NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ML T A T 2 T ey

TCOLAda:
Revised Report
on
An Intermediate Representation
for the
DOD Standard Programming Language

20 June 18979

Joseph M. Newcomer
David Alex Lamb
Bruce W. Leverett
David Levine**
Andrew H, Reiner
Michael Tighe**
William A, Wulf

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213 USA

"Intermetrlcs, Inc., Cambridge, MA 02138

This research was sponsored by the Defense Advanced Research Projects Agency
(DOD). The Carnegie-Mellon contract Is monitored by the Air Force Avionics
Laboratory.

The views and conciusions contained In this document are thase of the authors
and shouid not be interpreted as representing the officlal policles, either expressed
- or implied, of the Defense Advanced Research Projects Agency or the US
Government.

TCOLAga

Table of Contents

1. Format of this document
2, Introduction
3. LG
3.1 Primitive data types
3.2 Composite data types
4, The Compiler Model
5.‘The Representation Model
6. Notation
7. Node types

7.1 The SOURCE attribute

Appendix Ada: TCOL for Ada

Ada-1, Introduction

Ada-2. Lexical elements

Ada-3. Declarations and Types

Ada-4, Names, Varlables and Expressions

Ada-5. Statements

Ada-6. Declarative parts, subprograms and biocks
Ada-7. Modules '

Ada-8. Visibility rules

Ada-9. Tasks

Ada=-10, Program structure and compilation issues

Ada-11, Exceptions

University Librarss .
Darnegie Melion University
Pittshurgh, Pennsyivania 15213

L9

¥

i | TCOLp4q

Ada-12. Generic program units

Ada-13. Representation specifications
Ada-=14. Input-output

Ada=-1. Predefined language attributes
Ada-2. Predefined Language Pragmas
Ada=3. Predefined Language Environment
Ada-4. Glossary

Ada-5, Syntax Summary

l. Summary of TCOL operators

Il, Summary of node types

index

TCOLAga

Table of Figures

Figure 3-1: LG example

Figure 4-1: Ada Compller as viewed in this document

Figure 4~2: Compiler decomposition with enhanced TCOL

Figure §-1: Hierarchy for names, symbols, types, etc.

Figure §-2: Hierarchy for program tree nodes

Figure 6-1: TCOL representation of a node

Figure 6~2: Notation for labels in attributes

Figure 6-3: Simplified representation of literals

Figure Ada-2-1: PRAGMA_SYM nodes

Figure Ada-2-2: Reference to PRAGMA SYM node in the tree

Figure Ada-3-1: TYPE_SYM and CONSTRAINT REP nodes

Figure Ada-3-2: SCALAR REP nodes

Figure Ada-3-3: ENUMERATION REP node

Figure Ada-3-4: Derived types and subtypes of an enumeratlon type

Figure Ada-3-65: ARRAY REP nodes

Figure Ada-3-6: Array aggregate representation in TCOLp4a

Figure Ada-3~7: Example of an aggregate in TCOLpq4,

Figure Ada-3-8: Example of a more complex aggregate in TCOLada

Figure Ada-3-9: RECORD REP nodes

Figure Ada-3~10: TCOL, 4, representation of a record aggregate

Figure Ada~3-11: ACCESS REP node

Figure Ada-4-1: NAME_NODE nodes

Figure Ada~4-2: TCOLp 4, for iIndexed component

Figure Ada-4-3: TCOLp 4, for selected component

Figure Ada-4-4: LITERAL REP nodes

Figure Ada-4-5: VARBL SYM nodes

Figure Ada-4-6: TCOL, 4, representation for an array slice access

Figure Ada-4-~7: TREE NODE in TCOLpg4a

Figure Ada-4-8: LEAF_ 'NODE In TCOLAga

Figure Ada-4-9: Logical operators: source-tr.»-‘!'l’.?OLAd‘l transformat!on

Figure Ada-4-10: Relational and membership operators:
source-to-TCOLp 44

Figure Ada-4-11: Adding operators: Source to-TCOLAda transformation

Figure Ada-4-12: Unary operators: source-to-TCOL, 4, transformation

Figure Ada-4-13: Multiplying operators: source-to-TCOLpq4a
transformation

Figure Ada-4-14: Exponentiation operator: source-to-TCOLp 4,
transformation

Figure Ada-4-185: Use of a qualified expression

Figure Ada-4-16: Qualified expression which may imply run-time type
conversion

Figure Ada=-5=-1: null statement

Figure Ada-5-2: Permissible representations for statement sequences

13
14
17
17
19
19
21
29
29

- 31

32
33
33
a5
36
a7
38
a9
40
40
43

43

44

45

45
47
a7
48
49
49

50
50
51
51

52
52

55
56

iv

TCOLpgq

Figure Ada-5-3: Flattening of ":" operator nodes

Figure Ada-5-4: TCOLAd,:l tree for gotolabel and exitlabel operators

Figure Ada-5-5: LABEL_SYM nodes

Figure Ada-5-6: LABEL_SYM and goto

Figure Ada-5-7: Interactions with LABEL SYM nodes

Figure Ada-5-8: TCOL Ada tree for assigr-tment

Figure Ada-5-9: Subprogram call operator

Figure Ada-5-10: Defauit parameter representation

Figure Ada-6-11: TCOLp 4, tree for return statement

Figure Ada-5-12: TCOLp4, tree for return statement for vaiue return

Figure Ada-5-13: TCOLp 4, tree for if statement

Figure Ada=-5-14: TCOLy 4, tree for elsif clauses

Figure Ada-5-15: Short-circuit boolean operators: Source-to-TCOLAda

Figure Ada-5-16: TCOLp 4, representation of short-circuit boolean
operators

Figure Ada-5-17: TCOLp4q tree for case statement

Figure Ada-5-18: TCOLpyg tree for loop statement

Figure Ada-5-19: TCOLp 4, tree for while statement

Figure Ada-5-20: TCOLpg4q tree for for statement

Figure Ada-5-21: TCOLAda tree for exit statment

Figure Ada~5-22: TCOL, 4, tree for goto statement

Figure Ada-5-23: TCOLp g4 tree for assert statement

Figure Ada~6-1: DECLARATION INFO node In TCOLpda

Figure Ada-6-2: SUBPROGRAM SYM node In TCOLAga

Figure Ada-6-3: TREE NODEs for subprogram bodies

Figure Ada=-6-4: TCOLy 4, for a block

Figure Ada-9-1: TASK_SYM node

Figure Ada-9-2: TCOL,,4, representation for initiate

Figure Ada-9-3: TCOL,y, tree for initiating single members of a task
family

Figure Ada-9-4: TCOLp4, tree for initiating a family of tasks

Figure Ada-9-5: TCOLAda form of accept statement

Figure Ada-9-6: TCOLp 4, representation for the delay statment

Figure Ada-9-7: TCOLAda representation for abprt statement

Figure Ada-11-1; EXCEPTION SYM node

Figure Ada-1 1-2:_TCOLAda representation for exception handler

Figure Ada-11-3: TCOL, 4, tree for raise statement '

Figure Ada-11-4: TCOL tree for raise inside exception handler

Figure Ada-12-1: GENERIC_INFO node

56
57
57
58
o9
60
60
62
63
63
64
65
68
66

67
68
68
69
69
70
70
71
71
73
74
81
81
82

83

83

83
84
87
87
88
88
91

2 TCOLpAda

Preface to the 20 June edition

Because of tight publication deadlines, primarlly the need to circulate a draft of
this specification widely by the end of June, some sections were not completed.
We expect these sections to be completed In the final draft. Many sections contain
no prose because there Is nothing in the Ada manual which applies to TCOLAda. For

completeness, these sections are left In this manual.

We solicit feedback on this edition of the document. Comments, questions, and
suggestions may be sent to:

Joseph M. Newcomer
Computer Science Department
Carnegie-Melion University
5000 Forbes Avenue
Pittsburgh, Pa. 15213

or via the ArpaNet to:

Newcomer@CMU-10A .
Later editions may be obtained by writing to the above U.S. Mall address, or by
sending a request via the ArpaNet. This document Is aiso avallable In.
machine-readable form suitable for printing on line printers, DEeriterstm. DiablotM
or.equivalent devices, and as general ASCI| text ‘for printing on other devices1. The
machine-readable source, for the ScriBe document production system, is also

avallable. Direct inquiries to the above addresses.

T1he primary difference among these devices is how underlining and overstriking are done; such features
enhance the readabilily of the output when they are available.

TCOLpda _ 3

1. Format of this document

The document Is presented in several sections. The introductory and overview
prose is In numbered chapters; chapter 2 Is the introduction to TCOL; chapter 3 is a

brief overview of the language used to express TCOL.

The bulk of the document is given with chapters and sections with the prefix
rada" and Is keyed to the Ada Reference Manual [2]. If a section number is given
with a letter suffix, e.g., "Ada-5.6.c", then that represents a finer breakdown than
given In the Ada reference manual for a particular section, e.g., section 5.8. Several
appendices summarize the information distributed throughout the manual. A

comprehensive index and a bibllography are included.

Editorial comment, annotations, explanations, and other prose not related directly to the contenmt of
the document, but which may aid the reader's understanding either of the document or the motivations
of the authors in making particular design choices is shown like this.

TCOLp4a

TCOLpgq 5

2. Introduction

This document describes TCOLp 4, an intermediate representation for programs
written In Ada. TCOLp4, Is intended to be a uniform, machine-independent
representation of Ada programs suitable for further processing by machine-
dependent compiler modules. It Is intended that the TCOlLp4, Produced by a
parser/semantic analyzer be usable by many different implementations of Ada

compilers for many different machines.

This document uses the term "intermediate representation” to denote languages
suitable for representing source programs in the innards of a compiler. TCOLpgas

one such intermediate representation for an Ada compller, is described here.

TCOL is the generic name given to a set of ltlmguage-speclfl'c TCOL Iinstantiations
such as TCOLpga» TCOlpggcalr @Nd TCOLgjigs- All of the specific TCOLs are very
similar; they differ in that each contains constructs for handling features unique to
ts language. For Instance, TCOLgyqran Would contain a construct for the DO

statement, TCOLgy¢¢ would have the ability to represent byte pointers, and so on.

TCOL was originally developed as tool for use in the Production Quality Compller
Compller (PQCC) project at Carnegie-Mellon University [3]. PQCC is investigating
techniques for automating compiler construction. A Production Quality Compiter
(PQC) produced by this technology Is expected to be as efficlant as the best

hand-built compilers.

A PQC is phase-structured; It Is composed of a linear sequence of phase_s that
each perform some task in the code generation process. Dialects of TCOL provide
communication among the various phases. Fc;r developmental purposes, It is
important that the TCOL be human readable (l.e., have an ASCIl representation). It
is also important that TCOL primarily represent the semantics of the language; this
allows the compiler to maximize the scope and magnitude of Its optimizations. TCOL
was designed so that its internal representation can be very efficlent; a production
version of a compiler would not need to write the text files unless requested to do

S0.

6 TCOLpg,

The language used to express TCOLpg4q fs called "LG", and Is described briefly in
chapter 3.

it is important to understand that TCOLAda serves two purposes: one ls to
specify the Intermediate representation of Ada programs, and the other Is to make
this intermediate representation visible to peopie and other programs. Although the
TCOL representations shown here look complex, in fact they represent exactly the
information that an equivalent internal form would possess. LG was designed to be a
readable form of the conventional internal form of such complex structures, so that
in particular one is not forced to read octal dumps to determine the source of an
error. Within a research environment, It enabled separate phases of the complier to
be built independently, because each phase would read and write TCOL text files;.In
practice, a compiler couid pass Information from phase to phase through memory,

exactly as conventional compilers do today.

The advantages of using a TCOL representation for Ada programs are numerous:

- A tree-structured intermediate representation is more suitable for
program manipulation (e.g., optimization) than most other forms. Ada Is
a language in which there are many opportunities for program
manipulation of various forms for optimization purposes.

- The ability to read and write an external form of TCOLpq4, allows for
more flexibility in designing and building compilers.

- Separate development of compiler phases is possible, and such
deveijopment can proceed on different machines; for example, a
complete parser/semantic analyzer may be developed, and Its output
could still be machine-independent, Machine~-dependent code
generators could then be produced independently, with varying
degrees of sopbhistication. A complete new system wouid not have to
be brought up for each new machine.

- [t will provide a medium of communication among the various groups
constructing Ada compllers. Implementors will speak the same
"language" when discussing how their compiters work.

TCOLAda 7

3. LG

LG Is fully described in [4]. A brief overview is given here. {n addition to the LG
notatioh, a set of tools for reading, writing, and manipulating LG files exists, and a

set of tools for managing systems which use LG has been developed.

LG is a notation for expressing, in the form of readable text, the internal data
structures for a compiler or other complex data manlpulation system. It was
designed to meet the following requirements:

- The notation should be able to represent an arbitrary directed graph
with many links, including cyctic links.

~ The notation should be able to represent information independently of
its implementation, e.g., representing a sequence of data which may be
stored as a list, a set, a vector, etc.

- The notation should be transformable to an efficient representation,
e.g. a highly packed bit representation with single bits for booleans,
small fields for small values, etc.

- The notation should permit two phases which communicate by writing
to an Intermediate file to be combined and communicate directly by
passing the data structures in memory.

- The implementation of a system which uses LG should pass Information
it does not understand |dempotently through the phase, so that
information Is not lost.
These goals were driven by the desire to produce a system which was comfortable
and friendly for developing a system as a research system, and yet suitable for
building a true production version of the same system without requiring a complete

recading.

We will first give an example in LG, and then explain the details of the notation.

8 TCOLAga

17: OBJECT
(NAME BALL)
(COLOR YELLOW)

231 ACTOR
(NAME JACK)
(AGE 6)

31: RELATION
(NAME PLAYS-WI TH)
(WHAT 23:)
(TOKHAT 17:)

Figure 3-1: LG example

This example was chosen because it has nothing whatever to do with compiiers.
it Is therefore possible to concentrate on what the notation says without worrying

about what we must say td describe a compller data structure.

This shows that there exist things called OBJECTs that have names and colors,
ACTORs that have names and ages, and RELATIONs for connecting actors to objects
(or possibly objects to actors), which have names and directed arcsr WHAT and
TOWHAT. Attribute names such as "NAME", "AGE", "WHAT", and "TOWHAT" are not
interpreted by the LG support systém -- any other identifiers could have been used
equally well. Moreover, the NAME fields In the three types of nodes, OBJECTs,
ACTORs, and RELATIONs, are not necessarily related to each other, or confused or
connected with each other in any way by the LG system. Thus LG could be the
external representation of a conventional record structure, as provided by

ldanguages lkke PASCAL.

3.1 Primitive data types

The primitive types for the attribute values are:

integer represented externally by a string of digits, or by a symbolic
name;

TCOLAda ¢

label represented by an octal number followed by a colon {forward
references are handled correctly).

identifier represented by a string of letters, digits, and even some
punctuation marks;

‘string quoted strings of arbitrary characters;

sequence sequences of values (separated by blanks) of any of the
above types, possibly with various types intermixed.

_Values of the /dentifier type are represented internally by unique Integers

generated by the LG system; two of them can be tested for equality, but no other

meaningful operations can be performed.

An LG support package provides the software necessary to work with these
representations in a program. It contains:

- A definition-file generator, which takes a specification of the node
types, attribute names, and allowable value types and values, and
produces definition files used by the source program. These files
provide the necessary access to the fields, to the node information,

and to the representation. They additionally define the tables required
by the Input/output support.

- Input/output runtime support, which reads and writes LG flles.

- Runtime utility support, which provides procedures for set and fiist
manipulation, storage management, creation and deletion of nodes and
complex values, and error handiing.

Attributes of type integer and identifier trequently appear similar In the external
representation. This is because of the. facility for defining symbolic names for
integer attribute values. Consider, for Instance: the attribute COLOR, of "object"
things. The user can specify that the only legitimate colors have symbolic names
BLUE, RED, YELLOW, and GREEN, and can further specify which integers these fdur
names represent. [, alternatively, the COLOR attribute had type /dentifier, then
any name would be a legitimate color; two colors could be tested for equality, but no

other operations (such as typical integer operations) would be meaningful.

10 TCOLpda

Attribute names and symbolic names, like Identifiers, need only conform to the
very permissive LG syntax for Identifiers. Since most languages (BLISS In
particular) have more restricted identifier syntax, the LG facility for defining them
allows them to be assoclated with "internal” identifiers, which are expected to obey

the rules of the host language.

3.2 Composite data types
The internal representation of a sequence Is defined by the user; thus, the
sequence

(SUBNODES 17: 44: 76: 122: 51)

may be stored as

an array: the order is preserved, and the /t" element of the array is the
-1t value in the sequence;

a set: the order Is not preserved, and duplicate entries are omitted.
Insertion and retrieval are efficient;

a list: the order is preserved, and insertions and deletions are
efficient while indexing is not (lists are doubly linked).

(All of these representations are fully supported by the LG software.)

In addition, atomic types or arrays may contain values of type /tem. An ftem has
a value which can be any of the atomic types or composite types, and has a
type-tag indicating which type the value possesses. For example, the following

sequence could be stored only In an item-array, set, or list:

(THING-SEQUENCE "string” 17: 45 any-id)

Similarly, the following two nodes would require that the VALUE field be of type item,

and the type of the item would be determined at run time by examining a tag field.

171 SOMENODDE
(VALUE 44:)

23: SOMENOCE
(VALUE 5)

TCOLAda 11

In this example, the type tag associated with the VALUE fieid of node 17: wouid
indicate that the type of the VALUE field is /abel, and the type tag of the VALUE field
of node 23: would indicate that the type of the value field was /nteger. As with
"union mode" or "variant record” features in many languages, this feature defeats

some of the type checking that normally is done.

12

TCOLpga

4, The Compiler Model

TCOL is a family of languages suitable for expressing the Intermediate
representation of programming languages during the compllation process. There are
major variants of this family, e.g., TCOLBLISS which represents programs In BLISS,
and TCOLp 44 Which represents programs in Ada. There could also be TCOLFortran'
TCOLpggcap ©tC. It is assumed that the commonality of these languages Is greater
than their differences, so in fact there Is some “"core" which Is actually common to
all tanguages. Extensions can be done so that some level of the compilar could

actually accept TCOL for several languages.

However, even within one TCOL there are many dlalects; these represent the
additional information added by the various phases of the compilation process, or in
some cases, a "simpler" TCOL dlalect represents the binding of certain decislons

and the consequent discarding of information required to make the binding.

The compiler model, at a first approximation, is shown in figure 4-1. It consists of
a Front End, which produces TCOLAda[F /E] @ module referred to as "CWVM"2 which
binds impiementation decisions and produces TCO'—Ada[CWVM]' and a Back End
which generates code, and whose output is machine code. Within each of these

phases there can be several dialects of TCOLy4,.

This document specifies TCOLp 45 as output by the Front End, lLe., semantic
apalysis bps bgen.fppg.

It is important to reallze that this Is a mode! of a compiier for purposes of
exposition. it is not a specification for the construction of a compiter. For exampie,
a Front End may be done as a separate parsér and semantics analyzer which
communicate thréugh files written In TCOL, or as a single phase from which the .

TCOLAda[FIE] is produced.

The TCOLpg4, as specified here is suitable as input to a CWVM module. A given

2For *Compiler Writer's Virtual Machina® 11

14 TCOLpga

+ e T L T) tenmenanesewnmomd
I

| l I
...... >| CUYM |==ewe==e>| Back End

| TCOLgg | | TCOLcpvm |

------- ﬁ-----+ +-—------ﬁ------+ -+ -

A s —
1
9
Q
3
[
m
3
2.
T
i s S

Figure 4-1: Ada Compiler as viewed in this document

implementation may actually incorporate the CWVM functlons into the Front End,
using a much richer representation internally than thls’ specification requires. lIts
output would be the TCOLAda{CWVM] shown In figure 4-1. However, Iif such a
module were able to additionally produce a TCOL which satisfied the specifications
of this document, it would be suitable as an Ada Front End to any other system

which accepted the TCOL defined here as Input. Such a decomposition is shown iIn

flgure 4-2.
| I I I
| Front End 1|e=-—e=c—cem- -—— ——— >| Back End 1 |
I | TCOLpg g t | |
fmmm——— e ————— + | + +
i |
........ > TCOLpga A
|
+ - +]
: I I
TCOLpgq ====—====== >| Translation |==--
| ' I
R ettt

Figure 4-2: Compiler decomposition with enhanced TCOL

in example 4-2, a particular implementation of a Front End produces an enhanced

TCOLagq 15

TCOL for its assoclated Back End. This may simply include more pointers of various
sorts, e.g. sibling pointers in record components, ancestor pointers In TREE _NODEs,
etc., or may have other extensions which represent Information the Front End has
discovered and which, if the communication were In pure TCOLAda. the Back End
would have to discover for itself. However, the Front End aiso puts out a subset of
TCOLgg 1 which satisfies the TCOLp g, specification, and a “translation® program
exists which will t&ke TCOLpg, and add the necessary enhancements required to
achieve TCOLgg 4. Such a compiler structure satisfies the requirements of

producing and accepting TCOLy 5.

The TCOL output by the Front End expresses a program entirely in terms of
language semantics. No implementation-specific or machine-specific semantics are
in the TCOLAda[F /ET The TCOL output by the CWVM expresses a program in terms
of machine and implementation semantics as well, e.g., addition iIs no longer a single
operator, but the various sorts of addition supported by the target machine and

which are appropriate for the source language data types are all identifted.

16

TCOLpga

TCOLp 4q | 17

5. The Representation Model

The representation |s inspired by the notion of class and subclass from
SIMULA-67. However, the limits of the LG notation require that extensions to a
basic class be done by creating new "nodes" (which would be called "records" In

some languages)., The hierarchy used in this document Is shown In figure 5-1.

This shows the hierarchicai retationships among the nodes which represent
declarations. The first level, consisting only of NAME NODEs, Is the "name table" af
a compiler. The next level, those nodes which can be:referred to by a NAME_NODE,
is the “symbol table" of a compller. The LITERAL REP nodes which are referred to by
VARBL SYM nodes comprise the "iteral table®. The remaining _REP nodes
(ACCESS _REP, ARRAY REP, etc.) are extenslons to the TYPE_SYM node.

In a conventional record-orisnted language, thess could be thought of as variants in the TYPE_SYM
record. In LG, the variants are implemented as new nodes, so the discriminant on the variant is the LG
node-type, which is easily determined. : :

The hierarchy for the nodes which represent the executable program text iIs
shown in figure 5-2. LEAF NODEs are an extension of TREE NODEs, and

DECLARATION_INFO provides additional information for certain types of operators.

TREE_NODE
: _
P LEAF_NODE
t
P DECLARAT ION_INFO

Figure 5-2: Hierarchy for Program tree nodes

The exac! specification for LINKAGE_INFO nodes, and their relationship to other nodes in figure 5-1,
is not compiets,

18 TCOLp4g

NAME_NODE
|
A TYPE_STM
: l ------------ ACCHSS_REP
{ L ARRAY_REP
! S CONSTRAINTREP
{ e ENUMERATION_REP
| R RECORD_REP
! SR SCALAR_REP
-!- --------- BACBPTION_SYM
l ————————— LABEL_SYM
— PRAGMA_SYM
-!- --------- PACKAGB_SYM
LS SUBPROGRAM_SYM
e TASKLSM
R VARBL_SYM
e LITERALREP

Figure 5-1: Hierarchy for names, symbols, types, etc.

TCOLpga 19

6. Notation

This sectlon deals with how TCOL nodes will be represented in this document for
purposes of exposition. Each node will be bresented in skeleton form, which will be
a complete specification of the node. Usually, when a node appears in an exampla,

ohly a partial node will be shown.

TCOL nodes are described as In figure 6-1. TCOL does not distinguish ubper and
lower case, So frequently, for purely aesthetic reasons, some TCOL examples
contain lower case text. In addition, "non-terminal" symbols in the LG notation are
shown highlighted, as in figure 6-1. In this example, the names "label:" and

“identifier" stand for any LG label and any LG ldentifier.

label: TREE_NODE
(OP identifier)

Figure 6-1: TCOL representation of a node

To enhance readability, this document uses symbolic labels in the LG exampies.
Actual LG support requires octal integer labels, which present no problem when the

TCOL Is generated by machine.

A simpie SNOBOL program exists which will do the translation when it is required. Any program
which generates TCOL should use the octal tabels, to eliminate the need for an extra step in the
compilation process. Although the program is simple, it is slow, and it requires two passes.

An attribute value which is actually an LG label wi;l be shown prefixed with the name
- of the node it points to. When it can polint to several different types of nodes, the
types of nodes are usually given as a comment, as shown in figure 6-2. Because
expressions in TCOL can be represented by either TREE_ NODEs or LEAF NODEs, and
because statements are also represented as TREE_NODEs, the special "node type"

expr Is used as a notational convenience to Indicate a pointer to either a

TREE _NODE, or where reasonable, a LEAF_ NODE.

20 TCOLpga

fabel: TREE_NODE

(OP call)
(SUBNODES SUBPROGRAM_SYM-/abel: expr-label-sequence)

label: TYPE_SYM
(NAME NAME_NODE-/abel:)

(REP label:) {To ARRAY_REP,
! RECORD_REP,
LENUMERATI ON_REP,
l LN N] et c. ' .

Figure 6-2: Notation for labels Iﬁ attributes

It is frequently inappropriate or unwieldy to give complete examples, so several

forms of ellipses are used:

- in examples of Ada code, comments are frequently used to indicate
& ndeclarations® or "statements® where the exact contents are
irrelevant.

- In examples of Ada code, where specific expressions or statements
are to be shown in their relation to the TCOL tree, arbitrary groups of
statements are designated by s; and arbltrary expressions by e;. The
TCOL expansion of these statements is not shown In the TCOL
representation.

whiie €0 loop s1 end loop;

labels TREE_NODE
(0P while)
(SUBNODES e0: s11)

- Attributes which are not relevant to the example are usually omitted;
for example, the SOURCE attribute which is present in every node
hardly ever appears in the examples; the NAME attribute in VARBL_SYM
nodes and some others, which Is simply a reference to the print name,
is frequently omitted.

- Within an attribute, which can consist of a sequence of LG items, a
sequence of dots indicates that several such items may precede or

TCOLAda

follow the item shown, e.g.

(SUBNDDES ses somethingl -co)

The comment "etc.” is used frequently In node descriptions to
Indicated that some attributes are not shown.

- When a reference is made to an expression which has a numeric value,
and that value is a literal, a label with the literal name is given, but no
~ turther description is given, as shown in figure 6-3.

sometree! TREE_NODE
(OP +)
(SUBNODES ,,, onet ,,,)

wiil imply the expansion of "one:" which is:
onet LEAF_NODE

(OP leaf)

(SUBNODES 11t=11)

lit-11 VARBL_SYM
(CONSTANT COMPILE)
(INITIALIZE litval-11)

litval-1: LI TERAL_REP
(VALUE 1)

Figure 6-3: Simplified representation of literais

21

22

TCOLpga

7. Node types

ACCESS REP
ARRAY REP
CONSTRAINT REP

DECLARATION INFO

ENUMERATION REP
EXCEPTION_SYM
GENERIC_INFO
LABEL_SYM

LEAF_NODE

" LINKAGE_INFO
LITERAL REP
NAME_NODE

PACKAGE_SYM
PRAGMA_SYM
RECORD REP

SCALAR REP
SUBPROGRAM SYM

TASK SYM

TREE_NODE

TCOLpgq 23

Describes the properties of an access type variabla.
Describes the properties of an array.
Describes the constraints of a type, subtype, or derived typa.

Describes the declarations to be processed for a subprogram,
moduie, block, etc.

Describes the properties of an enumeration type.
Describes an exception, either predefined or user-defined.
Links together the Instances of a generic subprogram.
Describes the properties of a program <{label>>.

A leaf node in the program tree, e.g., nodes represanting
variables or constants.

A node which contains the detalls of the parameter passing.
mechanism for a subprogram.

A node which holds the value of a literal. LITERAL REP nodes
may be pointed at only by VARBL_SYM nodes.

Holds the source language name; elther an Identifier or a
literal.

Describes the properties of a package.
Describes a language pragma.
Describes the properties of a record.

Describes the properties of scalar types for fixed, float,
integer and boolean types. :

Describes the properties of a procedure, value-returning
procedure, function, or entry.

Describes the properties of a task.

A interior node in the "program tree", e.g., an operator node In
an arithmetic expression. '

24 TCOLAda

TYPE_SYM Describes the properties of a type, derived type or subtype

VARBL_SYM Describes the properties of a varlable, constant, formal
parameter, or record component.

7.1 The SOURCE attribute

All TCOL nodes possess a SOURCE attribute. The SOURCE attribute is a string
which, when given to a suitable program for the machine and operating system, will
locate the source character from which the node was created (in the case of
SYMBOL nodes, for example, this would be the first character of the lexeme In a

declaration).

For example, on TOPS-10, & suitable string for a seguence-numbered file would be
“EILE.EXT;iine/page{char}", e.q., *MYPROG.ADA;CO100/5{47}"; without segquence numbers, ihe "line”
part would be the count of lines within the page, e.g., *MYPROG.ADA;1/5(47}".

This Information is used to report error conditions during other phases of the
compiler. In addition, this information may be used by the code generator and
passed to a debugging environment so that errors, debug printout, etc. may be
related back to the source program. If clever encodings are appropriate for
representing this Information, these decisions belong elsewhere than the Front End;
the Front End should deliver a straightforward representation of the focation in a

form which Is easily human-readable.

The exact form of the SOURCE attribute in the tree is Implementation-dependent,
but must be powerful enough to allow access to the source file In the environment
of the system. This means that the rapresentation must be appropriately chosen for

the system.

-

Appendix Ada: TCOL for Ada

26

TCOLpga

Ada-1. introduction

Ada-1.1 Design Goals
Ada-1.2 Language Summary
Ada=-1,3 Sources

Ada-1.4 Syntax Notation

TCOlLaga

28

TCOLpgda

TCOLAd a 29

Ada-2. Lexical elements

Ada-2.1 Character set
Ada=-2.2 Lexical Units and Spacing Conventions

Ada-2.3 ldentifiers
Identifiers are represented by NAME NODEs; see section Ada-4.1.
Ada-2.4 Numbers

Numbers are represented by VARBL SYM nodes which in turn refer to LITERAL REP

nades.

The sxact reptesentation for real values is discussed in section Ada-3.5.5.
Ada-2.5 Character Strings
Ada-2.6 Comments

Ada-2.T Pragmas

A language pragma Is described by a PRAGMA_SYM node.

label: PRAGMA_SYM
({NAME NAME_NODE=-/abel:)
(ARGS label-sequence)

Figure Ada-2-1: PRAGMA SYM nodes

-

The esxact specification of ARGS sequence has ;|ot yet been decided.

In cases where a pragma must be referred to in the program tree, it is referred

to by a "pragma" operator in the tree, as shown In figure Ada-2-2.

30 TCOLAGa

label: TREE_NODE

(OP pragma)
(SUBNODES PRAGMA_SYM-/abel:)

Figure Ada-2-2: Reference to PRAGMA SYM node in the tree -

Ada~2.8 Reserved words

TCOLpga 31

Ada-3. Declarations and Types

Ada-3.1 Declarations

Ada=-3.2 Object declarations
Declarations of variables is discussed in section Ada-4.3.
Ada-3.3 Type and SubType declarations

Ada is a strongly typed language; every varlable and expression has a type.
Overloaded operators, procedures and functions are dlsamblguated based on the
types of their operands or arguments. The Front End may require a richer
representation of type Information in order to handle type checking and overloading
disambiguation; what Is specified here is the representation required as input to the

remainder of the compiler.

Many different relationships may be required in a compifer, particularly for efficiently locating
related information for types. Thus, it may be desirable to have all subtypes and detived types reter
back to the roct type trom which they all have come. TCC,\I.Ma specifies the minimum acceptable
TCOL for ihe remainder of the compiler. Information which may be specific to a particular
implementation, and which can be regenerated from the TCOL, 4, given in this document, is not part of
this specification, An implementationr which claims to take TCOL, ., as input must accept! what this
document specifies. However, as shown in figwe 4-2, a particuiar implementation may, intermally,
accept a richer TCOL.

The remainder of the compiler requires access to the type Information for & number
of reasons; the representation of type information here Is sutficient for these
needs. The reaons include range and subscript checking, constraint checking,

variant records and discriminants and attribute lnquiries.

32 TCOLA(a

label: TYPE_SYM

(KIND DECLARED | SUBTYPE | DERIVED | PREDEFINED)

(NAME NAME_NODE-/abel:)

(CONSTRAINT CONSTRAINT_REP=-/abel-sequence)

(PARENT TYPE_SYM-/abel:)

(REP ’Jabel:) ACCESS_REP,
ARRAY_REP,
ENUMERATION_REP,
RECORD_REP,
SCALAR_REP
Ada-13,2
Ada-13,2

(PACKING YES | NO)
(LENGTH integer)

Sk B S Gem ped G Sem

fabel: CONSTRAINT_REP
(RANGE expr=-label: expr-label:)
(ACCURACY expr=-/abel:)

Figure Ada-3~1: TYPE_SYM and CONSTRAINT REP nodes

" The ACCURACY attribute is present only on CONSTRAINT REP nodes for variables
whose type is FIXED or FLOAT; for FIXED nodes It is the delta and for FLOAT nodes it
Is the digits.

Ada-3.4 Derived types

The TYPE_SYM node for a derived type is described In section Ada-3.3 and Is
Identical to the TYPE SYM node shown there except the KIND attribute is DERIVED.
The PARENT attribute refers to the TYPE SYM node from which this type has been

derived.

Ada-3.5 Scalar types

TCOLpga 33

label: SCALAR_REP
(VARIETY FIXED | FLOAT | INTEGER | CHARACTER | BOOLEAN)

Figure Ada-3-2: SCALAR REP nodes

The number of types in the VARIETY is implementation-dependent, and may also
include LONG REAL, SHORT_INTEGER, etc., but only If thése explicit representations
are specified in the source text, or as a consequence of a representation decisions
made In some separate compilation. Ordinarily, the Front End may only indicate the
types suggested by the source text, and the machine-dependent part of the
compiler which follows the Front End decides the exact representation suitable for a

particular machine.
Ada-3.5.1 Enumeration types

The REP éttrlbute of the TYPE_SYM node for an enumeration type points to an
ENUMERATION REP node.

fabel: ENUMERATION_REP
(LI TERALS VARBL_SYM-/abel-sequence)

Figure Ada-3-3: ENUMERATION REP node

-

The CONSTRAINT REP node of the TYPE_SYM node spéclfies the constraint on the
enumeration, in terms of the 'ORD attribute, and thus must be in the range from 1 to
the size of the enumeration, independent of any special representation given for the
type. Thus, the constraints of the root node of an enumeration type E are
E'ORD(E’FIRST) and E’ORD(E'LAST). A subtype or derived type of the enumeration
type will have its constraints specified in terms of the 'ORD attribute of the root

type, as shown in tigure Ada-3-4.

34 TCOLpyq

type COINS is (CENT, NICKEL, DIME, QUARTER, HALF);
~= TCOLp 4, constraints would be 1..5
type SILVER is new COINS range DIME..HALF;
== TCOLp4q CONstraints would be 3..5
subtype METER_SILVER is SILVER range DIME..QUARTER;
== TCOLp 44 CONstraints would be 3..4
for COINS use (CENT => 1, NICKEL => 5, DIME => 10,
QUARTER =) 25, HALF => 50);
-~ this declaration wouid not change the constraints

Figure Ada=-3-4: Derived types and subtypes of an enumeration type

Ada-3.5.2 Character types

A character type Is represented by a TYPE_SYM node which specifies the
constraints, and whose REP attribute points to a SCALAR_REP node whose VARIETY is
CHARACTER.

Ada~3.5.3 Boolean type

A Boolean type is represented by a TYPE S5YM node which speciflés the
constraints, and whose REP attribute points to a SCALAR REP node whose VARIETY is
BOOLEAN. ‘

Ada-3.5.4 Integer type

An Integer type is represented by a TYPE_ SYM node which specifies the -
'constralnts, and whose REP attribute points to a SCALAR REP node whose VARIETY Is
INTEGER. No commitment to a representation, such as LONG INTEGER or
SHORT INTEGER is made by the Front End. :

Ada-3.5.5 Real types

A real type is represented by a TYPE_SYM node which specifies the constraints
and whose REP attribute points to a SCALAR REP node whose VARIETY is FIXED or

TCOLpya 35

FLOAT. No commitment to a particular representation, e.g., LONG FLOAT or
SHORT _FIXED, is made by the Front End.

A fiteral whose type Is one of the real types is represented by a VARBL_SYM node
whose NAME attribute refers to a NAME NODE whose NAME attribute is the string the
 user typed In the source program. Thus, "5.0", "5", "5.000" etc. ali have separate
NAME NODEs. Once a representation is chosen, many of these literals may be pooled
because they will actually have the same representation. However, this is a

decision which is bound after the Front End processing.

The reason this is done is so the parser and Front End may remamn machine-independent, and in
particulat hot be required to do conversions of real types to some particular representation.

The intent is that later phases of the compiler which have knowledge aboul the target machine
representation may generate the internal value by scanning the sitring in the VARBL SYM node. To
have done the string-to-real (the *VAL attribute in Ada) and then done a real-to-string (the 'REP
attribute in Ada)} in the arithmetic supported on the machine on which the parser runs could introduce
numeric errors which are unacceplable.

An alternative representation suitable for Ada programs is to represent the value as an expression in
terms of tha VAL attribute, whera the operand of WAL is the source string representation. See
saction Ada-4.8; this section explains why a static axpression may hot require actual svaluation of the
operands, which Justifies the deferring of evaluation of static expressions involving real literals to a
phase after the semantic analyzer.

Ada-3.6 Array types . .

The REP attribute of a TYPE SYM node for an array type points to an ARRAY REP

node.

label: ARRAY_REP _
(COMPONENT TYPE_SYM-/abel:)

Figure Ada-3-5: ARRAY REP nodes

In the TYPE_SYM node for an array type, the CONSTRAINT REP attribute points to
- a sequence of TYPE SYM nodes which specify the constraints on the Indices of the
array. The REP attribute points to the ARRAY REP node.

36 TCOLpga

If the array is a subtype or derived type of an array type, the REP attribute is
not specified and the PARENT attribute refers to the TYPE SYM node of which this

array is a subtype or derived type.

For a particular implementation, it may be desirable 1o define the REP attribute for subtypes of the
array type to point {o the same ARRAY_REF nods as the root type; this, howaever, is an implementation
decision for a particular compiler, TCOLAda requires that the REP attribute of a subtyps or derived
type of an array be unspecified.

For arrays which are subtypes or derived types of some other array type, a
complete CONSTRAINT REP list must be specified, even if some or all of the

constraints on the indices are the same as the parent type.

Since the TCOL reprasentation of an Ada program is a graph, the CONSTRAINT attribute of a subtype
may point to the same CONSTRAINT_REP nodes as the parent type when the constraints are identical.

Ada-3.6.1 Index ranges of arrays
Ada-3.6.2 Aggregates
An aggregate is represented by a TREE_ NODE whose operator is "aggregate" and

whose subnodes are TREE NODEs whose operator is "agg-choice”, as shown in
figure Ada-3-6. |

fabel: = TREE_NODE

(DP aggregate)
(SUBNODES TREE_NODE=-/abel-sequence)

label: TREE_NODE

(OP agg-choice)
(SUBNDDES TREE_NODE-/abel-sequence TREE_NODE-/abel)

}! to TREE_NODEs for simple-expressions
! TYPE_SYM nodes for ranges
| or TREE_NODE whose operator Is "others”

Figure Ada-3-6: Array aggregate representation in TCOLp 4,

In the agg-choice operator nodes, the last subnode is the value to be assigned,

TCOLpga a7

and the first sequence of subnodes are the indices for which that value is to be
assigned. In the case where explicit choices wére not present in the source
language, an explicit choice must be supplied by the Front End. See figures
Ada-3-7 and Ada-3-8.

B : TABLE := (5, 4, 8, 1, others => 20);
-- from Ada Reference Manual p. 3-11

agg! TREE_NODE
(OP aggregate)
(SUBNODES first: secondt thirdt fourth! resti)

first: TREE_NODE
(CP agg-choice)
(SUBNODES onet fivet) 11=>5

second: TREE_NODE
(0P agg-choice)
(SUBNODES two: fours) 1 2=> 4

third: TREE_NODE
(0P agg-cholce)
(SUBNODES threet elghti) 13=>8

fourth: TREE_NODE
(OP agg-choice)
(SUBNODES four: onet) 1 4=>1

rest! TREE_NODE
(OP agg-choice)
(SUBNODES oth: twenty:) | others => 20

otht TREE_NODE
: (OP others)

Figure Ada-3-7: Example of an aggregate in TCOLpg4a

38

TCOLagq

C : TABLE := (5, 4, 8, 5.7 => 2, 8| 10 => 3, others =) 1);
2

agga:!

‘snlt

sn2t

sn3:

sndt

snb!

snbl

otht

- 5: 4’ 8. 1! 2:

»2,3,1,3

TREE_NODE
(OP aggregate)

(SUBNODES sni! sn2t sn3t snd:t snS: snbt)

TREE_NODE
{OP agg-chaice)
(SUBNODES one:t fivei)

TREE_NODE
{OP agg-chaice)
(SUBNODES two: four:)

TREE_NODE
(0P agg-choice)
(SUBNQODES three: eighti)

TREE_NODE |
(0P agg-cholce)
(SUBNODES f{1ve-seven! two!)

TREE_NODE
(OP agg-cholce)
(SUBNODES eight: tent threet)

TREE_NODE
(0P agg-choice)
(SUBNODES otht onet)

TREE_NODE
(OP others)

f ive-seven: TYPE_SYM

{NAME)
(KIND derived)
(PARENT TYPE_SYM/abel:)

(CONSTRAINT ¢5-71)

!

l

!
!

5.'. 7 => 2

8| 10=3

others => 1

Anonymous type

of object's
Index type

TCOLoga 39

¢5-7t CONSTRAINT_REP
(RANGE flvet seven!) 15,.7

Figure Ada=-3-8: Example of a more complex aggregate in TCOLp4a

Ada-3.6.3 Strings

Ada-3.7 Record types

The REP attribute In the TYPE SYM node for a record type points to a
RECORD_REP node.

label: RECORD_REP -
(FIELDS /abel-sequence) ! to VARBL_SYM nodes
! or TREE_NODE
! (op case) nodes

Figure Ada=-3-9: RECORD _REP nodes

Ada=-3.7.1 Constant Record Components and Dlscr_lmlnams

Ada-3.7.2 Variant parts

The variant components of a record are represented by a tree nearly ldenticail to
that produced by the case statement (see section Ada-5.5). However, the last
operand of each “when" operator, instead of being a TREE NODE, is a VARBL_SYM
node which represents the cdtﬁponent of the variant which is selected by the
discriminant. Each of these VARBL SYM nodes is a component in an anonymous
record which holds all of the components of the variant. The null component list is
specified by a TREE NODE whose operator is "null"; this Is the same representation

as used for the null statement. See Ada-5.a.

40 TCOLpg4a

A subtype or derived type of a record containing a varlant Is specified by having

a different constraint on the variable which Is the discriminant,
Ada-3.7.3 Record Aggregates and Discriminant Constraints

A record aggregate Is represented as shown In figure Ada-3-10. A TREE_NODE
with operator “record-aggregate" refers to a set of subnodes which have the
operator "rec-choice”. As In array aggregates (section Ada-3.6.2), the TCOL tree
must supply any component names which were omitted in the source because
positional notation was used. The first subnodes of the "rec-choice" operator node
are. the names of the components to be assigned to, and the last subnode is an

expression representing the value to be assigned.

tabel: TREE_NODE

(0P record-aggregate)
(SUBNODES expr-fabel-sequence)

tabel: TREE_NODE

- (OP recrchoice)
(SUBNODES expr-fabel-sequence expr=label:)

] component names, value

Figure Ada-3-10: TCOL, 4, representation of a record aggregate

Ada=-3.8 Access types

The REP attribute In the TYPE_SYM node for 'an access type points to an
ACCESS_REP node.

TCOLpda

41

fabel:

ACCESS_REP
(ACCESS-OF TYPE_SYM-label:)

Figure Ada-3-11: ACCESS REP node

a2

TCOLpg,

TCOLpg4a a3

Ada-4. Names, Variables and Expressions

Ada-4.1 Names

label: NAME_NODE

(PNAME string)

(NAMES Jabel-sequence) TYPE_SYM,
VARBL_SYM,
EXCEPTION_SYM,
LABEL_SYM,
PACKAGE_SYM,
PRAGMA_SYM,
SUBPROGRAM_SYM,

TASK_SYM

it SR mm Amm Gen e el e

Figure Ada-4-1: NAME NODE nodes

Several NAME NODEs may have the same print string, lLe., it 1s not required that

there be one and only one NAME_NODE for each unique character string.

A NAME NODE exists for literal values also; the "name" is the source string
written in the user program. This is particularly important for the representation of
real literals If cross-compilation or machine-independent parsing Is important; the
parser either should not or cannot determine the exact representation of a real

literal.

Ada~-4.1.1 Index components .

fabel: TREE_NODE

(OP index)
(SUBNDDES expr-/abel: expr=-label-sequence)

Figure Ada-4-2: TCOLpg4q for indexed component

a4 TCOLpda

The first subnode evaluates to the name of an Indexed entity. The remaining
subnodes evaluate to the indices. For a simple variable, the first subnode would
refer to a VARBL_SYM node; for more complex names, such as an indexed component
of a record (an array component of a record), a general TCOL expression would be

referred to by the first subnode.
Ada-4.1.2 Seiected components

Selected components which are

- An entity declared In the visible part of a module
- An entity declared In an enclosing unit

- A user-defined attribute of a type

have already been identified by the Front End, and references to the selection have
already been resolved to point to the correct entities. The purpose of selecting
these entities Is to provide a syntactic and/or semantic specification of which
entity, of a possibly ambiguous set of entities, Is desired.
For example, as shown in [2] page 4-2, the selecled component "DEVICE.READ" would already
refer to the entry node for the task DEVICE. The name in the NAME_NODE is "READ".

Thus, "selection” in TCOLp 4, refers only to selection of record components.

label: TREE_NODE

(OP component-select)
(SUBNODES expr=label: VARBL_SYM-/abel:)

Figure Ada-4-3: TCOL,4, for selected component

The first subnode evaluates to the name of a record. The second subnode refers

to a VARBL_SYM node which names the field in the record.

Ada=4.1.3 Predefined attributes

TCOLpga as

A predefined attribute generates a unique operator for each attribute. The

complete list of operators for TCOLp g4, Is given in section Ada-A.
Ada~-4.2 Literals

See the discussion of literals In section Ada-3.5, paftlcularly for real literais in

section Ada-3.5.5.

label: LI TERAL_REP
CVYALUE LG-literal)

Figure Ada-4-4: LITERAL REP nodes

A LITERAL REP node is referred to only by the INITIALIZE attribute of a VARBL_SYM
node (see section Ada-4.3). The VALUE of a LITERAL REP node holds an LG style
literal. The interpretation of this literal depends upon the type of the VARBL SYM
-node which refers to it.

The only meaningful LG literals which weould appear in the VALUE attribute of a LITERAL_REP node
are integers and strings. LG does not support "real™ {i.e., fixed point or floating point) literats. As
discussed in section Ada-3.5.5, such literals must be represented as the source texi characters which
specified the literal in the program. At some poimt in the compiler bayond the Front End, the compiler

may determine the correct bit patiern for a real literal and represent it as a LITERAL_REP node whose
value is the bil paltern (expressed, for example, as an unsigned octat humber),

it may also be necessary to express integer values as strings, if the machine on which the compiler
runs canhol express integers with the same range as the target machine.

Note that this does not affect the determinaticn of a value as a static expression, since an
expression does not have 1o be evaluated in order to determine if it is static.

Ada-4.3 Variables

Ada-4.3.a Named variables

48 TCOLpgq

label: VARBL_SYM
(NAME NAME_NDDE-/abel:)
(TYPE TYPE_SYM-label:)
(CONSTANT ND | UNKNOWN | COMPILE | LINK | EXECUTION)
(BINDING [N | OUT | INOUT) | see text
(LOCATION expr=label:)
(LENGTH expr-label:)
(AL1GNMENT expr-/abel)
(INITIALI ZE expr-label:)

Figure Ada-4-6: VARBL SYM nodes

The BINDING attribute is present only for VARéL_SYM nodes which represent

formal parameters.

The LOCATION specification applies to either variables or record components, and
is present only if an explicit representation or address has been specified {(Ada
reference chapter 13). For a record; It specifie; the bit offset at which the
component starts, relative to the start of the record; for variables, it specifies the

absolute bit address of the start of the variable.

The Front End must convert the expression in terms of storage units to an expression in terms of
bits. This is a symbolic transfoermation, since the Front End cannot know how many bits comprise a
storage unit.

The LENGTH and ALIGNMENT specifications apply only to VARBL SYM nodes

representing record components, and are expressed as bit lengths and bit

alighments. See section 13.4 in the Ada Reference Manual.

A literal in the source'language is always represented by a VARBL SYM node
whose NAME attribute refers to a NAME NODE which contains the source language
string and whose CONSTANT attribute is COMPILE. The INITIALIZE attribute refers to
a LITERAL REP node which holds the value of the literal.

Ada-4.3.b Slices

A slice Is represented in TCOL as shown in figure Ada-4-8. The first subnode

TCOLpga 47

refers to an expression which evaluates to the name of an array, subarray, or
access object whose value designates an array. The range is represented by the
second subnode, which refers to an anonymous TYPE node which is a derived type

61‘ the Index type of the array, and whose constraints specify the slice.

fabel: TREE_NODE
(OF slice)
(SUBNODES expr=/abel: TYPE_SYM-/abel:) .

Figure Ada-4-6: TCOLpy4q representation for an array slice access

Ada-4.4 Expressions

Ada-4.5 Operators and Expression Evaluation

Jabel: TREE_NODE
(DP identitier)
(DEFN labe!:)
(SUBNDDES expr-/abel-sequence)

Figure Ada-4-7: TREE_NODE in TCOLq4q

‘"The OP attribute contains an LG identifier whicl; indicates the operation.

The DEFN attribute piﬁints to a TYPE_SYM node for predefined types, or arrays or

records, or points to a SUBPROGRAM_SYM node for the function which Implements the

operatar. This attribute applies only to unary or binary operators as defined in

Ada-4, and assignment of predefined types, arrays or records,

The DEFN attribute for predefined scalar types points to a TYPE_SYM node, whose REP field points
1o a SCALAR node. The information may be extractad by walking this chain of pointers and stored in

some impiementation-specific field in the TREE_NODE. However, this exiension is not required by
TCOL 44,
Ada

48 TCOLAda

This attribute also permits a user to define a type-specific assignment operator If it were
permissible in the source language.)

TCOL can have two representations for a unary or binary operator: it can represent them as either
function calls of 1 or 2 argquments or as operator nodes in the tree for each operator. In the particular
case of predefined types and types which are subtypes or derived types of the predefined types, it is
desirable 1o represent the unary and binary operators as operator nodes in the iree, for purposas of
various optimization techniques, e.9., expression reordering, applying associativity, commutativity, or
ynary co'mplement optimizalions, etic,

It is unclear from the semantics ot Ada it an overloaded operator such as "4+" is expected 1o
preserve these properties, i.e., is "+* associalive, commutative, etc; do axioms such as
“(A-B) => -(B-A)" hold? 1 is alse unclear whether or not this is also true of user-defined types
which are not defined in terms of the predefined types, e.9., arrays, records, etc.

The DEFN atiribute allows us to represent operators, even those defined by explicit overloading, as
unary or binary tree operators, which greatly simplifies the task of optimization. To actually generate
the code for such operators, the DEFN atiribute makes the operator definition available.

A code generator may look at the DEFN attribute, or may require that any unary or binary cperator
dofined by a user-declared procedure be transformed info a procedure call node before code generation
begins. Such a decision is an implementation strategy in the Back £nd of the compiler and is made for a
particular implementation. Such a transformation is essentially a simple tree transformation.

In this specification of TCOLp 4, if the operator token for an operation as defined in
this section appears in the tree, e.g., "and", "or", "+" "rn un atc,, then its
conventional arithmetic properties of associativity, distributivity, commutativity, etc.
are assumed to be preserved. In the case where semantic analysis wishes to
prohibit optimizations which rely on these properties, It must represent the

operations as function calls.

in addition to all of the standard operators described in sections Ada-4.5.1
through Ada-4.5.6, there is a special operator, "paren", which Is used to indicate
associativity across parenthesized expressions is not valid. In any case where thé
semantic analyzer wishes to block the use of associativity axioms by an optimizing
compiler, it can Insert this operator in the tree. This allows other properties of the
operator node, such as commutativity, to be retained., If the aésoc!atlvlty could only
be prévented by using the procedure-call representation, other, permissibie,

optimizations might be also prohibited.

TCOLpga , ag

label: LEAF_NODE

(0P leaf)
(SUBNODES VARBL=-/abel:)

Figure Ada-4-8: LEAF_NODE in TCOLp4a

A LEAF NODE is a particular extension to a TREE NODE, and Is present because In
most impfementations, the phases in the compiler which follow the Front End wish to
place different kinds of information in a LEAF_ NODE than in a TREE NODE. Two
attributes which are common to both LEAF NODEs and TREE NODEs are the OP and
SUBNODES attributes; the OP attribute for a LEAF NODE always has the operator

"leaf”.

Ada-4.6.1 Logical Operators

Source IE€0LAg,
and and

or or

xor _ xaor

Figure Ada-4-9: Logical operators: 50urce-to-TCOLAda‘ transformation

in addition, there are two other boolean operators, cand and cor, representing

respectively and-then and or-else, which are described In section Ada-5.4.1.

These are currently resiricted to the conditional part of an i statement, for no discernable reason.
In TCOL, they are valid binary operators on boolean operands,

Ada-4.,5.2 Relational and membership operators

50 TCOLpg4a

Source IC0LAda
< <

> >

<= <=

>= >=

/= /=

in in

not in not=in

Figure Ada-4-10: Relational and membership operators: source=-to-TCOLp4a

Ada-4.5.3 Adding operators

Source ICOLAda
+ +
& s

Figure Ada-4-11: Adding operators: Source-to-TCOLp 4, transformation

Ada-4.5.4 Unary operators

Source ICOLAda
+ U+
not nat

Figure Ada-4-12: Unary operators: source-to-TCOLp 44 transformation

Unary plus Is represented in TCOLp 4, by a unique operator, "U+"., The token "+"

TCOLpgq 51

as a TCOL operator Is permitted to represent only the binary addition operator.

Since the identity operator conveys no information, it may be omitted entirely by the semantics
phase and not appear in TCOL , ..

Unary minus is represented in TCOLp 44 by a unique operator, "y-*, The TCOL token

s.% s permitted to represent only the binary subtraction operator.

The not operator is defined for boolean scalar operands and boolean-array

operands; the DEFN attribute will describe which one this represents.

Ada~-4.,5.5 Muiltiplying operators

sSource ICOLAda
* *

/ /

mod mod

Figure Ada-4-13: Multiplying operators: source-to-TCOL,p 4, transformation

Ada-4.5.6 Exponentiation operator

Source IC0LAda
xi

Figure Ada-4-14: Exponentiation operator: source-to-TCOLAda transformation

Ada=~4.,6 Qualified expressions

Qualified expressions serve several purposes. Some of those purposes are

purely an Interaction at the semantic level, e.g., to disambiguate potentiaily

ambiguous expressions or literals.

52 TCOLpga

In those cases where a qualification carries no semantic Information, the

qualification may be dropped by the semantic analyzer. An example of such a
situation Iis shown In figure Ada-4-185.

type color is (UV VIOLET BLUE GREEN YELLOW ORANGE RED IR BLACK);
type STOPLIGHT is (RED YELLOW GREEN);

-- without qualification, the foillowing is ambiguous
PRINT(STOPLIGHT(RED));

Figure Ada-4-15: Use of a qualifled expresslon

Since, at the output of the semantic analyzer, the literal AED would be uniguely identitied, the
gualification on the expression would be redundant, and could be etiminated,

However, in flgure Ada-4-16, the qualification is important, and must not be
removed by the Front End. Since no representation decision has been bound by the
Front End (excluding explicit- user specifications or specifications forced by
separately compiled program units), a conversion from the representation of the

subtype to the type of the parent type may be necessary.

type X Is new integer range 1..65535;
subtype Y is X range 1..7;

A B:X;
c.D:Y;
-- statements
A := X(C) + X(D);

Figure Ada-4-16: Qualified expression which may Imply run-time type conversion

Ada-4,6.1 Explicit type or Subtype 'specification

See section Ada-4.6.

TCOLa4a 53

Ada-4.6.2 Type conversion

There is no implicit type coercion in TCOLp44; &Ny type conversions must be

explicitly represented in the TCOL tree.

Ada-4.7 Allocators

Ada-4.8 Static expressions

A static expression Is represented by a VARBL SYM node (section Ada-4.3)
whose CONSTANT attribute Is COMPILE and whose INIT_IALIZE attribute refers to a

LITERAL REP node or an expression whose operands are static axpresstons.

At various places, Ada requires static expressions to specily certain values. The semantic analyzer
may choose 1o evaluale expressions (*constant tolding™) to determine it they are static expressions;
however, it need not evaluate any expressions, even though they may be static expressions, if static
expressions are not required by the language (e.0., the rangs constraints on a type or subtype).

In addition, the semantic analyzer may determine if an exptession is a static exprassion without
actually performing any evaluation, simply by determining, by a recursive tree watk, that alt the
operands of the expression are themselves siatic expressions, Ultimately, such a tree walk must
reach every LEAF_NODE, which to satisfy the requirement of being a static expression must point to a
VARBL_SYM whaoss CONSTANT attribute is COMPILE and whose INITIALIZE attribute points to a
LITERAL_REP node.

54

TCOLp4a

TCOLAg, 55

Ada-5. Statements

Ada~8.a Null statement

The null statement is represented by a TREE NODE whose operator Is "null", as

shown in figure Ada-5-1.

nullt TREE_NODE
(0P null)

Figure Ada=6-1: null statement

Ada-5.b Statement sequences

A sequence of statements is represented by an n-ary tree node whose opearator
is ";" and whose subnodes are each of the statements in the sequence. f a ";*
node happens to have only a single subnode, a reference to the “;" node may be
replaced by a reference to the subnode. This transformation is permitted to any

phase of the compiler beyond the parser, including the semantics phase.

An example of the two alternate representations of a sequence are shown in
figure Ada-5-2; in this example, the operator is some n-ary operator which can refer

to a statement sequence.

topt TREE_NODE
(OP identifier)
(SUBNODES /abel: label: et)

et TREE_NODE
(oP :)
(SUBNODES s3:)

531] not shown for this example

56 TCOLpga

or, alternatively
top! TREE_NGDE

(0P identifier)
(SUBNODES /abel: label: s31)

Figure Ada-_5-2: Permissible representations for statement sequences

nFlattening” of such tree nodes Is permissible; that Is, if any subnode of a ;"
operator tree node refers to another ";" node, the reference may be replaced with

the subnodes of the node referred to, as shown in figure Ada-5-3.

stmntl TREE_NODE
P 3)
(SUBNODES s s0: ,, n)

s0¢ TREE_NODE
(OP 3)
(SUBNODES si: s2: s3:) -

may be replaced by:
- stmnt! TREE_NODE

COP 3)
(SUBNODES ,,. si: s21 s31 ,.,.)

Figure Ada-5-3: Flattening of n.» gperator nodes

Ada=-5.c Statement Labels)

The label of a statement may be used either as the destination of a goto
statement, or if the statement is a loop statement, as the operand of an exit
statement. A labelis represented in TCOL as a LABEL_SYM node; because the use

of a label in a goto and exit are different, an Ada label may generate two label

TCOLpga 57

nodes, one for the "goto" label and one for the "exit" label. In addition, the program
tree contains two operators, "gotolabel" and "exitlabel", which mark the point In the

program tree where the label appears. Their form is shown in figure Ada-5-4.

These TREE_NODESs are used by the code generalor, to determine when to emit the label in the code
stream. In addition, compilers which do flow analysis require these nodes so that the program graph
may be constructed.

fabel: TREE_NODE

(0P gotolabel)
(SUBNODES LABEL_SYM-/abel: expr-/abel:)

label: TREE_NODE

(0P exitlabel)
(SUBNODES LABEL_SYM-label: expr=label:)

Figure Ada~5-4: TCOL, 4, tree for gotolabel and exitiabel operators

A simple "gotolabel" Is shown in figure Ada-5-6, while a jabel which is both a

“gotolabel" and an "exitlabel" is shown in figure Ada-5-7.

label: LABEL_SYM
(NAME NAME_NODE-label:)
(TREE expr=-{abel:) { (OP gotolabel) or
1 (OP exitlabel)

Figure Ada-5-56: LABEL_SYM nodes

58

TCOLpda

-- statements

if A < B then goto Z end if;
-~ statements

{2 A = XYZ;

-- statements

zlbt

zname!

pgm!

test!

cond?

got

agets?

assgn!

LABEL_SYM
(NAME zname:)
(TREE agets:)

NAME_NODE
(PNAME "2™)
(NAMES ave ZIb' --o)

TREE_NODE
(OP)
(SUBNODES ,,., testt ,,, agets! ,,,)

TREE_NGDE
(0P 1f)
(SUBNODES cond: got)

! not shown, boolean condition

TREE_NODE
(OP goto)
(SUBNODES zlbt)

TREE_NODDE
(DP gotolabel)
(SUBNODES assgn:)

TREE_NODE

(OP =)
(SUBNODES .,.,.)..

Figure Ada-5-8: LABEL SYM and goto

TCOLada

goto L;
-- other statements
<<L>> loop
-~ statements
exit L when e0;
-= statements
end loop L;

Iname: NAME_NODE

elbt

glbs

pgm!

go?

gl abi

elabi

body:

(NAME "L")
(NAMES ,,, elbt gibt ,,,)

LABEL_SYM
(NAME [name:)
(TREE elab:)

LABEL_SYM
(NAME |name:)
(TREE glabi)

TREE_NODE
€oP)
(SUBNODES ,,, got ,,, glab: ,,,)

TREE_NODE
(OP goto)
(SUBNODES glbt)

TREE_NODE
(0P gotalabel)
(SUBNODES glb: elab:)

TREE_NODE
(OP exitlabel) _
(SUBNODES elbt body:)

TREE_NDDE
(0P loop)
(SUBNODES ,,, exit: ,.,)

60 TCOLpga

exits TREE_NODE
(OP exit)
(SUBNDDES e0: elbi)

Figure Ada-5-7: Interactions with LABEL_SYM nodes

Ada-56.1 Assignment statements

Jabel: TREE_NODE
(OP :=)
(SUBNODES expr-label: expr=label:)
| to destination, expression trees

Figure Ada-5-8: TCOL) 4, tree for assignment

The first subnode of the assignment operator evaluates to the location to perform
the assignment. This may be an aribtrarily complex expression which could include

array subscripting and component selection.

The semantics of an assignment in Ada is that it is always checked. The pragma to supprass the
RANGE_EAROR exception will appear in the DECLARATION_INFO node of a block, subprogram, task,
etc., and is taken as advice to the compiler to suppress the axception. Whether or nol the compiler
chooses to honor this pragma is an implementation decisions which is not in the domain of the Front
End; therefore, the Front End does nol include any explicit checking of the assignment nor does it
suppress any implicit checking of the assignment.

Ada-5.1.1 Array and Slice assighment
See section Ada-4.3.b.

Ada=5.1.2 Record assignments

Ada-5.2 Subprogram calls

TCOLpy, 61

label: TREE_NODE

(0P call)
(SUBNODES SUBPROGRAM_SYM-/abel: expr-/abel-sequence)

Figure Ada-5-9;: Subprogram call operator

Ada-5.2,1 Actual parameter associations

TCOLp 44 requires that each call provide the correct number of actual parameters
in the correct positional order. Thus, the use of "keyword" parameters, where the
parameter names are supplied explicitly, is resolved during semantic analysis, and
the actual call TREE_NODE contains the parameters in the same order as the formal

parameters of the procedure declaration, See also section Ada-5.2.2.
Ada-5.2,.2 Omission of actual parameters

When an actual parameter may be omitted because the subprogram declaration
provides a default value, a mechanism must exist so the procedure cali can provide
the correct value. As described in section Ada-5.2.1, the call must provide all of
the actuai parametars In the correct order. Furhtermore, the value of the default is
determined by elaborating the expression at the time the procedure declaration is

elaborated, so the value must be stored so subsequent procedure calls can use it.

As an optimization, the later phases of the compiler may determine that no call of the procedure
omits the parameter, so the default need not be evaluated since it is never used. Howevaer, this
decision cannot usually be made by the Front End. Because of interactions with separate compilation,
it may not be possible to determins if this optimization is possible except in some very restricted
cases.

When an actual parameter may be omitted because the subprogram declaration has
specified a default value, the DECLARATION_INFO node for the block which contains
the subprogram includes a dummy VARBL SYM node which identifies a runtime
location to hold the wvaive of the default parameter expression. The defauift
parameter exbression is elaborated when the declarations are processed, and the

result of the elaboration is stored in the location named by this dummy VARBL_SYM

62 TCOLpga

node. A call of the subprogram for which the actual parameter corresponding to this
VARBL_SYM node has been omitted will contaln, for the parameter expression, an

aexpression which refers to the VARBL_SYM node.

declare
-- other declarations
procedure DEF1(parm : in color := My_Favorlte_CoIor) is
-= procedure body
-- My_Favorite_Color is not a static expression
-- and Is & variable visible at this level
-- more declarations
begin
-- program text
DEF1;
-- program text
end;

decls: DECLARATION_INFO
' (SUBPROGRAMS defil:)
(VARBLS ... dummy: ,,,)

defl: SUBPROGRAM_SYM
(PARAMETERS ,., parmt ,..)

parm! VARBL_SYM
C(INITIALIZE dummy:)

dummy ! LEA?_NUDE
(OP leaf)
(SUBNODES d-v?)

d-vi VARBL_SYM
(INITIALIZE fav-expt)

fav-expt LEAF_NODE
(0P leaf)
(SUBNDDES my-fav:)

my-favi VARBL_SYM
(NAME ,..,) | "My_Favorite_Color”
I +.. Btc,

http://My.Favorite.Co

TCOLpgq 63

callit: TREE_NODE
(0P call)
(SUBNDDES def1: dummy:)

Figure Ada-5-10: Defauit parameter representation

Ada-~-5.2.3 Restrictions on subprogram cails

The Front End has the responsibility for checkind the TYPE_SYM consistency
between procedure actual parameters and procedure formal parameters. The
constraints, If they are represented by static expressions, may be checked by the
Front End, but this Is not required. The checking of constraints at the time of the
call Is Implicit, in the same way the checking of constraints . during asslgﬁment is

Iimpiicit; a code generator may or may not honor the RANGE_ERROR pragma.

A compiler may determine that the raising of an excoption is either always the case or never the
case at subprogram call time, and as for assignment, may choose to eliminate the code 1o test for the
exceplion and either always raise it or never raise it, as appropriate, However, this optimization
should not be made by the Front End.

Ada-6.3 RETURN statement

return

label: TREE_NODE

(OP return)
(SUBNODES SUBPROGRAM_SYM-/abel:) -

Figure Ada-5+~11: TCOLp4q tree for return statement

84 TCOLpgq

return eQ; -- axpression e0

fabel: TREE_NODE

{OP return=value)
(SUBNODES SUBPROGRAM_SYM-/abel: expr-label:)

Figure Ada-5-12: TCOLp 4, tree for return statement for value return

Restrictions on return statements are assumed to be enforced by the Front End,
in the sense that a return operator node will aiways generate code to return from
.the subprogfam. even if, for some reason, it appeared In a context in which the
language forbids this. if the procedure returns a value, the return statement is
checked by the Front End for conformity to the type restrictions of the return value;
a return-value operator that returns a result, or a return operator which does not,
are both assumed by the Back End to be valid in their context. The phaseas of the
compiler beyond the Front End assume that necessary checking has been done by

the syntax and semantic analyzers.

Ada-5.4 if statements

Jabel: TREE_NODE

(OP i)
(SUBNODES expr-/abel: expr-label: expr-label:)

. Figure Ada-5~13: TCOLpy, tree for if statement

The if statement produces a ternary node whose first subnode I1s the condition,

whose second Is the then clause and whose third Is the else clause.

The Front End treats the elsif clauses as else clauses, and transforms the If

statement to a sequence of nested If statements. Any if operator nodes generated

TCOLp4q 85

from the elsif clauses have the operator "elsif",

in general, the processing of an "alsif™ operator and an "if" operator in the back end of the compiler
will be identical; the distinction is made for those cases in which the additional knowtedge might be
used to some advantage.

if 0
then s1
elsif e2
then s3
elsif e4
then s5
else s6
end If;

if: TREE_NODE (OP if)
(SUBNODES e01 si: elfi:)

eiflt TREE_NODE (OP elsif)
(SUBNODES e2: s3t elf2:)

eif2: TREE_NODE (OP elsif)
(SUBNODES ed: sS5t s63)

Figure Ada-5-14: TCOLp4q tree for eisif clauses

If no else clause is present, a dummy TCOL node for a null statement must be
supplied by the Front End, so that every TREE_NODE with an "if* or "elsif" operator
has three subnodes; the boolean expression, the statements from the then clause

and the statements from the else clause.

Ada-5.4.1 Short-circuit conditions

The condition of an if Is one of the forms:

66 TCOLpgq

Y we

expression
exprassion and then expression

expression or else expression

the short circuit operators shown in figure Ada-5-15 are represented as shown in
figure Ada-5-16.

Source ICOLada ,
and then : cand -
or else cor

Figure Ada-5-15: Short-circuit boolean operators: Source-to-'l‘(ZOLAda

label: TREE_NODE .

(0P cand)] and then
(SUBNODES expr«/abel: expr-label:)

Jabel: TREE_NODE

(OP cor) ! or else
(SUBNODES expr~-fabel; expr-label:)

Figure Ada=-6-16: TCOLp4, representation of short-circuit boolean operators

There seems to be no good reason for the restriction of these operators to boolean conditions in If
statements. This representation demonsirates that they can easily be handled as binary operators.

Ada-5.5 Case statement

TCOLpgq 67

case 0 of
when el..e2 => 53
when ed | e5 =) s6
when others =) s7;

label: TREE_NODE (OP case)
(SUBNODES expr-label: expr-label-sequence)
! to TREE_NODE of case index expression, and
! to TREE_NODEs for each case

label:3 TREE_NODE (0P when)
(SUBNODES expr-/abel-sequence expr-label:)
! sequence refers to TREE_NODEs or
! TYPE_SYM nodes or TREE_NODE with "others”
! operator

! cholce: others -
label: TREE_NODE (OP others)

Figure Ada-5-17: TCOLpg4q tree for case statement

The semantics of a "when" operator node are that the last expression is the one

to execute if any of the preceding choice expressions matched eO.

A choice may be represented by one of the following:

- A TREE_NODE which produces a single value.

- A TYPE_SYM node which represents a range; an anonymous TYPE_SYM
node wili be created to represent each range, and will be a derived
type of the type of the case index.

- A TREE NODE whose operator is "others". This TREE_NODE has no
subnodes.

Type-checking between the case index o0 and the selectors in the when clauses is the
responsibility of the semantics phase, Optimizations, for example, constant folding to eliminate
unreachable cases, may be done by the semantics phase, but this is not required.

68 TCOLpga

Ada-5.6 Loop statements

Ada-5.8.a loop statement

loop
-= body
end loop;

label: TREE_NODE .

(OP loop)
(SUBNODES expr-/abel:)

Figure Ada-5-18: TCOLp 4, tree for loop statement

The LOOP operator implies a "loop forever® which may be terminated only by some

explicit control transfer, e.g., exit, goto. The subnode of a loop operator tree node

fs the body of the loop.

Ada=-5.8.b while statement

while
-=- condltion
loop .
== body ’
end loop;

label: TREE_NODE

(0P while)
(SUBNODES expr-fabel: expr=label:)

Figure Ada-5-19: TCOLp 4, tree for while statement

TCOLAda
The statements in the body are performed while the condition is trua.

Ada-5.6.c for statement

69

for var in [reverse] discrete_range
loop
== body
end loop

label: TREE_NODE

(OP for-up | for-down)
(SUBNODES YARBL _SYM-/abel: TYPE_SYM-fabel: expr-label;)

Figure Ada-5-20: TCOLp 4, tree for for statement

The first subnode points to a VARBL_SYM node which hdlds the value for each

iteration. The second subnode points to & TYPE_SYM node which specifies the range

of the iteration. In the case where other than a type-mark is given to specify the

range, an "anonymous type" is created to represent the range, and the subnode

refers to the TYPE_SYM node for this anonymous type. The third subnode refers to

the program tree representing the body of the loop.

Ada-5.7 oxit statements

label: TREE_NODE

(0P exit)
(SUBNODES expr-/abel: LABEL_SYM-label:)

Figure Ada-5-21: TCOLp g, tree for exit statment

If the condition is omitted in the source program, the Front End provides a

reference to a constant expression whose value Is "true".

70 ' TCOLpgq

If the exit applies to an unlabelied construct, the Front End must supply a dummy
LABEL SYM node and a TREE NODE whose operator Is "exitlabei" in the appropriate

place In the tree. See section Ada-5.c.

Ada-5.8 goto statement

fabel: = TREE_NODE

(0P goto)
(SUBNDDES - LABEL_SYM-/abe/:)

Figure Ada-5-22: TCOLp 4, tree for goto statement

If the program label created two LABEL_SYM nodes, the target LABEL SYM node
for a goto statement is the LABEL_SYM node whose TREE NODE refers to a tree node

whose operator Is "gotolabel". See Ada-G.c.

Ad-5.9 Assert statement

label: TREE_NODE

(OP assert)
{SUBNODES expr=-/abel:)

{ to TREE_NODE for condition

Figure Ada-5-23: TCOLpq4e tree for assert statement

TCOLpgq 71

Ada-6. Declarative parts, subprograms and blocks

Ada-8.1 Declarative parts

label: = DECLARATION_INFO
(SUBPROGRAMS SUBPROGRAM_SYM-/abel-sequence)
(YARBLS VARBL_SYM-/abel-sequence)
(TYPES TYPE_SYM-label-sequence) -
(EXCEPTIONS EXCEPTION_SYM-/abel-sequence)
(PRAGMAS PRAGMA_SYM-/abel-sequence)
(TASKS TASK_SYM-/abel-sequence)
(PACKAGES PACKAGE_SYM-/abel-sequence)
(ELABORATION_ORDER /abel-sequence) ! to all nodes in

! above attributes

Figure Ada-6~1; DECLARATION INFO node In TCOLpgda

The DECLARATION_INFO node specifies all of the declarations to be elaborated in
the declaration list. The attributes SUBPHOGRAM_SYMS, VARBLS, etc.' are ;Jsed to
group declarations of one kind. However, since order Is important (a VARBL SYM
node may be used In the later elaboration of a PROCEDURE or TYPE_SYM node, for
example), the ORDER attribute points to each object to be elaborated in the order In
which they must be efaborated.

t TYPE_SYM nodes must be elaborated in order to evaluate the bounds constraints. PROCEDURE
nodes must be elaborated to ascertain the value of default parameters, since the value of a default
parameter is determined at the time the procedure declaration is elaborated, not at procedure calf time.

While it is true that some declarations need not bs elaborated, (for example, declarations involving
static expressions), etimination of such nodes from the DECLARATION_INFO node or the ORDER list is
strictly an issue of attompting 1o optimize compiler performance. Such an optimization is solely related
to a particular implementation of a compiler, and is not to be performed by the Front End.

Ada-6.2 Subprogram deciaration

72 TCOLpda

label: SUBPROGRAM_SYM

(NAME NAME_NDDE-/abel:)

(BODY expr-label-sequence)

(RESULT TYPE_SYM-/abel:)

(KIND PROCEDURE | YALUE-PROCEDURE | FUNCTION
| ENTRY | TASX-BODY)

(PARAMETERS YVARBL_SYM-/abel-sequence)

(LINKAGE LINKAGE-/abel:)

¢(PRAGMAS PRAGMA_SYM-/abel-sequence)

(DECLARATIONS DECLARATION_INFO-/abel:)

(EXCEPTION expr-/abel:)

(LOCATION expr=-/abel:) o

Figure Ada-6-2: SUBPROGRAM SYM node in TCOLpga

The BODY attribute refers to only a single body for all subprograms except ENTRY
subprograms; for ENTRY subprograms, a sequence of zero or more body labels may
be given. See Ada-9.5.

LINKAGE nodes are not yst specified. They contain information about the type of linkage to be used
to call the procedurs; this capiures the information required to interface to various languages. In
addition, particutar Ada implementations may use different cailing conventions for procedures forming
the run-time system primitives.

The RESULT attribute Is present only for functions and value-returning

procedures, and Indicates the type of the result which they returh.

The LOCATION attribute is present only for subprograms for which an explicit

address specification has been supplied; see sectiorf Ada-13.5.

Ada-6.3 Formal parameters

Formal parameters are represented by VARBL_SYM nodes which are referred to by
the PARAMETERS attribute of a SUBPROGRAM SYM node (Ada-6.2). The VARBL SYM
nodes also specify the binding of the parameters; see Ada-4.3. The INITIALIZE
attribute of an in PARAMETER which has a defauit value is specified by having the
INITIALIZE attribute point to an expression which Is used to determine the value to

be passed by a call on the subprogram. This expression, because of the semantics

TCOLA g 73

of Ada', will always refer to a dummy varlable created at procedure declaration
elaboration time and which heolds the value computed at that time. The dummy
VARBL_SYM node is the the VARBLS list of the DECLARATION INFO node assoclated
with the subprogram, and /ts INITIALIZE attribute refers to the expression to be
elaborated at procedure declaration time. For an example of all of this, see section
Ada-5.2.2.

Ada~6.4 Subprogram bodies

label: TREE_NODE

{OP procedure)
(SUBNODES SUBPROGRAM_SYM-/abel: expr-fabel:)

label: TREE_NODE

(OP value-procedure)
(SUBNGDES SUBPROGRAM_SYM-label: expr=label:))

label: TREE_NODE

(0P function)
(SUBNDODES SUBPROGRAM_SYM-/abel: expr-label:)

fabel: = TREE_NODE

(0P task)
.. (SUBNDDES SUBPROGRAM_SYM-/abel: expr=fabel:)

label: TREE_NDDE

(0P package)
(SUBNODES SUBPROGRAM_SYM-label: expr=-labei:)

r

Figure Ada-6-3: TREE NODEs tfor subprogram bodies

The first subnode of a subprogram body Is the SUBPROGRAM SYM node. The
second subnode of a subprogram body is a pointer to the tree which represents the

code of the body.

The specification of accept statements and their badies is In section Ada-8.5.

74 TCOLpga

The reason for the existence of such nodes in the program tres representation is to simplify the
code generator; when such a node is encountered by the code generator, the prolog and epitog code
will be emitted (23 appropriate in the wreewalk).

Ada-8.5 Function subprograms
See Ada-6.4.

Ada~6.6 Overioading of subprograms

Ada-6.6.1 Overloading of operators

TCOLpg4a requires that the semantics phase perform disambiguation on overloaded
operators. Thus, every operator in the tree Is uniquely identifled with the particular
implementation of that operator. If the operator Is a user-defined operator, it may
be represented either as a subprogram (function) call or as a binary or unary
operator as given In section Ada-4. If it is represented as an operator node, the
DEFN attribute of the TREE NODE for that operator points to the definition of the
function. This representation permits the standard arithmetic interpretations to be
placed on all the operators, e.g., "+" Is assoclative and commutative, and obeys the
distributive law with respect to "*"; "<" is a total ordering relationship whose

complement is ">=", etc.

Because the DEFN attribute points to code which implements the operator, or to
some other definition (such as for builtin operators on Integer types), the same
token, "+", can be used to represent many types of addition for Whlch the standard

interpretations hoid.
At some fater stage in the compilation process, the TCOL cperator may be uniquely identified such

that real arithmetic, integer arithmetic, etc. all have unique TCOL operators in thal diatect of TCOL.
When, or if, this sort of transformation is done depends upon the particular compiler impiementation,

Ada-6.T Blocks
A block Is rebfesented by a TREE NODE whose operator Is "block" and whose

subnodes refer to the DECLARATION INFO node for the block and the tree which
describes the body of the block.

TCOLAga

75

fabel:

TREE_NODE

(OP block) :
(SUBNODES DECLARATI ON_INFO-/abel: expr-fabel;)

Figure Ada-6-4: TCOLp 4, for a block

76

TCOLAga

TCOLAda T7

Ada-7. Modules

The specification of modules specifies effects at syntax analysis and semantic
analysis time. The results of semantic analysis, and In particular, visibility of
variables or their representations (private declarations) are all implicit In the

TCOLp g4 tree.

Ada-=7.1 Module structure
Ada=-7.2 Module specifications

Ada~7.3 Module bodies
See Ada-6.4.

Ada-7.4 Private type declarations

78

TCOLpga

TCOLpga 79
Ada-8. Visibility rules

The scope and visibility of a name are determined by the semantic analyzer. All
cases of overlapping scope are resolved, and the TCOL representation always
refers to the correct identifier; there Is no concept of overiapping scope of

overloaded identifiers in the TCOL representation.

Ada-8.1 Scope of Declarations
Ada=8.2 Visibility of Identifiers
Ada-8.3 Restricted Program Units
a4-a-8.4 USE clauses

Ada-8.5 Renaming

Ths effects of renaming on the TCOL representation have hot yel been specitied.

Ada~8.8 Predefined Environment

80

TCOlLada

TCOLpgq 81

Ada-9. Tasks

Ada-9.1 Task declarations and task bodles

label: TASK_SYM
(NAME NAME_NODE-/abel:)
(DECLARATI ON DECLARATION_INFO-/abel:)
(BODY SUBPROGRAM_SYM-/abel:)

Figure Ada-9~1: TASK SYM node

The TASK SYM node refers to a DECLARATION INFO node which contains the
declarations for the task. The BODY attribute refers to a SUBPROGRAM_SYM node
for the task body; see section Ada-8.2.

This specification is preliminary.'
Ada-9.2 Task hierarchy

Ada-9.3 Task initiation

label: TREE_NODE

(OP initiate)
(SUBNODES expr-fabel-sequence)

-

Figure Ada-8-2: TCOLp 4, representation for initiate

The subnodes of an initiate operator node are either task designators which are a
single task name (LEAF NODEs pointing to TASK_SYM nodes) or task desfgnators
which specify one or more members of a family of tasks. For a single member, the
form is as shown in figure Ada-8-3, and for several members, the form is as shown in

figure Ada-8-4. |f the source language specifies the name of a task family, the

82 TCOLAga

TCOL tree represents the expiicit range which for a family of tasks T runs from
T'FIRST to T'LAST.

task T(1..10) is
~- task deciarations .

end T;

task body T is
-- body

end T;

initiate T(4), T(6);

inlt TREE_NODE
(OP initiate)
(SUBNODES t4t t6:)

4 TREE_NODE
(0P index)
(SUBNODES task=T fouri)
t61 TREE_NODE
(OP Index)

(SUBNODES task-T sixt)

task=T: TASK_SYM
I ..+ €tc,

Figure Ada=9-3: TCOL, 4, tree for initiating single members of a task family

Initiate T; -- T as In figure Ada-9-3

inl: TREE_NODE
(OP Initlate)
(SUBNODES all-t:)

TCOLpg4a 83.

all=-tt TREE_NODE
(0P slice)
(SUBNODES task-T: one-ten:) 1 T¢1..10) explicity

one-tent: TYPE_SYM

! a derived type of the index range of the task
! family, with the constraints 1,,10

Figure Ada-9-4: TCOLp 4, tree for initiating a family of tasks

Ada~-9.4 Normal termination of tasks

Ada-9.5 Entry declarations and Accept statements

An entry declaration generates a SUBPROGRAM SYM node (section Ada-6.2)
whose KIND is ENTRY and which contains muitiple BODY pointers; there Is one pointer

to each body of an accept statement.

fabel: TREE_NOCDE

(0P accept)
(SUBNODES SUBPROGRAM_SYM-/abel: expr=label:}

Figure Ada-9-5: TCOLAda form of accept statement

Ada-9.6 DELAY statement

label: TREE_NODE

(OP delay)
(SUBNODES expr-/abel:)

Figure Ada-9-6: TCOL, 4, representation for the delay statment

84 TCOLpga

Ada-9.7 SELECT statement

The exact representation for the select statement is not yet specified.
Ada-9.8 Task priorities

Ada-9.8 Task and Entry attributes

‘Ada-9.10 abort statements

fabei: TREE_NODE

(0P abort)
(SUBNODES expr-/abel-sequence)

! to same types of nodes as an
! Initiate statement

Figure Ada-9-7: TCOLp 4, representation for abort statement

Ada-9.11 Signals and Semaphores

TCOL Ada . 85

Ada-10. Program structure and compilation issues

"TCOLp4q does not normally specify the representation of data items except when
this is explicit in the source code. However, knowledge from previous separate
compilations, In which representation decisions have been bound, has the same
effect as an explicit representation specification, in that the remalning phases ot

the compiler are not permitted to select a new representation.

It is therefore necessary for the information about representation cholces be
macde avallable to the Front End when separate compilation Is done, so that the Frant
End may bind any representation decisions which may not be changed. This requires
a specification of what Information is required for separate complilation, and a
specification of how to generate this information from some later form of the TCOL
tree. Such a specification Is beyond the scope of this document.

Ada~-10.1 Compilation units

Ada=10.2 Subunits of compilation units
Ada=-10.3 Order of compilation
Ada=10.4 Program library

Ada=-10.,5 Elaboration of compilation units

Ada~-10.6 Program optimization

Although static expressions may be evaluated by the compller Front End, there Is

no requirement that this be done.

86

_TCOLpga 87

Ada-11. Exceptions

Ada-11.1 Exception declarations

An exception declaration creates an EXCEPTION_SYM node.

label: EXCEPTION_SYM
(NAME NAME_NODE-/abel:)

Figure Ada-11-1: EXCEPTION_SYM node

Ada-11.2 Exception handiers

An exception handler looks almost like a case statment, except that the choices

are restricted to being either exception names or others. Thus, separate operators
are used to represent the exception handler.

label: TREE_NODE

(OP excp-case)
(SUBNODES expr-label-sequence)

jabel: TREE_NDDE
(0P excp~when)
(SUBNODES EXCEPTION_SYM-/abel-sequence expr=label:)

Figure Ada=-11-2: TCOLpya representation for exception handler

The first subnode of an excp-when operator node may also be a TREE_NODE
whose operator Is "others®. If any of the exceptions named by the exception node
label sequence is the one which caused entry into the exception handier, the
statements referred to in the last subnode are executed.

88 TCOLpga

Ada-~11.3 raise statements

raise exception name;

label: TREE_NODE

(0P ralse)
(SUBNODES EXCEPTION_SYM-/abel:)

Figure Ada-11-3: TCOL, 4, tree for raise statement

A raise statement with no exception named is legal only inside an exception
handler, and It re-raises the exception which caused entry into the exception

handler. This is identified in the TCOL tree by a separate operator, "re-raise”.

declare .
-- declarations
begin -
~~- statements
exception
-=- statments
raise;
end;

label: TREE_NODE
(OP re-raise)

Figure Ada-11-4: TCOL tree for raise inside exception handier

Ada=-11.3.1 Dynamic association of handlers with exceptions

Ada~-11.4 Exceptions raised during tasking.

TCOLpgq 89

Ada-11.,5 Raising an exception in another task

This has not yet been specified.

Ada-11.6 Supressing exceptions

Exceptions are suppressed by the SUPPRESS pragma. The scope of this pragma
is the program unit in whose declarative part this pragma appears. Therefore, when
elaborating the DECLARATION_INFO part of a program unit, the pragma can be found,
and its appllcabillt)" decided (i.e., whether or not the compiler chooses to honor It).
Thus, there is no way the Front End can suppress the raise statement for a
suppressed exception; that is something only later stages of the complier can

define.

20

TCOLpg4a

TCOLpga a1

Ada-12. Generic program units

In order to facilitate certain optimizations in simple compilers, 8 QENERIC_INFO node exists to link
together all instances of generic procedure bodies. The completls specitication of the GENERIC_INFO
node is not finished.

label; GENERIC_INFO
(NAME NAME_NQODE-/abel:)
C(INSTANCES SUBPROGRAN_SYM-label-sequence)

Figure Ada=12-1: GENERIC INFO node

Ada=-12.1 Generic Ciauses

Ada=-12.2 Generic Instantiation

82

TCOLada

TCOLpga 83

Ada-13. Representation specifications

Ada-13.1 Packing Specifications

The appearance of a packing specification in the. source text will cause the
(PACKING YES) attribute value to be set. See section Ada-3.3.

Ada-13.2 Length Specifications

The appearance of a length specification in the source text will cause the
LENGTH attribute value to be set. See sectlon Ada-3.3.

Ada=-13.3 Enumeration Type Representation

The appearance of an enumeration type representation in the source text will
change the way in which the LITERALS of an ENUMERATION SYM node are assigned

values. See section Ada-3.5.1.
Ada-13.4 Record Type Representation

The presence of a record representation in the source text provides values for
the LOCATION and ALIGNMENT attributes of the VARBL SYM node for the record

components. See section Ada-4.3.
Ada-13.5 Address Specifications

The appearance of an address specification in the source text has the following

effects:

- For a varlable, this causes the LOCATION attribute of the
corresponding VARBL_SYM node to be set to the value of the location
expression, expressed in bits. See section Ada-4.3. This must be a
symbolic expression, because the Front End does not know how many
bits comprise a storage unit. A

- For the name of a subprogram, module or entry, this sets the LOCATION
fleld in the SUBPROGRAM _SYM node; see section Ada-8.2. ‘

24 TCOLpga
Ada-13.5.1 Interrupts
Ada-13.6 Change of Representations
Ada-13.7 Configuration and Machine Dependent Constants
Ada-13.8 Machine Code Insertions
Ada-13.9 Interface to Other Languages

Ada-13.10 Unsafe Type Conversions

TCOL Ada

Ada-14. Input-output

Ada-14.1 General User Level Input-Output
Ada-14.1.1 Files

Ada-14.,1.2 File Processing

. Ada-14.2 Specification of the Package INPUT OUTPUT
Ada-14.3 Text Input-Output

Ada-13.3.1 Standard Input and Output Files
Ada-14.3.2 Layout

Ada-14,3.3 input-Output of Characters and Strings
Ada=-14.3.4 Input-Output for Other Types
Ada-~14.3.5 Input-output for Numeric types
Ada~14.3.8 Input-output for Boolean

Ada-14.3.7 Input-cutput for Enumeration types
Ada-14.4 Specifications of the Package TEXT IO

Ada-14.6 Low Level Input-Output

g6

TCOLaga

TCOLpda

Ada-1. Predefined language attributes

The subnode evaluates to the name of a task.

TREE_NODE

(OP access-slze)
{SUBNODES TYPE_SYH—Iabel.')

TREE_NODE

(OP address)
(SUBNCDES expr~/abel:)

TREE_NODE

(0P bits)
(SUBNODES TYPE_SYM-/abel:)

TREE_NODE

(OP task-clock)
(SUBNODES expr-fabel:)

TREE_NODE

(0P entry=-count)
(SUBNODES SUBPROGRAM-/abel:)

Subnode refers to an entry subprogram node,

'ACCESS SIZE
label:
'ADDRESS
{abel:
BITS
label:
ICLOCK
label:
'COUNT
label:
DELTA
label:
MIGITS
label:

TREE_SYM

(OP delta)
(SUBNODES TYPE_SYM-label:)

TREE_SYM

(0P digits)
(SUBNODES TYPE_SYM-/abel:)

28

'"EXPONENT_MAX

'EXPONENT _MIN

'FIRST

" 'FIRST

'FIRST(!)

'FIRST BIT

TCOLAda

label; TREE_SYM

(0P exponent-max)
(SUBNODES TYPE_SYM-/abel:)

label: TREE_SYM

(0P exponent-min)
(SUBNODES TYPE_SYM-label:)

On scalar types.

label: =~ TREE_NODE

(OP first)
(SUBNODES TYPE_SYM-/abel:)

if the source language refers to an Instance of a type then
the Front End must supply the type of the instance as the
operand.

On arrays, see 'FIRST(/).

On arrays. If the parameter is omitted in the source text, the
TCOL tree must have an explicit parameter of 1 supplied.

label: TREE_NODE

(OP first-bound)
(SUBNDDES TYPE_SYM-/abel: expr-label D

If the source language refers to an instance of a type then
the Front End must supply the type of the Instance as the
operand.

label: TREE_NODE

(OP first=bit)
(SUBNODES YARBL_SYM=fabel:)

where the VARBL SYM refers to a component VARBL in a
record.

"INDEX

‘LARGE

‘LAST

'LAST

LAST(I)

LAST BIT

TCOLpgq ag

label: TREE_NODE

(OP task-index)
(SUBNODES expr=~label:)

The subnode evaluates to the name of a task.

label: TREE_SYM

(OP large) .
(SUBNODES TYPE_SYM-label:)

label: TREE_NODE

(OP last)
(SUBNOBES TYPE_SYM-fabel:)

If the source language refers to an instance of a type then
the Front End must supply the type of the instance as the
operand.

On arrays, see 'LAST(/).

On arrays. If the parameter Is omitted In the source text, the
TCOL tree must have an explicit parameter of 1 supplied.

label: TREE_NODE

(OP {ast-bound)
(SUBNODES TYPE_SYM-label: expr=label:)

If the source language refers to an instance of a type then
the Front End must supply the type of the instance as the
operand.

label: TREE_NODE

(OP last-bit)
(SUBNODES VARBL_SYM=-tabel:)

where the VARBL SYM refers to a component VARBL in a
record.

100

"LENGTH

'LENGTH()

'ORD

'POSITION |

'PRED

'PRIORITY

‘RADIX

TCOLp4a

See 'LENGTH(/).

On arrays. If the parameter is omitted in the source text, the
TCOL tree must have an explicit parameter of 1 supplied.

Jabel: TREE_NOOE

(0P length)
(SUBNDDES TYPE_SYM-label: expr-label:)

If the source language refers to an instance of a type then

the Front End must supply the type of the instance as the
operand.

label: TREE_NODE

(0P ord)
(SUBNODES TYPE_SYM-/abel: expr~label:)

fabel: TREE_NODE

(OP position)
(SUBNODES VARBL_SYM-/abel:)

where the VARBL SYM refers to a component VARBL in a
record.

label: TREE_NODE

(0P pred)
(SUBNODES TYPEPSYM-Iabef : expr={fabel:)

label: TREE_NODE

(OP task-priority)
(SUBNODES expr-/abel:)

The subnode evaluates to the name of a task.

‘REP

'SIZE

FSMALL

‘SuUcce

VAL

label:

label:

TCOLpgq 101

TREE_SYHN

(OP radix)
(SUBNODES TYPE_SYM-label:)

TREE_NODE

(0P rep)
(SUBNODES TYPE_SYM-/abel: expr-fabel:)

The DEFN attribute of the TREE_NQDE refers to the function which
will return the representation.

label:

TREE_NODE
(0P size)
(SUBNODES TYPE_SYM=/abel:)

If the source language entity Is the name of an instance of a

type instead of the name of a type, then the Front End must
supply the type reference.

label:

label:

label:

TREE_SYM

(OP small)
(SUBNODES TYPE_SYM-/abel:)

TREE_NODE
(0P succ)
(SUBNODES TYPE_SYM-/abel: expr=fabel:)

TREE_NODE
(0P val)
(SUBNODES TYPE_SYM-/abel: expr~fabel:)

The DEFN attribute of the TREE_NODE refers to the function which
will return the value.

102 TCOLAgq

TCOLpga

Ada-2. Predefined Language Pragmas

104 TCOLpgq

TCOLpdq

Ada-3. Predefined Language Environment

106 TCOLpgq

TCOLpga

Ada-4. Glossary

108 TCOLAga

TCOLp 44

Ada-5. Syntax Summary

110 TCOLpga

TCOLada

I. Summary of TCOL operators

+ N ; %

abort
accept
access-size
address
agg-choice
aggregate
and

assert

bits

Ada-3.6.3
Ada-4.5.5
Ada-4.5.6
Ada-4.5.5
Ada-4.5.4
Ada-4.5.4
Ada-4.5.2
Ada-4.5.2
Ada-4.5.2
Ada-4.5.2
Ada-4.5.2
Ada-4.5.2
Ada-5.1
Ada-5.b
Ada-9.10
Ada-9.5
Ada-A
Ada-A
Ada-3.6.2
Ada-3.6.2
Ada-4.5.1
Ada-5.9

Ada-A

112

block
call
cand

case

component-select

cor
delay

delta
diglits

elsif
entry-count
excp-case
excp-when
exit
exit}abel
exponent-max
expoﬁent-min
first
first-bit
fIrst=bound
for-down
for=-up
function

goto

Ada-6.7
Ada-5.2
Ada-5.4.1
Ada-5.5
Ada-4.1.2
Ada-5.4.1
Ada-9.6
Ada-A
Ada-A
Ada-5.4
Ada-A
Ada-11.2

Ada-11.2

TCOLada

Ada-5.c, Ada-5.7

Ada-5.c
Ada-A
Ada-A
Ada-A
Ada-A
Ada-A
Ada-5.6.c
Ada-5.6.c

Ada-6.4

Ada-5.c, Ada-5.8

gotol abel
I f

in

index
initiate
large
last
last-bit
last-bound
jeaf
length
loop

mod

not
not=-in
null

or

ord
others
package
paren
position
pragma

pred

TCOL Ada

Ada-5.c
Ada-5.4
Ada-4.5.2
Ada-4.1.1, Ada-9.3
Ada-9.3
Ada-A
Ada-A
Ada-A
Ada-A
Ada-4.5
Ada-A
Ada-5.6.a
Ada-4.5.5
Ada-4.5.4
Ada-4.5.2
Ada-5.a
Ada-4.5.1
Ada-A
Ada-3.6.2, Ada-5.5
Ada-6.4
Ada;dn
Ada-A
Ada-2.7

Ada-A

113

114

proceduré
radix

ralse
re-raise
rec-choice
record~aggregate
rep

return
return-value
size

slice

small

suce

task
task-clock
task~index
task-priority
u+

u-

val
‘value-procedure
when

while

xor

Ada-86.4
Ada-A
Ada-11.3
Ada-11.3
Ada-3.7.3
Ada-3.7.3
Ada-A
Ada-5.3
Ada-5.3
Ada-A
Ada-4.3.b, Ada-9.3
Ada-A
Ada-A
Ada-6.4
Ada-A
Ada-A
Ada-A
Ada-4.5.4
Ada-4.5.4
Ada-A
Ada-6.47
Ada-5.5
Ada-5.6.b

Ada-4.5.1

TCOLada

il. Summary of node types

label:

label:

label:

label:

label:

label:

label:

label:

label:

ACCESS_REP
(ACCESS-OF TYPE_SYM-/abel:)

ARRAY_REP
(COMPONENT TYPE_SYM-/abel:)

CONSTRAINT_REP
(RANGE expr-label: expr-label:)
(ACCURACY expr=-/abel:)

DECLARATION_INFD

(SUBPROGRAMS SUBPROGRAM_SYM-/abel-sequenca)

(VARBLS VARBL_SYM-/abel-sequence)

(TYPES TYPE_SYM-/abel-sequence)

(EXCEPTIONS EXCEPTION_SYM-/abel-sequence)

(PRAGMAS PRAGMA_SYM-/abel-sequence)

(TASKS TASK_SYM-/abel-sequence)

(PACKAGES PACKAGE_SYM-/abel-sequence)

(ELABORATION_ORDER label-sequence) {1 to al] nodes In
| above attributes

ENUMERATI ON_REP
(L1 TERALS VARBL_SYM-/abel-sequence)

EXCEPTION_SYM
(NAME NAME_NODE-/abel:)

GENERIC_INFO .
(NAME NAME_NDDE-/abel:)
(INSTANCES SUBPROGRAM_SYM-/abei-sequence)

LABEL_SYM
(NAME NAME_NODE-/abel:)
(TREE expr=/abel:)

LEAF_NODE

(OP leaf)
(SUBNODES VARBL=/abel:)

115

116 TCOLpga

fabel: L1TERAL_REP
(VALUE LG-/iteral)

fabel: NAME_NODE

(PNAME string)

{NAMES /abel-sequence) TYPE_SYM,
VARBL_SYM,
EXCEPTI ON_SYM,
LABEL_SYM,
PRAGMA_SYM,
PACKAGE_SYM,
TASK_SYM,

SUBPROGRAM_SYM

Smn SoE Sup Sum Sum B e B

fabel: PACKAGE_SYM
{NAME NAME_NODE-/abel;)

The specification of the remainder of the PACKAGE_SYM node is not complets.

label: PRAGMA_SYM
(NAME NAME_NODE-/abel:)
(ARGS label-sequence)

The exact specification of the ARGS attribute is not complete,

label: RECORD_REP
(FIELDS /abel-sequence) ! to VARBL_SYM nodes
' ! or TREE_NODE
! (op case) nodes

label: SCALAR_REP
(VARIETY FIXED | FLOAT | INTEGER | CHARACTER | BOOLEAN)

label: SUBPROGRAM_SYHM

(NAME NAME_NODE-/abel:)

{BODY expr-/abel-sequence)

(RESULT TYPE_SYM-/abel:)

(KIND PROCEDURE | VALUE-PROCEDURE | FUNCTIGN
] ENTRY | TASK-BODY)

(PARAMETERS VARBL_SYM-/abel-sequence)

(LINKAGE LINKAGE-tabel:)

(PRAGMAS PRAGMA_SYM-label-sequence)

(DECLARATIONS DECLARATION_INFO-/abel:)

(EXCEPTION expr-/abel:)

(LOCATION expr={abel:)

fabel:

label:

label:

label:

TCOLag4a

TASK_SYM
(DECLARATION DECLARATION_I NFO-/abel:)
(BODY SUBPROGRAM_SYM-/abel:)

TREE_NODE

(OP identifier)

{DEFN tabet:)

(SUBNODES expr-/abel-sequence)

TYPE_SYM .

(KIND DECLARED | SUBTYPE | DERIVED | PREDEFINED)
(NAME NAME_NODE-/abel:)

(CONSTRAINT CONSTRAINT_REP-/abel-sequence)
(PARENT TYPE_SYM-/abel:)

(REP label:) ! ARRAY_REP,

! RECORD_REP,

! ENUMERATION_REP,

1 SCALAR_REP
(PACKING YES | ND) ! Ada-13,2
(LENGTH integer) ! Ada-13,2

VARBL_SYM
(NAME NAME_NODE-/abel:)
(TYPE TYPE_SYM-/abel:)

(CONSTANT ND | UNKNOWN | COMPILE | LINK | EXECUTION)

(BINDING 1IN ! QUT | INOUT) ! see text
(LOCATION expr-iabel:)

(LENGTH expr-l/abel:)
(ALIGNMENT expr=label)
(INITIALIZE expr-/abel:)

117

118

[13

(2]

(3]

[4]

TCOLpga

References

R.G.G. Cattell.

Formalization and Automatic Derivation of Code Generators.
PhD thesis, Carnegie~Mellon University, April, 1978.

J.D. Ichbiah, J.C. Heliard, 0. Roubine, J.G.P, Barnes, B. Krleg-Brueckner, B.A.
Wichmann.

Reference Manual for the Ada Programming Language.

SIGP! IN Notices 14(6):1, June, 1978.

B.W. Leverett, R.G.G. Cattell, 5.0, Hobbs, JM. Newcomer, A.H. Reiner, B.R.

Schatz, W.A, Wulf.

An Overview of the Production Quality Compiler-Compller Project.

Technical Report CMU-CS5-79-105, Carnegle-Mellon University, Computer
Science Department, February, 1970,

J.M. Newcomer, R.G.G. Cattell, P.N. Hlifinger, S.0. Hobbs, B.W. Leverett, AH.

Reiner, B.R. Schatz, W.A. Wulf.

PQCC User's Manual.

Technical Report, Carnegie-Mellon University, Computer Science
Department, May, 1879.

index

TCOLpg4a

& operator &0

‘ACCESS_SIZE 97
‘ADDRESS 97
BITS 97
'CLOCK 97
'COUNT 97
'DELTA ©7
‘DIGITS 97
‘EXPONENT MAX 97
'‘EXPONENT MIN 97
'FIRST 98
'FIRST BIT o8
"NDEX 98
'‘LARGE 98
WAST 98, 99
‘LAST BIT 99
'WENGTH 99
‘ORD 99
'POSITION 99
‘PRED 100
'PRIORITY 100
‘radix 100

'‘REP 100

'SIZE 100
ISMALL 100
‘SUCC 100
waL 101

™ gperator 51
XX pperator 51

+ operator 50
+, unary 50

- operator 50
- unary 51

/ operator 51
/= operator 49

1= operator 60
; operator 55

< operator 49
<= operater 49

= operator 49

> operator 49
>= operator 49

Abort operator 34

Accept operator 83
Access-size operator B/
ACCESS_REP node 23, 40, 115
ACCESS_SIZE attribute 97

119

120

TCOLAga

Accuracy constrait 31, 32, 115
Actual parameters 60, 81
Adding cperators 50
ADDRESS attribute 97
Address operator 97
Agg-choice operator 38
Aggregate 36

Aggregate operator 38
Afignmeni clause 83
Allocators 53

And operator 49

and then 65

Array 35

Array aggregate 36

Array Component 43

Array TYPE_SYM node 35
ARRAY_REP node 23, 35, 115
Assert opsrator 70
Assignment 60

At clause 83

Basic loop 68

BITS atiribute 97
Bits operator 97
Block operator 74
Boolean type 34

Call operator &0

Cand operator &6

case 66

Case operator &6

CLOCK attribute 97
Component-select operator 44
CONSTRAINT_REP node 23, 31, 115
Cor operator 66

COUNT atiribute 97

DECLARATION_INFO nede 23, 71, 115
Defauit parametars 861

Delay operator 83

DELTA attribute 97

Delta operator 97

DIGITS attribute 97

Digits operator 97

Division 51

Elsit operator 64, 65

Entry-count operator 97
ENUMERATION REP node 23, 33, 116
Equality 49

EXCEPTION_SYM node 23, 87, 115
Excp-case opsrator 87
Excp-when operator 87

Exit operator €9

Exitlabet operator 57
Exponent-max operator 97
Exponent-min operator 97
EXPONENT_MAX attribute 97
EXPONENT_MIN attribute 97

E xponentiation opsrator 51
Expressions, static 53

TCOLpda

FIRST attribute 98
First operator 98
First-bit operalor 98
First~-bound operator 98
FIRST_BIT attribute 98
for GO

For~-down operator 69
For-up opetator 69
Formal parameters 72
Function operator 73
Function subprogram 74

GENERIC_INFO node 23, 91, 115
Goto operator 70
Gotolabel operator 57

identifiers 29

it 64

It operator 64

in 49

In operator 49
INDEX attribute 98
index operator 43, 82
Indexed Component 43
Inequality 49

Initiate operator 81
Integer type 34
lteration specification 68

LABEL_SYM node 23, 57, 115
Labels 58

LARGE atiribute 98

Large operator S8

LAST attribute 958, 99

fast operator 98

Last-bit cperator 99
Last-bound operator 99
LAST_BIT attribute 89

Leaf operator 48, 49, 115
LEAF NODE nodge 23, 48, 115
LENGTH attribute 99

Length operator 59 .
LINKAGE_INFO node 23, 115
LITERAL_REP node 23, 45, 115
loop 68

Loop operator €8

Membership operators 49
Minus, unary. . 51

Mod operator 51

Maodule body 77
Multiplication 51
Multiplying opsrators 51

NAME_NODE node 23, 43, 118

Node ACCESS_REP 23, 40, 115

Node ARRAY_REP 23, 35, 115

Node CONSTRAINT_REP 23, 31, 115
Node DECLARATION_INFO 23, 71, 115
Node ENUMERATION_REF 23, 33, 115

121

122

TCOLAga

Node EXCEPTION_SYM 23, 87, 115
Node GENERIC_INFO 23,91, 115
Node LABEL_SYM 23, 57, 115
Node LEAF_NODE 23, 48, 115
Node LINKAGE_INFO 23, 1156
Node LITERAL REP 23, 45, 115
Node NAME_NODE 23, 43, 116
Node PACKAGE_SYM 23, 116
Node PRAGMA_SYM 23, 29, 116
Node RECORD_REP 23, 39, 116
Node SCALAR_REP 23, 32, 118
Node SUBPROGRAM_SYM 23,71, 118
Node TASK_SYM 23, 81, 116
Node TREE_NODE 23, 47, 117
Node TYPE_SYM 23, 31, 117
Node VARBL_SYM 24, 45, 117
not 51

not in 49

Not operator 50

Not-in cperator 49

null 55

Null operator 65

Numbers 29

Operator & 50
Operator * 51
Operator ** 51
Operator + 50
Operator - 50

" QOperator / 51

Operator /= 49
Operator ;= 680
Operator ; 55

Operator < 49

Operator <= 49
Operator = 49

Operator > 49

Operator >= 49
Operator abort 84
Operator accept 83
Operator access-size 97
Operator address 87
Operator agg-choice 36
Qperator aggregate 36
Operator and 49
Operator assert 70
Operator bits 857
Operator block 74
Operator call 60
Operator cand 66
Operator case B8
Operator component-select 44
Operator cor 66
Operator delay 83
Operator deita 97
Operaior digits 97
Operator elsit 64, 65
Qperator entry-coumt 97
Operator excp-case 87
Operator excp-when 87
Operator exit 69

TCOLpda

Oporator exitlabet 57
Operator exponent-max 97
Operator exponent-min 87
OCperator first 98
Operator first-bit 98
Operator first-bound 98
Operator for-down 69
Oparator for-up 69
Operator function 73
Operator goto 70
Operator gotolabel 57
Operator it 64

Operator in 49

Operator index 43, 82
Operator initiate 81
Operator large 98
Operator fast 98
Cperator last-bit 99
Operator last-bound 99
Operator leaf 48, 49, 115
Operator lengih 99
Operator loop 68
Operator mod 51
Operator not 50

Operator not-in 49
Operator null 55

Operator or 49

Operator ord 99

Operator others 37, 38, 67
Operator package 73
Operator paren 48
Cperator position 99
Operator pragma 29, 50
Opetator pred 100
COperator procedure 73
Operator radix 100
Operator raise 88
Operatot re-raise 38
Operator rec-choice 40
Operator record-agoregate 40
Operator rep 100
Operator return 63
Operator return-value 63
Operator Semicolon 55
Opetator size 100
Qperator slice 47, 82
DOperator small 100
Operator succ 10Q
Operator task 73
Operator lask-clock 97
Operator lask-index 98
Operator task-priority 100
Opecator U+ 50

Operator U- 50

Operator val 101
Dperator value-procedurs 73
Operator when 67
Operator while 68
Operator xor 49

or alss 65

Or operator 49

124

TCOLpga

ORD attribute 99

Ord operator 99

others 66

Others operator 37, 38, 67

Package operator 73
PACKAGE_SYM node 23, 116
Paren operator 48

Plus, unary 50

POSITION attributs 59
Position operator 00

Pragma operator 29, 60
Pragma SUPPRESS &89
PRAGMA_SYM node 23, 29, 118
PRED attribute 100

Prad operator 100

PRIORITY attribute 100
Procedure operator 73

Qualified expressions 51

Radix attribute 100

Radix operator 100

Raise operator 88

Re-raise operator 88
Rec-choice operator 40
Record-aggregate operator 40
RECORD_REP ncde 23, 39, 118
Relational operators 49

REP atiribute 100

Rep operator 100

retum B3

Return cperator 63
RAeturn-value operator 83
reverse 69

SCALAR_REP node 23, 32, 1168
Semicolon operator 55
Seguence of Statements 55
Short Circuil evaluation 65
SIZE attribute 100

Size operator 100

Slice assignment 60

Slice operator 47, 82

SMALL attribute 100

Small operalor 100

SOURCE attribute 24
Statement izbels 56
Statement sequence 55

Static exprassions 53
Subprogram call 61
SUBPROGRAM_SYM node 23,71, 116
Subtypes 31

SUCC attribute 100

Succ operator 100

Symbol table 43, 116

Task operator 73
Task-clock operator 97
Task-index cperaior DB
Task-priority operator 100

TCOLAga

TASK_SYM node 23, 81, 116
TREE_NODE node 23, 47, 117
Typs conversion 53
TYPE_SYM node 23, 31, 117
TYPE_SYM node, for array 35
Types 31

U+ operater 50

U- operator 50, 51
Unary + 50

Unary ~ 51

Unary operators 50

VAL attribute 101

Vatl operator 101
Vaiue-procedure operator 73
VARBL_SYM node 24, 45, 117
Variant components 39

whan 66
When operator 67
while 68
While operator &8

Xor operator 49

125

WHE _MNOOE

uxn

HrE3

SUBFPOFARN_STH UL _STH TFE ™M
NRE) HYHE - NYE
acor e XD
PEALT COHETONT COMSTRRINT
KIND B DING PORENT
PRRACTERS LOCRTIOM =P
LhaE LEMGTH
RS AL IGHENT
DEQLAPATIONS MHITIALIZE
ECEPTION
LOGATION

\v/ v/

COMPUUTER SCIENCE ENGINEERING LAB

[, [T

Symbol Teble Structlure
FIRET TCOL.Ade IViustlrotilons
J " fTFva s By e [OECED BT
Joceph M. Newcomer PecE oF
TER G FILE: TRRATHG WP TRTES
SYMTAB[C410JN11] 21-JIN-7% 01:09
[@=F {31 297 30X DX LEYAA PTITHOIGS PRSSTLURIR 1521

type R s 1..1000;

typs B s nenw A 19,,50;
subtype C s A 50..100;
Lype D (s new B 25..30;

TPE_STH VOHE_NOCE
N SN Py M A"
HIND deslared HYES
COHSTRAINT 1 COETRAINY _FEP .
" sea “ssasleatnie”
e | eocumecy ‘
ICELER_REP
i — Pliomen e]
——1 e — e "B
®HD dor \enid HES
CONSTIATHT € T P
EENT sas ‘ssuvlroinie”
REP [Laal oo
SCR_fEr
URRIETY e teger
TYPE_STH HArE_NOE
Py .——D nat "D"
¥IHD dor vuad wres
’ o)| =0 e
YT LD — 20y “sengirainie”
FEP ACORACY
TCALAR_REP
o g D imiery e |
wrE ..___..._._._......_D‘ RE "c"
1 3 (11] subiyps WTES
COHSTRA)HT coMsTRRT e
PORENT ass “asnalrsinie’
"r RCCLRRCY
" w0

COMPUTER SCIENCE ENGINEERING LAB

TITE:

Types, sublypes and der lved types

[FORETT,

TCOL.Ade Illustretione
GEGED By

[tk By, T “
Joseph M. Neucorner’ Im o
el G FILEs T 1
TYPES{ C418JN11] ' EJ—JLN-79 25:11
TIMEO RS OHIS 15t

. OH LNIVERSTTT

type W s pew Lnleger 1,.2¢7;
TYPE_S$Te HYE _1E
" e —J e w
¥IND dut tomd HTES
CONSTRRINT CHSTPAINT_FEP
~{ rererer _l—-h e
53 Aotieacy
AL BEP LEAF_WOE TREE_HXE
—'}:{up:m e-l..-j [last P .
weroes 1 aeees
v R
4 J
AP _STH HRE_HMOCE
—1 e ——Dypee
™ weEs .
CrelTEMT snmpile TYrE_STH NTE_NOOE
BILDIHG .13 3 prre *togert
LOCATICH KIND prodotinsd NTES
LEWSTH COHSTRATHT
A IREENT PRFDT SCOLAR_REP LEXF_MOCE LEW_NXE
INTTIALIZE rEP —D[umtnv """'j —3 or loat o toar
| nescres SO0
LITEPRL, _PEP ’— _l
wLLE ! I I_Dtm_sm NEME_NCCE ARREL M NEE_NODE
s l—IX perE "-c5538" 3% nere ey > V0 SR -
—,’2 -) s et TreE e
COMSTRM semptls COMHSTANT semmils
BIHOIMG sIONG
LOOAT IoM LODATION
LEHOTH LENGTH
FLIGHENT LITEPAL FEP AR IGHENTY LiTERL_mer
INTTIRLIZE —D‘ e el] INETIOL T ——D[uRLE = I

COMPUTER SCIENCE ENGINEERING LAB

i FILE:

TICE
' Conslrainlis
[Fenate T
e TCOL.Ade Illustretlons
TEsal BT [GHEDED avq
Joceph M. Nawcomer poce oF

CON"‘T! C41JN11
THAES ~€u.m"'mﬁmur]

TATE L
29— JUN-7F 23: 44
TITSEFGL PERRRTLANIR TESTT

R+ B2

LERF _HOOE TREX_HOTE
LA e 1aet o *
——{ suenrees e s
ﬂ SRl _STH HRE_NTE LERF _NTE LEPF_MODE
=3 e —Ix e "A" o Toat LI o Test
hdiad — NYES —{ SUEHICES p——a SLENDES
CONSTANY ae
anoNG HPE _H00E T _HOOE
LOCRTION Y [wee "B K Y max "2 ki
Lpo™ K e kE—{ rerss
AL JGHENT
HITIALLZE mEL_sTH s, _tm
Y 3 reee — Ly e -
—<t- e — e —
CIETENT o CONSTANT asmm il
mone BHOIHG
LecaTion LOCRTION
LENGTH LENGTH
ALIGHENT ALIGIENT
IMITIALIZE INITIALLZE
LITERX._NeP
v T P>
—<% <t
—<t
TFE_S M HE_ OO
3o e =53 merg “teger®
KTHR predetined ey
CONSTPATNT R > see ‘upastrainia’
PreENT SRR
e —D[UFRICTY tatlager [

- COMPUTER SCIENCE ENGINEERING LAB

TINE:

Express lon tree

mz Eal{an

" " TCOL.Rds Illustreltions

TR GR |

Jo &e‘_l:l)lr: M, Noaucomer - lwg;h o

’ EXF'F?! C410IN11] c21-JIN-79 a2:22
GIETTELLON GHIVERSTYY FITTSREAIOH PORCTLURHIN JB3TT

types S s arrey (1..10,1,,20) of booleen;

1 20

TYRE_ ST HRE_NOCE P
— o 1Y E ——3 e "S" T4 rewe 1 toene
KIND duetersd MIES s
CONSTRAINT |
PRRENT I TrreE_Sm ‘_Dnﬂ'_sm
R HRE HE
KIND predafined KIHD predaficed
CONSTPRINY — COMSTRAINT
FREENT PRRENT
»> »
COHETRAINT_FEP
3 e
ROORRCY
PRy _FEP TYFE_$TH
> m o N E —“-'-'—"‘-—D' et vesives’
KIHD prodsfinnd NYES
COMSTIINT
FAPENT
PP
SCALFR_FEP
o v
subtype @ ts S(1,. 19,5..17) of boolean:
rYPeE_STYH HRE_NE
[T} 5 L Diane "Q"
KIMD eeblipe HPES
d}ﬂ'ﬂﬂlNT
PRREHT l-i>rﬂE,STN NHE _NCOE
- N e PAAE Tty ”
KIND prodefland HRHES
coMsTRRINT
et

URRIETY W inger

COMSTRRINT_REP

COMPUTER _SCIENCE ENGINEERING LAB

— [

Array representiatllon

TCOL.Rde Iliuslrations

[FeOEC T
" Il I AN BT CHEOED B
Joceph M. Noucomer
[amas FILE: z
QRRF\YI CA1QIN11]
GIE- o+ UERSTTT

oF

PACE
OATEL

PITT

21-JUN-79 06: 46
RO PERETLOANIA 1E27T

dastnre

¥i tnlagat’
srecedures PITE Lo taleger) 1o
21 nltagar
hogtn
:- hady <
end?
oplin
et vedr <F
avanpliee
r———-——-—» == avespliss hewdise
»ed
TREL_NIOE
-4 Sleek
SUBHCES '
l_Dt(Cl FRRTION_INFO TREE_NOCE
SEFPORRS -3 oo :
tHFR S SUBHODE S —
TIFES STt N _NODE
DIPTIONS P e 1 g X"
PR e LS
TREE_MOOE TREKS CONSTANT »e l
oP snaprgass rRoavEs BINDING
BUPTHODES £1ABOPAT TON_OFTER LOCATION
LENGTH
’ vy RLIGHEWY
. - MITIRLIZE
rax P
HRES
SRR STH
HRE TREE_HEE
BooT '_-——b o sraandure
FERRT SURODES vere
KIHD pe easdurs wReL_SYH NE,_NODE PHAE " INTEGER®
PR TERS 3 g —D pere Y e
Livacg TIFE NS
FeRaR COBTEMT oo - _I T J
TYPE_STH
DECLAPAT IS BINDING s —yk => oo
DTEFTIN LocATIon L KIND predotined
LOCATION LENGTH coaTRAINT -y
FLIGHENT PRREMT
CECLAPATION_ INFO INITIAL LI rer
UEPRRS weRL_ST™ NYE_NDE
- L]
wenLy e —— e "7 -
o - e o]
EYXePIIonE COHETEMT a o —'
PR DG *
CONSTRAINT _REP
Taos Lomation SRS ——
PACRAES Lo) O
ELAE T IOM_ 0RDER | AL IGHENT
INITIALLE
l TIREY
: Procedure declaral lon
FPOJECT
' TCOL.Rda Illustratlons
“ " 'ﬁ]_'ﬂ B, M N]
oteph . eucomear PeGE -3
;] '['9 It 4 [BRanG TR, TATE
PROCI[C410JIN11] 21-JLN-79 @3.:99
GIE-TELLON SITY L4144

IR PO (ESTT

drvlore

procedure P X ! ta n

ee dnsiuraiisns

kogin

«r bady 4

leger := Y+1) s

wand
hagin
;;b“y <
and
TREE_MODE
o LI
SUSNODES
DEFLAPAT IIN_THET) TREE_H0E
SUEPRYIS — 3 e 3 1
[WBLOES !
LS URREL _5TH HETE_HNXE
BXEPTIONS —P3o wee D RRE -
PROGHYS TPE NTES
NS CONSTAMT suee.
PROYES POOING
ELRRORAT 10M_1WER] LOCAT N
t - LENGTH
-
[ALIGHENT TREE_NDE
INITIALIZE —1 e +
SUBNODES
=
o call
2
aEoes -
]
R = l .
e "PY
YIES
FURFROGHR1_STTt
L3 13 TREE_HoTE
ROOY >| o presedurs 1
FEALT SUEHOES :
KIHD penasdurs \WREL ST HANE 0K
PRROIETERS P rere ——Pimee "X"
LI e Dihid
PeorIRs CONETONT sn
eseaTin anos »
ECEPTION LOCATION ,
LOCATION LEWGTH
ALIGEENT
MITIALLZE

COMPUTER SCIENCE ENGINEERING LAB

T Defaull paremeter representatlon
o TCOL.Ada Illustrettons
[Cemdr BV [GEGED Bna

Joseph M. Neucomer

PRGE oF

tevaitiay FILE:
DEFAULL C410IN111]

ORI RE

GATE:
21-JUN-79 05: 956
PITYRLG PERETLUNOA Thetd

CARECTE-TRLLTH BHIWERSTTY

