

By inductive hypothesis, this gives

(s,Y)6FlPj & [s,Z)eF\Ql

and hence {s,Y U Z) = {s,X) € P|[P||Q1|.

Case For the case P — Q • R, we may again assume the inductive hypothesis that

failures(S) = FfQl
failures^) = P[#] | .

where 5 and T represent P and Q. We need to show that fai lures(5• T) — F\PUQ\. Consider
first the refusals of S • T. By definition of • on trees,

SQT U <=* U = S'UT' & 5 =̂ => S' & T =£L> T'

13

for some trees Sf and T'. Since ini t ials^ • T) is easily seen to be the union of initials(S) and
initials(r), this gives

({), X) e failures(5 •!*)<=>({), X) 6 failures(S) n failures(T).

Hence, by the inductive hypothesis,

(() , X) € f a i l u r e s (5 D r) * ((),X) 6 F j [P | n FJQJ
((),X)eFlPUQl

Finally, when s ^ {) , we have

SQT^=*U & either S =^=> U or T =S=> U,

from which it follows immediately that

(a,X) € failures(5DT) « (s,X) 6 failures(5) U failures(T).

Hence, for s y£ (),
{s,X) e failures(5DT) & {s,X) € F^P] U FlQ}

« (« , X) € F | P D Q E .

That completes the proof. I

COROLLARY 1.4.4. Ttyo processes have the same failure sets if and only if their images under T
are equivalent:

FlP\ = F\Q\ & TIP\ = TIQ\.
This result shows that the failure equivalence relation partitions the set of synchronisation trees

into a set of equivalence classes which correspond precisely to the meanings of CSP processes under
the failure set semantic function. Moreover, the preorder C on trees corresponds exactly to the
nondeterminism order on processes. It is also clear that failure equivalence on trees respects the
tree operations which represent CSP operations. Thus, unlike Milner's system, here we have an
equivalence relation which is a congruence with respect to the operations of our language. Of
course, it is still not the case that the equivalence relation is well behaved with respect to + .
Again, S = rS always holds, but it is not in general true that S 4- T = rS -f T. But this does not
matter to us, since + is not a CSP operation.

2. Conclusions.

We have described two alternative languages for concurrency, CCS and CSP, using a common
basis for a semantic model: Milner's synchronisation trees. We gave a semantics to CSP by
mapping terms in this language to synchronisation trees and factoring out by an equivalence
relation. Milner's semantics for CCS was also constructed in a similar fashion, although his
equivalence relation was chosen in accordance with different criteria. We established a simple
relationship between these two equivalence relations, and defined a complete axiom system for
proving equivalence of finite CSP terms. Since the CCS equivalence is finer than the failure
equivalence of CSP, and therefore makes fewer identifications on trees, all of the axioms of CCS

14

are true also of failure equivalence. The converse is not true, of course, and the axioms of failure
equivalence reflect very clearly the reasons.

Interesting topics for future work include extending these ideas to cope with infinite processes
and infinite synchronisation trees; such an extension would be necessary if a form of recursion were
added to the syntax of the language of processes. It then becomes necessary to treat problems
associated with divergence, and there are several alternative models here to consider: for example,
see [3,4,6] for CCS and [7,8] for CSP. To illustrate some of the problems introduced by divergence,
consider the following. If we identify divergence with the ability to perform arbitrarily long
sequences of hidden actions, without ever interacting with the environment, then one can model
divergence as the presence in a synchronisation tree of an infinite path of r arcs. Under the
standard observational equivalence and failure equivalence presented here, the divergent tree
would be identified with ML. Intuitively, such an inability to distinguish between divergence and
deadlock is unappealing. One would therefore have to change the definitions of equivalence of trees
to allow for such distinctions to be made. It is not yet clear which methods of modelling divergence
are likely to be most successful.

An interesting area for research is to investigate the possibility of axiomatising other semantic
models for concurrency, in much the same way as was done here for the failures model of CSP.
A concise, complete proof system summarises the essential properties of a semantic model in a
way that might clarify the differences and similarities between various models. Darondeau [9]
gives an axiomatization of an equivalence on processes; these axioms can be simply derived from
(B1)-(B4), showing that the same underlying model is being used, even though the constructions
differ. In [6] the authors give complete proof systems for a variety of preorders (and hence for
the associated equivalences) on CCS, which are shown in [7] to be related closely to the failures
model. [7] also shows the connections between failure sets and the model proposed by Kennaway
for communicating processes. It should be possible to axiomatize Kennaway's model, since it is so
closely related to failure sets. Similarly, the possible futures model of communicating processes,
described in [10], has connections with the failures model; an axiomatization for this model would
again delineate precisely the differences and similarities.

3. Appendix.

In this section we prove the results stated earlier about normal forms, and justify our claim
that the CSP axiom system is complete for finite trees.

First, let us recall that the axiom system consists of the following set of axioms and rules:

(Bl) S + TT + U
(B2) rS
(B3) • nS + fiT + U
(B4) r{fiS + T) + r{fiSf + T)

U = T{S + T) + TT + U
S = S
U = II(TS + TT) + U
") = T{IIS + fiS' + T) + r{fiS + pS' + V)

(R) S = S'

fiS + T = fiS' + T

15

First it will be useful to derive some generalisations of these axioms.

PROPOSITION A.l. The following laws are derivable in our proof system:
n n n

(Gl) S+^2TTi + U=Y^T{S + Ti) + £ rTi + U
t= i i= i t=i
n n

i = i t= i
n n

t=i t=i
where S = X}?=i r^*'

Proof In each case an induction on n will establish the result; the base case, n = 1, is an instance
of an axiom. Details are left to the reader. I

PROPOSITION A.2. The following inference rule is a derived rule in our system:
n m

i = l J = l
n m

i = i y=i

Proof Let us introduce abbreviations
n

i = i
m

3 = 1

Assume that S = T is provable. Then by (G3) with /i = T, we can prove

(1) TS + U = S + U,
(2) TT + U = T + U.

But from S = T applying rule (R) gives us

(3) TS + U = TT + U.

The result follows from (1) and (2). |

. PROPOSITION A.3. The following convexity laws are derivable:

(CI) TS + TT<=TS + TT + T{S + T)
(C2) TS + T{S + T + U) = TS + T{S + T) + T{S + T + U)

16

\

DEFINITION A.4. A tree T is uniform iff at each node in T if any (outgoing) arc is labelled r then
all are.

Thus, a tree T is uniform iff it has one of the two forms:

n

1=1
n

T = diTi, where each at- is in E, and each Ti is also uniform.

PROPOSITION A.5. Any finite tree T ia provably equivalent to a uniform tree.

Proof. We use the following law, an instance of (Gl):

m m m

s + E ^ ^ E ^ + ^ + E ^ -
j = i j = l y=l

Let T be the tree

t=i y=i

where the at- are all in E. The proof is by induction on the depth of T. When T has depth zero it
is trivial, because T = NIL and this tree is already uniform. For the inductive step, assume that
every tree of smaller depth than T is equivalent to a uniform tree. In particular, this means that
there are uniform trees 5 / , T/ such that the relations

Si = Si'9

±0 — i 3 ,

are provable. Using rule (R) this gives us

m
/

we

T = £ a**' + E t 7 V
t=i i = i

If any T/ has r branches at its root, we can use (G3) to contract successive r labels; hence,
may assume without loss of generality that each T / has visible labels at its root. Writing S for
the first term above, we have

m

T = S+J2 TT/
m m

= J^T(S + r /) + ^ TT/ by (Gl).
y=i j = i

17

But S and each T / are uniform, and they ail have visible labels at the root; this means that each
(S + Tj') is also uniform, so the result follows. I

DEFINITION A.6. A set B of subsets of E is convex iff B is non-empty and for all X , Z £ S,

x u ^ e B
x c y c z ^ Y e B

For example, the set { { a } , { b } } is not convex, because it does not contain { a, b }. And the set
{ 0, { a, 6 } } is not convex because it does not contain { a } and { b } .

DEFINITION A.7. A tree T is in normal form iff T has the structure

B E B

with B convex, and each TB having the form

beB

where each T\> is also in normal form.

Notice that in a normal form, for each sequence of visible actions there is (at most) one
derivative. For example, the tree

T = raNIL + r{arbNIL + bNIL)

is not in normal form, because there are two distinct a-derivatives. It can, however, be transformed
by the axioms to the normal form

raS + r{aS + bNIL),

where S = TNIL + rbNIL.

PROPOSITION A.8. Any uniform tree is provably equivalent to a normal form.

Proof Any multiple occurrences of a visible label at a node can be combined into a single
occurrence by the law (G3):

n n
2 a 5 i + r = a (2 r S i) + r .

Note that this transformation preserves uniformity. Sequences of r arcs can always be pruned
down to a set of single r arcs by the same law:

^•rSi + TsrC^rS^ + T.
i = i t=i

We can use the convexity laws (CI) and (C2), to introduce convexity at each node of the tree;
finally, one uses (G4) to produce a unique s-derivative for each trace s of the tree. I

18

Note that a normal form is simply a tree T with structure:

BeB beB

where B is convex and each is in normal form.

The completeness theorem rests upon the fact that equivalence on normal forms is provable.
Indeed, it turns out that two normal forms are failure equivalent iff they are identical trees, up to
order of summation. The proof will rely on a lemma.

PROPOSITION A.9. For trees S and T in normal form, say

BeB beB
r = £ ' £ c r < >

cec cec

S E T holds iff C C S, and for all c 6 C € C, Se C Tc.

Proof.

Using the above notation, suppose S C. T. Then failures(S) D failures(T). This immediately
gives

initials(S) = | J B D (J C = initials(T).

If C % S, let C be a set in C but not in S. Let X = E - C, so that ({),X) is a failure of T. By
hypothesis, this is also a failure of S, so there must be a B 6 S such that BnX = ft; equivalently,
B C C . But then we have

B C C C (J C C U S,
and we know that 5 and (J S belong to the convex set S. Hence, C € S, which contradicts our
assumption. It follows that C is a subset of B.

Since 5 and T are in normal form, they have unique derivatives for each initial event. We
have shown that initials(S) D. initials(T). It follows easily from the assumption that S C. T that
for all a <E initials(T), Sa C Ta.

To complete the proof we have to reverse the argument to obtain the converse implication.
The details are simple, and left to the reader. I

COROLLARY A.10. Two normal forms S and T as above are equivalent iff B = C and for every
a G B the trees Sa and Ta are equivalent

PROPOSITION A . l l . (Completeness) Two finite trees S and T are failure equivalent iff S = T is
provable in the above proof system.

Proof. By Propositions A.5 and A.8 S and T are provably equivalent to normal forms, say 5*
and T*. Because the proof system is sound, we can assume that 5* and T* are failure equivalent.

19

We will prove by induction on the depth of the trees that equivalence of normal forms is provable.
The basis is trivial, because the only normal form of depth 0 is NIL. Let the two normal forms be

BE 8 bEB

CEC CEC

By Corollary A. 10 we have B = C and Sa* = Ta*} for all a. Since Sa* and Ta* are also in normal
form, and have smaller depth than S and T, we may assume by the inductive hypothesis that
S a * = Ta* is provable, for all a. An application of rule (R) then proves S = T. I

4. Acknowledgements.

The author has benefitted from discussions with C.A.R.Hoare, Robin Milner, Bill Roscoe, Bill
Rounds and Glynn Winskel. This work was supported in part by a grant from the Science Research
Council of Great Britain, and by Carnegie-Mellon University Computer Science Department.

5. References.

[1] Milner, R., A Calculus for Communicating Systems, Springer LNCS Vol. 92 (1980).

[2] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W., A Theory of Communicating Sequential
Processes, Technical Report PRG-16, Oxford University Computing Laboratory, Programming
Research Group (1981).

[3] Hennessy, M.C.B. and Plotkin, G.D., A Term Model for CCS, Proceedings of 9th MFCS
Conference, Springer LNCS Vol. 88 (1980).

[4] Hennessy, M.C.B. and Milner, R., On observing nondeterminism and concurrency, in:
Springer LNCS Vol. 85 (1979).

[5] Hoare, C.A.R., Communicating Sequential Processes, CACM 21, Vol. 8 (1978).

[6] Hennessy, M., and de Nicola, R., Testing equivalences for processes, Technical Report,
University of Edinburgh (July 1982).

[7] Brookes, S.D., A Model for Communicating Sequential Processes, Ph.D thesis, University
of Oxford (submitted 1983).

[8] Roscoe, A.W., A Mathematical Theory of Communicating Sequential Processes, Ph.D
thesis, University of Oxford (1982).

[9] Darondeau, Ph., An enlarged definition and complete axiomatization of observational
congruence of finite processes, Proceedings of International Symposium on Programming, Springer
LNCS 137 (1982).

[10] Rounds, W.C., and Brookes, S.D., Possible futures, acceptances, refusals, and communicat
ing processes, Proceedings of 22nd IEEE Symposium on Foundations of Computer Science (October
1981).

20

