
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 3 - 1 0 2

Graceful Interaction through
the COUSIN Command Interface

Philip J. Hayes

Pedro A. Szekely

January 23,1983

Abstract

Currently available interactive command interfaces often fail to provide adequate error

correct ion or on-l ine help facilities, leading to the perception of an unfriendly interface and

consequent frustration and reduced productivi ty on the part of the user. The C O U S I N project

of Carnegie-Meiion University Is developing command interfaces which appear more friendly

and support ive to their users, using a form-based model of communicat ion, and incorporat ing

error correct ion and on-line help. Because of the t ime and effort involved in construct ing truly

user-friendly interfaces, we are working on interface systems designed to provide interfaces to

many different application systems, as opposed to separate interfaces to individual

applications. A C O U S I N interface system gets the information it needs to provide these

services for a given application from a declarative descript ion of that appl icat ion's

communicat ion needs.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-31-K-1539,
and by the Army Office of Scientif ic Research under Contract F49620-79-C-0143. The views and
conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency, the Army Office of Scientif ic Research, or the US Government.

Graceful interact ion through C O U S I N 1

1. Introduction
Many of today's interactive interfaces to computer systems are sources of great frustration to their

users. The simplest error or incompleteness in a command to such a system is likely to elicit a more

or less informative error message and a request to try again. Different parts of the same interface may

use quite different syntax or convent ions for essentially similar functions. The on-l ine help, if it exists,

may come in chunks too big to be useful for interactive use, and may be indexed and cross-

referenced inadequately to permit easy location of the information desired. These and other

problems with interactive interfaces have been discussed at length by numerous authors including

Hansen [3], Miller [9] , and Hayes et al. [6]. In the C O U S I N (Cooperative user iNterface) project at

Carnegie-Mellon University, we are working towards user interfaces that appear more friendly and

support ive to their users, and thus reduce frustration and enhance productivity.

While the C O U S I N project is wide-ranging in its overall goals and scope, 1 the present paper is

concerned with our work on user-friendly interactive command interfaces. In particular, it deals with

a coarse-grained semantical ly-constrained style of command interaction in which the user repeatedly

specif ies a command together with a set of dependent semantically-typed parameters. This style of

interaction typically arises at the top command level of an operating system (e.g. manipulating files,

invoking application subsystems), and in interaction with some common applications (e.g. electronic

mail manipulat ion, magnetic tape management). We are not currently looking at the f iner-grained

kind of interaction that occurs, for instance, with a screen-oriented text editor. Nor are we concerned

with support for naive users, assuming instead that users have a basic familiarity with computers and

command interaction in general and the kinds of objects they are deal ing with (files, directories,

pieces of electronic mail) in particular. Familiarity with the specif ics of individual commands,

however, is not assumed.

Given these scope restrictions, our approach to interface design is based on three key concepts:

• One i n t e r f a c e f o r a l l a p p l i c a t i o n s : A single monolithic interface system provides

interface services for a wide variety of different appl icat ions. The interface system is

data-driven from declarative descript ions of the interface needs of the various

applications. Given the large amount of t ime and effort needed to construct user-friendly

interfaces, some method of sharing interface code across appl icat ions appears to be

necessary if such interfaces are to be introduced widely. A single data-driven application

independent interface achieves such sharing with maximum interface consistency across

applications while also reducing implementation effort for individual applications.

It also covers the work on graceful interaction in natural language interaction by Hayes and Reddy [7].

2 Graceful Interaction through C O U S I N

• C o m m u n i c a t i o n v ia f o r m s : A user and an application program communicate indirectly

by reading and updating fields in a form specif ic to that appl icat ion, access to the form

being control led via the C O U S I N interface system. Fields correspond to pieces of

information that need to be communicated, such as the initial input parameters of a

printing application (e.g. number of copies to be printed), or the output list of messages

for an electronic mail appl icat ion. This kind of form-based communicat ion makes it

straightforward to separate the specif icat ion of what information needs to pass between

the user and application from the way in which the communicat ion is realized, and so

facilitates the construct ion of a data-driven interface system that can service many

applications.

• I n t e l l i g e n t s u p p o r t f o r f o r m - f i l l i n g : Form fields can have types and defaults, and the

sympathetic enforcement of the type restrict ions can provide a major contr ibut ion to user

friendliness. The "f i les to pr int" field of the print appl icat ion would be required to contain

readable files, for instance, so misspell ings or abbreviations can be checked and possibly

corrected against the names of readable files that actually exist. Informing the user of

what fields are available and what the types and defaults for these fields are also fulfi l ls a

major part of a user's need for on-l ine help.

After discussing and justifying these three features of our approach to command interaction in a little

more detail , we will look at the practical realization of the ideas in an implemented interface system.

We are currently working with two implementations:

• Cous iN-Un ix : an alternative shell (operating system command interface) for Unix,

operating on standard terminals.

• C O U S I N - S P I C E : a command interface for the S P I C E comput ing environment for the Perq, a

powerful personal computer wi th bit-map display and point ing input.

An initial implementation of the former has been completed and is in limited use; some detailed

examples of it in operation will be presented. The latter is in a much earlier stage of development and

will not be discussed in any detai l .

2. Communication via Forms
The notion of form-based communicat ion lies at the heart of the C O U S I N approach to command

interaction. It is based on the view that the user and the application he wants to use have certain

pieces of information that they wish to exchange one or more times dur ing an interactive session: the

input parameters (number of copies, files to print, font to use, etc.) for a print command, the output list

of messages for an electronic mail appl icat ion, the invocation of the delete command and the list of

Graceful Interaction through C O U S I N 3

subsystem
(print) < J > COUSIN

print

7K

User

Files: humfact.mss cv.txt

Copies: 3 Font: [GachalO]

Recipient: George Spencer

Page Headings: [Include]

-• -

F igu re 1 : Communicat ion by Form-Fill ing

messages to be deleted for that same appl icat ion. For a given appl icat ion, each of these pieces of

information is assigned a field, and the col lect ion of these fields consti tutes the form for that

appl icat ion. The lower part of Figure 1 shows the form for a generic print application program. In this

example, the fields all correspond to input parameters. Some fields have default values as indicated

by the square brackets for 'Font' and 'PageHeadings'. Such defaults can be overwritten by the user

on input fields as has happened in this form instance for 'Copies' and 'Recipient ' (defaults 1 and

"Self" respectively). Some input fields, 'Files' in this example, have no default and must be specif ied

by the user. Not shown in the diagram are the types associated with each field. The types can be of

varying levels of specificity, ranging from 'Str ing' for 'Recipient ' through 'Integer' for 'Copies' and

'ReadableFile' for 'Files' to enumerated types for 'Font' and 'PageHeadings', the latter being an

enumeration of size two.

4 Graceful Interaction through C O U S I N

As indicated by the upper part of Figure 1, a user and an application program communicate

indirectly by reading and updating fields of the form for that application with all access to the form

control led by the C O U S I N interface system. This effectively decouples the application system from

direct interaction with the user. The appl icat ion need only specify via its form what information it

wishes to have input and output, and C O U S I N will manage the interaction that realizes that transfer of

information to and from the user with all the user friendly support that C O U S I N can incorporate,

including enforcement of the field types on input fields through error-correct ing dialogues with the

user.

The decoupl ing of applications from direct contact with the user makes it feasible to provide

interface services for a wide-range of appl icat ions through a single monoli thic interface system such

as C O U S I N , and was the basic motivation in adopt ing the form-based model of communicat ion. Since

our goal is to construct practical interfaces with many sophist icated user-friendly features, we needed

to adopt an approach that would allow us to share the considerable implementat ion time and effort

necessary for such interface sophist ication across many application systems. Any approach which

did not allow such sharing would not allow user-friendly interfaces to be constructed on a rout ine

basis. The use of a single data-driven interface system across a wide variety of application systems is

a clean and attractive method of achieving the sharing we desire and is highly compat ible with the

form-based approach to communicat ion. The notion of sharing an interface across a variety of

appl ications was previously investigated by Lan tz [8] in the context of a distr ibuted comput ing

environment, and the work on C O U S I N has benefitted significantly from his experience.

In addit ion to making user-friendly interfaces for a wide variety of appl icat ions a practical

proposit ion, a data-driven appl icat ion-independent interface based on communicat ion via forms has

several other advantages:

o R e d u c e d i m p l e m e n t a t i o n e f f o r t : Since the appl icat ion system has no direct

interaction with the user, and since C O U S I N ensures that field values are of appropriate

types, the application system need not perform these interaction and checking tasks

itself. In many cases, this represents a substantial savings in implementation effort over

an interface built specially for the appl icat ion, even if it is simple and relatively unfriendly.

• C o n s i s t e n t i n t e r f a c e : Because all interaction is conducted through C O U S I N , responses

to command errors, requests for missing information, etc. are uniform and consistent

across all application systems.

• I m m e d i a t e a v a i l a b i l i t y of i n t e r f a c e f e a t u r e s : All the advanced interface features of

Graceful Interaction through C O U S I N

C O U S I N are immediately available for any application on construct ion of the appropriate

blank form.

Tes t f a c i l i t y f o r i n t e r f a c e f e a t u r e s : Since any new user-friendly interface feature

incorporated into C O U S I N is rmmediately available with all applications which have forms,

C O U S I N can be used as a vehicle for experiments on new features of uncertain usefulness

and for performance checking of variations on other interface features. These

experiments can be made more useful by performing them across a wide range of

applications without having to change the applications themselves. See [1] for a more

detailed discussion of the potential of C O U S I N as a test-bed for interface features.

E r ro r c o r r e c t i o n a n d a b b r e v i a t e d i n p u t : Since each form field has a type, C O U S I N

can detect and attempt to correct invalid values that the user might place in input fields

through spell ing correct ion against the appropriate list of correct values (e.g. the

dynamically determined set of available files for file types, or the enumerated set for

enumerat ion types). The type information can also be used to allow the user to fill the

fields through the use of unique abbreviations a n d / o r menu select ion.

I n t e r a c t i v e e r r o r r e s o l u t i o n : When C O U S I N ' S attempts to correct or resolve the

abbreviation of a field value fail or when they generate several possible acceptable

values, the problem can be resolved by interaction with the user based on the field's type

and C O U S I N ' S success in correct ion. The user's attention can also be drawn to fields that

do not have defaults and for which the user has not supplied a value.

A d a p t a b i l i t y : The form based model of communicat ion is a powerful metaphor that is

readily adaptable to various kinds of I/O hardware. Forms can be displayed as

at t r ibute/value lists for alphanumeric terminals or in graphical format for a bit-map

display. Also, forms can be updated by construct ive command lines, by within-form

edit ing, or by menu-selection (using either a screen pointing device or isolated phrase

speech recognit ion).

I n t e g r a l on - l i ne he lp : The display of a form with mnemonical ly named fields is in itself a

form of on-l ine help. Through it the user can determine what kinds of information can be

communicated to the application (input fields) and what assumptions the application is

currently making (defaults). This information can be supplemented by making the field

type information available in response to a simple command applicable to all fields.

A u t o m a t i c a l l y g e n e r a t e d o n - l i n e d o c u m e n t a t i o n : The blank forms already contain

most of the information a user is likely to wish to know about individual commands. When

the basic information is supplemented by some sentences describing the purposes of

6 Graceful Interaction through C O U S I N

commands and the fields of their forms, C O U S I N can reformat the form automatically to

provide on-line documentat ion. The resulting documentat ion is consistent and uniform in

format, and is always up to date with changes in the application that are reflected in

changes to its form. See [5] for a detai led descript ion of how this documentat ion is

produced in the current C O U S I N implementat ion.

So far, we have conf ined our attention largely to forms containing only input fields. This kind of

form is suitable for the initial specif icat ion of the parameters of non-interactive appl icat ions, but is

clearly less than sufficient for interactive applications. Nevertheless, form-based communicat ion can

be used with interactive applications. In fact, through observation of some currently available

command interfaces we have identif ied three general styles of communicat ion with appl ications that

can be supported through a form-based approach:

• • N o n - i n t e r a c t i v e : Parameters are specif ied, usually in a command line which is

col lected by a system command interpreter, before execution of the appl icat ion begins.

The application normally runs to complet ion after being invoked in this way.

• I n f o r m a t i o n c o l l e c t i n g : The application may accept (or request) addit ional information

after it gets contro l , either because necessary parameters were omitted in the initial

command line or because a need for addit ional information is discovered after execut ion

begins.

• C o m m a n d loop : After start-up, the application enters an interactive command loop:

repeatedly accept ing commands, executing them, and presenting the results to the user,

who then composes his next request.

The corresponding scenarios for the form-based approach of C O U S I N are:

• N o n - i n t e r a c t i v e : This is the simplest case and the one we have been mostly deal ing

with so far. Form fields correspond directly to application parameters. The user invokes

the application through a menu or a command line, which may specify values for some

(or all) of the input fields for the appl icat ion. C O U S I N obtains the form for the appl icat ion

thus specif ied, and sets up its defaults. If a command line was used, C O U S I N parses it and

transfers the various parameter values thus obtained to the appropriate fields of the form.

If after this, all parameter fields are correct ly f i l led, C O U S I N executes the application in the

normal way. If, on the other hand, information is missing or incorrectly specif ied, C O U S I N

reports the problems to the user, and gives him an opportunity to correct the situation by

edit ing the form. When both the user and C O U S I N are satisfied with the way all the fields

are fi l led, the user may start execut ion of the application explicitly. However, C O U S I N will

not allow him to start execution while problems remain with the form. If the user is unable

Graceful Interaction through C O U S I N 7

to correct the form satisfactorily, he must either abort the attempt at application

invocation or save the form in its current state for later correct ion.

• I n f o r m a t i o n c o l l e c t i n g : This situation is similar to the previous one, except that C O U S I N

will start execution of a appl icat ion with some of the required parameter fields

unspecif ied, although they cannot, of course, be specif ied incorrectly. After the

application is started, it can request the value of any field in its form. If a requested field is

undefined, C O U S I N will inform the user that a value is required and suspend execut ion of

the application until the user specif ies the required value which is then passed back to

the appl icat ion.

Using this type of interaction, an application can be started without fillers for any of the

fields in its form being specif ied, and the user interface will prompt for whatever

parameters are needed when they are first referenced. It is a good example of how

C O U S I N insulates the application from concerns about how and in what order its

parameters are acquired, and yet can make the parameters available as they are

required.

• C o m m a n d loop : The user specif ies interactive commands to the application by inserting

the name of a command into a field whose type is an enumerat ion of all the commands

available; this insertion could be done by direct type in or by menu select ion.

Alternatively, there could be a boolean valued field for each possible command. In either

case, the field used to communicate the command would have a special active status

which means that a message 2 is sent to the application by C O U S I N every t ime the field

changes value, thus al lowing the application to avoid inefficient poll ing of the field's

value.

When not actually executing one of its own commands, the application would wait for

notif ication that one of these active fields had been modif ied. Addit ional parameters for

application commands can be specif ied through other fields in the form in the same way

as the two previous cases. The display of the form can be organized in such a way that

the correspondence between the command fields and the fields that act as their

parameters is clear to the user. Facilities are also needed to allow the application to

determine whether such parameter fields are up to date or are merely an inappropriate

leftover from earlier invocations of subcommands.

In each of the above cases, results can be transmitted back from the application to the user as the

We are assuming that COUSIN and the application are separate processes and communicate via some kind of interprocess
communication facility.

8 Graceful Interaction through C O U S I N

values of non-parameter fields reserved for that purpose, and modif iable only by the appl icat ion.

C O U S I N will display these field values to the user.

3. CousiN-Unix
In the preceding sect ion, we discussed form fields being inserted or edited by the user, and fields

being displayed to the user, but we did not say how this would take place. We omitted these details

because C O U S I N is being implemented for two quite different hardware conf igurat ions, and the details

are correspondingly different in each case. On the one hand, C O U S I N is being implemented on a

VAX-11/780 using a standard (24 line) display terminal for communicat ion with the user. This version

of C O U S I N will provide an alternative to the well known Unix shell, the top-level command interpreter

for the Unix operating system [12], and so is called CousiN-Unix. On the other hand, C O U S I N is also

being implemented on the Perq, a powerful personal computer, equipped with bit-map graphics

display and pointing device. This version of C O U S I N will provide a command interface to the S P I C E

comput ing environment [10] also under development at Carnegie-Mellon University, and so is known

as C O U S I N - S P I C E . The more powerful interface hardware available for C O U S I N - S P I C E allows a much

richer set of graphical ly-based interface techniques. Mult iple windows, for instance, can be used to

maintain several different applications and their forms simultaneously, or the user can employ

pointing devices to select field values for alteration, menu selection to choose a fieid value restricted

to one element of a small set, comprehensive screen edit ing techniques, etc..

At the time of writ ing (December 1982), an initial implementation of CousiN-Unix has been

completed and is in limited use, while C O U S I N - S P I C E is at an earlier stage of development. We will

therefore base our account in this section of how the general C O U S I N approach can be realized in

practice on the present CousiN-Unix implementat ion, discussing first the modif icat ions its

c i rcumstances have required to the general approach, and then presenting some detailed examples

of it in operat ion.

3 . 1 . A d a p t i n g C O U S I N to Un ix

Our decision to implement the ideas of C O U S I N in the form of an alternative Unix shell (top-level

operating system command interpreter) was motivated in several ways:

• We wished to evaluate the C O U S I N approach through an interface with a sufficiently large

potential user community to make the evaluation meaningful. Unix has an extremely

large user community, over a hundred of whom can be found within our own Department,

and since a signif icant segment of that community (see [11] for example) believes the

standard Unix shell to be not very user-friendly, there are grounds to expect that many

Graceful Interaction through C O U S I N 9

Unix users would be wil l ing to try out a different command interface.

• We wished to compare two interfaces to the same system, one using the C O U S I N

approach and the other more representative of generally available command interfaces.

The standard Unix shell fulfil ls the role of representative command interface.

• We wished to test the adaptabil i ty of the C O U S I N form-based model of communicat ion.

The standard Unix shell has a style of interaction based on command lines which does

not ostensibly follow the form-based model. This style of interaction can be very terse

and efficient providing the user does not make errors or lack knowledge. This eff iciency

made it desirable to keep command line interaction available through CousiN-Unix, but to

make it more user-friendly and to integrate it with the form-based model, thus testing the

model 's adaptabil ity.

Given these motivations for choosing to try out the ideas behind C O U S I N in the context of a Unix

shell, we designed and implemented an interface with the fol lowing major components:

• F l e x i b l e c o m m a n d l ine p a r s e r : Given that one of our motivations was to test the

adaptabil ity of C O U S I N ' S form based model of communicat ion to interaction through

command lines, it was necessary to provide a command line interpreter with at least the

functionality of the standard Unix shell, except for shell programming features

(condit ionals, i teration, e tc .) . But since we also wished to maintain the user-friendly

character of C O U S I N through the adaptat ion, it was necessary that the parser be flexible

in the face of input errors, rather than simply rejecting incorrect or incomplete commands

as in standard Unix . 3 Accordingly, the parser for CousiN-Unix tries to correct out of order

arguments, and typos or other misspell ings in command names and opt ion and argument

markers; the parser also allows such markers to be given in whole word format as well as

in the single character style normal in standard Unix. The output from the parser is the

form for the command specif ied by the first token of the command line with the

appropriate fields filled by the parameters extracted from the remainder of the command

line. Error detect ion on command parameters is handled through the standard C O U S I N

form correct ion mechanism in which C O U S I N attempts to use the field types of invalid

fields to correct them into valid ones to the extent to which this is possible. Clearly, no

correct ion is possible when the type is 'arbitrary str ing' , but spell ing correct ion is used on

enumerated types, including dynamically defined enumerations (e.g. names of files and

directories). A successful correct ion attempt may produce a unique correct ion for the

Unix commands actually parse their own command lines, with the shell providing only some preprocessing, such as file
wildcard expansion, so different commands behave in different ways and it is hard to make general statements of this kind with
complete accuracy, but the most common form of response to erroneous command lines is a one line usage summary followed
by a return to the shell command level.

Graceful interact ion through C O U S I N

user to conf i rm or several possible correct ions for the user to choose among.

• I n t e r a c t i v e f o r m e d i t o r : This component allows the user to correct incorrect fields, fill

unfil led fields, or in general modify the value of any field of a form, and thus provides a

structured way to correct command line errors without having to type the line over again,

or indeed, to specify the parameters to a command without using a command line. The

form editor also includes a command to cycle the user through the incorrect and

unspecif ied fields, listing any correct ions C O U S I N has come up wi th, along with

information about what should fill the f ield. The same facility can be used to make

changes to previously saved forms, either to make correct ions that were not possible

earlier or to adapt an earlier correct command to a different task.

• Un i x - l i ke c o m m a n d l o o p : In order to obtain as direct a compar ison as possible

between CousiN-Unix and the standard Unix shell, and also to minimize the start-up effort

required for a Unix user to try CousiN-Unix, we attempted to make the basic CousiN-Unix

command loop as similar to that of the standard Unix shell as possible for the

interpretation of correct commands. It operates as fol lows:

1. The user types a command line in response to a prompt from C O U S I N .

2. C O U S I N identifies the appl icat ion invoked by the command line, locates the blank

C O U S I N form for the appl icat ion and preloads it with the appropriate defaults.

3. C O U S I N parses any parameters to the appl icat ion specif ied in the command line,

using the flexible parser mentioned above and inserts the parameters into the

appropriate form fields. The syntactic information required for this parsing is

included with the blank form.

4. C O U S I N checks the form for completeness (all f ields have values), and correctness

(all fields have values that satisfy their type restrictions).

5. If the form is correct and complete, C O U S I N executes the command as specif ied by

the form and loops to step 1 by issuing another command prompt. Thus, if the user

issues only correct and complete commands, the interaction will look just like

interaction with the standard shell .

6. If the form is incorrect or incomplete, C O U S I N enters the interactive form editor to

help the user correct the errors. The user may also specify that he wishes to enter

the form editor anyway, even if the form specif ied by the command line is complete

and correct.

Graceful Interaction through C O U S I N

7. After the user has completed or corrected all empty or incorrect fields, and is

satisfied with the values of ail other fields, he may tell C O U S I N to execute the form,

and this execution happens in exactly the same way as it would if the user had

specif ied the current form field values through a command line, with control

returning to Step 1 and the issuing of a command prompt.

8. The user may also return to Step 1 by discarding the current form or by saving it for

future reuse with all existing values maintained. Saving a form is useful for

construct ing personalized commands with parameter defaults different f rom the

standard (the names of saved forms can be used just like command names in

command lines), and for temporari ly saving commands that cannot be executed

because of some circumstances that cannot be remedied from within the form

editor, (e.g. the user does not have appropriate access rights for a file).

In terms of the classif ication of styles of communicat ion with applications presented

earlier, this command loop presumes all appl ications are non-interactive, at least as far as

the services of CousiN-Unix go, i.e. they expect all their parameters specif ied in advance

and run to complet ion once started with no further interaction with the user through

CousiN-Unix. In the context of Unix, this is not an unreasonable assumption, since it is

the only style of interaction of the three we discussed that does not require any direct

communicat ion between the appl icat ion and C O U S I N , and hence does not require any

modif ication to pre-existing Unix application systems. CousiN-Unix executes such pre

existing Unix commands by translating the form back into a command string and

executing that. The dif ference being that after it has passed though C O U S I N , it is known

to be correct. If the application needs to communicate further with the user after it has

started execut ion, CousiN-Unix provides the same character stream oriented style of

communicat ion as the standard Unix shell. We anticipate that we will eventually modify

some interactive applications to operate through their forms, thus extending the C O U S I N

services to those interactions as wel l .

W i t h i n - l i n e i n p u t e d i t o r : All input by the user is through a single line screen-oriented

editor which allows the user to insert and delete words and characters at positions other

than the end of a given line. In conjunct ion with a facility by which the user can get back

the input line he just typed, this editor provides the user an alternative and sometimes

more convenient way of correct ing command lines. The editor syntax is modeless and is

derived from the Emacs whole screen editor [14].

S c r e e n m a n a g e m e n t : While both the basic command loop and the form editor operate

in a scrol l ing, l ine-oriented mode, the current version of CousiN-Unix does provide a

limited amount of screen management, maintaining a two line mode window at the

bottom of the screen in which information about the current state of the interaction and

Graceful Interaction through C O U S I N

the interface's expectat ions for the user's next input is displayed. A pop-up window in

the top half of the screen is also provided for the on-l ine help facility descr ibed below. A

completely screen-oriented version of CousiN-Unix, including screen-oriented form

editing is currently under development as descr ibed in the concluding sect ion of this

paper.

• o n - l i n e he lp a n d e x p l a n a t i o n f a c i l i t y : At any point in the interact ion, the user may

obtain on-l ine help either on a specif ied topic or, if no topic is specif ied, general

information relevant to the current state of the interact ion. This help is displayed in a

window that springs into existence in the top half of the screen when the user asks for

help, and disappears after the user exits help mode. To be useful, on-l ine help text must

be available in chunks that are not too large (otherwise there is too much to read), and

adequately cross-referenced and indexed (otherwise the relevant information cannot be

found). To avoid these problems for C O U S I N , we have adopted some ideas from the Z O G

[1 3] rapid menu-selection system. Like Z O G , the C O U S I N help facility consists of text

segments or frames, none larger than half a display screen, structured into a network by

semantically motivated links, one or more leading from each frame to other frames

containing related material. Traversing one of these links causes the current frame to be

replaced with the frame pointed to by the link. Unlike Z O G , there are two types of frames:

o Static frames const i tute the vast bulk of the frames and descr ibe aspects of the

system being interfaced to that do not normally change within the course of a

single interactive session. These include the commands available, the parameters

they take, the objects they manipulate, and the syntax used to descr ibe these

things. These frames are presented in response to requests for help on specif ic

topics.

o Dynamic frames are constructed on the fly in response to non-specif ic requests for

help, and describe the current state of the system, how it came to be in that state,

what C O U S I N expects the user to do next, what the user's options for action are,

etc.. These dynamic frames also contain links to frames in the static network that

contain descript ions relevant to the current command context.

A more complete descript ion of the C O U S I N help system can be found in Hayes [5] , along

with an account of how most of the static network can be generated automatically from

the information about command line syntax and parameter types and defaults in the blank

forms that C O U S I N already needs to perform its flexible parsing and interactive error

resolution funct ions.

• H i s t o r y m e c h a n i s m : This component keeps a record of already executed commands,

can print out a list of them on demand, and can retrieve specif ied commands for re-

Graceful interact ion through C O U S I N 13

execution either exactly as before, or if the user employs the within-l ine editor, in a

modified form. *

* T r a n s c r i p t f a c i l i t y : To facil itate its evaluation, CousiN-Unix can record a complete

t ime-stamped transcript of any interactive session conducted through it. The example

interactions with the system given later in this paper were recorded via this facility. (The

time-stamps have been edited out.)

To make it clearer how these various components of CousiN-Unix benefit the user, some examples

of actual interactions with CousiN-Unix are appropriate. But first, a short digression to describe the

command language handled by the flexible command parser of CousiN-Unix is in order.

3 . 2 . C o m m a n d l a n g u a g e fo r Cous iN-Un ix

The command language for CousiN-Unix is the same as that used by the standard Unix shell [12],

minus the construct ions at a level higher than single commands, but supplemented by other language

features that make it easier for the user to specify commands. Speaking approximately to avoid

complicat ion irrelevant to the present purpose, the standard Unix format for command lines is the

command name, fol lowed by a sequence of option flags and markers (single characters preceded by

dashes), fol lowed by a fixed-order sequence of non-optional arguments. An example is:

d o v e r -r -c 3 -I f o o . t x t t u rn .doc

This is a ca l f to dover , 4 an application program local to Carnegie-Mellon, which prints files on a Xerox

Dover laser printer. Three options are specif ied: " - r" , print 9 0 degrees rotated, i.e. with lines parallel

to the long side of the paper; M - c " , print the number of copies specif ied by the immediately fol lowing

input token, in this case three; and " - I " , l ineprinter mode - no headings and 66 lines per page. The

options are fol lowed by dover 's single non-opt ional argument, a list of files to be printed, in this case

foo.txt and fum.doc. When a command has more than one non-optional argument, which input

tokens are assigned to which argument is specif ied strictly by the posit ion of the tokens in the input

line. An example is the command, " c p " , which copies a list of files, its first argument, into a directory,

its second argument, as in:

cp f i l e 1 f i l e 2 d i r

The standard Unix conventions are extended by C O U S I N in two major ways: the addit ion of explicit

markers for command arguments as a supplement to the present system of purely positional

For reasons too obscure to relate here, the command is actually called 'cz\ but we have named the form 'doverprint', and
through the command synonym facility of CousiN-Unix may refer to it by any of several names including 'cz' and 'dover', the
latter being treated as an abbreviation of 'doverprint'.

14 Graceful Interaction through C O U S I N

specif icat ion, and the addit ion of full word flags and markers for opt ions as a supplement to the

present system of single characters preceded by dashes. So the above examples could be written for

instance as:

d o v e r f o o . t x t f u m . d o c r o t a t e d c o p i e s 2 l i n e p r i n t e r m o d e
c p o n t o d i r f r o m f i l e 1 f i l e 2

Note that when whole-word markers are used order can be relaxed, and that when only one argument

remains unmarked it may appear anywhere in the command line.

The language recognized by CousiN-Unix is also extended implicit ly by the flexible, error-

correct ing parsing techniques employed. The fol lowing deviations are handled:

• out of order arguments - to avoid ambiguity, the arguments must be dist inguished either

explicitly by markers or implicitly by type.

• garbled arguments or spurious interjections - these are saved on a CouldNotRecognize

list.

• misspellings of command names, opt ion and argument markers and flags, and as far as

possible the actual values of arguments and options. In the case of argument and option

values, correct ion is based on the type of the form field in which the parameter is to be

inserted, and is currently implemented only for enumerated types, including file and

directory names which are considered dynamically defined enumerations.

In addit ion to the syntax for individual commands described above, the standard Unix shell also

supports syntax for combinat ions of commands, including pipelines, condit ional execut ion, and

iteration. Of these, CousiN-Unix current ly supports only pipelining (including inpu t /ou tpu t

redirection). File wi ldcarding is also supported exactly as in the regular shel l , but we have not yet

tried to combine wi ldcarding with spell ing correct ion.

3 . 3 . E x a m p l e i n t e r a c t i o n s w i t h Cous iN-Un ix

As mentioned earlier, CousiN-Unix operates through a standard (twenty four line) display terminal.

The type of terminal actually used also allows some simple screen management. In particular, the

current implementation of CousiN-Unix divides the screen into the three independent windows shown

in Figure 2:

• m a i n i n t e r a c t i o n w i n d o w : a scrol led window through which all command line and

form editor interaction takes place; it occupies those parts of the screen not occupied by

the other two windows.

Graceful Interaction through C O U S I N 15

pop-up help window

main interaction window

(scrolled)

two line status window

F igu re 2 : CousiN-Unix screen organization

• m o d e w i n d o w : a two-l ine window at the bottom of the screen, containing continually

updated information about what mode CousiN-Unix is in, what it is expecting the user to

do next, how to abandon what is being done, and how to ask for more extensive help.

• he lp w i n d o w : A window that springs into existence in the upper part of the screen when

help is requested. It displays nodes from the highly connected network of f inely-chunked

text frames that constitutes C O U S I N ' S on-l ine help facility. If no topic is specif ied, a frame

containing pointers to information likely to be helpful in the current state of interaction is

generated.

In the example that follows, we will be concentrat ing our attention on the main interaction window,

with occasional comments about the other two windows as appropriate.

When CousiN-Unix starts up, the user is presented with a command prompt ' 1 : ' in the main

16 Graceful Interaction through C O U S I N

interaction window, and a message in the status window informing him that the system is ready to

accept a Unix command. The number in the prompt is related to the history mechanism provided by

CousiN-Unix, of which more later. If the user types a correct command, it will be executed as in:

1 : Is ['Is' is the unix command to print the contents of the current directory]
d i f f e r e n c e s h u m f a c t . a u x i j m m s . t r a n s s a v e / u m i s t . m s s
f o o . p r e s s h u m f a c t . m s s o u t l i n e u m i s t . a u x u m i s t . p r e s s

2 : dover rota - c 2 humfact.mss
[3 pages * 2 c o p i e s => 7 s h e e t s] [output from the dover program]

3 :

Here, user input is in bold italics, and comments in ordinary italics. Note the mixing of Unix style

markers with the extended CousiN-Unix syntax, and the initial abbreviation of the keyword, '.rotated',

in the second command. The status line remains unchanged dur ing the entering and execut ion of

both commands. In terms of C O U S I N ' S underlying operat ion, performing the second (dover)

command involved f inding the blank form for dover, fill ing in whatever defaults were specif ied, fil l ing

the appropriate fields in the form from the command line using the associated syntactic information,

checking that the form thus obtained is correct and complete, and finally execut ing the form in the

way described earlier.

Suppose now that the user had made a couple of errors in the last interact ion, misspell ing the

fi lename and the abbreviation for ' rotated' .

3 : dov roat - c 2 humfat.mss
r o a t => r o t a t e d
E d i t i n g f o r m f o r d o v e r p r i n t
i n c o r r e c t f i e l d (s) :

f i l e s t o p r i n t : h u m f a t . m s s (n o t a r e a d a b l e f i l e) (=> h u m f a c t . m s s)
W i t h t h e above c o r r e c t i o n s t h e f o r m can be e x e c u t e d .

FormEd [g o] : go
[3 pages * 2 c o p i e s => 7 s h e e t s]

4 :

For both of these errors, C O U S I N is able to make unique correct ions, of which it informs the user

('fi lestoprint' is the name of the field in dover 's form that specif ies what files are to be printed). The

spell ing corrector used by C O U S I N is a simple one that is capable of correct ing exactly one error

(character transposit ion, insertion, substi tut ion, or deletion) per w o r d . 5 In this example, the

correct ions it is able to make result in a correct and complete form for dover which could be executed

in just the same way as the one derived from the previous totally correct command. However, since

what the user typed has been altered, C O U S I N does not go ahead with the execut ion, but switches to

Experiments with a very similar spelling corrector [2] show that this level of correction is sufficient for the vast majority of
spelling errors, and a corrector capable of correcting more complex errors might incur unacceptable performance penalties.

Graceful Interaction through C O U S I N 17

form editor mode to allow the user to make further changes or abort the command. The mode shift is

indicated by the 'FormEd:' prompt, and also in the mode window. Anticipating the most likely

response, C O U S I N also gives 'go' as the default, indicated by square brackets, associated with that

prompt. 'Go' is one of the standard form editor commands, and it means that C O U S I N should initiate

execution of the form currently being edited. At this point, if the user types a carr iage-return, the

default will be entered, the go command will be interpreted, and the dover form executed. On the

other hand, the user can type any other form editor command to display the current form, reject the

correct ion, alter any other fields he wishes to, save the form for future reuse, etc.. In the event, he is

happy with the correct ion, so he types a carr iage-return, C O U S I N echoes the default (note the second

'go' is not in bold face), executes the form, and when it is f inished, switches back to command mode

with appropriate changes to the mode window.

Now for an example where a unique correct ion is impossible.

4 : dover align sideways /urs/ppjh/papes/umf
E d i t i n g f o r m f o r d o v e r p r i n t
i n c o r r e c t f i e l d (s) :

a l i g n m e n t : s i d e w a y s (i n v a l i d s e l e c t i o n)
f i l e s t o p r i n t : / u r s / p p j h / p a p e s / u m f (n o t a r e a d a b l e f i l e)

(=> / u s r / p j h / p a p e r s / h u m f a c t . m s s | , . .)
FormEd [c o r r e c t] : c o r r e c t

C o r r e c t i n g f i e l d a l i g n m e n t
a l i g n m e n t : s i d e w a y s (i n v a l i d s e l e c t i o n)
S e l e c t i o n s :

v e r t i c a l h o r i z o n t a l
a l i g n m e n t [v e r t i c a l] : s i d e w a y s [initialstring]
a l i g n m e n t [v e r t i c a l] : h

a l i g n m e n t : h o r i z o n t a l
C o r r e c t i n g f i e l d f i l e s t o p r i n t

f i l e s t o p r i n t : / u r s / p p j h / p a p e s / u m f (n o t a r e a d a b l e f i l e)
Poss i b l e c o r r e c t i o n (s) : / u s r / p j h / p a p e r s / h u m f a c t . m s s |

/ u s r / p j h / p a p e r s / u m i s t . p r e s s | / u s r / p j h / p a p e r s / u m i s t . m s s |
/ u s r / p j h / p a p e r s / u m i s t . a u x | / u s r / p j h / p a p e r s / h u m f a c t . a u x

f i l e s t o p r i n t : / u s r / p j h / p a p e r s / [initialstring]
f i l e s t o p r i n t : / u s r / p j h / p a p e r s / h

f i l e s t o p r i n t : / u s r / p j h / p a p e r s / h (n o t a r e a d a b l e f i l e)
P o s s i b l e c o r r e c t i o n (s) : / u s r / p j h / p a p e r s / h u m f a c t . m s s |

/ u s r / p j h / p a p e r s / h u m f a c t . a u x
f i l e s t o p r i n t : / u s r / p j h / p a p e r s / h u m f a c t . [initialstring]
f i 1 e s t o p r i n t : / u s r / p j h / p a p e r s / h u m f a c t . m

f i 1 e s t o p r i n t : / u s r / p j h / p a p e r s / h u m f a c t . m s s
FormEd [g o] : go
[3 pages * 2 c o p i e s => 7 s h e e t s]

5 :

Here the user has incorrectly used the word 'sideways' instead of 'horizontal ' for the al ignment of

print ing on the page, and in trying to use an absolute Unix file specif icat ion, rather than as before one

18 Graceful Interaction through C O U S I N

relative to the current directory (which is / us r / p j h /pape rs) , has misspelt the name in a way that does

not have a unique cor rec t ion . 6 C O U S I N informs the user of these problems, and places him in form

editor mode with a default command of 'correct ' rather than 'go ' ; 'go' would not work here even if the

user typed it explicitly. The default 'correct ' command, which the user accepts, cycles through any

incorrect or empty fields in the current form, and helps the user to correct each problem individually.

In this case, it tackles the alignment field first. Because it is an enumerated type, C O U S I N lists out the

possible fil lers, then prompts the user with the name of the field, giving the default value of the field as

the default input, and the value entered as an initial str ing that the user can edit if he wishes, using the

within-l ine character editor through which all input to C O U S I N takes place; The rationale for giving the

user the initial str ing to edit is that the user might have misspelt the value in a way that the spell ing

corrector cannot deal with, and may f ind it easier to line edit it rather than retype it; if he wishes to

start again as in this example, a single keystroke empties the line. In the event, the user simply

cancels the initial str ing and types .'h' fol lowed by a carr iage re tu rn . 7 Since ' h ' is a unique initial

substring of one of the values for 'al ignment ' , that value is inserted in the field and 'correct ' goes onto

the second problem. Here there is no fixed set of possible values for the f ield, but C O U S I N has found

several spell ing correct ions for the value entered and these are listed; note that there is an error in

each element of the full file specif icat ion, but that the spell ing correct ion can still cope because it

resolves each element separately. In this case, the initial str ing provided by C O U S I N is the common

initial substring of the several correct ions; the user extends it by one character, cutt ing down the

number of possibilit ies to two, at which point another character is enough to resolve the ambiguity

uniquely. A variation on the 'correct ' command, not il lustrated here, arises with fields, such as

'f i lestoprint', which can have more than one filler. If such a field has several fillers and not all are

correct, the 'correct ' command cycles through each incorrect value individually, al lowing the user to

correct each one independently of the others. Alternatively, the user can line-edit the value of such

fields as a single str ing which is then reinterpreted into a set of separate fi l lers.

CousiN-Unix in general, and its form editor in particular, also provide support for pipes and the

redirection of standard input and output . 8 The command line syntax for these features is exactly the

6
The Unix file system is structured as a tree of directories, and a full file specification involves the names of the directories

on the path from the root directory to the one containing the file in question in addition to the name of the file; the names of the
directories and file are separated by V , and an initial 7* indicates an absolute specification.

7 l n the actual interaction, this happens on one line rather than two; the repetition is provided by the transcript generator to
show the before and after state of any input line for which COUSIN provides an initial string to edit.

For those readers unfamiliar with Unix, this is a useful feature supported by the regular shell by which the input and output
of commands can be connected to the output and input (respectively) of other commands or to named files.

Graceful Interaction through C O U S I N 19

same as for the standard shell. In terms of forms, the features are supported by giving each form two

extra fields called 'Standardlnput ' and 'StandardOutput ' which may be filled by file names (for I /O

redirection) or by pointers to other forms (for pipes), a pipeline being represented by a sequence of

forms in which adjacent elements point at each other through these fields. In cases of error or any

other use of the form editor, the user edits one form at a t ime in the manner il lustrated above, and may

switch between the forms in a pipeline by means of the 'next', 'previous', 'f irst', and 'last' commands

built into the form editor. The 'correct ' command switches forms automatically to get to the next error

in the pipeline.

Sometimes, the form-oriented method of error correct ion is quite inconvenient, and CousiN-Unix

provides an alternative l ine-oriented method as shown in the next example.

5 : dover rotatedfor Campbell outl
E d i t i n g f o r m f o r d o v e r p r i n t
i n c o r r e c t f i e l d (s) :

f i l e s t o p r i n t : o u t l i n e
r o t a t e d f o r (n o t a r e a d a b l e f i l e)
c a m p b e l l (n o t a r e a d a b l e f i l e)

FormEd [c o r r e c t] : lined
5 : d o v e r r o t a t e d f o r c a m p b e l l o u t l [initialstring]
5 : d o v e r r o t a t e d f o r c a m p b e l l o u t l
6 :

Here the user has missed out the space between two words and instead of 'campbel l ' going into the

'recipient' f ield, it goes into ' f i lestoprinf , along v/ith the incorrectly tokenized 'rotatedfor'. Clearly to

change this in a form-oriented way would be quite compl icated, involving the alteration of three

elements in two fields, so the user gives the ' l ined' command instead of taking the default. 'L ined'

causes the original command line to be printed out again by C O U S I N as a string to be edited by the

user through the usual within-l ine editor. When the user finishes this line edit, the result will be

interpreted as a new command at the top command level. In the event, he moves the cursor to the

appropriate place, inserts a single space, and types carriage-return to execute the now correct

command.

CousiN-Unix also provides a way to retrieve and reuse previously executed commands through its

history mechanism.

20 Graceful Interaction through C O U S I N

6 : hist
1 = Is
2= d o v e r p r i n t - r - c 2 h u m f a c t . m s s
3= d o v e r p r i n t - r - c 2 h u m f a c t . m s s
4= d o v e r p r i n t - r / u s r / p j h / p a p e r s / h u m f a c t . m s s
5= d o v e r p r i n t - p - n Campbe l l o u t l i n e

6 : r e d o 3
6 : d o v e r p r i n t - r - c 2 h u m f a c t . m s s [initialstring]
6 : d o v e r p r i n t - r - c 3 for Campbell h u m f a c t . m s s

[3 pages * 3 c o p i e s => 10 s h e e t s]
7 :

The top-level 'historydisplay' command, uniquely abbreviated here, displays the previously executed

commands translated from their form representations (hence the order rearrangements and

replacement of whole word markers by Unix style dash markers). The top-level ' redo' command

allows the user to obtain one of the previous commands as the initial line to the next command

prompt. He can then just type carr iage return to re-execute the command or line edit it first and

execute the edited version as in this example.

An alternative method for reusing old commands is to save the forms derived from them. The form

editor provides a 'save' command which allows the user to save a form under a name of his choice.

Both incorrect and incomplete forms can be saved in exactly the same way as correct and complete

ones; thus by saving and then re-editing an incorrect form, the user can fix up problems that cannot

be corrected through the form editor (e.g. files having the wrong access permissions). Saved forms

are recovered by using their name instead of a regular command name at the start of a top-level

command line, whereupon CousiN-Unix places the user in the form editor edit ing the saved form, just

as though he had typed a command line that parsed into the form, so that if, in particular, the saved

form is correct and complete, the user can immediately execute it through the 'go ' command of the

form editor. Any parameters on the command line after the name of the saved form are parsed as

though they were parameters to the command from which the form was originally derived, overwrit ing

any conf l ict ing field values from the saved form. Thus saved forms also provide a simple and uniform

method to save personalized versions of commands with non-standard parameter defaults.

So far, we have said little about the help component of CousiN-Unix, and space does not permit a

comprehensive set of examples here. To summarize briefly, at any point in any of the above

interactions, the user could make a non-specif ic request for help, and get a summary of the current

situation, and his options for act ion, together with pointers to information relevant to the current

context. Suppose, for instance, he had typed 'help' or 'ESC-?' at the point in the example sequence

above where he was correct ing the al ignment field in the form resulting from his 'dover align

sideways /urs/ppjh/papes/umf command at prompt '4: ' , i.e. where C O U S I N had just prompted

Graceful Interaction through C O U S I N 21

him 'al ignment [vert ical] : ' and given him the initial str ing of 'sideways' to line edit. C O U S I N would

display the fol lowing help frame:

C o r r e c t mode

B e f o r e r e q u e s t i n g h e l p , y o u were i n C o r r e c t mode (t y p e t x t o r e t u r n)
I n C o r r e c t mode, t h e s y s t e m e x p e c t s y o u t o p r o v i d e a v a l u e f o r a f o r m f i e l d ,
by e i t h e r c o r r e c t i n g t h e p r e s e n t v a l u e , o r c a n c e l l i n g i t (t C) and t y p i n g a new
o n e . The f i e l d c u r r e n t l y b e i n g c o r r e c t e d i s a l i g n m e n t o f t h e d o v e r p r i n t f o r m .
I t s f i l l e r mus t be one o f t h e l i s t e d s e l e c t i o n s .

* - > f o r m e d i t o r commands
*=> d o v e r p r i n t - f u r t h e r i n f o r m a t i o n
*=> a l i g n m e n t - f u r t h e r i n f o r m a t i o n
*=> g e n e r a l i n f o r m a t i o n on C o u s i n (t h e i n t e r f a c e you a r e c u r r e n t l y t a l k i n g t o)
*=> l i n e e d i t o r commands (a l l i n p u t t o C o u s i n i s t h r o u g h a w i t h i n - l i n e e d i t o r)
*=> how t o use t h e C o u s i n h e l p s y s t e m (t y p e ' h o w ' t o o b t a i n t h i s i n f o r m a t i o n)

The characters ' * = > ' indicate links to other pre-stored help frames, which may fol lowed by typing an

appropriate initial substr ing of the fol lowing word, so if the user was, for instance, confused about the

meaning of the 'al ignment' parameter, he might type 'a l ig ' , and causing the first help frame to be

replaced by:

D e t a i l s on t h e a l i g n m e n t p a r a m e t e r o f d o v e r p r i n t

P u r p o s e : d e t e r m i n e s w h e t h e r t h e p r i n t i n g w i l l be i n s t a n d a r d
o r i e n t a t i o n on t h e page (v e r t i c a l) , o r r o t a t e d 90
d e g r e e s (h o r i z o n t a l)

P a r a m e t e r t y p e : o p t i o n a l
F i l l e r t y p e : one o f : { v e r t i c a l h o r i z o n t a l }
D e f a u l t : v e r t i c a l
S y n t a c t i c M a r k e r s : l a y o u t , a l i g n m e n t (f o l l o w e d by e x p l i c i t v a l u e)

- r , r o t a t e d , l a n d s c a p e (i m p l y h o r i z o n t a l)
p o r t r a i t (i m p l i e s v e r t i c a l)

*=> mean ing o f f i e l d s i n t h i s f r a m e

These two frames are part of a large network of help frames, containing details of all commands that

have blank forms, including frames for each of their parameters like the example above. The frames

descr ibing individual commands are generated automatically off-l ine from the blank forms. They are

tied together by hand-writ ten frames for such things as command indices and file system

descript ions. Both these kinds of statically defined frames are supplemented by frames dynamically

generated from pre-stored templates to satisfy contextual ly-dependent requests for help. The first

frame above is an example of a dynamical ly generated frame. In all cases, the help is displayed in a

separate window at the top of the screen without overwrit ing or displacing the immediate context that

prompted the request for help. As the user follows links from one frame to another, the frames

successively overlay each other. Some addit ional information on the help system was given earlier in

this paper in the section on adapt ing the C O U S I N model to Unix, and a much more detailed account is

given by Hayes [5].

22 Graceful interact ion through C O U S I N

4. Conclusion
At the t ime of writ ing (December, 1982), the version of CousiN-Unix we have described has been

available for two months on several Vaxes in our Department for use by people outside the C O U S I N

project. We have set up a data col lect ion mechanism, whereby (unless the user specif ies otherwise)

all sessions with this experimental version are automatical ly t ranscr ipted, using the built-in transcript

facilit ies. The transcripts generated are automatically col lected on a daily basis onto a single

machine via a file transfer program on our local area network. A comment facility through which

CousiN-Unix users can mail comments directly to the project personnel is also provided. The system

operates at about half the speed of the standard Unix shell on correct commands; performance

cannot be compared for incorrect commands since the functionali ty is quite different, but correct ion

by CousiN-Unix can take up to two or three t imes as long as the processing of correct commands.

Overall, speed does not seem to be a signif icant problem in using CousiN-Unix, at least for l ightly

loaded machines.

Initially, we have encouraged use only by a relatively small set of (about 10) "sympathet ic" users,

assuming that enough detai led, but practically important problems would emerge from their

experience to make a larger, more control led, evaluation unnecessary and unprof i table before those

more obvious problems were corrected. Our assumptions proved to be accurate and we are now

engaged in tuning of the implementation to iron out many of the small , but practically important

problems that came out in this experimental use, as well as engaging in some slightly longer-term and

more extensive revisions also suggested by this small experiment (see below under screen-oriented

CousiN-Unix). Overall, however, the results of the experiments were strongly positive, with many

users expressing enthusiasm for the error-correct ion and on-l ine features built into CousiN-Unix, and

deriving from the basic C O U S I N form-based model of communicat ion presented in this paper.

To close, we will descr ibe our plans for work on C O U S I N in the near future:

• S c r e e n - o r i e n t e d Cous iN-Un ix : By far the most common serious complaint about

CousiN-Unix from our group of experimental users was that it did not make the form

metaphor of communicat ion very immediate or real to the user. The l ine-oriented form

editor, in particular, only dealt with one field at a t ime, had no means of keeping the entire

context of the present form clearly in the user's mind, and thus failed to convey the notion

that the user was edit ing a form. Its relatively conservative efforts to keep the user

informed about the current field being edited also made it appear rather verbose. The

solution to these problems seems to be a screen-oriented version of CousiN-Unix in

which the form editor operates on a two dimensional image of the current form which is

continuously displayed and kept up to date with the user's changes. A revised version of

Graceful Interaction through C O U S I N 23

CousiN-Unix along these lines is currently being implemented.

• C O U S I N - S P I C E : High on our list of priorities is to complete the implementation of C O U S I N

on the Perq personal computers, and have it used as one of the command interfaces for

the emerging S P I C E personal comput ing environment. We believe that the kinds of

service that C O U S I N provides will be particularly attractive when they are coupled with the

kind of display management and multi-media input only possible with a bit-map display

and pointing device. Some of the possibilit ies for this kind of hardware were sketched out

earlier in the paper.

• N a t u r a l l a n g u a g e f u n c t i o n a l i t y : Much of the attractiveness of natural language as an

interaction medium stems not from its surface forms, which tend to be baroque and

redundant, but rather from the ell iptical and anaphoric forms which allow people to miss

out much information that can be filled in by their listeners. We intend to give users of

C O U S I N similar opportunit ies for economy in communicat ion, letting them refer cryptically

to objects that are currently being manipulated, and leaving out details if they want the

standard thing done. Many interfaces provide defaults, and some keep track of a single

current object, but we intend C O U S I N to include a mechanism that provides something

much closer to the functionality of human ellipsis and anaphora. True natural language

capabil it ies are still too poorly understood, and require too much deep cognit ive

modell ing to be included in a practical interface like C O U S I N . However, preliminary work

by Hayes [4] suggests-that it is possible to devise mechanisms that provide much of the

functionality and convenience of natural language, including anaphora and ellipsis, but

without deep cognit ive modell ing, relying instead on the limited semantics of command

interaction, and simple adaptation by the user. We expect to incorporate such

mechanisms into C O U S I N , and determine their utility in practical situations.

• P e r s o n a l i z a t i o n : Just as human conversational part icipants adapt to the needs of their

conversational partners, so should interactive interfaces be sensitive to the differing

needs and idiosyncracies of individual users. Some of the areas for adaptation we intend

to explore through C O U S I N in the short and near-term future include: common typing

errors, special vocabulary, parameter defaults, and frequently executed macro

commands. Initially, we intend C O U S I N to work from explicit descript ions of these

individual characterist ics, but eventually we hope to devise methods for the interface to

personalize itself through observation of the user.

Attractive as these extensions and addit ional features appear to us at the moment, we view their

ultimate disposit ion as an empirical matter. The real test of user-friendliness is a reduct ion of

frustration and an increase in productivity for the end user, and the usefulness of any specif ic

interface feature cannot be determined until it comes to be used on a daily basis by people other than

24 Graceful Interaction through C O U S I N

the implementors. We look forward with interest to the results of such experiments on CousiN-Unix

and C O U S I N - S P I C E and on the approach to man-machine communicat ion that they embody.

Acknowledgements

Eugene Ball and Raj Reddy are co-or iginators with the primary author of the C O U S I N approach to

user interface design. Signif icant contr ibut ions to the development of the present CousiN-Unix

interface were also made by Sandeep Johar, George Mouradian, and Mike Rychener.

Graceful. Interaction through C O U S I N 25

References

1 . Ball J . E. and Hayes, P. J . A Test-Bed for User Interface Designs. Proc. Conf. on Human Factors

in Computer Systems, Gaithersburg, Maryland, March, 1982.

2 . Durham, I., Lamb, D. D., and Saxe, J . B. "Spel l ing Correct ion in User Interfaces." Comm. ACM 26

(1983).

3 . Hansen, W . J . User Engineering Principles for Interactive Systems. Fall Jt. Computer Conf.,

AFIPS, 1971, pp. 523-532.

4 . Hayes, P. J . Anaphora for Limited Domain Systems. Proc. Seventh Int. Jt. Conf. on Artif icial

Intell igence, Vancouver, 1981, pp. 416-422.

5 . Hayes, P. J. Uniform Help Facilit ies for a Cooperat ive User Interface. Proc. National Computer

Conference, AFIPS, Houston, June, 1982.

6. Hayes, P. J . , Ball, J . E., and Reddy, R. "Breaking the Man-Machine Communicat ion Barr ier."

Computer 14, 3 (March 1981).

7. Hayes, P. J . and Reddy, D. R. "Steps Toward Graceful Interaction in Spoken and Written Man-

Machine Communicat ion. " International Journal of Man-Machine Studies 18 (1983).

8 . Lantz, K. A. Uniform Interfaces for Distributed Systems. Ph.D. Th. , Computer Science Dept., Univ.

of Rochester, 1980.

9 . Miller, R. B. Response Time in Man-Computer Conversational Transactions. AFIPS Proceedings,

Fall Joint Computer Conference, Washington, D.C., 1968, pp. 267-277.

1 0 . Newell, A., Fahlman, S., and Sproul l , R.F. Proposal for a joint effort in personal scientif ic

comput ing. Tech. Rept . , Computer Science Department, Carnegie-Mellon University, August, 1979.

1 1 . Norman, D. A. "The Trouble with Unix." Datamation 27,11 (November 1981), 139-150.

1 2 . Ritchie, D. M. and Thompson, K. "The UNIX Time-Sharing System." Comm. ACM 17, 7 (July

1974), 365-375.

1 3 . Robertson, G., Newell, A., and Ramakrishna, K. ZOG: A Man-Machine Communicat ion

Philosophy. Tech. Rept . , Carnegie-Mellon University Computer Science Department, August, 1977.

1 4 . Stal lman, R. M. EMACS: The Extensible Customizable Self-Documenting Display Editor. Proc.

ACM SIGPLAN/SIGOA Symp. on Text Manipulat ion, Port land, Oregon, June, 1981, pp. 147-156.

