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Abstract. We show that any group represented by generators that are cycles of
bounded degree has O(n?) diameter, i.¢., that the longest product of generators required to
reach any permutation in the group is O(n?). We also show how such “short” products can
be found in polynomial time. The techniques presented are applicable to generalizations
of many permutation—group puzzles such as Alexander’s Star and the Hungarian Rings.

1. Introduction

One of the important abstractions central to the study of algorithm design and
computational complexity is that of an operation on a finite structare. If a structure can
be represented in some succinct way as a permutation of the objects of a finite set, and
operations are all permutations, then the algorithmic problem of reaching a configuration
is the problem of representing a given permutation as a product of a given set of others.
Furst, Hopcroft, and Luks presented a polynomial-time algorithm for calculating whether
it is possible to express one permutation as a product of others[# HL]. This problem was
originally explored by Sims[S], and most recently by Jerrum[J]. Although it is possible to
determine in polynomial time if a permutation can be expressed as a product of generators,
it can be the case that the length of the shortest product expressing a permutation is
exponential in the number of letters being permuted. In this paper we ask: when does
a permutation group on n letters, generated by permutations g4,...,g; have polynomial
diameter, .e., when is it the case that every element of G can be expressed as a polynomial~
length product of the g;.

It is fairly easy to concoct examples of permutation groups with exponential diameter.
Consider the single permutation

g=(12)(3 456789 10 ()

in which the length of the ¢*! cycle is the :*" prime number. The group G = {(g) has order
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the group D of symiInetries of a collection of regular polygons of size 2,3,...,pk. D can be
generated by two permutations ¢ and b, where a is the product of k reflections, one for cach
polygon, and b is also the preduct of k reflections of the polygons, but along a different
axis. Since a® = p2 = |, every word in the group is of the form (a+b+¢€)(ab)ia+ b+ €).
Since the order of D is at least 2 X 3 x ... % Pk, there are some permutations that are

Actually, in these examples, the groups do not have strictly exponential diameter since
the diameter cannot be expressed in the form e™ for some c. It is not known whether a
particular group can have 5 truly exponential diameter, Answering this question may help
resolve whether or not combinatorial objects with exponential diameter, like Towers of
Hanoi, have small representations as permutation groups.

2. Preliminaries

DEFINITION 2.1: The symmetric group, S,, is the group of all permutations on n
letters., A permutation in S, is even if it can be represented as 3 product of an even
number of transpositions, odd otherwise. The set of even permutations form a group, the
alternating group A,. The degree of a group is the number of letters it. acts on. The order
of a group is the number of permutations it contains.

DEFINITION 2.2: Ga is the set of Permutations fixing the letters of A, G2 is the
group restricted to the letters of A, : :

DEFINITION 2.3: If [ is a subgroup of G, the quotient G/H is the collection of cosets
of # in G (equivalence classes of the elements of G with z equivalent to ¥ if and only if
zy~! € H). The indez of HingG,|G: H], is the number of distinct cosets of G/H.

DEFINITION 2.4: If 91,--+,9; are elements in S,, G — (91,..., i) is the group of all
permutations representable as a product of the generators sy Gin '

DEFINITION 2.5: A permutation group is transitive if for every pair of letters o, 8
there is some group element p such that o? — B; it is k—transitive if for every pair of k-
tuples (o), ay, .. ., ay) and (B, Bo, . . . » Bi) there exists a Permutation p such that af = g;.
If a group is intransitive, it is composed of transitive constituents.

A group that contains only trivial blocks is primitive. Every doubly transitive group is
primitive (if it contained a non-trivial block, there would be a permutation that fixed one
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block element and sent another out of the block). If B is a block, then B = {B" | =€ G}
is a block system. Let Gz be the group stabilizing a block system (the blocks are left fixed,
but letters may move within a block). A block system 's menimal if G/Gp is a primitive
group. The blocks of 2 group generated by a cycle correspond to the divisors of its degree.

For example, {1,4} and {1,3, 5} are blocks of the group generated by (L2345 6).

DEFINITION 2.7: A member of a group G, defined by generators gi,..-,9i is k-
ezpressible if it can be written (expressed) as a product of < k generators. Note that
k-expressibility is highly dependent upon the generating set.

DEFINITION 2.8: The diameter, diam(G), of a group G = {g1,--.,9:i) is the least
integer k such that every 7 € G is k—-expressible. That is, diam(G) is the diameter, in a
graph theoretic sense, of the graph with group elements as vertices, and an edge between
u and v if and only if ur =v for some generator w.

DEFINITION 2.9: Let H be a subgroup of G = {g1,...,9i)- The diameter of G/H is
the least integer k such that every coset of G/H has a k—expressible representative.

LEMMA 2.1: If H is o subgroup of G ={g1,---,9i), then
diam(G) < diam(G/H} + diam(H).

PROOF: Let 7 be an element of &. There is a permutation p € @G such that 7 €
Hp and p is diam(G/H }-expressible. Thus ® = hp for some h € H, and hence 7 is
[diam(G/H) + diam(H)}-expressible. g

DEFINITION 2.10: The intersection graph, I(g1,.- .,gs), of a set of generators is the
graph with generators as vertices and with an edge joining two generators if and only if
they act on a common letter.

3. Qeneral Techniques and QObservations

In puzzles like Rubik’s Cube, it is easy to send one face to another that it can
reach because the face need not pass through any position more than once. By the same
argument, every permutation group can be shown to be transitive by O(n) length products.
Lemma 3.1 makes the relationship between multiple transitivity and diameter explicit.
Lemma 3.2 shows a similar relationship between diameter and primitivity.

LEMMA 3.1: Suppose G = (g1,-.-19i) i @ group of degree n. Let A and B be two
k-tuples of letters of G. If S, the set of permutations mapping A to B, 15 nonempty, then
there is a permutation w € S that 15 O(n*)-ezpressible.

PROOF: Let p1---pj be the shortest product of generators that expresses a permuta-
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tion in S. No partial products, p;---p, and P1°"*Pz: - py, can have the same effect on the
letters of A, as that would imply that p,. . "PzPy+1°°+p; is a shorter product expressing a
permutation in S. Since there are only n!/(n — k)l = O(n*) ways of permuting A over the
7 letters, 7 cannot be any larger than O(n¥). O

LEMMA 3.2: Suppose A is not a block of imprimitivity for G — (gl, gl_l, R 2 g‘-_1 ,
a group of degree n. Then there ezists a 2n/|A|-ezpressible permutation m# C G that qcts
as ¢ witness to the fact that A is not a block, that is, A™ N A #Aand AN A £ (.

PROOF: Consider the collection of sets C == { J AP, where p runs over every n/|Aj-
expressible permutation. Suppose that for every pair of sets S and T in C, either SNT =
Sor SNT = 0. If there are < n/|A| distinct sets, then every generator of G takes sets of
C to sets of C, so the sets are blocks of imprimitivity, a contradiction. Therefore, there
are at least n/|A| + 1 distinet sets, This is impossible, as it would require there to be
n + |A| letters. Thus, there must be two sets AP and A? such that AP M A? is not AP and
is not @, with p and q both n/|A|-expressible. Hence, AN A" is not A and is not @, and
T=gqgp!is 2n/| Al-expressible. []

We now argue that, in some sense, the hardest permutations to reach are the 3-cycles.
This is a consequence of the following, Any even permutation is the product of O(n)
3—cycles (Lemma 3.3) and every 3-cycle is within O(n?) of every other (Lemma 3.1).

LEMMA 3.3: If r is an even permutation of degree N, T can be ezpressed as g product
of no more than & 3-cycles.

and o £ 4. Then p’ = (v B a)p is an even permutation with degree at most n — 2 since
it leaves 3 and + fixed and (yBo)= (3 7)(7 @) is even. The inductive hypothesis applies
to p', s0 it can be expressed as a product of no more than (n—2)/2 = 5—~1 3-cycles.
Since p = (a g 7)0', p can be expressed as a product of no more than 2 3—cycles. If, on
the other hand, the order of pis 2, p = (a B)(v 6)p' = (o B 6)(y 6 a)p’, with the degree
of p/ = n — 4, By the inductive hypothesis, p can be expressed as a product of no more
than 2 3-cycles. []

The following two lemmas, which we state without proof, can be found in Wielandt[W].

LEMMA 3.4(Jordan): A primitive group that contains g S-cycle is either alternating
or symmeitric.

LEMMA 3.5(Marggraf): Let G be o primitive group of degree n. If there is a transitive
subgroup G o with degree < 2, then G is alternating or symmetric.



In the following theorem we make the key observation that in order to show many
groups to have polynomial diameter, it suffices to show that some 3-cycle can be expressed
as polynomial-length product.

THEOREM 3.2: If G is a primitive group containing a polynomaally expressible 8—cycle,
then the diameter of G 15 polynomially bounded.

PROOF: G must be alternating or symmetric by Lemma 3.4, so in particular, G is
triply transitive if it is of degree at least 3. (If the degree of G is < 5, the diameter of
G is a constant.) Let t be a g(n)-expressible 3-cycle, for some fixed polynomial ¢(n). Any
3-cycle can be expressed as a conjugate p~ltp. Since p is defined by its action on three
letters, p is O(n?)-expressible by Lemma 3.1, and consequently an arbitrary ‘3—cycle is
O(q(n) + n3)-expressible. Any even permutation can be expressed as a product of at most
2 3-cycles by Lemma 3.3, so any even permutation is O(n - q(n) +n*)-expressible. If there
is any odd generator of G, the odd permutations can be expressed as the product of this
generator and an even permutation. Therefore, the diameter of G is O(n - g(n) + n4). O

ExAMPLE: Consider any group generated by a set of cycles that pairwise intersect
in at most one letter. If p and g are two cycles intersecting in exactly one letter, then
pgp~tq~! can be seen to be a 3-cycle, so we may conclude by the previous theorem that
the diameter of such groups is O(n*). Alexander’s Star (if the orientation of each “block”
‘4 disregarded) is such a group. Thus, generalizations of Alexander’s Star can be solved in
O(n*) moves. ' d

The following Jemma shows that to get to a permutation in a polynomial number
of moves, it is good enough to “almost” reach the permutation in a polynomial number
of moves. For instance, if a generalized Rubik’s Cube could always be solved with the
exception of 4 faces in no more than f(n) twists, then the remaining faces can be solved
in O(f(n)) twists.

LEMMA 3.6: Let G = {g1,..-,9i), be a group of degree n, with a subgroup H of order
< k, for some constant k. If the diameter of G/H 1s f(n), then the diameter of G 1s

O(f(n))-

PROOF: Take p = p1---pj to be a product of generators that expresses a permutation
of H. We will transform the pi so that each partial product expresses a permutation
of H. Suppose that p1--+Pr—1 is in the coset Hcx—y and pi-- Pk is in the coset Hck,
where ¢ and ¢ ate f (n)—expressible coset representatives. For each k, replace pi by
P = ck__lpkczl to get a new product p'. We now have p = p', and each partial product
of p' expresses an element of H. Suppose some pair of partial products p'---pl and
ply- - Pl Py, express the same permutation of H, then P PP -p; also represents
the same permutation but is a shorter product. By an induction on the number of such
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equal partial products there is an equivalent product with length at most order(H) <
k. Since each permutation in the sequence is O(f(n))*expressible, the diameter of H is
O(f(n)). Every permutation of G is in some coset Hz, where z is a coset representative
ithat is f(n)-expressible, therefore the diameter of ¢ is O(f(n)). O

It is sometimes convenient to think of a generating set in terms of its intersection
graph. Lemma 3.7 shows that the connected components of the intersection graph are just
the transitive constituents of the group.

LEMMA 3.7: Let €1+, ¢ be cycles. The intersection graph ] — Iley, ... e8) s
connected if and only if the group G = (cy,..., ¢i) ts transitive.

PROOF: Suppose I is connected. Let o and 8 be any pair of letters acted on by the
generators zy and z;, respectively, and let, ZoTi---T; be a path from %o to z; in . By an
induction on the length of the path, there is a product of the form z — :t:g"x;“- g with
a® = g3, Conversely, suppose @ is transitive. Let @ and b be any pair of generators that
act on « and §3, respectively, and let p be a permutation such that of — B. If 7, Th, Ty,
is the shortest product expressing p, then it is a path in 7. [] '

4. Groups Generated by Cycles of Bounded Degree

of letters, then the group they generate hasg polynomial diameter. At present, the best we
can show is if generators act On a constant number of letters and are cycles, then the
group they generate has diameter O(n2). (This is the best one can hope for, as there exist
groups generated by constant—sized cycles that have diameter O(n?), Theorem 4.10.) The
techniques used to prove this result may be help in proving the conjecture.

DEFINITION 4.1: A permutation 7 is d-cyelic if 7 is a cycle of order (degree) < 4.
Throughout this section, d is assumed to be a constant.

If a group G is generated by d-cyelic permutations, then the transitive constituents of
G are generated by subsets of the generators. Therefore, the diameter of G is bounded by
the sum of the diameters of the constituents. From IOW on we assume that G is transitive,
The primitive and imprimitive cases are handled separately.

4.1 Primitive Groups with d-Cyelic Generators

Suppose G is primitive and has d-cyclic generators. Any constant-size subset of the
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generators can be used to generate a transitive subgroup of G by building O(n)hexpressible
conjugates of the cycles that act on a common letter. The diameter of such a subgroup
is O(n), since any permutation can be written as a constant-length product of the O(n)-
expressible conjugates. If the subgroup is also primitive and of degree > 2d + 1, then
it contains an O(n)-—expressible 3—cycle since it is alternating or symmetric (Lemma 3.5).
Theorem 4.1 shows that because only a constant number of the generators are required
to ensure the primitivity of the group, such a subgroup can always be found. The other
generators are only required to maintain transitivity. This result and Theorem 3.2 imply
an O(n?) bound on the diameter of G. This bound many then be improved to O(n?) by
using the same special subgroup to construct arbitrary O(n)-—expressible 3-cycles.

THEOREM 4.1: Let the generators of G = {c1,...,¢:) be d-cyclic. If G is primitive
of degree at least 2d + 1 then G contains a subgroup H such that:

() 2d+1< degree(H) < d?,
(i) H 1s alternating or symmetric, and

(i) H has O(n) diameter.

PROOF: Consider the intersection graph I = I(ey.-. ,ci). Since G is transitive this
graph must be connected by Lemma 3.7. Without loss of generality, assume that the cvcle
¢, is not properly contained in any other cycle. Let T be a spanning tree of I, rooted at ¢;.
The procedure we are about to describe successively removes cycles from the generating
set T and adds conjugates of some cycles to S such that H == (T U S) is always primitive
and of degree > 2d. When the proc.edure terminates the set S will consist of cycles that
are “special” in the sense that they play a central role in what makes G primitive.

set § =0
while degree({T U S)) > 3dand T # {} do
let ¢; be a leaf of T
set T« T — {c;}
if (T'U S) is imprimitive then
let a bé a letter on the root cycle ¢4
let b be a letter on the cycle ¢;
Jet 7 be O(n)—expressible from the
members of T such that §" =a
set § — S U {nte;m}

We claim that the above procedure terminates, and that when it does the group H =
(T U S) is primitive of degree between 2d + 1 and d2. Termination foliows from the fact
that in each iteration the cardinality of T decreases by one. The group (TUS)is transitive
at every stage because every cycle of S intersects with the root of T, so the removal of
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a leaf ¢; of T leaves (T S) transitive. If removing the leaf leaves {T'U S) imprimitive,
then adding the conjugate 7r"1r:j1r to S restores primitivity since it is becomes the same
group as before the leaf was removed. Since the removal of a cycle decreases the degree of
(T'U S) by at most d -~ L, the degree of (T U S) is > 2d4. Thus, (T U 3) is always primitive
and of degree > 24,

We now argue that the degree of (T'1J.S) is < d? because the number of cycles that
can be added to the set S is at most d. To see that [S| < d, we must first understand the
nature of the blocks that are created when a cycle is removed from T, Let B be a block
of size r, and let a be some d-cyclic generator not contained in any other. Suppose that o
acts on some, but not all, of the letters of B. If a also acts on some letters not in B, then
a*, for some k, is a witness to the fact that B is not a block. If, on the other hand, a acts
exclusively on letters of B, then there is some other cycle b that acts on letters of B and

not a block. Thus, the block must be wholly contained in . Moreover, the block is also
a block of a because a must stabilize the block and the block cannot be the entire cycle
since any disjoint intersecting cycle is a witness that shows it is not a block (or a acts on
all of the letters). As B is a block of a, the size of the block, 7, must divide the degree of
a. (Recall that the blocks of cycles correspond to the divisors of the degree.)

Now, suppose the removal of some cycle creates blocks of size r. It must be the case
that r divides the degree of c;. After the conjugate is added, the removal of any other cycle
cannot again cause thie blocks to be of size r, since the remainder stabilize all the blocks
of that size. As there are certainly no more than d divisors of an integer < d (actually, it
is O(d*), for any ¢ > 0 [C]), the cardinality of S is at most d and therefore the degree of
(S) is at most 42. ‘

The conclusion is that the group G contains a primitive subgroup H (= (T'U S} at
termination) with degree between 2d + 1 and d°. From Lemma 3.5 we know that H is
either alternating or symmetric since it has degree at least 24 +1 and there is a cycle acting
on no more than d letters. Furthermore, the degree of H is a constant, so any permutation
in H can be expressed as a constant length product of cycles from T U S. As the cycles in

S can each be written as O(n)-length products using the cycles ¢y, .. ., ¢y, the diameter of
H is O(n). '

The above theorem can be strengthened to allow a more carefu] specification of the
size of H.

COROLLARY 4.1: If G is primitive and generated by d—cyclic permutations, then, for
any constant k with d®> < k < n — d, a subgroup H satisfying (i) and (ili) above can be
found with degree between k and k + d.

The algorithm of Theorem 4.1 requires an efficient Primitivity test, which can be
devised with the same idea used in the proof of Lemma 3.2. Efficient (O(n?)) primitivity
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tests are known (see, for example, [J}). However, for the special case of § consisting of
d-cyclic permutations, the following algorithm runs in O(| G|} + Ofn) time.

ALGORITHM 4.1: Given a set § of cycles, determine whether G == (§) is primitive or
imprimitive.

1. Create a graph having the letters {1,...,n} as vertices. Let there be an edge between
two vertices i and j if there is a generator ¢ € G such that 27 = j. Label every edge
with such a generator.

2. Find a cycle ¢ such that the set of letters acted on by c¢ is not properly contained in
the set of letters acted on by another cycle, and pick some letter « in ¢. Guess a block
S of {c).
3. Do a depth first search starting at o. When a new vertex w is reached, compute
S, = SP-, where p,, is the product of the generators along the direct path from
o to w. Label the vertex w with S,,.

4. If, for some vertex z, there is a vertex y € Sy such that Sz £ S, (that is, S is
not a block), then go to Step 6. :

5. If there is a generator g € § for which it is the case that S 5 Sy, for an = acted
on by g, and a y € §§, then go to Step 6. Otherwise quit, as S is a block and G
is imprimitive.
6. Guess another block S of (¢}, and go back to Step 3. If all the blocks of (c) have been
checked, and none is a block, then quit and conclude that G is primitive.

THEOREM 4.2: Algorithm 4.1 correctly determines whether a transitive group G of
degree n generated by G, a set of d—cyclic permutations, is primitive in O(|§]} + O(n) time.

PrOOF: Each set S, is a candidate for being a block, as S, = SP«. Furthermore
w € 8,, since afv = w. Since every letter w is in some set S., S is not a block unless
the sets partition the letters (checked in Step 4). If every generator acts on a partition of
the elements as blocks, then S must be a block (Step 5). Suppose @ is imprimitive. From
the proof of Theorem 4.1, some block of G is also a block of {c). Therefore, the algorithm
correctly determines if G is primitive, as it must find a block if G is imprimitive.

Steps 1 and 2 can be performed in time O(|§|). The depth first search (Step 3) takes
time O(| G|} + O(n), since there are O(]§|) edges, and 5P« can be computed in constant
time at each vertex. Step 4 can be done in O(n) time since there are n constant size
sets that have to be compared with a constant number of other sets. Step 5 can be done
in O(|G|) time, as each generator acts on a constant number of letters. Since there are
at most a constant number of blocks of (c) (recall that c is of bounded degree}, Steps
3-6 are performed a constant pumber of times. Therefore, the algorithm terminates in

O(]G|) + O(n) time. L



COROLLARY 4.9: If a and B are two letters of e transitive group G = (G) and the
generators are d-cyclic, then q product of length O(n) that sends o to B can be found in
O(|G]) + O(n) time. '

PROOF: The permutation pp of Algorithm 4.1 is the product of O(n) generators, and
afr = g3 []

Since the number of generators can be quite large compared to 7, the algorithm of
Theorem 4.1 (or Corollary 4.1) could require as many as O(n?) iterations to terminate.
Reducing the number of generators is simplified by the fact that G is either alternating or
Symmetric if n > 24 + 1 (Lemma 3.3). Any subset T of the generators that generates a
primitive group over all the letters is alternating or Symmetric, so the problem is reduced
to finding a small set T, to which is added an odd generator of G (if it exists). The
following algorithm reduces the size of the generating set to O(n).

ALGORITHM 4.2: Given a set G of d—cyclic permutations that generates a primitive
group G with degree n > 2d + 1, find a set T C g such that (T) = (§) and IT[ = O(n).

In the algorithm, €, is a letter indicating which transitive constituent w is in. Initially,
Cw = w, but as generators are added to T the constituents are consolidated. If C, —= Cpg,
then there is a permutation p € (T) with a? — B.

1. Set C,, « w for each letter w, and set T « @,

2. Pick a generator g from §.

3. For each pair of letters a,8 acted on by g, if Ca 7 Cps then set T — T + ¢ and set
Cw = Cy for all & with C. == Cs. (Combine the constituents containing o and B.)

4. Pick another generator from § and return to Step 3. If there are no more generators,
then continue with Step 5.

5. Check if (T) is primitive. If it isn’t, add to T a cycle from 9—T that does not stabilize
the blocks of (T'). Repeat until (T') is primitive.

6. If there is an odd generator in G, add it to T.

THEOREM 4.3: Algorithm 4.2 terminates in O(1g]) + O(n?) time. On termination
(T) =G and |T| = O(n).

PROOF: Initially, each of the 7 letters is in its own constituent. A generator is added
to T in Step 3 if it reduces the number of constituents, so O(n} generators can be added
in this way. Thus, steps 2-4 insure that (T) is transitive and that IT| = O(n). Step 5
insures that (T') is primitive. From the proof of Theorem 4.1, we know that no more than
a constant number of generators will be added here, so IT| = O(n). Step 6 insures that
(T)=G,as G is alternating or symmetric.

Step 1 requires O(n) time. Step 3 is repeated O(|§|) times. Since O(n) generators are
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added to T, it takes a total of O(n?) time to combine the various constituents. Thus, steps
9-4 require O(|G}) + O(n?) time. The number of times Step 5 is repeated is bounded by
a constant, so by Theorem 4.2, Step 5 takes O(|Gl) + O(n) time. Finally, Step 6 requires
O(|g|) time. Therefore the algorithm terminates in o(jgl) + O(n?) time. O

The preceding algorithms provide an asymptotically efficient algorithm for finding
generators for the subgroup H of Theorem 4.1.

THEOREM 4.4: If G = (§) satisfies the conditions of Theorem §.1, generators for the
subgroup H of Theorem 4.1 (or Corollary 4.1) can be found in o(lg)) + O(n?) time.

PROOF: First use Algorithm 4.2 to reduce the number of generators to O{n). Next
apply the algorithm of Theorem 4.1 to find generators for H. The intersection graph can
be found in O(n?) time, and the leaves can be removed by a depth first search in O(n?)
time. Since there are O{n) generators, the loop is repeated O(n) times. By Theorem 4.2
and Corollary 4.2, every operation in the loop can be computed in O(n) time. Therefore,
the algorithm takes O(|G]) + O(n?) time. ]

The following lemma shows how to improve the bound of Lemma 3.1 when G is a
primitive group generated by d-cyclic permutations.

LEMMA 4.1: Let k be a constant. Suppose G 1s a primitive group of degree m, generated
by d-cyclic permutations. IfS C G 1s the set of permutations mapping a k-tuple A onto a
k—tuple B and S is nonempty, ther there is a permutation T € S that is O(n)-ezpressible.

PROOF: Assume G kas order at least 2k + d); otherwise the Cegree (and hence the
diameter) of G is a constant. Let H be the subgroup of Corollary 4.1 with degree at
least 2k + d. First we will show that there is an O(n)-expressible permutation p such that
AP and BP are letters of H. Let z be a letter of A or B. Find a minimal path in the
intersection graph from a generator containing z to a generator containing a letter of H:
Let X be the transitive group generated by the cycles along the path. By Lemma 3.1,
there is an O(n)—expressible permutation pz € X that sends z to a letter of H. X acts
on no more than d letters of H (or the path was not minimal), and thus leaves at least
2k letters of H fixed. Suppose we wish to leave 2k distinguished letters of H fixed. There
is some O(n)-expressible permutation ¢ € H that sends the 2k distinguished letters to
the 2k letters left fixed by X. Thus p, = gpzq ! is O(n)-expressible, sends z to a letter
of H, and leaves the ok distinguished letters fixed. For each z in A or B let the < 2k
distinguished letters be those letters of A and B already sent to H. The product of these
permutations p = [1p,, with z running over the letters of A and B, sends the 2k letters
of A and B to the letters of H and is O(n)—-expressible. Let h € H map AP to B®. Then
r — php~! maps A to B, and is O{n)-expressible. O

The following two theorems show that a primitive group G generated by d—cyclic
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permutations has O(n?) diameter and that a product of O(n®) generators expressing any
permutation of G can be found in O(n?) time.

THEOREM 4.5: Let G be generated by d-cyclic permutations. If G is primitive with
degree m, then the diameter of G is O(n?).

PROOF: Assume the order of & is at least 2d + 1. Let H be the subgroup of Theorem
4.1. Since H is alternating, H contains a 3-cycle t that is O(n)-expressible. Any three
letters can be sent to the 3—cycle by a permutation p expressible in O(n) by Lemma 4.1.
- Thus an arbitrary 3-cycle can be expressed as a conjugate p~ltp that is O(n)-expressible.
Since O(n) 3—cycles and an odd generator can express any permutation of G, the diameter

of g is O(n?). [J

THEOREM 4.6: Let G = (G) be a primitive group of degree n, and let § be a set of
d-cyclic permutations. If p €G, then a product of O(n?) generators that erpresses p can
be found in O(|G|) + O(n?) time.

PROOF: Use the method of Theorem 4.5 and Lemma 4.1. Finding O(n)-length
products for elements of H can be done in constant time, since the degree of H is a
constant. This could result in products with lengths exponential in the degree of H, but
a representation of the product can be found in time polynomial in the degree of H by

using the algorithms of [FHL]. [J

4.2. Imprimitive Groups with d-Cyclic Generators

problem of reaching some permutation of G can be decomposed into two parts: arranging
the blocks and arranging the elements within blocks. In the case of Rubik’s Cube, this
corresponds to arranging the physical blocks of the cube, and then arranging the faces
of the blocks. The problem of arranging the blocks s equivalent to reaching a particular
coset of G/G3. Below, Lemma 4.2 shows that the diameter of G/Gj is O(n?), so we have

diam(G) < diam(G/G5) + diam(G3) < O(n?) + diam(G3p).

Arranging the elements within the blocks after the position of the blocks has been settled
is a bit tricky. First we observe in Lemma 4.3 that any single block can be arranged by
an O(n)-expressible permutation that leaves fixed all but & distinguished blocks, for some
constant k£ determined by d. In the proof of Theorem 4.8 we show that all of the O(n)
blocks, with the exception of the & distinguished blocks, can be arranged by an O(n?)-
expressible permutation. Thus, if K is the group fixing all but the & blocks, then the
diameter of G /K is O(n?). Since the order of X is a constant, the diameter of K ig
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O(n?) by Lemma 3.6. Therefore:
diam(G) < diam(G/G3) + diam(Gg/K) + diam(XK),
which we show to be O(n?).

LEMMA 4.2: Let G be an imprimitive group generated by d-cyclic permutations. If
Gg is the group stabilizing a minimal block system, then the diameter of G/Gg 15 O(n?).

PROOF: (33 is normal and stabilizes a minimal block system, so G/Gpgis a primitive
group. The natural homomorphism from G to G/G g maps cycles of G to cycles of G/G3.
Since the generating cycles of G have degree < d, the diameter of G/Gg is O(n?) by
Theorem 4.5. []

LEMMA 4.3: Let G be an imprimitive group generated by d—cyclic permutations. Take
B to be a block of a minimal block system of G, GB to be the group restricted to the
letters of B, and S to be a set of k distinguished blocks, with k a constant depending
on d. For every permutation of B, there is a corresponding permutation of G that 15
O(n)-expressible and that acts only on B and the blocks of S.

PROOF: The blocks contain a constant aumber of letters, b, since the size of 2 block
divides the size of a containing cycle, which is bounded by a constant d. Let p=p1---P;j
be the shortest product of generators expressing a permutation ¢f GB. As the partial
products of p send B to one of the O(n) blocks in one of at most b! arrangements, p and
every permutation of GB can be expressed as a product no longer than b! - n generators.

While p is O(n)-expressible, it may act on an arbitrary number of blocks. However,
it is possible to transform p to another O(n)-expressible permutation that is the same
permutation of GB, but only acts on the blocks of S. Let g = p1- - - pk be the largest partial
product that leaves fixed at least d/b blocks (one cycle of blocks), but any smaller partial
product leaves fixed fewer than d/b blocks. The length of g is at least (n/b)/(d/b) =n /d,
the total number of blocks divided by the largest number of blocks any generator can act
on. Let r be a permutation in a coset of G/Gp that sends the block B? and some of the
blocks left fixed by g to thé letters of a cycle ¢ that is a generator of G. The conjugate
¢, = rcr—! is a cycle acting on B2 and blocks left fixed by q. The permutation 7, and
hence ¢y, is O(n)-expressible by Lemma 4.1. .

Now consider the permutation g = qc,.q—lc,‘ 1 Tt is the same permutation with
respect to B, since gc takes B to a permutation left fixed by ¢~ '. Since gc-q~ 1 is the
cycle ¢, with one block replaced by B, the product of this cycle and ¢! acts on B and two
other blocks, leaving everything else fixed. This is because ¢ and ¢, intersect in exactly
one block, so the commutator is a 3-cycle with respect to the blocks. Since all of the
components of ¢’ are O(n)-expressible, q' is O(n)-expressible.

In this way, products of length at least n/d are converted to an equivalent product
with respect- to B acting only on B and two other blocks and having O(n) terms. Since p
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has at most (n-b!)/(n/d) = d-b! products of length n/d, p can be converted to a product p’
of no more than d - b such products that have O(n) length and act on only two additional
blocks. Thus p' is the same permutation of GP as p, and it acts on no more than 2d - bl
blocks. As there are at most b! permutations of B, the total number of blocks acted on
by any such permutation of GB is (2d - b!) - b!, which is large, but a constant.

Let S be a set of at least k = 2d - (b!)? blocks. By Lemma 4.1 there is an O(n)-
expressible permutation 7 that fixes the block B and takes S to the blocks disturbed by
any p’. The permutation 7 may permute the letters of B, but this permutation 7p is in
GB, so there is another permutation p” = x5 p'mp in G such that wp//m~1 is the desired
permutation of GB, acts only on the blocks of S, and is O(n)-expressible. Cl

Actually, for Lemma 4.3 to apply, the generators need not be restricted to single
cycles. What is important is that the quotient group has O(n?) diameter and that the
blocks are of constant size. While Alexander’s Star has generators that are products of
cycles, the quotient group is generated by constant degree cycles and the blocks are of size
2. Thus, a block of a generalized Alexander’s Star can be arranged with an O(n) length
product.

ALGORITHM 4.3: Given a set § of d-cyclic permutations generating an imprimitive
group G, a block B of a minimal block system, and a set S as in Lemma 4.3, find a product
of length O(n) for each permutation of GB that acts only on B and S.

1. Use steps 1-4 of Algorithm 4.3 to find a set T such that [T| = O(n) and (T') is
transitive on the letters of G.

9 Qonstruct a table of the possible permutations of the letters of B (that is, a repre-
sentative from each of the cosets of G/Gpg). This can be done by multiplying each
permutation p in the table by every element of T that acts on a letter of B?. If this is
repeated n-b! times, then every permutation will be in the table (since diam(G/GB) <
[G: Gg] < n-bl). If, when a new permutation is added to the table, both the element
of T and the permutation already in the table that formed the new product are added
along with it, then the actual product can be recovered.

3. If the product of a generator g € § and a permutation in the table is not also in the
table, then add g to 7" and return to Step 2.

4. For each of the fewer than b! elements of GB, convert the product in the table to one
that acts only on B and S using the method of Lemma 4.3.

THEOREM 4.7: Algorithm 4.8 is correct and terminates in O({G}) + O(n?) time.

PROOF: Step 1 insures that (T is transitive and |T| = O(n) in O(/§]) + O(n?) time
(Theorem 4.3). Step 2 computes all of the permutations of (T)B, and takes O(n?) time,
since there are O(n) generators in T'. At most bl generators are added in Step 3, since
each new generator must increase the order of (T)B, which is at most 8. Thus, Step 2
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is repeated a constant number of times. Since (T2 = G® after Step 3, Step 4 finds the
desired products for every permutation of G2, []

THEOREM 4.8: Let G be an tmprimitive group generated by d-cyclic permutations.
The diameter of G is O(n?).

PROOF: Let 8 be a minimal block system. By Lemma 4.2 the diameter of G/Gpg is
O(n?), so the diameter of @G is O(n?) + diam(G3p). Let G be the group fixing all but the
set 5 of Lemma 4.3. The diameter of G /G5 is O(n?), since each of the O(n) blocks not
in S can be arranged independently with products O(n} long. Since G5 has constant order
(the size of S is a constant), the diameter of G is O(n?) by Lemma 3.6. Therefore, the
diameter of G is O(n?). (]

THEOREM 4.9: Let G = (G) be an imprimitive group of degree n, and let G be a set

of d-cyclic permutations. If p € G, then a product of O(n?) generators that erpresses p
can be found in O(|G| - n?) + O(n8).

PROOF: The method of Lemma 3.6 cannot be used to achieve a polynomial-time
solution, since there are an exponential number of representatives. However, this can be
done in polynomial time using the sift and close method [FHL] as a basis. Each of O(n?)
coset representatives can be found in O(n?) time using the method of Theorem 1.8, except
for a constant number of cosets corresponding to each of the permutations of G35 Each
of the generators of § are sifted into the table, and the table is closed to compute a set of
strong generators. (Note that sifting will not increase the length of the product to O(n?),
because the permutations reached by sifting are also O(nQ)—expressible.) Since a constant
number of representatives are added to the table, the length of the representatives that
are the permutations of Ggis O(n2). Then, using the method of Theorem 4.8, a product
of O(n?) generators expressing any permutation in G can be found in O(|G| - n®) + O(n9),
which is essentially the time to sift |G| generators and close the table. []

Both the primitive and imprimitive case give an O(n®) diameter bound, which is also
the best bound possible.

THEOREM 4.10: If G is a group of order n generated by d-cyclic permutations, the
diameter of G is O(n?). For some groups, this is the best possible bound.

PROOF: The diameter of @ is the sum of the diameters of the transitive constituents.
If a constituent has order m, then its diameter is O(m?) by Theorem 4.5 or Theorem
4.8. Therefore the diameter of G is O(n?). This bound is the best possible, because the
group ((1 2),(2 3),...,(n—1 =)) has O(n?) diameter. The permuation (1 n)(2 n-1)..
([n/2] [n/2]) requires a product of O(n?) generators, since it has O(n?) inversions and
each generator increases or decreases the number of inversions by one. (]
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