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Abst rac t 

This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two 

successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-

domain pitch tracker. During the second pass, incorrect pitch values are detected as "outliers" by computing 

the distribution of values over a sliding 80 msec window. During the third pass (based on artificial 

intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from 

the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the 

original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment 

by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same 

stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The 

fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features 

in a feature-based recognition system. 

1. Int roduct ion 

Feature-based speech recognition systems categorize phonetic events using acoustic/phonetic features 

extracted from the signal [1], These features must be detected very precisely in order to produce low error 

rates. A necessary component of a feature-based system is a pitch tracker; decisions about phonetic events 

requires precise specification of the onset and offset of voicing, which requires the exact location of the pitch 

pulses in the waveform. For example, an important difference between die letter "p M and "b" is the duration 

of the consonant noise from burst onset to vowel onset. The location of the vowel onset must therefore be 

correctly identified with less than a few milliseconds error, and information about voicing is needed to help 

locate diis point in an utterance. In addition to voicing, pitch micro-variations can give important clues to 

identify a sound. 

The reliable measurement of pitch periods from the waveform is very difficult. Several factors limit the 

accuracy of time-domain pitch trackers. First, pitch can rapidly change, which results in a glottal pulse 

excitation train which is not exacdy periodic. Second, die shape of the vocal-tract can significantly alter the 

glottal waveform so that the pitch pulses can be difficult to detect. Finally, voiced and unvoiced intervals can 

be similar when the amplitude of the pitch pulses is low. For these reasons, the reliability and accuracy of 

existing time-domain pitch trackers is highly variable [2]. 

The accuracy of existing pitch trackers is further limited by the fact that computations are usually done 
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locally, over a 10 or 20 msec window. Over periods of tiiis duration, the speech waveform is not always 

stationary and is often characterized by "unusual " properties. For example, the primary pitch pulses can be 

smaller than adjacent secondary peaks, distorted by adjacent peaks or lost in die noise. 

A possible solution to this problem is to use more global properties of the signal to direct die algorithm to 

those pulses which are most likely to be correct. Examination of speech waveforms reveals that globally (over 

300 or 400 msec of speech), the speech waveform almost always displays the expected and usual 

characteristics, rather than the exceptional properties just described. Thus, when taking a more global 

perspective, unusual properties of the waveform can be readily detected 1. It should therefore be possible to 

write a post-processing algorithm for time-domain pitch trackers, based on artificial intelligence techniques 

and including speech-specific rules, that evaluates the pitch train on a global base. 

The implementation of our pitch tracker uses three successive passes. An existing time-domain pitch 

tracker is run as a first pass. Incorrect pitch values are detected as "outliers" by computing the distribution of 

values over a sliding 80 msec window (second pass). Pitch pulses which are close to the mean are then used as 

anchor points to find the correct pulses. These pulses are used to construct a chain of linked pulses. In this 

way, die correct pitch train is reconstructed from the original waveform (third pass). At this point, global 

decisions over 300 or 400 msec of speech are made in order to choose die right pitch chains. 

2. Descript ion of the Pitch Tracker 

2.1 First pass : existing pitch tracker 

An existing time domain pitch tracker is used as a first pass [3]. This pitch tracker consists of: 

1 - a low pass filtering of the speech signal with a cutoff of 700 Hz. 

2 - pitch estimation by correlating properties (duration, amplitude, energy) of each positive peak to successive 

positive peaks. This operation is repeated for negative peaks. 

After this first pass an average of 21% of the pitch pulses in an office environment, and 52% in a noisy 

computer room, are missed or incorrectly labeled (see Table 3-3 and 3-5). This is due to the fact diat speech is 

non-stationary, so diat corresponding successive peaks in the waveform can be very different and not 

comparable by correlation. 

W studies of waveforms indicate that, more than 95% of the time, for different sounds and speakers, the number of "usual" pitch 
pulses in a long utterance is greater than the number of "unusual" pulses. By "usual" pitch pulses, we mean pulses that are larger than 
secondary peaks and arc therefore easily detected as pitch pulses by an expert 



3 

Figure 2-1 and 2-2 gives an example of the pitch values (in Hz) after the first pass. The two figures 

represent 100 msec ofspcech spoken, respectively, by a male and a female speaker. In these figures, major 

peaks which are not accompanied by a number have been missed by the pitch tracker. It can be seen that 

pulses have been missed or mislabeled in Figure 2-1 (in this case secondary pulses have been labeled as pitch 

pulses), while numerous pitch pulses have been missed in Figure 2-2. 

2.2 Second pass : detection and removal of deviant pitch values 

After the first pass it is necessary to remove the incorrect pitch values so that they can be replaced by 

correct values during the third pass. A moving 80 msec window is used to compute a distribution of the local 

pitch values, estimated from the positive and negative peaks in the signal. The duration of the window must 

not be too long, because pitch can vary by as much as 40% within 150 msec. Figure 2-3 displays the histogram 

of pitch values computed for an 80 msec window within the 100 msec of speech shown in Figure 2-1. It can 

be seen in Figure 2-1 that the correct values are in the range 130-140 Hz. 

139 139 

Figure 2-1: Pitch values (in Hz) after the first pass (1) 

Figure 2-2: Pitch values after the first pass (2) 

If the 80 msec window includes an insufficient number of pitch values (as in Figure 2-2) a crude pitch 

estimation, computed over 300 msec, is used to define a lower and upper bound of the expected pitch values, 

for instance 0.6 and 1.4 times the average pitch in this interval. 
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Figure 2-3: Distribution of pitch values for a 80 msec window of speech 

Once the average pitch in a window and the expected pitch range have been estimated (the typical variation 

around the mean is 15 Hz), the deviant values are detected as "outliers" (when they are outside this expected 

range) and eliminated. 

Figure 2-4 shows the pitch values obtained after the second pass, given the initial values of Figure 2-1. 

2.3 Third pass : reconstruction of the pitch train 

During the third pass the pitch values remaining after the second pass are used as anchor points to 

reconstruct, forward and backward, the pitch train. 

2.3.1 Chaining 

Most of the time, numerous pitch pulses are correctly labeled in a voiced segment of speech after the 

second pass. Nevertheless, for didactic reasons, suppose that only one pitch value is left in a voiced segment 

after the second pass (Figure 2-5) (in fact, this situation can effectively happen if the pitch pulses are rapidly 

139 139 

Figure 2-4: Pitch values after the second pass 

changing). 



132 Hz 

Figure 2-5: Reconstruction of the pitch train (1) 

This single value is now used to find the next pitch pulse. For this we assume that the pitch variation is not 

larger dian 15% from one pitch pulse to die next (In fact, this hypothesis is true only when the pitch is slowly 

changing. We will see later how to handle fast changing pitch pulses). The algorithm tries to find a maximum 

in die waveform starting at the place where the pitch pulse would be if the pitch frequency was constant, then 

examines an expanding interval around this point, up to a 15% variation from the original pitch value (Figure 

2-6). If a maximum is found, it is taken as the new pitch pulse and the exact pitch value (for instance 138 Hz 

in the current example) is computed using the number of samples from the preceding pulse to the current 

one. 

132 Hz 132+15% 

Figure 2-6: Reconstruction of the pitch train (2) 

The operation is then repeated for die next pulse using the average pitch of the two last pulses as the 

expected pitch value (Figure 2-7). The chain construction process stops if no maximum is found in the 15% 

variation interval allowed (i.e. if the pitch variation is too large to be captured by the algorithm or if an 

unvoiced segment is reached). 

The forward pitch train for the whole voiced segment of speech is reconstructed this way. Similarly, a 

"backward" pitch train is reconstructed from the same anchor point using an analogous algoridim. During 

these two operations the successive pitch pulses are linked in a chain (Figure 2-8). This operation will allow 

global decisions over 200 or 300 msec of speech to be made at a later stage of processing. 
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Figure 2-7: Reconstruction of the pitch train (3) 

130 132 138 142 144 

1 inks p i tch 
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Figure 2-8: Reconstruction of the pitch train (4) 

The chain construction process is repeated for all pitch values remaining after the second pass. If labeled 

pitch pulses are captured during this process, the pitch value, approximate after the second pass, is set to the 

exact value. The process stops if a pitch pulse already linked in a chain is encountered. In this way, only one 

chain of comparable pitch pulses is built if several pulses are correctly located in a voiced segment after the 

second pass. 

2.3.2 Global computation 

During the first phase of the third pass (chaining), chains of linked pitch pulses are created. Each chain 

describes an ensemble of pitch pulses with the same properties (i.e. slowly changing pitch values , comparable 

shapes ...). At this point ;a global computation over a few hundred msec of speech must be made, using the 

existing pitch chains, to eliminate errors due to local computation and to include the unusual pulses (i.e., 

those with fast changing pitch values, different shapes ...) in order to reconstruct exactly die whole pitch train 

in the utterance. 
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2.3.2.1 Parallel pitch chains 

After the first phase of the third pass, it occasionally happens (especially for female speakers) that two 

parallel chains of pitch pulses describe the same segment in the signal (Figure 2-9). This is due to die fact that 

pitch estimation is strictly local during the first pass (by correlation of successive comparable peaks), so pitch 

values can be incorrectly located on secondary peaks in the waveform instead of the actual pitch pulse. A 

chain of secondary peaks can therefore be created if the conditions are favorable (i.e. if the secondary peaks 

are stable in the waveform). 

l i n k s 

Figure 2-9: Example of parallel pitch chains 

At this point the parallel chains are compared on the basis of global considerations about the waveform 

(number of waveform maximums included in a chain) over a time interval of 200 or 300 msec of speech, using 

adjacent chains as anchor point. The chain most likely to be right is chosen as the correct pitch chain 

including the actual pitch peaks. 

2.3.2.2 Adjacent chain connection 

If the pitch variations are too large, the pitch chain construction process will not be able to include all peaks 

in a train. Two independent and adjacent chains will be built (Figure 2-10). This situation often occurs in 

vowel-nasal sequences for instance. 

chain 1 chain 2 

Figure 2-10: Connection of two adjacent pitch chains 
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A mechanism of chain connection can be implemented, using the pitch values at die end of both chains to 

esdmate die position of the undetected pitch pulses and construct a unique chain. 

2.3.2.3 Capture of endpoint pitch pulses 

At the beginning and the end of a voiced segment of speech die pitch values often dramatically change 

(30% or more over a few pitch pulses) during the onset and offset of voicing. These isolated pulses (at the 

beginning and end of pitch chains) must be captured separately (Figure 2-11) using specialized procedures 

anchoring on the existing chains. 

c h a i n 

Figure 2-11: Capture of a pitch pulse at the beginning of a voiced segment 

2.3.3 Third pass summary 

During the third pass, the pitch train is reconstructed, anchoring on the pitch pulses correctly located after 

the second pass. One pitch pulse properly labeled in a voiced segment of speech is usually enough to 

reconstruct die entire segment pitch train, so that every pitch pulse has been exactly located in the utterance. 

Because of this characteristic the post-processing algorithm is little affected by noise. In this case the number 

of pitch pulses detected during the first pass decreases but most of the time at least one pulse is located in a 

voiced segment and the reconstruction process can be used. However there is no way to do so if no pitch 

pulse has been located in a segment during the first pass. 

Figure 2-12 and 2-13 shows an example of the pitch values after the third pass. By comparison to the 

original values after the first pass (Figure 2-1 and 2-2), we can see that the pitch pulses have been either 

correctly located during die reconstruction process or have had their pitch value corrected. 



9 

139 139 

134 138 137 

Figure 2-12: Pitch values after the third pass (1) 
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Figure 2-13: Pitch values after tlie third pass (2) 

3. Evaluation of the pi tch t racker algor i thm 

3.1 Definition of the error rate 

Most pitch trackers estimate the pitch in successive 10 msec intervals (see Rabiner et al [2]). The usual way 

to evaluate these algorithms is to manually check the speech signal for the presence or absence of voicing, as 

well as the pitch in voiced intervals. The error rate is then computed for different categories as the ratio of the 

number of intervals in that category correctly labeled to the total number of intervals in that category. For 

instance, the voiced-to-unvoiced error rate gives the accuracy of correctly classifying voiced intervals and is 

computed as the ratio of the number of voiced intervals taken as unvoiced to the total number of voiced 

intervals. 

This procedure for computing the error rate is not well adapted to the current pitch tracker since all pitch 

pulses in the utterance are supposed to be exactly located by the post-processing algorithm. We prefer to 

define the error rate as the number of mislabeled pitch pulses to the total number of pitch pulses in the 

utterance. The mislabeled pulses include missed pulses (not finding a pitch pulse when there is one), false 

alarms (finding a pitch pulse when diere is none) and incorrect pitch values (pitch errors larger than 2 Hz by 
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comparison to pulses manually labeled on a waveform display). The overall error rate is the sum of these 

three types of errors. 2 

3.2 Stimuli 

The sdmuli, taken from Rabiner et al [2], consisted of the four mono-syllabic isolated words and four 

sentences shown in Table 3-1. 

Words Sentences 

Hayed We were away a year ago 
Heed I know when my lawyer is due 
Hod Every salt breeze comes from the sea 
Hoed I was stunned by the beauty of the view 

Table 3-1: Stimuli 

The isolated words and sentences were spoken by : 

• three male and three female speakers in an office environment (40 dB average signal-noise ratio) 

using a noise-canceling microphone. 

• two male speakers in a noisy computer room (20 dB average signal-noise ratio) using a low quality 

microphone. 

3.3 Results 

3.3.1 Office environment 

Table 3-2 gives pitch characteristics for the stimuli spoken by six speakers in an office environment: the 

total number of pitch pulses, the minimum, maximum and average pitch values for each speaker. 

Table 3-3 gives the different error rates (computed under the conditions explained in paragraph 3.1) for 

isolated words and sentences recorded by six speakers in an office environment, before and after post

processing (i.e. after the first and the third pass). We can notice a substantial drop in die overall error rate, 

accompanied by a slight increase in false alarms. This increase in false alarms is caused by the presence of 

2 At this point a theoretical problem appears : the peaks labeled as false alarms are not included in the count of the total iriumber of 
pitch pulses in the utterance, since false alarms-are defined as finding pitch pulses where there are none. Mathematica ly they should 
then not be included in the mislabeled pulses. Nevertheless the error rate can only be incremented by doing so and the false alarms are 
not numerous In such conditions we think that the error rates previously defined gives a better overall view of the pitch tracker accuracy. 



11 

Total number of Minimum Maximum Average 
pitch pulses pitch pitch pitch 

Male speakers 
ap 848 103 200 • 141 
fa 581 58 114 86 
it 997 92 198 132 
Female speakers 
bf 1126 137 250 184 
bg 1689 148 390 235 
tp 1584 143 291 223 

Table 3-2: Speakers pitch characteristics (office environment) 

noise peaks in unvoiced intervals that are occasionally labeled as voiced peaks by the endpoint pitch pulse 

algorithm (see paragraph 2.3.2.3). This happens when random noise peaks are located in die prolongation of 

pitch chains (with a small pitch variation from one pulse to the next one). 

Missed False Incorrect Overall 
pulses alarms pitch error rate 

Male speakers before after before after before after before after 
ap 17.3% 0.8% 0% 0% 10.0% 0.5% 27.3% 1.3% 
fa 23.9% 1.2% 0% 1.4% 0.1% 0.5% 24.0% 3.1% 
rt 16.2% 1.1% 0% 0.2% 1.0% 0.0% 17.2% 1.3% 

Female speakers 
bf 12.7% 0.5% 0% 0.1% 5.7% 0.2% 18.4% 0.8% 
bg 11.9% • 2.2% 0.2% 0% 13.2% 1.2% 25.3% 3.4% 
tp 10.2% 1.6% 0% 0% 4.2% 0.3% 14.4% 1.9% 

All speakers 15.4% 1.3% 0.0% 0.3% 5.7% 0.4% 21.1% 2.0% 

Table 3-3: Error rates before and after post-processing (office environment) 

3.3.2 Noisy computer room 

Table 3-4 gives pitch characteristics for the stimuli spoken by two male speakers in a noisy computer room : 

the total number of pitch pulses, the minimum, maximum and average pitch values for each speaker. 

Table 3-5 gives the different error rates for isolated words and sentences recorded by two male speakers in a 

noisy computer room , before and after post-processing (i.e., after the first and the third pass). We can see 

that after post-processing die missed pulses and incorrect pitch error rates are comparable in an office 

environment and in a noisy computer room. The false alarm error rate is higher under noisy conditions 

because random peaks are more likely to be labeled as pitch pulses. 
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Total number of Minimum Maximum Average 
pitch pulses pitch pitch pitch 

mq 1027 100 213 170 
rc 902 94 195 136 

Table 3-4: Speakers pitch characteristics (noisy computer room) 

Missed False Incorrect Overall 
pulses alarms pitch error rate 

before after before after before after before after 
mq 25.7% 1.1% 0.8% 0.5% 25.3% 0.2% 51.8% 1.8% 
rc 35.3% 0.3% 2.0% 3.3% 16.2% 0.3% 53.5% 3.9% 

All speakers 30.5% 0.7% 1.4% 1.9% 20.7% 0.3% 52.6% 2.9% 

Table 3-5: Error rates before and after post-processing (noisy computer room) 

3-4 Computational considerations 

The pitch tracker, including the post-processing algorithm, is efficient. The first pass uses a low-pass digital 

filtering of the signal and correlation of successive peaks properties, operations that are not very time 

expensive and approximately linearly dependent on sampling rate. The second pass computes histograms of 

pitch values, also a simple operation. The third pass generates, and operates on, pitch chains, .operations that 

can be implemented in an efficient way. Therefore, it should be possible to optimize die pitch tracker to work 

in real time on a 1 Mips computer. 

4. Uti l ization of the post-processing algor i thm 

The results show that, 98% of the time, the post-processing algorithm produces a train of pulses in which 

every pitch pulse in the waveform is exactly located. In these cases, all pitch values are correct; there are no 

fine pitch errors. Therefore, the fundamental frequency micro-variations in speech are tracked sufficiently 

well to be used in extracting phonetic features in a feature-based recognition system. An example of feature 

extraction made possible by a precise pitch train is the localization of transitions between adjacent vowels. A 

sudden pitch variation often occurs as the vocal tract begins to move from one stable position to the next one. 
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50 60 70 
pitch pulse number 

Figure 4-1: Pitch contour for the letter M a" spoken by a female speaker 

For instance, Figure 4-1 and Figure 4-2 show respectively the pitch contour and the detailed pitch values 

for the letter "a" spoken by a female talker. We can see a sudden increase of the pitch value for the pitch 

pulse number 35 (with a jump from 163 to 168 Hz), corresponding to the beginning of the transition from the 

vowel [e] to the vowel [i]. We can also notice the unstable or "unusual" pitch pulses at the beginning and end 

of the utterance during the onset and the release of the vocal cords. 

Although data produced by the post-processing algorithm has shown tiiat vocal tract shape changes are 

strongly correlated with pitch changes, these changes are not consistent in amplitude and direction from one 

speaker to the other. Exact pitch values can give important clues for feature-based speech recognition 

systems, but are difficult to use properly. 

A simpler usage of the pitch tracker has been made for a feature based, speaker-independent, isolated letter 

recognition system built at CMU [1]. In this system the pitch tracker has been modified to return an accurate 

estimation of the pitch value every 3 msec. Many of the feature extraction algoritiims used in this system 

depend upon the location of voicing in the utterance. For instance the letters "a" and "h M can be 

distinguished by considering only the ratio of the number of voiced 3 msec slices to the total number of 3 

msec slices in the sound. For "a" this ratio will be high, while low for "h". Examination of histograms of the 

ratio values for "a" and "h" reveals that there is no overlap between the two distributions of values for 4 

tokens of each letter spoken by 40 speakers. Other features can be extracted by using the onset or offset of 

voicing as anchor points in an utterance. Finally, the average pitch in an utterance has been found to be 

useful for speaker normalization. The error rate of the existing system, in a speaker independent mode, is 

about 10% in an office environment. 
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Figure 4-2: Detailed pitch values for the letter "a" spoken by a female speaker 

5. Conclusions 
In this paper we present a post-processing algorithm for time-domain pitch trackers. This algorithm is 

powerful because global processing over 300 or 400 msec of speech is used to estimate the pitch train, by 

building chains of pitch pulses. The algorithm is little affected by noise because a few pulses correctly located 

in a voiced segment of speech by the time domain pitch tracker are sufficient to reconstruct the pitch train for 

the whole segment. After the post-processing, all the pitch pulses are exacdy located in the waveform with 

high accuracy (2% mislabeled pulses in an office environment). 
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