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Because of tight publication deadlines, primarily the need to circulate a draf t of 

this specification widely by the end of June, some sections were not completed* 

W e e x p e c t these sections to be completed in the final draft. Many sections contain 

no prose because there is nothing in the Ada manual which applies to T C O L A d a . For 

completeness, these sections are left in this manual. 

W e solicit feedback on this edition of the document. Comments, questions, and 

suggestions may be sent to: 

Joseph M. Newcomer 
Computer Science Department 
Carnegie-Mellon University 
5 0 0 0 Forbes Avenue 
Pittsburgh, Pa. 1 5 2 1 3 

or via the ArpaNet to: 

NewcomerSCMU-10A 

Later editions may be obtained by writing to the above U.S. Mail address, or by 

sending a request via the ArpaNet. This document is also available in 

machine-readable form suitable for printing on line printers, DECwri ters t m , D lab Io* m 

or equivalent devices, and as general ASCII tex t for printing on other d e v i c e s 1 . The 

machine-readable source, for the SCRIBE document production system, is also 

avai lable. Direct inquiries to the above addresses. 

' T h e primary di f ference among these devices is how underlining and overstriking are done; such f e a t u r e s 
enhance the readabil i ty of the output when they are available. 

P r e f a c e to the 2 0 June edition 
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1 . Format of this document 
The document Is presented in several sections. The introductory and overv iew 

prose is in numbered chapters; chapter 2 Is the introduction to TCOL; chapter 3 is a 

brief overview of the language used to express TCOL. 

The bulk of the document is given with chapters and sections with the pref ix 

"Ada" and is keyed to the Ada Reference Manual [ 2 ] . If a section number is given 

wi th a letter suffix, e.g., M Ada-5 .6 .c H , then that represents a finer breakdown than 

given in the Ada reference manual for a particular section, e.g., section 5 . 8 . Severa l 

appendices summarize the information distributed throughout the manual. A 

comprehensive index and a bibliography are included. 

Editorial comment, annotations, explanations, and other prose not related directly to the content o f 
the document, but which may aid the reader's understanding either of the document or the mot ivat ions 
o f the authors in making particular design choices is shown like this. 
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2. Introduction 
This document describes T C O L A d a , an intermediate representation for programs 

wr i t ten In Ada. T C O L A d a is intended to be a uniform, machine-Independent 

representat ion of Ada programs suitable for further processing by machine-

dependent compiler modules. It is intended that the T C O L A d a produced by a 

parser /semantic analyzer be usable by many different implementations of Ada 

compilers for many different machines. 

This document uses the term "intermediate representation 1 1 to denote languages 

suitable for representing source programs in the innards of a compiler. T C O L A d a . 

one such intermediate representation for an Ada compiler, Is described here. 

TCOL is the generic name given to a set of language-specific TCOL instantiations 

such as T C O L A d a , T C O L P a s c a | , and T C O L B | i s s . All of the specific TCOLs are v e r y 

similar; they differ in that each contains constructs for handling features unique to 

its language. For instance, T C O L p o r t r a n would contain a construct for the DO 

sta tement , T C O L B | j s s would have the ability to represent byte pointers, and so on. 

TCOL was originally developed as tool for use in the Production Quality Compiler 

Compiler (PQCC) project at Carnegie-Mellon University [ 3 ] . PQCC Is Investigating 

techniques for automating compiler construction. A Production Quality Compiler 

(PQC) produced by this technology is expected to be as efficient as the b e s t 

hand-built compilers. 

A PQC is phase-structured; it is composed of a linear sequence of phases tha t 

each perform some task in the code generation process. Dialects of TCOL provide 

communication among the various phases. For developmental purposes, It is 

important that the TCOL be human readable (i.e., have an ASCII representation). I t 

is also important that TCOL primarily represent the semantics of the language; this 

allows the compiler to maximize the scope and magnitude of Its optimizations. TCOL 

w a s designed so that its internal representation can be very efficient; a production 

version of a compiler would not need to write the tex t files unless requested to do 

so. 
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The language used to express T C O L A d a Is called M LG M , and Is described briefly In 

chapter 3 . 

I t Is important to understand that T C O L A d a serves two purposes: one Is to 

spec i fy the intermediate representation of Ada programs, and the other is to make 

this intermediate representation visible to people and other programs. Although the 

TCOL representations shown here look complex, in fact they represent exact ly the 

information that an equivalent internal form would possess. LG was designed to be a 

readab le form of the conventional internal form of such complex structures, so that 

in particular one is not forced to read octal dumps to determine the source of an 

error. Within a research environment, it enabled separate phases of the compiler to 

be built independently, because each phase would read and write TCOL t e x t f i les; In 

p rac t ice , a compiler could pass information from phase to phase through memory, 

e x a c t l y as conventional compilers do today. 

The advantages of using a TCOL representation for Ada programs are numerous: 

- A t ree-structured intermediate representation is more suitable for 
program manipulation (e.g., optimization) than most other forms. Ada is 
a language in which there are many opportunities for program 
manipulation of various forms for optimization purposes. 

- The ability to read and write an external form of T C O L A d a allows for 
more flexibility in designing and building compilers. 

- Separa te development of compiler phases is possible, and such 
development can proceed on different machines; for example, a 
complete parser/semantic analyzer may be developed, and Its output 
could still be machine-independent. Machine-dependent code 
generators could then be produced independently, with varying 
degrees of sophistication. A complete new system would not have to 
be brought up for each new machine. 

- It will provide a medium of communication among the various groups 
constructing Ada compilers. Implementors will speak the same 
"language 1 1 when discussing how their compilers work. 
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LG is fully described in [ 4 ] . A brief overview is given here. In addition to the LG 

notat ioh, a se t of tools for reading, writing, and manipulating LG files exists , and a 

s e t of tools for managing systems which use LG has been developed. 

LG is a notation for expressing, in the form of readable t e x t , the Internal d a t a 

s t ructures for a compiler or other complex data manipulation system. I t w a s 

designed to meet the following requirements: 

- The notation should be able to represent an arbitrary directed graph 
wi th many links, including cyclic links. 

- The notation should be able to represent information independently of 
its implementation, e.g., representing a sequence of data which may be 
stored as a list, a set, a vector, etc. 

- The notation should be transformable to an efficient representation, 
e .g . a highly packed bit representation with single bits for boo leans, 
small fields for small values, etc. 

- The notation should permit two phases which communicate by writing 
to an intermediate file to be combined and communicate directly by 
passing the data structures in memory. 

- The implementation of a system which uses LG should pass information 
it does not understand Idempotently through the phase, so that 
information Is not lost. 

These goals were driven by the desire to produce a system which was comfortable 

and friendly for developing a system as a research system, and ye t suitable for 

building a true production version of the same system without requiring a complete 

recoding. 

W e will first give an example in LG, and then explain the details of the notation. 
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17x OBJECT 
(NAME BALL) 
(COLOR YELLOW) 

23s ACTOR 
(NAME JACK) 
(AGE 6 ) 

31s RELATION 
(NAME PLAYS-MITH) 
(WHAT 2 3 : ) 
(TOWHAT 1 7 : ) 

Figure 3 - 1 : LG example 

This example was chosen because it has nothing whatever to do with compilers. 

I t Is there fore possible to concentrate on what the notation says without worrying 

about w h a t w e must say to describe a compiler data structure. 

This shows that there exist things called OBJECTS that have names and colors. 

ACTORs that have names and ages, and RELATIONS for connecting actors to objects 

(or possibly objects to actors), which have names and directed arcs WHAT and 

TOWHAT. Attribute names such as "NAME", "AGE", "WHAT", and "TOWHAT" are not 

in te rpre ted by the LG support system — any other identifiers couid have been used 

equally wel l . Moreover, the NAME fields In the three types of nodes, OBJECTS. 

ACTORs, and RELATIONS, are not necessarily related to each other, or confused or 

connec ted with each other in any way by the LG system. Thus LG could be the 

e x t e r n a l representation of a conventional record structure, as provided by 

languages like PASCAL. 

3 .1 Primitive data types 

The primitive types for the attribute values are: 

integer represented externally by a string of digits, or by a symbolic 
name; 
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label represented by an octal number followed by a colon ( forward 
references are handled correctly). 

Identifier represented by a string of letters, digits, and even some 
punctuation marks; 

string quoted strings of arbitrary characters; 

sequence sequences of values (separated by blanks) of any of the 
above types, possibly with various types Intermixed. 

Values of the Identifier type are represented internally by unique integers 

g e n e r a t e d by the LG system; two of them can be tested for equality, but no other 

meaningful operations can be performed. 

An LG support package provides the software necessary to work with these 

representat ions In a program. It contains: 

- A definition-file generator, which takes a specification of the node 
types , attribute names, and allowable value types and values, and 
produces definition files used by the source program. These files 
provide the necessary access to the fields, to the node information, 
and to the representation. They additionally define the tables required 
by the input/output support. 

- Input/output runtime support, which reads and writes LG files. 

- Runtime utility support, which provides procedures for set and list 
manipulation, storage management, creation and deletion of nodes and 
complex values, and error handling. 

Attr ibutes of type integer and Identifier frequently appear similar In the ex terna l 

representat ion. This is because of the. facility for defining symbolic names for 

integer attr ibute values. Consider, for instance, the attribute COLOR, of "object 1 1 

things. The user can specify that the only legitimate colors have symbolic names 

BLUE, RED, YELLOW, and GREEN, and can further specify which integers these four 

names represent . If, alternatively, the COLOR attribute had type Identifier, then 

any name would be a legitimate color; two colors could be tested for equality, but no 

other operations (such as typical integer operations) would be meaningful. 
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Attribute names and symbolic names, like identifiers, need only conform to the 

v e r y permissive LG syntax for identifiers. Since most languages (BLISS In 

part icular) have more restricted identifier syntax, the LG facility for defining them 

allows them to be associated with "internal1 1 identifiers, which are expected to obey 

t h e rules of the host language. 

3 .2 Composite data types 

The internal representation of a sequence Is defined by the user; thus, the 

sequence 

(SUBNODES 17: 44: 76: 122: 5 : ) 

may be stored as 

an array: the order is preserved, and the / t h element of the array Is the 
/ t h value in the sequence; 

a set: the order is not preserved, and duplicate entries are omitted. 
Insertion and retrieval are efficient; 

a list: the order is preserved, and insertions and deletions are 
efficient while indexing is not (lists are doubly linked). 

(All of these representations are fully supported by the LG software.) 

In addition, atomic types or arrays may contain values of type Item. An Item has 

a value which can be any of the atomic types or composite types, and has a 

t y p e - t a g indicating which type the value possesses. For example, the following 

sequence could be stored only in an item-array, set, or list: 

(THING-SEQUENCE " s t r i n g * 17: 45 any- id) 

Similarly, the following two nodes would require that the VALUE field be of type /fern, 

and the type of the item would be determined at run time by examining a tag f ield. 

17 : SOMENDDE 
(VALUE 4 4 : ) 

2 3 : SOMENODE 
(VALUE 5 ) 
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In this example, the type tag associated with the VALUE field of node 1 7: would 

indicate that the type of the VALUE field is label, and the type tag of the VALUE f ield 

of node 2 3 : would indicate that the type of the value field was Integer. As with 

"union mode" or "variant record" features in many languages, this feature d e f e a t s 

some of the t y p e checking that normally is done. 
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For "Compiler Wr i te r ' s Virtual Machine" [ 1 ] , 

4. The Compiler Model 

TCOL is a family of languages suitable for expressing the intermediate 

representation of programming languages during the compilation process. There a re 

major variants of this family, e.g., T C O L B L | S s w h , c h represents programs In BLISS, 

and T C O L A d a which represents programs in Ada. There could also be T C O L p o r t r a n , 

T C O L p a s c a | , e tc . It is assumed that the commonality of these languages is greater 

than their differences, so in fact there is some "core" which is actually common to 

all languages. Extensions can be done so that some level of the compiler could 

actually accept TCOL for several languages. 

However, even within one TCOL there are many dialects; these represent t h e 

additional information added by the various phases of the compilation process, or in 

some cases, a "simpler1 1 TCOL dialect represents the binding of certain decisions 

and the consequent discarding of information required to make the binding. 

The compiler model, at a first approximation, is shown in figure 4 - 1 . It consists of 

a Front End, which produces T C O L A d a | - p / E j , a module referred to as H C W V M H ^ which 

binds implementation decisions and produces T C O L A d a j - C W V | y j - | , and a Back End 

which generates code, and whose output is machine code. Within each of t h e s e 

phases there can be several dialects of T C O L A d a . 

This document speci f ies T C O L A d a as output by the Front End, I.e., semant ic 

f?P£!y si? h £ s besPrfippe-

It is important to realize that this is a model of a compiler for purposes of 

exposition. It is not a specification for the construction of a compiler. For example, 

a Front End may be done as a separate parser and semantics analyzer which 

communicate through files written in TCOL, or as a single phase from which t h e 

T C O L A d a j - p / E j is produced. 

The T C O L A d a as specified here is suitable as Input to a CWVM module. A given 
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I I I I I ! 
| Front End | > | CMVM | > | Back End | 
I I TC0L F E | |TC0L C M Y M I I 

Figure 4 - 1 : Ada Compiler as viewed in this document 

implementation may actually incorporate the CWVM functions Into the Front End, 

using a much richer representation internally than this specification requires, i ts 

output would be the TCOL A d a [ C vWM] s n o w n , n figure 4 - 1 . However, if such a 

module were able to additionally produce a TCOL which satisfied the specifications 

of this document, it would be suitable as an Ada Front End to any other system 

which accepted the TCOL defined here as input. Such a decomposition Is shown in 

f igure 4 - 2 . 

+ + 
I I 
| Front End 1 | 
I I T C 0 L F E # 1 

+ + 
I 

> TCOL A d a 

+-
I 

TCOL A c | a > | Translat ion 
I 
+ 

Figure 4 - 2 : Compiler decomposition with enhanced TCOL 

i 

i 

i 
->| Back End 1 | 

I 

I 
I 
I 

In example 4 - 2 , a particular Implementation of a Front End produces an enhanced 
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TCOL for its associated Back End* This may simply include more pointers of various 

sorts , e .g . sibling pointers in record components, ancestor pointers in TREE NODEs, 

e tc . , or may have other extensions which represent information the Front End has 

discovered and which, If the communication were in pure T C O L A d a , the Back End 

would have to discover for itself. However, the Front End also puts out a subset of 

T C O L F E - j which satisfies the T C O L A d a specification, and a "translation" program 

ex is ts which will take T C O L A d a and add the necessary enhancements required to 

ach ieve T C O L p E - j . Such a compiler structure satisfies the requirements of 

producing and accepting T C O L A d a . 

The TCOL output by the Front End expresses a program entirely in terms of 

language semantics. No implementation-specific or machine-specific semantics are 

in t h e T G O L A d a j - p ^ E j . The TCOL output by the CWVM expresses a program in terms 

of machine and implementation semantics as well, e.g., addition is no longer a single 

operator, but the various sorts of addition supported by the target machine and 

which are appropriate for the source language data types are all identified. 
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5. The Representation Model 

The representation is inspired by the notion of class and subclass from 

SIMULA-67. However, the limits of the L6 notation require that extensions to a 

basic class be done by creating new "nodes" (which would be called "records 1 1 In 

some languages). The hierarchy used In this document is shown In figure 5 - 1 . 

This shows the hierarchical relationships among the nodes which represent 

declarat ions. The first level, consisting only of NAME NODEs, is the w name tab le" of 

a compiler. The next level, those nodes which can be* referred to by a NAME NODE, 

Is t h e "symbol table" of a compiler. The LITERALREP nodes which are referred to by 

VARBL SYM nodes comprise the "literal table". The remaining _REP nodes 

(ACCESSREP, ARRAYREP, etc.) are extensions to the TYPESYM node. 

In a conventional record-oriented language, these could be thought of as variants in the T Y P E . S Y M 
record . In LG, the variants are implemented as new nodes, so the discriminant on the variant is the LG 
n o d e - t y p e , which is easily determined. 

The hierarchy for the nodes which represent the executable program t e x t is 

shown in figure 5 - 2 . LEAF NODEs are an extension of TREE NODEs, and 

DECLARATIONJNFO provides additional information for certain types of operators. 

TREB_NODB 
I 
• LBAFJVODB 
I 
+ DECLARAT10N_ INFO 

Figure 5 - 2 : Hierarchy for program tree nodes 

is STJSSrCiflCati0n UNKAdE- ,NF0
 - ^ i o n s h i p to other nodes in figure 5 - 1 , 
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NAME_NODB 

ACCBSSJBP 

ARRAYJIEP 

CONSTRAINTJIEP 

ENUMER AT I ONJBP 

RECORDJBP 

SCALAOSP 

—EXCEPTION _SYM 

—LABBL_SYM 

—PRAGMA_SYM 

—PACICAGB_SYM 

—SUBPROGRAMS YM 

~TASK_5YM 

—VARBL_5YM 
I 
+ . LITBRAUBP 

Figure 5 - 1 : Hierarchy for names, symbols, types, e tc . 

TYPLSYM 
I 

I 
+ 
I 

I 
4 
I 
I 
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This section deals with how TCOL nodes will be represented In this document for 

purposes of exposition. Each node will be presented in skeleton form, which will be 

a complete specification of the node. Usually, when a node appears In an example, 

only a partial node will be shown. 

TCOL nodes are described as In figure 6 - 1 . TCOL does not distinguish upper and 

lower case , so frequently, for purely aesthetic reasons, some TCOL examples 

contain lower case t e x t . In addition, "non-terminal1 1 symbols in the LG notation are 

shown highlighted, as in figure 6 - 1 . In this example, the names "label: 1 1 and 

"Identif ier" stand for any LG label and any LG identifier. 

label: TREEJWDE 
<0P identifier) 

Figure 6 - 1 : TCOL representation of a node 

To enhance readability, this document uses symbolic labels in the LG examples. 

Actual LG support requires octal integer labels, which present no problem when t h e 

TCOL is generated by machine. 

A simple SNOBOL program exists which wil l do the translation when it is required. Any program 
w h i c h generates TCOL should use the octal labels, to eliminate the need for an ex t ra step in the 
compilation process. Although the program is simple, it is s low, and it requires t w o passes. 

An attr ibute value which is actually an LG label will be shown prefixed with the name 

of the node it points to. When it can point to several different types of nodes, t h e 

t y p e s of nodes are usually given as a comment, as shown in figure 6 - 2 . Because 

expressions in TCOL can be represented by either TREE NODEs or LEAF NODEs, and 

because statements are also represented as TREENODEs, the special "node t y p e " 

expr is used as a notationai convenience to indicate a pointer to either a 

TREENODE, or where reasonable, a LEAF NODE. 
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label: TREEJIODE 
(OP c a l l ) 
(SUBNODES SUBPROGRAM_SYM-/abe/.- expr-labehsequence) 

label: TYPE.SYM 
(NAME NAME_NODE-/abe/:) 
(REP label:) !To ARRAYJ?EP, 

J RECORDJ?EP, 
1ENUMERATIONJ?EP> 

I . • • e t c . 

Figure 6 - 2 : Notation for labels in attributes 

It is frequently inappropriate or unwieldy to give complete examples, so several 

forms of ellipses are used: 

- In examples of Ada code, comments are frequently used to indicate 
f. "declarations 1 1 or "statements" where the exact contents are 

irrelevant. 

- In examples of Ada code, where specific expressions or statements 
are to be shown in their relation to the TCOL tree, arbitrary groups of 
statements are designated by S j and arbitrary expressions by e } . The 
TCOL expansion of these statements is not shown in the TCOL 
representation. 

whi le eO loop s1 end loop; 

l a b e l i TREE_N0DE 
(OP whi le ) 
(SUBNODES eO: s i t ) 

- Attributes which are not relevant to the example are usually omitted; 
for example, the SOURCE attribute which is present in every node 
hardly ever appears in the examples; the NAME attribute in VARBL SYM 
nodes and some others, which is simply a reference to the print name, 
is frequently omitted. 

- Within an attribute, which can consist of a sequence of LG items, a 
sequence of dots indicates that several such items may precede or 
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follow the Item shown, e.g. 

(SUBNODES . . . something! . . . ) 

The comment "etc." is used frequently in node descriptions to 
indicated that some attributes are not shown. 

- When a reference is made to an expression which has a numeric value, 
and that value is a literal, a label with the literal name is given, but no 
further description is given, as shown in figure 6-3. 

sometreei TREEJIODE 
<0P +) 
(SUBNODES . . . one: . . . ) 

will imply the expansion of "one:" which Is: 
one: LEAF.NODE 

(OP l e a f ) 
(SUBNODES l l t - 1 : ) 

l l t - l i VARBL.SYM 
(CONSTANT COMPILE) 
( IN IT IAL IZE I f t v a l - l i ) 

l i t v a l - l ! LITERAL_REP 
(VALUE 1) 

Figure 6 -3 : Simplified representation of literals 
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ACCESSREP 

ARRAYREP 

CONSTRAINT REP 

DECLARATION INFO 

ENUMERATIONREP 

EXCEPTJONSYM 

GENERICJNFO 

LABEL SYM 

LEAFNODE 

LINKAGEJNFO 

LITERALREP 

NAMENODE 

PACKAGE SYM 

PRAGMASYM 

RECORD REP 

SCALAR REP 

SUBPROGRAMSYM 

TASK SYM 

TREE NODE 

Describes the properties of an access type variable. 

Describes the properties of an array. 

Describes the constraints of a type, subtype, or derived t y p e . 

Describes the declarations to be processed for a subprogram, 
module, block, etc. 

Describes the properties of an enumeration type . 

Describes an exception, either predefined or user-def ined. 

Links together the instances of a generic subprogram. 

Describes the properties of a program « l a b e l » . 

A leaf node in the program tree, e.g., nodes representing 
variables or constants. 

A node which contains the details of the parameter passing 
mechanism for a subprogram. 

A node which holds the value of a literal. LITERALREP nodes 
may be pointed at only by VARBL SYM nodes. 

Holds the source language name; either an identifier or a 

literal. 

Describes the properties of a package. 

Describes a language pragma. 

Describes the properties of a record. 
Describes the properties of scalar types for f i xed , f loat , 
integer and boolean types. 

Describes the properties of a procedure, value-returning 
procedure, function, or entry. 

Describes the properties of a task. 

A interior node in the "program tree", e.g., an operator node In 
an arithmetic expression. 
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T Y P E S Y M Describes the properties of a type, derived type or subtype 

VARBLSYM Describes the properties of a variable, constant, formal 
parameter, or record component. 

7 .1 The SOURCE attribute 

AH TCOL nodes possess a SOURCE attribute. The SOURCE attribute is a string 

which, when given to a suitable program for the machine and operating system, will 

loca te the source character from which the node was created (in the case of 

SYMBOL nodes, for example, this would be the first character of the lexeme In a 

declarat ion) . 

For example, on T O P S - 1 0 , a suitable string for a sequence-numbered f i le would be 
"FILE.EXTj I ine /pageCchar}" , e .g . , • M Y P R O G . A D A ; 0 0 1 0 0 / 5 { 4 7 } " ; without sequence numbers, the "l ine" 
par t would be the count of lines within the page, e.g. , "MYPROG.ADA; 1 / 5 ( 4 7 } \ 

This information is used to report error conditions during other phases of the 

compiler. In addition, this information may be used by the code generator and 

p a s s e d to a debugging environment so that errors, debug printout, e tc . may be 

r e l a t e d back to the source program. If clever encodings are appropriate for 

represent ing this information, these decisions belong elsewhere than the Front End; 

t h e Front End should deliver a straightforward representation of the location in a 

form which is easily human-readable. 

The e x a c t form of the SOURCE attribute in the tree is Implementation-dependent, 

but must be powerful enough to allow access to the source file in the environment 

of t h e system. This means that the representation must be appropriately chosen for 

t h e sys tem. 



Appendix Ada: TCOL for Ada 



2 6 T C 0 L A d a 



A d a - 1 . Introduction 

A d a - 1 . 1 Design Goals 

A d a - 1 . 2 Language Summary 

A d a - 1 . 3 Sources 

A d a - 1 . 4 S y n t a x Notation 
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label: PRAGMA_SYM 
(NAME NAME_NODE-/abe/:) 
(ARGS label-sequence) 

Figure A d a - 2 - 1 : PRAGMASYM nodes 

T h e e x a c t specif ication of ARGS sequence has not ye t been decided. 

In cases where a pragma must be referred to In the program tree, It is re fer red 

to by a "pragma" operator in the tree, as shown in figure Ada-2 -2 . 

Ada-Z. Lexical elements 

A d a - 2 . 1 C h a r a c t e r set 

A d a - 2 . 2 Lexica l Units and Spacing Conventions 

A d a - 2 . 3 Ident i f iers 

Identif iers are represented by NAME NODEs; see section Ada-4.1 • 

A d a - 2 . 4 Numbers 

Numbers are represented by VARBL SYM nodes which In turn refer to LITERALREP 

nodes. 

T h e e x a c t representation for real values is discussed in section Ada -3 .5 .5 . 

A d a - 2 . 5 C h a r a c t e r Strings 

A d a - 2 . 6 Comments 

A d a - 2 . 7 Pragmas 

A language pragma is described by a PRAGMA SYM node. 
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label: TREE.NODE 
(OP pragma) 

(SUBNODES PRAGHA_SYH-/a6e/.-) 

Figure A d a - 2 - 2 : Reference to PRAGMA SYM node in the t ree 

A d a - 2 . 8 Reserved words 
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A d a - 3 . 1 Declarat ions 

A d a - 3 . 2 O b j e c t declarations 

Declarations of variables is discussed in section Ada-4.3. 

A d a - 3 . 3 T y p e and SubType declarations 

Ada is a strongly typed language; every variable and expression has a type* 

Overloaded operators, procedures and functions are disambiguated based on the 

t y p e s of their operands or arguments. The Front End may require a richer 

representat ion of type information in order to handle type checking and overloading 

disambiguation; what is specified here is the representation required as input to t h e 

remainder of the compiler. 

M a n y di f ferent relationships may be required in a compiler, particularly for e f f ic ient ly locating 
r e l a t e d information for types. Thus, it may be desirable to have all subtypes and derived types r e f e r 
back to the root type from which they all have come. T C O L A ( j a specif ies the minimum acceptab le 
TCOL for the remainder of the compiler. Information which may be specif ic to e particular 
implementat ion, and which can be regenerated from the T C O l A d a given in this document, is not part o f 
this speci f icat ion. An implementation which claims to take T C O L A d a as input must accept w h a t this 
document speci f ies. H o w e v e r , as shown in figure 4 - 2 , a particular implementation may, internal ly, 
a c c e p t a richer TCOL. 

The remainder of the compiler requires access to the type information for a number 

of reasons; the representation of type information here is sufficient for t h e s e 

needs . The reaons include range and subscript checking, constraint checking, 

variant records and discriminants and attribute inquiries. 

Ada-3. Declarations and Types 
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label: TYPE.SYM 
(KIND DECLARED | SUBTYPE | DERIVED | PREDEFINED) 
(NAME NAME_N0DE-/a6e/:) 
(CONSTRAI NT CONSTRAI NTJREP-labehsequence) 
(PARENT TYPE_SYM-/abe/.-) 
(REP labelr) 

(PACKING YES | NO) 
(LENGTH integer) 

I ACCESS_REP, 
! ARRAY.REP, 
I ENUMERATIONJREP, 
I RECORD..REP, 
I SCALARJ?EP 
! Ada-13.2 
1 Ada-13.2 

label: CONSTRAI NT_REP 
(RANGE expr-label: expr-label.) 
(ACCURACY expr-label:) 

Figure A d a - 3 - 1 : TYPESYM and CONSTRAINTREP nodes 

The ACCURACY attribute is present only on CONSTRAINTREP nodes for variables 

whose t y p e is FIXED or FLOAT; for FIXED nodes it is the delta and for FLOAT nodes It 

is the digi ts . 

A d a - 3 . 4 Der ived types 

The TYPE SYM node for a derived type is described in section Ada-3.3 and is 

identical to the TYPESYM node shown there except the KIND attribute is DERIVED. 

The PARENT attribute refers to the TYPESYM node from which this type has been 

der ived . 

A d a - 3 . 5 S c a l a r types 
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label: SCALARJ?EP 
(YARIETY FIXED | FLOAT | INTEGER | CHARACTER | BOOLEAN) 

Figure A d a - 3 - 2 : SCALAR REP nodes 

The number of types in the VARIETY is implementation-dependent, and may also 

include LONGREAL, SHORTJNTEGER, etc., but only If these explicit representations 

are specif ied in the source text , or as a consequence of a representation decisions 

made in some separate compilation. Ordinarily, the Front End may only Indicate t h e 

types suggested by the source text , and the machine-dependent part of t h e 

compiler which follows the Front End decides the exact representation suitable for a 

particular machine. 

A d a - 3 . 5 . 1 Enumeration types 

The REP attribute of the TYPE SYM node for an enumeration type points to an 

ENUMERATION REP node. 

label: ENUMERATI ON J?EP 
( L I TERALS VARBL_SYM-/abe/-se<7C/ence) 

Figure A d a - 3 - 3 : ENUMERATIONREP node 

The CONSTRAINT REP node of the TYPE SYM node specifies the constraint on the 

enumeration, in terms of the 'ORD attribute, and thus must be in the range from 1 to 

the size of the enumeration, independent of any special representation given for the 

t y p e . Thus, the constraints of the root node of an enumeration type E are 

E'ORD(E'FIRST) and E'ORD(E'LAST). A subtype or derived type of the enumeration 

type will have its constraints specified in terms of the 'ORD attribute of the root 

t y p e , as shown In figure Ada-3-4 . 
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t y p e COINS is (CENT, NICKEL, DIME, QUARTER, HALF); 
- - T C O L A d a constraints would be 1 ..5 

t y p e SILVER is new COINS range DIME..HALF; 
T C O L A c | a constraints would be 3..5 

subtype METER_SILVER is SILVER range DIME..QUARTER; 
— T C O L A c j a constraints would be 3 - 4 

f o r COINS use (CENT => 1 , NICKEL => 5, DIME => 10, 
QUARTER => 25 , HALF => 50 ) ; 

— this declaration would not change the constraints 

Figure A d a - 3 - 4 : Derived types and subtypes of an enumeration type 

A d a - 3 . 5 . 2 Charac ter types 

A character type is represented by a TYPESYM node which specifies the 

constraints, and whose REP attribute points to a SCALAR_REP node whose VARIETY Is 

CHARACTER. 

Ad a - 3 . 5 . 3 Boolean type 

A Boolean type is represented by a TYPESYM node which specifies the 

constraints, and whose REP attribute points to a SCALARREP node whose VARIETY Is 

BOOLEAN. 

A d a - 3 . 5 . 4 Integer type 

An integer type is represented by a TYPE SYM node which specifies the 

constraints, and whose REP attribute points to a SCALARREP node whose VARIETY Is 

INTEGER. No commitment to a representation, such as LONGJNTEGER or 

SHORTJNTEGER is made by the Front End. 

A d a - 3 , 5 , 5 Real types 

A real type is represented by a TYPE SYM node which specifies the constraints 

and whose REP attribute points to a SCALAR REP node whose VARIETY is FIXED or 
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FLOAT. No commitment to a particular representation, e.g., LONG_FLOAT or 

SHORT FIXED, is made by the Front End. 

A literal whose type is one of the real types is represented by a VARBL SYM node 

whose NAME attribute refers to a NAMENODE whose NAME attribute is the string the 

user typed in the source program. Thus, u5.0"t

 M 5 M , "S.OOO" e tc . all have separa te 

NAME NODEs. Once a representation is chosen, many of these literals may be pooled 

because they will actually have the same representation. However, this Is a 

decision which is bound after the Front End processing. 

The reason this is done is so the parser and Front End may remain inachine-independent, and in 
particular not be required to do conversions of real types to some particular representation. 

T h e intent is that later phases of the compiler which have knowledge about the target machine 
representat ion may generate the internal value by scanning the string in the V A R B L . S Y M node . T o 
h a v e done the str ing- to-rea l ( the 'VAL attribute in Ada) and then done a rea l - to -s t r ing ( t h e ' R E P 
attr ibute in Ada) in the arithmetic supported on the machine on which the parser runs could introduce 
numeric errors which are unacceptable. 

An al ternat ive representation suitable for Ada programs is to represent the value as an express ion in 
terms of the 'VAL attribute, where the operand of 'VAL is the source string representat ion. S e e 
sect ion A d a - 4 . 8 ; this section explains why a static expression may not require actual evaluat ion o f t h e 
operands, which justi f ies the deferring of evaluation of static expressions involving rea l l i terals t o a 
phase af ter the semantic analyzer. 

A d a - 3 . 6 Array types 

The REP attribute of a TYPESYM node for an array type points to an ARRAYREP 

node. 

label: ARRAY J?EP 
(COMPONENT TYPE_SYM-/abe/.-) 

Figure A d a - 3 - 5 : ARRAY REP nodes 

In the TYPESYM node for an array type, the CONSTRAINTREP attribute points to 

a sequence of TYPE SYM nodes which specify the constraints on the Indices of the 

array. The REP attribute points to the ARRAY REP node. 
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If the array Is a subtype or derived type of an array type, the REP attr ibute is 

not speci f ied and the PARENT attribute refers to the TYPESYM node of which this 

array is a subtype or derived type. 

For a particular implementation, it may be desirable to define the REP attribute for subtypes o f the 
a r r a y t y p e to point to the same ARRAY.REP node as the root type; this, however , is an implementation 
decis ion for a particular compiler. T C O L A d a requires that the REP attribute of a subtype or der ived 
t y p e o f an array be unspecified. 

For arrays which are subtypes or derived types of some other array type , a 

complete CONSTRAINT REP list must be specified, even If some or all of the 

constraints on the indices are the same as the parent type. 

Since the TCOL representation of an Ada program is a graph, the CONSTRAINT attribute of a subtype 
m a y point to the same CONSTRAINT.REP nodes as the parent type when the constraints are identical . 

A d a - 3 . 6 . 1 Index ranges of arrays 

A d a - 3 . 6 . 2 Aggregates 

An aggregate is represented by a TREE NODE whose operator Is "aggregate" and 

whose subnodes are TREE NODEs whose operator is "egg-choice", as shown In 

f igure A d a - 3 - 6 . 

label: TREE_NODE 
(OP aggregate) 
(SUBNODES TREEJ40DE-/abe/-se<7</e/>ce) 

label: TREEJIODE 
(OP agg-cholce) 
(SUBNODES TREE_N0DE-/a/>e/-se<7(/ence TREE_NODE-/abe/) 

J to TREE_NODEs for simple-expressions 
J TYPE_SYM nodes for ranges 
I or TREEJM3DE whose operator Is "others" 

Figure A d a - 3 - 6 : Array aggregate representation in T C O L A d a 

In the agg-choice operator nodes, the last subnode is the value to be assigned, 
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and the first sequence of subnodes are the indices for which that value Is to b e 

assigned. In the case where explicit choices were not present In the source 

language, an explicit choice must be supplied by the Front End. S e e f igures 

A d a - 3 - 7 and A d a - 3 - 8 . 

B : TABLE :« (5 , 4 , 8 , 1 , others •> 2 0 ) ; 
— from Ada Reference Manual p. 3 - 1 1 

agg: TREE.NODE 
COP aggregate) 
(SUBNODES f i rs t i second: third! fourths resti ) 

f i r s t ! TREE.NODE 
(OP agg-cholce) 
(SUBNODES one: f i v e : ) I 1 => 5 

second! TREE.NODE 
(OP agg-choice) 
(SUBNODES two: f o u r ! ) I 2 => 4 

t h i r d : TREE.NODE . 
(OP agg-choice) 
(SUBNODES three : e i g h t : ) I 3 => 8 

f o u r t h : TREE.NODE 
(OP agg-choice) 
(SUBNODES four : one:) t 4 => 1 

r e s t ! TREE.NODE 
(OP agg-choice) 
(SUBNODES othi twenty: ) I others => 20 

o t h : TREE.NODE 
(OP others) 

Figure A d a - 3 - 7 : Example of an aggregate in T C O L A c j a 
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C : TABLE := ( 5 , 4, 8 , 5..7 => 2, 8 | 10 => 3, others => 1) ; 
5 , 4 , 8 , 1 , 2 , 2 , 2 , 3 , 1 , 3 

agg2J TREE_N0DE 
<0P aggregate) 
(SUBNODES s n l i sn2> sn3i sn4i sn5« sn6 i ) 

s n l i TREE_N0DE 
(OP agg-choice) 
(SUBNODES one: f l v e t ) I 1 -> 5 

sn2» TREE_NODE 
(OP agg-cholce) 
(SUBNODES two: f o u r : ) ! 2 => 4 

sn3: TREE.NODE 
(OP agg-cholce) 
(SUBNODES th ree : e i g h t : ) I 3 -> 8 

sr>4» TREE.NODE 
(OP agg-cholce) 
(SUBNODES f lve -seven i two:) ! 5 . . 7 *> 2 

sn5: TREE_NODE 
(OP agg-choice) 
(SUBNODES e igh t : ten : t h r e e : ) I 8 | 10 *> 3 

sn6: TREE_N0DE 
(OP agg-cholce) 
(SUBNODES oth : one:) ! others «> 1 

o t h : TREE NODE 
mm 0 

(OP others ) 
f i v e - s e v e n : TYPE.SYM . 

(NAME) I Anonymous type 
(KIND der ived) 
(PARENT TYPE.SYM/abe/.-) \ of o b j e c t ' s 

(CONSTRAINT c 5 - 7 : ) 
! Index type 
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c 5 - 7 * CONSTRAINT J?EP 
(RANGE f l v e i seven:) 1 5 9 9 7 

Figure A d a - 3 - 8 : Example of a more complex aggregate In T C O L A d a 

A d a - 3 . 6 . 3 Strings 

A d a - 3 . 7 Record types 

The REP attribute In the TYPESYM node for a record type points to a 

RECORDREP node. 

label: RECORD J?EP 
(FIELDS label-sequence) I to VARBL_SYM nodes 

! or TREE.NODE 
! (op case) nodes 

Figure A d a - 3 - 9 : RECORD REP nodes 

A d a - 3 . 7 . 1 Constant Record Components and Discriminants 

A d a - 3 , 7 . 2 Var iant parts 

The variant components of a record are represented by a tree nearly identical to 

tha t produced by the case statement (see section Ada-5.5) . However, the last 

operand of each "when" operator, instead of being a TREE NODE, is a VARBLSYM 

node which represents the component of the variant which is selected by t h e 

discriminant. Each of these VARBLSYM nodes is a component in an anonymous 

record which holds all of the components of the variant. The null component list is 

speci f ied by a TREE NODE whose operator is "null"; this is the same representat ion 

as used for the null statement. See Ada-5.a. 
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A subtype or derived type of a record containing a variant is specified by having 

a d i f ferent constraint on the variable which is the discriminant. 

A d a - 3 . 7 . 3 Record Aggregates and Discriminant Constraints 

A record aggregate is represented as shown in figure Ada-3 -10 . A TREE_N0DE 

wi th operator "record-aggregate" refers to a set of subnodes which have the 

operator "rec-cholce". As in array aggregates (section Ada-3.6.2) , the TCOL t r e e 

must supply any component names which were omitted in the source because 

positional notation was used. The first subnodes of the "rec-choice" operator node 

a r e the names of the components to be assigned to, and the last subnode Is an 

express ion representing the value to be assigned. 

label: TREE.NODE 
COP record-aggregate) 
(SUBNODES expr-label-sequence) 

label: TREE.NODE 
(OP rec*-cholce) 
(SUBNODES expr-label-sequence expr-label:) 

I component names, value 

Figure A d a - 3 - 1 0 : T C 0 L A d a representation of a record aggregate 

A d a - 3 . 8 Access types 

The REP attribute in the TYPE SYM node for an access type points to an 

ACCESS REP node. 



T C O L A d a 
4 1 

label: ACCESS_REP 
(ACCESS-OF TYPE_SYM-/aZ>e/.-) 

Figure A d a - 3 - 1 1 : ACCESSREP node 
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label: NAMEJIODE 
(PNAME string) 
(NAMES label-sequence) I TYPE.SYM, 

I VARBL_SYM, 
I EXCEPTION.SYM, 
I LABEL.SYM, 
I PACKAGE.SYM, 
J PRAGMAJ5YM, 
! SUBPROGRAM.SYM, 
I TASK_SYM 

Figure A d a - 4 - 1 : NAMENODE nodes 

Severa l NAMENODEs may have the same print string, I.e., it is not required tha t 

there be one and only one NAMENODE for each unique character string. 

A NAME NODE exists for literal values also; the "name" is the source string 

wr i t ten in the user program. This is particularly important for the representation of 

real literals if cross-compilation or machine-independent parsing Is important; the 

parser either should not or cannot determine the exact representation of a real 
l i teral . 

A d a - 4 . 1 . 1 Index components 

label: TREE.NODE 
(OP index) 
(SUBNODES expr-label: expr-label-sequence) 

Figure A d a - 4 - 2 : T C O L A d a for Indexed component 

Ada-4. Names, Variables and Expressions 

A d a - 4 . 1 Names 
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The first subnode evaluates to the name of an indexed entity. The remaining 

subnodes evaluate to the indices. For a simple variable, the first subnode would 

re fe r to a VARBL SYM node; for more complex names, such as an indexed component 

of a record (an array component of a record), a general TCOL expression would be 

r e f e r r e d to by the first subnode. 

A d a - 4 . 1 . 2 Se lec ted components 

Se lec ted components which are 

- An enti ty declared in the visible part of a module 

- An entity declared in an enclosing unit 

- A user-defined attribute of a type 

h a v e already been identified by the Front End, and references to the selection have 

a l ready been resolved to point to the correct entities. The purpose of select ing 

t h e s e entities is to provide a syntactic and/or semantic specification of which 

ent i ty , of a possibly ambiguous set of entities, is desired. 

For example , as shown in [ 2 ] page 4 - 2 , the selected component "DEVICE.READ" would a l ready 
r e f e r to the e n t r y node for the task DEVICE. The name in the NAME.NODE is "READ* . 

Thus, "selection" in T C O L A d a refers only to selection of record components. 

label: TREE.NODE 
<0P component-select) 
(SUBNODES expr-/abe/.- VARBL_SYM-/abe/.-) 

Figure A d a - 4 - 3 : T C O L A d a for selected component 

The first subnode evaluates to the name of a record. The second subnode re fers 

to a VARBL SYM node which names the field in the record. 

A d a - 4 . 1 . 3 Predef ined attributes 
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A predefined attribute generates a unique operator for each attr ibute. The 

complete list of operators for T C O L A d a is given in section Ada-A. 

A d a - 4 . 2 Literals 

S e e the discussion of literals in section Ada-3.5, particularly for real literals in 

sect ion Ada-3 .5 .5 . 

label: LI TERAL J?EP 
(YALUE LG-literal) 

Figure A d a - 4 - 4 : LITERALREP nodes 

A LITERALREP node is referred to only by the INITIALIZE attribute of a VARBLSYM 

node (see section Ada-4.3) . The VALUE of a LITERALREP node holds an LG sty le 

l i teral . The interpretation of this literal depends upon the type of the VARBLSYM 

node which refers to it. 

T h e only meaningful LG literals which would appear in the VALUE attribute of a L ITERAL.REP node 
are integers and strings. LG does not support "real* ( i .e . , f ixed point or floating point) l i terals. As 
discussed in sect ion Ada-3.5.5, such literals must be represented as the source t e x t characters w h i c h 
specif ied the l iteral in the program. At some point in the compiler beyond the Front End, the compiler 
may determine the correct bit pattern for a real literal and represent it as a LITERAL.REP node w h o s e 
va lue is the bit pattern (expressed, for example, as an unsigned octal number). 

It may also be necessary to express integer values as strings, if the machine on which the compiler 
runs cannot express integers wi th the same range as the target machine. 

N o t e that this does not a f fec t the determination of a value as a static expression, s ince a n 
expression does not have to be evaluated in order to determine if it is static. 

A d a - 4 . 3 Variables 

A d a - 4 . 3 . a Named variables 
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label: VARBL.SYM 
(NAME NAME_NQDE-/a/>e/;) 
(TYPE TYPE_SYM-/abe/:) 
(CONSTANT NO | UNKNOWN | COHPILE | LINK | EXECUTION) 
(BINDING I N | OUT | INOUT) ! see tex t 
(LOCATION expr-/abe/.-) 
(LENGTH expr-/abe/.«) 
(ALIGNMENT expr-fabe/) 
( I N I T I A L I Z E expr-/abe/:) 

Figure A d a - 4 - 5 : VARBL SYM nodes 

The BINDING attribute Is present only for VARBLJ3YM nodes which represent 

formal parameters. 

The LOCATION specification applies to either variables or record components, and 

is present only if an explicit representation or address has been specified (Ada 

r e f e r e n c e chapter 1 3 ) . For a record, it specifies the bit offset at which the 

component starts , relative to the start of the record; for variables, it specifies the 

absolute bit address of the start of the variable. 

T h e Front End must convert the expression in terms of storage units to an expression in terms o f 
b i ts . This is a symbolic transformation, since the Front End cannot know how many bits comprise a 
s torage unit. 

The LENGTH and ALIGNMENT specifications apply only to VARBLSYM nodes 

represent ing record components, and are expressed as bit lengths and bit 

alignments. See section 13.4 in the Ada Reference Manual. 

A literal in the source language Is always represented by a VARBL SYM node 

whose NAME attribute refers to a NAME NODE which contains the source language 

string and whose CONSTANT attribute Is COMPILE. The INITIALIZE attribute refers to 

a LITERAL REP node which holds the value of the literal. 

A d a - 4 . 3 . b Slices 

A slice is represented in TCOL as shown in figure Ada-4-6. The first subnode 
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re fe rs to an expression which evaluates to the name of an array, subarray, or 

a c c e s s object whose value designates an array. The range Is represented by the 

second subnode, which refers to an anonymous TYPE node which is a derived t y p e 

of the Index type of the array, and whose constraints specify the slice. 

label: TREE_NQDE 
(OP s l i c e ) 

(SUBNODES expr-label: TYPE_SYM-/a6e/:) . 

Figure A d a - 4 - 6 : T C O L A d a representation for an array slice access 

A d a - 4 . 4 Expressions 

A d a - 4 . 5 Operators and Expression Evaluation 

label: TREE_N0DE 
(OP identifier) 
(DEFN label:) 
(SUBNODES expr-label-sequence) 

Figure A d a - 4 - 7 : TREE NODE in T C O L A d a 

The OP attribute contains an LG identifier which indicates the operation. 

The DEFN attribute points to a TYPESYM node for predefined types, or arrays or 

records, or points to a SUBPROGRAM SYM node for the function which Implements the 

operator . This attribute applies only to unary or binary operators as defined In 

A d a - 4 , and assignment of predefined types, arrays or records. 

The DEFN attribute for predefined scalar types points to a TYPE.SYM node, whose REP f ie ld points 
t o a SCALAR node. The information may be extracted by walking this chain of pointers and stored in 
some implementation-specific field in the TREE NODE. However , this extension is not required by 
T C O L A d a -
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This attr ibute also permits a user to define a type-specif ic assignment operator if it w e r e 
permissible in the source language. 

TCOL can have t w o representations for a unary or binary operator: it can represent them as either 
funct ion cal ls of 1 or 2 arguments or as operator nodes in the tree for each operator. In the particular 
c a s e of predef ined types and types which are subtypes or derived types of the predefined types , it is 
desirable to represent the unary and binary operators as operator nodes in the t ree , for purposes o f 
var ious optimization techniques, e.g. , expression reordering, applying associativity, commutativi ty, or 
unary complement optimizations, etc . 

It is unclear from the semantics of Ada if an overloaded operator such as is e x p e c t e d t o 
p r e s e r v e these properties, i.e., is associative, commutative, e tc ; do axioms such as 
" ( A - B ) => - ( B - A ) " hold? It is also unclear whether or not this is also true of user-def ined types 
w h i c h a r e not defined in terms of the predefined types, e.g. , arrays, records, etc . 

T h e DEFN attribute a l lows us to represent operators, even those defined by explicit overloading, as 
unary or binary t ree operators, which greatly simplifies the task of optimization. T o actually generate 
t h e c o d e for such operators, the DEFN attribute makes the operator definition available. 

A code generator may look at the DEFN attribute, or may require that any unary or binary operator 
de f ined by a user-declared procedure be transformed into a procedure call node before code generat ion 
begins. Such a decision is an implementation strategy in the Back End of the compiler and is made for a 
part icular implementation. Such a transformation is essentially a simple t ree transformation. 

In this specification of T C O L ^ d a , if the operator token for an operation as defined in 

this sect ion appears in the tree, e.g., "and", M or w , , , + M , " * n

t

 H < M , etc. , then its 

conventional arithmetic properties of associativity, distributivity, commutativity, e t c . 

a re assumed to be preserved. In the case where semantic analysis wishes to 

prohibit optimizations which rely on these properties, it must represent the 

operat ions as function calls. 

In addition to all of the standard operators described in sections Ada-4 .5 .1 

through Ada-4 .5 .6 , there is a special operator, M paren H , which is used to indicate 

associat ivi ty across parenthesized expressions is not valid. In any case where the 

semantic analyzer wishes to block the use of associativity axioms by an optimizing 

compiler, it can insert this operator in the tree. This allows other properties of the 

operator node, such as commutativity, to be retained.. If the associativity could only 

be prevented by using the procedure-call representation, other, permissible, 

optimizations might be also prohibited/ 
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label: LEAFJJODE 
(OP l e a f ) 
(SUBNODES VARBL-/abe/;) 

Figure A d a - 4 - 8 : LEAF NODE In T C O L A d a 

A LEAFJJODE is a particular extension to a TREE NODE, and Is present because in 

most implementations, the phases in the compiler which follow the Front End wish to 

p lace different kinds of information in a LEAF NODE than In a TREENODE. Two 

at t r ibutes which are common to both LEAF NODEs and TREE NODEs are the OP and 

SUBNODES attributes; the OP attribute for a LEAF NODE always has the operator 

" leaf" . 

A d a - 4 . 5 . 1 Logical Operators 

?oy»rc9 I £ Q k A d a 

and and 
or or 
xor xor 

Figure A d a - 4 - 9 : Logical operators: source- to -TCOL A d a transformation 

In addition, there are two other boolean operators, cand and cor, representing 

respect ive ly and- then and or-else, which are described in section A d a - 5 . 4 . 1 . 

These are currently restricted to the conditional part of an i f statement, for no discernable reason . 
In TCOL, they are valid binary operators on boolean operands. 

A d a - 4 . 5 . 2 Relational and membership operators 



5 0 T C 0 L A d a 

< < 
> > 
<= <= 
> = >= 

/ = /= 
I n in 
not I n n o t - l n 

Figure A d a - 4 - 1 0 : Relational and membership operators: s o u r c e - t o - T C O L A d a 

A d a - 4 . 5 . 3 Adding operators 

+ + 

& & 

Figure A d a - 4 - 1 1 : Adding operators: Source-to-TCOL A c | a transformation 

A d a - 4 . 5 . 4 Unary operators 

Source K Q U d a 
u-

• u+ 
not not 

Figure A d a - 4 - 1 2 : Unary operators: source-to-TCOL A c j a transformation 

Unary plus is represented in T C 0 L A d a by a unique operator, "U+ M . The token 
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as a TCOL operator is permitted to represent only the binary addition operator. 

Since the identity operator conveys no information, it may be omitted entirely by the semantics 
phase and not appear in T C 0 L A f 4 s . 

Unary minus is represented in T C O L A d a by a unique operator, M U - M . The TCOL token 

" - " is permitted to represent only the binary subtraction operator. 

The not operator is defined for boolean scalar operands and boolean-array 

operands; the DEFN attribute will describe which one this represents. 

A d a - 4 . 5 . 5 Multiplying operators 

S£5i£££ ICQLAda * * 
/ / 
mod mod 

Figure A d a - 4 - 1 3 : Multiplying operators: source - to -TCOL A d a transformation 

A d a - 4 . 5 . 6 Exponentiation operator 

Sflurce I£QkAda 

Figure A d a - 4 - 1 4 : Exponentiation operator:" source-to-TCOL A c j a transformation 

A d a - 4 . 6 Qual i f ied expressions 

Qualified expressions serve several purposes. Some of those purposes are 

purely an interaction at the semantic level, e.g., to disambiguate potentially 

ambiguous expressions or literals. 



5 2 T C 0 L A d a 

In those cases where a qualification carries no semantic Information, the 

qualification may be dropped by the semantic analyzer. An example of such a 

situation is shown In figure Ada-4-15 . 

t y p e color is (UV VIOLET BLUE GREEN YELLOW ORANGE RED IR BLACK); 
t y p e STOPLIGHT is (RED YELLOW GREEN); 
— without qualification, the following is ambiguous 

PRINT(STOPLIGHT(RED)); 

Figure Ada-4-* 15: Use of a qualified expression 

S i n c e , a t the output of the semantic analyzer, the literal RED would be uniquely identif ied, the 
qual i f icat ion on the expression would be redundant, and could be eliminated. 

However , in figure Ada-4 -16 , the qualification is important, and must not be 

removed by the Front End. Since no representation decision has been bound by the 

Front End (excluding explicit user specifications or specifications forced by 

separa te ly compiled program units), a conversion from the representation of the 

subtype to the type of the parent type may be necessary. 

t y p e X Is n e w integer range 1..65535; 
s u b t y p e Y is X range 1..7; 

A, B : X; 
C, D : Y; 

~ statements 
A X(C) + X(D); 

F igure A d a - 4 - 1 6 : Qualified expression which may imply run-time type conversion 

A d a - 4 . 6 . 1 Explicit t ype or Subtype specification 

S e e section Ada-4 .6 . 



T C O L A d a 
5 3 

A d a - 4 . 6 . 2 Type conversion 

There is no implicit type coercion in T C O L A d a ; any type conversions must be 

explicit ly represented in the TCOL tree. 

A d a - 4 . 7 Allocators 

A d a - 4 . 8 Stat ic expressions 

A stat ic expression is represented by a VARBLSYM node (section A d a - 4 . 3 ) 

whose CONSTANT attribute is COMPILE and whose INITIALIZE attribute re fers to a 

LITERAL REP node or an expression whose operands are static expressions. 

At various places, Ada requires static expressions to specify certain values. The semantic ana lyzer 
m a y choose to evaluate expressions ("constant folding*1) to determine if they are stat ic expressions; 
h o w e v e r , it need not evaluate any expressions, even though they may be static expressions, if s tat ic 
expressions are not required by the language (e .g . , the range constraints on a type or subtype) . 

In addition, the semantic analyzer may determine if an expression is a static expression wi thout 
actual ly performing any evaluation, simply by determining, by a recursive t ree wa lk , that all the 
operands of the expression are themselves static expressions. Ultimately, such a t r e e w a l k must 
r e a c h e v e r y LEAFJYODE, which to satisfy the requirement of being a static expression must point to a 
V A R B L . S Y M w h o s e CONSTANT attribute is COMPILE and whose INITIALIZE attribute points t o a 
L I T E R A i . R E P node. 
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A d a - 5 . a Null s ta tement 

The null statement is represented by a TREE NODE whose operator Is "null", as 

shown In figure A d a - 5 - 1 . 

n u l h TREE.NODE 
(OP n u l l ) 

Figure A d a - 5 - 1 : null statement 

A d a - 5 . b Sta tement sequences 

A sequence of statements is represented by an n-ary tree node whose operator 

is ;" and whose subnodes are each of the statements in the sequence* If a ";" 

node happens to have only a single subnode, a reference to the 1 1;" node may b e 

replaced by a reference to the subnode. This transformation is permitted to any 

phase of the compiler beyond the parser, including the semantics phase. 

An example of the two alternate representations of a sequence are shown In 

f igure A d a - 5 - 2 ; in this example, the operator is some n-ary operator which can re fe r 

to a statement sequence. 

top i TREE.NODE 
(OP Identifier) 
(SUBNODES label: label: e i ) 

e : TREE.NODE 
(OP : ) 
(SUBNODES s3 : ) 

I not shown for this example 

Ada-5. Statements 
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or, alternatively 

topt TREEJIODE 
(OP identifier) 
(SUBNODES label: label: s 3 i ) 

Figure A d a - 5 - 2 : Permissible representations for statement sequences 

"Flattening" of such tree nodes Is permissible; that is, If any subnode of a " ; M 

operator t ree node refers to another ";" node, the reference may be replaced with 

t h e subnodes of the node referred to, as shown In figure Ada-5-3 . 

stmntt TREE.NODE 
<0P O 
(SUBNODES . . . sO: . . . ) 

sO: TREEJ40DE 
(DP f) 

(SUBNODES s i : s2: s3:> 

may be replaced by: 
s t w n t i TREE.NODE 

(OP ?) 
(SUBNODES . . . s i : s2: s3: . . . ) 

Figure A d a - 5 - 3 : Flattening of ";" operator nodes 

A d a - 5 . c S ta tement Labels 

The label of a statement may be used either as the destination of a goto 

s ta tement , or if the statement is a loop statement, as the operand of an ex i t 

s t a t e m e n t . A label Is represented in TCOL as a LABELSYM node; because the use 

of a label in a goto and exit are different, an Ada label may generate two label 
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nodes, one for the "goto" label and one for the "exit" label. In addition, the program 

t r e e contains two operators, "gotolabel" and "exitlabel", which mark the point in t h e 

program t ree where the label appears. Their form is shown In figure A d a - 5 - 4 . 

These TREE.NOOEs are used by the code generator, to determine when to emit the label In the c o d e 
s t ream. In addition, compilers which do f low analysis require these nodes so that the program graph 
m a y be constructed. 

label: TREE.NODE 
(OP go to labe l ) 
(SUBNODES LABEL_SYM-/abe/; expr-label:) 

label: TREE.NODE 
(OP e x i t l a b e l ) 

(SUBNODES LABEL.SYM-label: expr-label:) 

Figure A d a - 5 - 4 : T C O L A d a tree for gotolabel and exitlabel operators 

A simple "gotolabel" is shown in figure Ada-5-6, while a label which is both a 

••gotolabel" and an "exitlabel" is shown In figure Ada-5-7. 

label: LABEL.SYM 
(NAME NAME.NODE-/aoe/.0 
(TREE expr-label:) I (OP g o t o l a b e l ) OP 

! (OP e x i t l a b e l ) 

Figure A d a - 5 - 5 : LABELSYM nodes 
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— statements 
if A < B then goto Z end if; 
— statements 
« Z » A := XYZ; 
— statements 

z l b t LABEL.SYM 
(NAME znameO 
(TREE age ts t ) 

zname: NAME.NODE 
(PNAME "Z") 
(NAMES . . . z lb t , . , ) 

pgm: TREE.NODE 
(OP * ) 
(SUBNODES . . . t e s t i . . . agetsi . . . ) 

t e s t x TREE_N0DE 
(OP I f ) 
(SUBNODES condt go:) 

condi I not shown, boolean condit ion 

go i TREEJIODE 
(OP goto) 
(SUBNODES z l b : ) 

a g e t s : TREE_NODE 
(OP goto labe l ) 
(SUBNODES assgn:) 

assgn: TREE.N0DE 
(OP : = ) 
(SUBNODES . . . ) . 

Figure A d a - 5 - 6 : LABEL SYM and goto 
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goto L; 
— other statements 
« L » loop 

~ statements 
exit L w h e n eO; 
— statements 

end loop L; 

Inamei NAME.N0DE 
(NAME "L") 
(NAMES . . . e ibt g ib : . . . ) 

e l b : LABEL.SYM 
(NAME I name:) 
(TREE e l a b : ) 

g i b : LABEL.SYM 
(NAME Inane: ) 
(TREE g l a b : ) 

pgm: TREE.N00E 
(OP * ) 

(SUBNODES . . . go: . . . glab: . . 

go i TREE.NODE 
(OP goto) 
(SUBNODES g i b : ) 

g l a b : TREE.NODE 
(OP go to labe l ) 
(SUBNODES g ib : e l a b : ) 

e l a b : TREE.NOOE 
(OP ex i t l a b e l ) 
(SUBNODES e l b : body:) 

body: TREE.NODE 
(OP loop) 
(SUBNODES . . . e x i t : . . . ) 
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ex i t s TREE.NODE 
(OP e x i t ) 
(SUBNODES eO: e l b : ) 

Figure A d a - 5 - 7 : Interactions with LABELSYM nodes 

A d a - 5 . 1 Assignment statements 

label: TREE.NODE 
(OP : = ) 
(SUBNODES expr-label: expr-label:) 

I to dest Inat I on, expression t rees 

Figure A d a - 5 - 8 : T C O L A d a tree for assignment 

The first subnode of the assignment operator evaluates to the location to perform 

t h e assignment. This may be an aribtrarily complex expression which could include 

ar ray subscripting and component selection. 

T h e semantics of an assignment in Ada is that it is a lways checked. The pragma to suppress the 
R A N G E . E R R O R except ion wi l l appear in the DECLARATIONJNFO node of a block, subprogram, task, 
e t c . , and is taken as advice to the compiler to suppress the exception. Whether or not the compiler 
chooses to honor this pragma is an implementation decisions which is not in the domain of the Front 
End; there fo re , the Front End does not include any explicit checking of the assignment nor does it 
suppress any implicit checking of the assignment. 

A d a - 5 . 1 , 1 Ar ray and Slice assignment 

S e e section Ada-4.3.b. 

A d a - 5 . 1 . 2 Record assignments 

A d a - 5 . 2 Subprogram calls 
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label: TREEJ40DE 
(OP c a l l ) 

(SUBNODES SUBPR0GRAM_SYM-/a.6e/; expr-/a6e/-sec7C/e/ice) 

Figure A d a - 5 - 9 : Subprogram call operator 

A d a - 5 » 2 . 1 Actual parameter associations 

T C O L A d a requires that each call provide the correct number of actual parameters 

in the correct positional order. Thus, the use of "keyword" parameters, where the 

parameter names are supplied explicitly, is resolved during semantic analysis, and 

the actual call TREENODE contains the parameters in the same order as the formal 

parameters of the procedure declaration. See also section Ada-5.2.2. 

A d a - 5 . 2 . 2 Omission of actual parameters 

When an actual parameter may be omitted because the subprogram declaration 

provides a default value, a mechanism must exist so the procedure call can provide 

the correct value. As described in section Ada-5.2 .1 , the call must provide all of 

the actual parameters in the correct order. Furhtermore, the value of the defaul t is 

determined by elaborating the expression at the time the procedure declaration Is 

e laborated, so the value must be stored so subsequent procedure calls can use ft. 

As an optimization, the later phases of the compiler may determine that no call of the procedure 
omits the parameter, so the default need not be evaluated since it is never used. H o w e v e r , this 
decision cannot usually be made by the Front End. Because of interactions w i th separate compilat ion, 
it may not be possible to determine if this optimization is possible except in some v e r y res t r ic ted 
c a s e s . 

When an actual parameter may be omitted because the subprogram declaration has 

speci f ied a default value, the DECLARATION INFO node for the block which contains 

the subprogram includes a dummy VARBL SYM node which identifies a runtime 

location to hold the value of the default parameter expression. The default 

parameter expression is elaborated when the declarations are processed, and the 

result of the elaboration is stored in the location named by this dummy VARBL SYM 
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node. A call of the subprogram for which the actual parameter corresponding to this 

VARBL SYM node has been omitted will contain, for the parameter expression, an 

expression which refers to the VARBLSYM node. 

d e c l a r e 
•— other declarations 
p rocedure OEFKparm : in color := My_Favorite_Color) is 

— procedure body 

— My_Favorite_Color is not a static expression 
— and is a variable visible at this level 

— more declarations 
begin 

— program t e x t 
DEF1; 
— program t e x t 

e n d ; 

d e c I s : DECLARATIONJ NFO 
(SUBPROGRAMS d e f l : ) 
(VARBLS . . . dummy: , . , ) 

d e f l : SUBPROGRAM_SYM 
(PARAMETERS . . . parm: . . . ) 

parm: VARBL.SYM 
( I N I T I A L I Z E dummy:) 

dummy: LEAF.NODE 
(OP l e a f ) 
(SUBNODES d - v l ) 

d - v i VARBL.SYM 
( I N I T I A L I Z E fav -exp : ) 

f a v - e x p : LEAF_NODE 
(OP l e a f ) 
(SUBNODES my-fav: ) 

m y - f a v : VARBL.SYM 
(NAME . . . ) 1 "My.Favorite.CoI or" 
I . . . e t c . 

http://My.Favorite.Co
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c a l l i t : TREE_NODE 
(OP c a l l ) 
(SUBNODES d e f l : dummyi) 

Figure A d a - 5 - 1 0 : Default parameter representation 

A d a - 5 . 2 . 3 Restrictions on subprogram calls 

The Front End has the responsibility for checking the TYPEJSYM consistency 

b e t w e e n procedure actual parameters and procedure formal parameters. The 

constraints, if they are represented by static expressions, may be checked by the 

Front End, but this is not required. The checking of constraints at the time of the 

call is implicit, in the same way the checking of constraints during assignment Is 

implicit; a code generator may or may not honor the RANGEERROR pragma. 

A compiler may determine that the raising of an exception is either a lways the case or n e v e r the 
c a s e a t subprogram call time, and as for assignment, may choose to eliminate the code to test for t h e 
e x c e p t i o n and either a lways raise it or never raise it, as appropriate. H o w e v e r , this opt imizat ion 
should not be made by the Front End. 

A d a - 5 . 3 RETURN statement 

re turn 

/a6e/ ; TREE_NQDE 
(OP r e t u r n ) 

(SUBNODES SUBPR0GRAM_SYM-/a6e/;) -

Figure A d a - 5 - 1 1 : T C O L A d a tree for return statement 
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return eO; — expression eO 

label: TREE.NODE 
<0P r e t u r n - v a l u e ) 

(SUBNODES SUBPRQGRAM_SYM-/abe/.- expr-/abe/.-) 

Figure A d a - 5 - 1 2 : T C O L A d a tree for return statement for value return 

Restrictions on return statements are assumed to be enforced by the Front End, 

in the sense that a return operator node will always generate code to return from 

the subprogram, even If, for some reason, it appeared in a context In which the 

language forbids this. If the procedure returns a value, the return statement is 

c h e c k e d by the Front End for conformity to the type restrictions of the return value; 

a return-value operator that returns a result, or a return operator which does not, 

are both assumed by the Back End to be valid in their context. The phases of the 

compiler beyond the Front End assume that necessary checking has been done by 

t h e syn tax and semantic analyzers. 

A d a - 5 . 4 if s ta tements 

label: TREE.NODE 
(OP i f ) 

(SUBNODES expr-/abe/; expr-/abe/; expr-/abe/.0 

Figure A d a - 5 - 1 3 : T C O L A d a tree for if statement 

The if statement produces a ternary node whose first subnode Is the condition, 

whose second is the then clause and whose third is the else clause. 

The Front End treats the elsif clauses as else clauses, and transforms the If 

s ta tement to a sequence of nested if statements. Any If operator nodes generated 
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from the elsif clauses have the operator "elsif". 

In general , the processing of an "elsif- operator and an "if- operator in the back end of the compiler 
w i l l be identical; the distinction is made for those cases in which the additional knowledge might be 
used to some advantage. 

if eO 
then s1 

elsif e 2 
then s 3 

elsif e 4 
then s 5 

else s 6 
end if; 

I f : TREE.NODE (OP I f ) 
(SUBNODES eO: s i : e l f l i ) 

e l f l : TREE.NODE (OP e l s i f ) 
(SUBNODES e2: s3t e l f 2 : ) 

e l f 2 : TREE.NODE (OP e l s i f ) 
(SUBNODES e4: s5: s 6 : ) 

Figure A d a - 5 - 1 4 : T C O L A d a tree for elsif clauses 

If no else clause is present, a dummy TCOL node for a null statement must be 

supplied by the Front End, so that every TREENODE with an "if" or "elsif" operator 

has three subnodes: the boolean expression, the statements from the t h e n clause 

and the statements from the else clause. 

A d a - 5 . 4 . 1 Shor t -c i rcu i t conditions 

The condition of an if is one of the forms: 
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expression 

expression and then expression 

expression or else expression 

t h e short circuit operators shown in figure Ada-5-15 are represented as shown In 

f igure A d a - 5 - 1 6 . 

Figure A d a - 5 - 1 5 : Short-circuit boolean operators: Source - to -TCOL A d a 

label: TREEJIODE 
(OP cand) I and then 
(SUBNODES expr-/a/>e/; expr-label:) 

label: TREEJIODE 
(OP cor ) I or e lse 
(SUBNODES expr-tebe/: expr-/a/>e/:) 

F igure A d a - 5 - 1 6 : T C O L A d a representation of short-circuit boolean operators 

T h e r e seems to be no good reason for the restriction of these operators to boolean conditions in I f 
s ta tements . This representation demonstrates that they can easily be handled as binary operators. 

£2UL££ 
and then 
or e l s e 

I££kAda 
cand 
cor 

A d a - 5 . 5 Case statement 
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c a s e eO of 
w h e n e1. .e2 => s3 
w h e n e 4 | e 5 => s6 
w h e n others => s7 ; 

label: TREE.NODE (OP case) 
(SUBNODES expr-label: expr-/abe/-se(7</ence) 

I to TREE.NODE of case Index expression, and 
I to TREE.NODEs for each case 

label:i TREE.NODE (OP when) 
(SUBNODES expr-label-sequence expr-label:) 

J sequence re fe rs to TREE.NODEs or 
I TYPE.SYH nodes or TREE.NODE wi th "others* 
j operator 

I choice: others 
label: TREE.NODE (OP others) 

Figure A d a - 5 - 1 7 : TCOL A c | a tree for case statement 

The semantics of a "when" operator node are that the last expression is the one 

to e x e c u t e if any of the preceding choice expressions matched eO. 

A choice may be represented by one of the following: 

- A TREEJJODE which produces a single value. 

- A TYPE SYM node which represents a range; an anonymous TYPE SYM 
node will be created to represent each range, and will be a derived 
type of the type of the case index. 

- A TREE NODE whose operator Is "others". This TREENODE has no 
subnodes. 

Type-check ing be tween the case index eO and the selectors in the w h e n clauses is the 
responsibility of the semantics phase. Optimizations, for example, constant folding to e l iminate 
unreachable cases, may be done by the semantics phase, but this is not required. 
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loop 
— body 

e n d loop; 

label: TREEJIODE 
(OP loop) 
(SUBNODES expr-label:) 

Figure A d a - 5 - 1 8 : T C O L A ( j a tree for loop statement 

The LOOP operator implies a "loop forever" which may be terminated only by some 

expl ic i t control transfer, e.g., exit, goto. The subnode of a loop operator t ree node 

Is t h e body of the loop. 

A d a - 5 . 6 . b w h i l e statement 

w h i l e 
— condition 
loop 

— body 
end loop; 

label: TREEJIODE 
(OP whi le ) 
(SUBNODES expr-/abe/.- expr-/abe/:) 

Figure A d a - 5 - 1 9 : T C O L A d a tree for while statement 

A d a - 5 . 6 Loop statements 

A d a - 5 . 6 . a loop statement 
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f o r var in [ reve rse ] discrete_range 
loop 

— body 
end loop 

label: TREE.NODE 
(OP fo r -up | for-down) 

(SUBNODES VARBL.SYM-/abe/.- TYPE.SYM-/abe/.- expr- /abe/: ) 

Figure A d a - 5 - 2 0 : T C O L A d a tree for for statement 

The first subnode points to a VARBL SYM node which holds the value for each 

i terat ion. The second subnode points to a TYPESYM node which specifies the range 

of the iteration. In the case where other than a type-mark is given to speci fy t h e 

range, an "anonymous type" is created to represent the range, and the subnode 

re fe rs to the TYPESYM node for this anonymous type. The third subnode refers to 

t h e program t ree representing the body of the loop. 

A d a - 5 . 7 e x i t statements 

label: TREE.NODE 
(OP e x i t ) 
(SUBNODES expr-/abe/: LABEL.SYM-/abe/:) 

Figure A d a - 5 - 2 1 : T C O L A d a t ree for exit statment 

If the condition is omitted in the source program, the Front End provides a 

r e f e r e n c e to a constant expression whose value is "true". 

The statements in the body are performed while the condition is true. 

A d a - 5 . 6 . c f o r statement 
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If the ex i t applies to an uniabelled construct, the Front End must supply a dummy 

LA8ELSYM node and a TREE NODE whose operator Is "exitlabel" In the appropriate 

p l a c e In the t r e e . See section Ada-5.c. 

A d a - 5 . 8 g o t o s ta tement 

label: TREEJIODE 
(OP goto) 

(SUBNODES LABEL_SYM-/a/>e/.-) 

Figure A d a - 5 - 2 2 : T C O L A d a t ree for goto statement 

I f the program label created two LABELSYM nodes, the target LABELJ5YM node 

for a goto statement is the LABELSYM node whose TREE NODE refers to a t ree node 

w h o s e operator is "gotolabel". See Ada-5.c. 

A d a - 6 . 9 Asser t s ta tement 

label: TREEJIODE 
(OP a s s e r t ) 
(SUBNODES expr-/abe/.-) 

I to TREEJIODE for condi t ion 

Figure A d a - 5 - 2 3 : T C O L A d a tree for assert statement 
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Ada-6. Declarative parts, subprograms and blocks 

A d a - 6 . 1 Declarat ive parts 

label: DECLARATI ON J NFO 
< SUBPROGRAMS SUBPROGRAM_SYM-/abe/-se<7t/efice> 
(VARBLS VARBL_SYM-/abe/-se<7uence) 
(TYPES TYPE_SYM-/abe/-seqfuence) 
(EXCEPTIONS EXCEPTI 0N_SYM-/abe/-sec7t/ence) 
(PRAGMAS PRAGMA_SYM-/abe/-se<7uence) 
(TASKS TASK_SYM-/abe/-seguence) 
(PACKAGES PACKAGE_SYM-/abe/-segt/ence) 
(ELABORATION.ORDER label-sequence) I t o a l l nodes tn 

1 above a t t r i b u t e s 

Figure A d a - 6 - 1 : DECLARATION INFO node In TCOL 

The DECLARATION INFO node specifies all of the declarations to be elaborated in 

t h e declaration list. The attributes SUBPROGRAM SYMS, VARBLS, e tc . are used to 

group declarations of one kind. However, since order is Important (a VARBL SYM 

node may be used in the later elaboration of a PROCEDURE or TYPESYM node, for 

example ) , the ORDER attribute points to each object to be elaborated In the order in 

which they must be elaborated. 

f T Y P E . S Y M nodes must be elaborated in order to evaluate the bounds constraints. PROCEDURE 
nodes must be elaborated to ascertain the value of default parameters, since the value of a defaul t 
parameter is determined at the time the procedure declaration is elaborated, not at procedure calf t ime. 

W h i l e it is true that some declarations need not be elaborated, ( for example, declarations involving 
s ta t ic expressions) , elimination of such nodes from the DECLARATtONJNFO node or the ORDER list is 
str ict ly an issue of attempting to optimize compiler performance. Such an optimization is sole ly r e l a t e d 
t o a particular implementation of a compiler, and is not to be performed by the Front End. 

A d a - 6 . 2 Subprogram declaration 
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label: SUBPROGRAM_SYM 
(NAME NAME_N0DE-/a6e/.-> 
(BODY expr-labehsequence) 
(RESULT TYPE_SYM-/abe/:) 
(KIND PROCEDURE | VALUE-PROCEDURE | FUNCTION 

j ENTRY | TASK-BODY) 
(PARAMETERS VARBL_SYM-/afce/-se<7i/ence) 
(LINKAGE LINKAGE-/a6e/;) 
(PRAGMAS PRAGMA_SYM-/afce/-seqi/e/Jce) 
(DECLARATIONS DECLARATI ON J NF0-/a6e/.O 
(EXCEPTION expr-/a6e/.-) 
(LOCATION expr-/abe/:) 

Figure A d a - 6 - 2 : SUBPROGRAM SYM node in T C O L A d a 

The BODY attr ibute refers to only a single body for all subprograms except ENTRY 

subprograms; for ENTRY subprograms, a sequence of zero or more body labels may 

be given. S e e Ada-9 .5 . 

LINKAGE nodes are not ye t specified. They contain information about the type of linkage to be used 
t o cal l the procedure; this captures the information required to interface to various languages. In 
addit ion, particular Ada implementations may use different calling conventions for procedures forming 
the run- t ime system primitives. 

The RESULT attribute is present only for functions and value-returning 

p r o c e d u r e s , and indicates the type of the result which they return. 

The LOCATION attribute is present only for subprograms for which an explicit 

address specification has been supplied; see section Ada-13.5. 

A d a - 6 . 3 Formal parameters 

Formal parameters are represented by VARBLSYM nodes which are referred to by 

the PARAMETERS attribute of a SUBPROGRAM SYM node (Ada-6.2) . The VARBL SYM 

nodes also specify the binding of the parameters; see Ada-4.3. The INITIALIZE 

at t r ibute of an in PARAMETER which has a default value is specified by having the 

INITIALIZE attr ibute point to an expression which is used to determine the value to 

b e passed by a call on the subprogram. This expression, because of the semantics 
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label: TREE.NODE 
<0P procedure) 
(SUBNODES SUBPROGRAM.SYrWafce/.- expr-label:) 

label: TREE.NODE 
(OP value-procedure) 
(SUBNODES SUBPROGRAM.SYrWaoe/.* expr-label:) 

label: TREE.NODE 
(OP f u n c t i o n ) 
(SUBNODES SUBPR0GRAM.SYM-/a6e/; expr-/aoe/.-) 

label: TREE.NODE 
(OP task ) 
(SUBNODES SUBPROGRAM.SYrWabe/: expr-/abe/;) 

label: TREE.NODE 
(OP package) 
(SUBNODES SUBPROGRAM.SYrWafce/.- expr-/afce/.-) 

Figure A d a - 6 - 3 : TREE NODEs for subprogram bodies 

The first subnode of a subprogram body is the SUBPROGRAMSYM node. The 

second subnode of a subprogram body is a pointer to the tree which represents the 

code of the body. 

The specification of accept statements and their bodies is In section Ada -9 .5 . 

of Ada, will always refer to a dummy variable created at procedure declaration 

elaboration time and which holds the value computed at that time* The dummy 

VARBLSYM node Is the the VARBLS list of the DECLARATION INFO node associated 

with the subprogram, and Its INITIALIZE attribute refers to the expression to be 

e laborated at procedure declaration time. For an example of all of this, see section 

A d a - 5 . 2 . 2 . 

A d a - 6 . 4 Subprogram bodies 
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T h e reason for the existence of such nodes in the program tree representation is to simplify the 
code generator; w h e n such a node is encountered by the code generator, the prolog and epilog code 
w i l l be emit ted ( a s appropriate in the t reewatk) . 

A d a - 8 . 5 Function subprograms 

S e e Ada-6 .4 . 

A d a - 6 . 6 Overloading of subprograms 

A d a - 6 . 6 . 1 Overloading of operators 

T C O L A d a requires that the semantics phase perform disambiguation on overloaded 

operators. Thus, every operator in the tree is uniquely identified with the particular 

implementation of that operator. If the operator is a user-defined operator, it may 

b e represented either as a subprogram (function) call or as a binary or unary 

operator as given in section Ada-4. If it Is represented as an operator node, the 

DEFN attr ibute of the TREENODE for that operator points to the definition of the 

function. This representation permits the standard arithmetic interpretations to be 

p laced on all the operators, e.g., "+" is associative and commutative, and obeys the 

distributive law with respect to "*"; "<" is a total ordering relationship whose 

complement is ">=", e t c . 

Because the DEFN attribute points to code which implements the operator, or to 

some other definition (such as for builtin operators on integer types) , the same 

token , " + " , can be used to represent many types of addition for which the standard 

interpretations hold. 

At some later stage in the compilation process, the TCOL operator may be uniquely identif ied such 
that rea l arithmetic, integer arithmetic, e tc . all have unique TCOL operators in that dialect of TCOL. 
W h e n , or if , this sort of transformation is done depends upon the particular compiler implementation. 

A d a - 6 . 7 Blocks 

A block is represented by a TREENODE whose operator is "block" and whose 

subnodes refer to the DECLARATION INFO node for the block and the t ree which 

descr ibes the body of the block. 

e 
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label: TREE.NODE 
(OP b lock) 
(SUBNODES DECLARATIONJHFO-label: expr-label:) 

Figure A d a - 6 - 4 : T C O L A d a for a block 
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Ada-7. Modules 

T C O L A d a 7 7 

The specification of modules specifies effects at syntax analysis and semantic 

analysis time. The results of semantic analysis, and In particular, visibility of 

variables or their representations (private declarations) are all Implicit in the 

T C O L A d a t ree . 

A d a - 7 . 1 Module structure 

A d a - 7 . 2 Module specifications 

A d a - 7 . 3 Module bodies 

S e e Ada-6 .4 . 

A d a - 7 . 4 Pr ivate type declarations 
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Ada-8. Visibility rules 
The scope and visibility of a name are determined by the semantic analyzer. All 

c a s e s of overlapping scope are resolved, and the TCOL representation always 

r e f e r s t o the correct identifier; there is no concept of overlapping scope or 

over loaded identifiers in the TCOL representation. 

A d a - 8 , 1 Scope of Declarations 

A d a - 8 . 2 Visibility of Identifiers 

A d a - 8 . 3 Restr icted Program Units 

0 J a - 8 . 4 USE clauses 

A d a - 8 . 5 Renaming 

T h e e f f e c t s of renaming on the TCOL representation have not ye t been specified. 

A d a - 8 . 6 Predef ined Environment 
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label: TASK_SYM 
(NAME NAME_N0DE-label:) 
(DECLARATI ON DECLARATI ON J NF0-/abe/.-) 
(BODY SUBPROGRAM_SYM-/abe/:) 

Figure A d a - 9 - 1 : TASKSYM node 

The TASK SYM node refers to a DECLARATIONJNFO node which contains the 

declarations for the task. The BODY attribute refers to a SUBPROGRAMSYM node 

for t h e task body; see section Ada-6.2. 

This specif icat ion is preliminary. 

A d a - 9 . 2 Task h ierarchy 

A d a - 9 . 3 Task initiation 

label: TREEJJODE 
(OP i n i t i a t e ) 

(SUBNODES expr-/abe/-seqrt/ence) 

Figure A d a - 9 - 2 : T C O L A d a representation for initiate 

The subnodes of an initiate operator node are either task designators which are a 

single task name (LEAF_NODEs pointing to TASK SYM nodes) or task designators 

which specify one or more members of a family of tasks. For a single member, the 

form is as shown in figure Ada-9-3, and for several members, the form is as shown In 

figure A d a - 9 - 4 . If the source language specifies the name of a task family, t h e 

Ada-9. Tasks 

A d a - 9 . 1 Task declarations and task bodies 
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TCOL t ree represents the explicit range which for a family of tasks T runs from 

T'FIRST to T'LAST. 

t a s k T O . . 1 0 ) is 
— task declarations 

end T; 
t a s k body T is 

— body 
end T; 
in i t iate T ( 4 ) , T ( 6 ) ; 

in i» TREE_NODE 
<0P i n i t i a t e ) 
(SUBNODES t 4 : t 6 : ) 

t 4 l TREE.NODE 
(OP index) 
(SUBNODES task-T f o u r i ) 

t 6 : TREEJIODE 
"(OP index) 
(SUBNODES task-T s i x : ) 

t a s k - T i TASK.SYM 
! . . . e t c . 

Figure A d a - 9 - 3 : T C O L A d a tree for initiating single members of a task family 

init iate T; — T as in figure Ada-9-3 

I n ! t TREE.NODE 
(OP i n i t i a t e ) 
(SUBNODES a l ! - t : ) 
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a l l - t J TREE.NODE 
(OP s l i c e ) 
(SUBNODES task-T» one- teni ) I T ( l . , 1 0 ) e x p l i c i t I 

o n e - t e n : TYPE.SYM 
I a der ived type of the index range of the task 
1 f a m i l y , w i th the constraints 1..10 

Figure A d a - 9 - 4 : T C O L A d a tree for initiating a family of tasks 

A d a - 9 . 4 Normal termination of tasks 

A d a - 9 . 5 Entry declarat ions and Accept statements 

An ent ry declaration generates a SUBPROGRAMSYM node (section A d a - 6 . 2 ) 

whose KIND is ENTRY and which contains multiple BODY pointers; there Is one pointer 

to each body of an accep t statement. 

tabeh TREE.NODE 
(OP accept) 

(SUBNODES SUBPR0GRAM.SYM-/a6e/.« expr-/a£»e/;) 

Figure A d a - 9 - 5 : T C O L A d a form of accept statement 

A d a - 9 . 6 DELAY statement 

labeh TREE.NODE 
(OP de lay) 

(SUBNODES expr-/a£>e/.-> 

Figure A d a - 9 - 6 : T C O L A d a representation for the delay statment 
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label: TREEJIODE 
(OP abor t ) 
(SUBNODES expr-label-sequence) 

I t o same types of nodes as an 
! i n i t i a t e statement 

Figure A d a - 9 - 7 : TCOL A c j a representation for abort statement 

A d a - 9 . 1 1 Signals and Semaphores 

A d a - 9 . 7 SELECT statement 

T h e e x a c t representation for the s e l e c t statement is not yet specified. 

A d a - 9 . 8 Task priorities 

A d a - 9 . 9 Task and Entry attributes 

A d a - 9 . 1 0 a b o r t statements 
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Ada-1 0. Program structure and compilation issues 

T C 0 L A d a does not normally specify the representation of data items e x c e p t when 

this is explicit in the source code. However, knowledge from previous separa te 

compilations, in which representation decisions have been bound, has the same 

e f f e c t as an explicit representation specification, in that the remaining phases of 

t h e compiler are not permitted to select a new representation. 

It is therefore necessary for the information about representation choices be 

made available to the Front End when separate compilation is done, so that the Front 

End may bind any representation decisions which may not be changed. This requires 

a specification of what information is required for separate compilation, and a 

specification of how to generate this information from some later form of the TCOL 

t r e e . Such a specification is beyond the scope of this document. 

A d a - 1 0 . 1 Compilation units 

A d a - 1 0 . 2 Subunits of compilation units 

A d a - 1 0 . 3 Order of compilation 

A d a - 1 0 . 4 Program library 

A d a - 1 0 . 5 Elaboration of compilation units 

A d a - 1 0 . 6 Program optimization 

Although static expressions may be evaluated by the compiler Front End, there is 

no requirement that this be done. 
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label: EXCEPTI ON.SYM 
(NAME NAME_NODE-/abe/.-) 

Figure A d a - 1 1 - 1 : EXCEPTIONSYM node 

A d a - 1 1 . 2 Exception handlers 

An exception handler looks almost like a case statment, except that the choices 

are restr icted to being either exception names or others. Thus, separate operators 

a r e used to represent the exception handler. 

label: TREE.NODE 
(OP excp-case) 
(SUBNODES expr-/abe/-seguence) 

label: TREE.NODE 
(OP excp-when) 

(SUBNODES EXCEPTI ON.SYM-/abe/-segt/ence expr-/abe/.-> 

Figure A d a - 1 1 - 2 s T C O L A d a representation for exception handler 

The first subnode of an excp-when operator node may also be a TREE_NODE 

whose operator is "others". If any of the exceptions named by the exception node 

label sequence is the one which caused entry into the exception handler, the 

s ta tements referred to in the last subnode are executed. 

Ada-1 1 . Exceptions 

A d a - 1 1 . 1 Exception declarations 

An exception declaration creates an EXCEPTIONSYM node. 
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A d a - 1 1 . 3 r a i s e statements 

ra ise exception_name; 

label: TREE_NODE 
(OP r a i s e ) 

(SUBNODES EXCEPTI0N_SYM-/a6e/;) 

Figure A d a - 1 1 - 3 : T C O L A d a tree for raise statement 

A ra ise statement with no exception named is legal only inside an except ion 

handler, and it re-raises the exception which caused entry into the except ion 

handler. This is identified in the TCOL tree by a separate operator, M re - ra lse M . 

d e c l a r e 
~ declarations 

begin 
— statements 

e x c e p t i o n 
— statments 
ra ise; 

e n d ; 

label: TREE_N0DE 
(OP r e - r a t s e ) 

Figure A d a - 1 1 - 4 : TCOL tree for raise inside exception handler 

A d a - 1 1 . 3 . 1 Dynamic association of handlers with exceptions 

A d a - 1 1 . 4 Except ions raised during tasking. 
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A d a - 1 1 . 5 Raising an exception in another task 

This has not y e t been specified. 

A d a - 1 1 . 8 Supressing exceptions 

Exceptions are suppressed by the SUPPRESS pragma. The scope of this pragma 

is the program unit in whose declarative part this pragma appears. Therefore, when 

elaborating the DECLARATIONJNFO part of a program unit, the pragma can be found, 

and its applicability decided (i.e., whether or not the compiler chooses to honor i t ) . 

Thus, there is no way the Front End can suppress the raise statement for a 

suppressed exception; that is something only later stages of the compiler can 

de f ine . 
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Ada-1 2. Generic program units 

In order to faci l i tate certain optimizations in simple compilers, a QENERICJNFO node ex is ts t o link, 
together al l instances of generic procedure bodies. The complete specification of the Q E N E R I C J N F O 
node is not finished. 

label: GENERIC J NFO 
(NAME NAME_NODE-/abe/:) 
( I NSTANCES SUBPR0GRAM_SYM-/a6e/-seguence) 

Figure A d a - 1 2 - 1 : GENERICJNFO node 

A d a - 1 2 . 1 Generic Clauses 

A d a - 1 2 . 2 Generic Instantiation 
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A d a - 1 3 . 1 Packing Specif ications 

The appearance of a packing specification in the source t e x t wilt cause t h e 

(PACKING YES) attribute value to be set. See section Ada-3.3. 

A d a - 1 3 . 2 Length Specif ications 

The appearance of a length specification In the source t e x t will cause the 

LENGTH attribute value to be set . See section Ada-3.3. 

A d a - 1 3 . 3 Enumeration Type Representation 

The appearance of an enumeration type representation In the source t e x t will 

change the way in which the LITERALS of an ENUMERATION SYM node are assigned 

values. See section Ada-3 .5 .1 . 

A d a - 1 3 . 4 Record Type Representation 

The presence of a record representation in the source t e x t provides values for 

the LOCATION and ALIGNMENT attributes of the VARBLSYM node for the record 

components. See section Ada-4.3. 

A d a - 1 3 . 5 Address Specif ications 

The appearance of an address specification in the source t e x t has the following 

e f f e c t s : 

- For a variable, this causes the LOCATION attribute of the 
corresponding VARBL SYM node to be set 'to the value of the location 
expression, expressed in bits. See section Ada-4.3. This must be a 
symbolic expression, because the Front End does not know how many 
bits comprise a storage unit. 

- For the name of a subprogram, module or entry, this sets the LOCATION 
field in the SUBPROGRAM SYM node; see section Ada-6.2. 

Ada-1 3. Representation specifications 
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A d a - 1 3 . 5 . 1 Interrupts 

A d a - 1 3 . 6 Change of Representations 

A d a - 1 3 . 7 Configuration and Machine Dependent Constants 

A d a - 1 3 . 8 Machine Code Insertions 

A d a - 1 3 , 9 In te r face to Other Languages 

A d a - 1 3 . 1 0 Unsafe Type Conversions 
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Ada-1 4. Input-output 

A d a - 1 4 . 1 General User Level Input-Output 

A d a - 1 4 . 1 . 1 Files 

A d a - 1 4 . 1 . 2 File Processing 

A d a - 1 4 . 2 Specif icat ion of the Package INPUT OUTPUT 

A d a - 1 4 . 3 T e x t Input-Output 

A d a - 1 3 . 3 . 1 Standard Input and Output Files 

A d a - 1 4 . 3 . 2 Layout 

A d a - 1 4 . 3 . 3 Input-Output of Characters and Strings 

A d a - 1 4 . 3 . 4 Input-Output for Other Types 

A d a - 1 4 . 3 . 5 Input-output for Numeric types 

A d a - 1 4 . 3 . 6 Input-output for Boolean 

A d a - 1 4 . 3 . 7 Input-output for Enumeration types 

A d a - 1 4 . 4 Specif ications of the Package TEXT JO 

A d a - 1 4 . 6 Low Level Input-Output 
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•ACCESS SIZE 

•ADDRESS 

'BITS 

'CLOCK 

•COUNT 

•DELTA 

label: TREE.NODE 
(OP access-size) 
(SUBNODES TYPE_SYM-/aoe/.-) 

label: TREE.NODE 
(OP address) 
(SUBNODES expr-/abe/.-) 

label: TREE.N0DE 
(OP b i t s ) 
(SUBNODES TYPE.SYrWaoe/:) 

label: TREE.NODE 
(OP task-c lock) 
(SUBNODES expr-/a6e/.-) 

The subnode evaluates to the name of a task. 

label: TREE.NODE 
(OP entry-count) 
(SUBNODES SUBPR0GRAM-/a6e/.-) 

Subnode refers to an entry subprogram node. 

label: TREE.SYM 
(OP d e l t a ) 
(SUBNODES TYPE.SYM-/ade/.-) 

•DIGITS 

label: TREE.SYM 
(OP d i g i t s ) 
(SUBNODES TYPE.SYrWaoe/?) 

A d a - 1 . Predefined language attributes 
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•EXPONENT MAX 

'EXPONENT MIN 

•FIRST 

•FIRST 

'FIRST(I) 

label: TREE..SYM 
(OP exponent-max) 
(SUBNODES TYPE_SYM-/aoe/.-) 

label: TREE_SYM 
(OP exponent-mln) 
(SUBNODES TYPEjSYM-/a6e/.-) 

On scalar types. 

label: TREE_N0DE 
(OP f i r s t ) 
(SUBNODES TYPE_SYM-/abe/.-) 

If the source language refers to an Instance of a type then 
the Front End must supply the type of the Instance as the 
operand. 

On arraysi see 'FIRST(/). 

On arrays. If the parameter Is omitted In the source t e x t , the 
TCOL tree must have an explicit parameter of 1 supplied. 

label: TREE.NODE 
(OP f i rs t -bound) 
(SUBNODES TYPE_SYM-tebe/; expr-/atoe/.«) 

If the source language refers to an instance of a type then 
the Front End must supply the type of the Instance as the 
operand. 

•FIRST BIT 

label: TREE_N0DE 
(OP f i r s t - b i t ) 
(SUBNODES VARBL_SYM-/aoe/:) 

where the VARBL SYM refers to a component VARBL In a 
record. 
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'INDEX 

'LARGE 

•LAST 

•LAST 

'LAST(I) 

label: TREE.NODE 
(OP task- Index) 
(SUBNODES expr-/aoe/.-) 

The subnode evaluates to the name of a task. 

label: TREE.SYM 
(OP large) 
(SUBNODES TYPE.SYM-/abe/.«) 

label: TREE.NODE 
(OP l a s t ) 
(SUBNODES TYPE_SYM-/abe/.-) 

If the source language refers to an instance of a type then 
the Front End must supply the type of the instance as t h e 
operand. 

On arrays, see 'LAST(/). 

On arrays. If the parameter is omitted In the source t e x t , the 
TCOL tree must have an explicit parameter of 1 supplied. 

label: TREE.N0DE 
(OP last-bound) 
(SUBNODES TYPE.SYM-/abe/.- expr-labeh) 

If the source language refers to an instance of a t y p e then 
the Front End must supply the type of the Instance as t h e 
operand. 

•LAST BIT 

label: TREE.NODE 
(OP l a s t - b i t ) 
(SUBNODES VARBL.SYM-/abe/:) 

where the VARBL SYM refers to a component VARBL In a 
record. 
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'LENGTH 
See 'LENGTHS). 

'LENGTH(i) 
On arrays. If the parameter is omitted in the source t e x t , the 
TCOL tree must have an explicit parameter of 1 supplied. 

label: TREEJIODE 
(OP length) 
(SUBNODES TYPE—SYM-/abe/.« expr-tebe/.-) 

If the source language refers to an instance of a type then 
the Front End must supply the type of the instance as t h e 
operand. 

label: TREEJIODE 
(OP posi t ion) 
(SUBNODES VARBL_SYM-/a6e/;) 

where the VARBLSYM refers to a component VARBL in a 
record. 

•ORD 

label: TREEJIODE 
(OP ord) 
(SUBNODES TYPE_SYM-/abe/.- expr-/aoe/.-> 

'POSITION 

'PRED 

label: TREEJIODE 
(OP pred) 
(SUBNODES TYPE^SYM-Zabe/; expr- /aoe/: ) 

'PRIORITY 

label: TREEJIODE 
(OP t a s k - p r i o r i t y ) 
(SUBNODES expr-/abe/.-) 

The subnode evaluates to the name of a task. 
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'REP 

'SIZE 

'SMALL 

'SUCC 

label: TREE.SYM 
(OP rad ix ) 
(SUBNODES TYPE.SYM-teoe/:) 

label: TREE.NODE 
(OP rep) 
(SUBNODES TYPE_SYM-/aoer\- expr-label:} 

The DEFN attribute of the TREE.NODE refers to the function w h i c h 
wi l l return the representation. 

label: TREE_NODE 
(OP s ize ) 
(SUBNODES TYPE.SYM-/ade/:) 

If the source language entity Is the name of an instance of a 
type instead of the name of a type, then the Front End must 
supply the type reference. 

label: TREE.SYM 
(OP small) 
(SUBNODES TYPE.SYM-/a6e/.*) 

label: TREE.NODE 
(OP succ) 
(SUBNODES TYPE.SYM-/aoe/.- expr-label:') 

'VAL 

label: TREE.NODE 
(OP v a l ) 
(SUBNODES TYPE.SYM-teoer'; expr-/aoe/.-) 

The DEFN attribute of the TREE.NODE refers to the function w h i c h 
wi l l return the value. 
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Ada-Z. Predefined Language Pragmas 
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Ada-3. Predefined Language Environment 
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Ada-4. Glossary 
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Ada-5. Syntax Summary 
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I. Summary of TCOL operators 

& Ada-3.6.3 

* Ada-4.5.5 

** Ada-4.5.6 

/ Ada-4.5.5 

+ Ada-4.5.4 

- Ada-4.5.4 

= Ada-4.5.2 

/= Ada-4.5.2 

< Ada-4.5.2 

<= Ada-4.5.2 

> Ada-4.5.2 

>= Ada-4.5.2 

I s Ada-5.1 

I Ada-5.b 

abor t Ada-9.10 

accept Ada-9.5 

a c c e s s - s i z e Ada-A 

address Ada-A 

agg-cho ice Ada-3.6.2 

aggregate Ada-3.6.2 

and Ada-4.5.t 

a s s e r t Ada-5.9 

b i t s Ada-A 
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b l o c k Ada-6.7 

c a l I Ada-5.2 

cand Ada-5.4.1 

case Ada-5.5 

component -se Iect Ada-4.1.2 

cor Ada-5.4.1 

d e l a y Ada-9.6 

d e l t a Ada-A 

d i g i t s Ada-A 

e l s l f Ada-5.4 

e n t r y - c o u n t Ada-A 

e x c p - c a s e Ada-11.2 

excp-when Ada-11.2 

e x i t Ada-5.c, Ada-5.7 

e x i t l a b e l Ada-5.c 

exponent-max Ada-A 

exponent -mln Ada-A 

f i r s t Ada-A 

f i r s t - b i t Ada-A 

f i r s t - b o u n d Ada-A 

f o r - d o w n Ada-5.6.c 

f o r - u p Ada-5.6.c 

f u n c t I o n Ada-6.4 

goto Ada-5.c, Ada-5.8 
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gotolabel 

I f 

in 

Index 

i n i t i a t e 

large 

last 

l a s t - b i t 

last-bound 

leaf 

length 

loop 

mod 

not 

n o t - I n 

nu l l 

or 

ord 

others 

package 

paren 

posit ion 

pragma 

pred 

Ada-5.c 

Ada-5.4 

Ada-4.5.2 

Ada-4 .1 .1 , Ada-9.3 

Ada-9.3 

Ada-A 

Ada-A 

Ada-A 

Ada-A 

Ada-4.5 

Ada-A 

Ada-5.6.a 

Ada-4.5.5 

Ada-4.5.4 

Ada-4.5.2 

Ada-5.a 

Ada-4.5.1 

Ada-A 

Ada-3.6.2, Ada-5.5 

Ada-6.4 

Ada-4.1 

Ada-A 

Ada-2.7 

Ada-A 
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p r o c e d u r e 

r a d i x 

r a i s e 

r e - r a i se 

r e c - c h o i c e 

r e c o r d - a g g r e g a t e 

r e p 

r e t u r n 

r e t u r n - v a l u e 

s i z e 

s i i c e 

smal I 

succ 

t a s k 

t a s k - c l o c k 

t a s k - i n d e x 

t a s k - p r i o r i t y 

U+ 

U-

v a i 

v a l u e - p r o c e d u r e 

when 

w h i l e 

xor 

Ada-6.4 

Ada-A 

Ada-11.3 

Ada-11.3 

Ada-3.7.3 

Ada-3.7.3 

Ada-A 

Ada-5.3 

Ada-5-3 

Ada-A 

Ada-4.3.b, Ada-9.3 

Ada-A 

Ada-A 

Ada-6.4 

Ada-A 

Ada-A 

Ada-A 

Ada-4.5.4 

Ada-4.5.4 

Ada-A 

Ada-6.4 

Ada-5.5 

Ada-5.6.b 

Ada-4.5.1 
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label: ACCESS.REP 
(ACCESS-OF TYPE.SYM-/abe/:) 

label: ARRAY_REP 
(COMPONENT TYPE_SYM-/abe/*) 

label: CONSTRAI NT.REP 
(RANGE expr-label: expr-label:) 
(ACCURACY expr-/abe/.-) 

label: DECLARATI ON J NFO 
(SUBPROGRAMS SUBPROGRAM_SYM-/abe/-segt/ence) 
(VARBLS VARBL_SYM-/abe/-seo;c/ence> 
(TYPES TYPE_SYM-/abe/-se<7«ence) 
(EXCEPTI ONS EXCEPTI ON_SYM-/abe/-seqi/e/>ce) 
(PRAGMAS PRAGMA_SYM-/abe/-seouence) 
(TASKS TASK_SYM-/abe/-seo;i/e/?ce) 
(PACKAGES PACKAGE_SYM-/abe/-se<7«ence) 
(ELABORATI0N_0RDER label-sequence) I t o a l l nodes I n 

I above a t t r i b u t e s 

label: ENUMERATION.REP 
( L I TERALS VARBL_SYM-/abe/-seg</ence) 

label: EXCEPTION.SYM 
(NAME NAME_NODE-/abe/;) 

label: GENERIC J NFO 
(NAME NAME_NODE-/abe/;> 
( I NSTANCES SUBPROGRAM_SYM-tebe/-seQt/ence) 

label: LABEL_SYM 
(NAME NAME_NODE-/abe/r) 
(TREE expr-/abe/.-> 

label: LEAF.NODE 
(OP l e a f ) 
(SUBNODES YARBL-/abe/;> 

II. Summary of node types 
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label: LI TERAL_REP 
(VALUE LG-llteral) 

label: NAME.NODE 
(PNAME string) 
(NAMES label-sequence) i TYPE..SYM, 

! VARBLJSYM, 
I EXCEPTION.SYM, 
I LABEL.SYM, 
I PRAGMA.SYM, 
! PACKAGE.SYM, 
J TASK.SYM, 
I SUBPROGRAM.SYM 

label: PACKAGE.SYH 
(NAME NAME_NODE-/abe/;) 

T h e specif ication of the remainder of the PACKAGE.SYM node is not complete. 

label: PRAGMA^SYM 
(NAME NAMEJJODE-/aoe/.-) 
(ARGS label-sequence) 

T h e e x a c t specification of the ARGS attribute is not complete. 

label: RECORD..REP 
(FIELDS label-sequence) I to VARBL.SYM nodes 

J or TREEJIODE 
J (op case) nodes 

label: SCALAR J?EP 
(VARIETY FIXED | FLOAT | INTEGER | CHARACTER | BOOLEAN) 

label: SUBPROGRAM_SYM 
(NAME NAME_NODE-/abe/:) 
(BODY expr-/abe/-seq/c/e/)ce) 
(RESULT TYPE_SYM-/abe/:) 
(KIND PROCEDURE | VALUE-PROCEDURE | FUNCTION 

| ENTRY | TASK-BODY) 
(PARAMETERS VARBL.SYM-label-sequence) 
(LINKAGE LINK AGE-/abe/.O 
( PRAGMAS PRAGMA..SYM- /abe/-seQi/e/7ce) 
( DECLARATIONS DECLARATI ON J NF0-/a6e/:) 
(EXCEPTION expr-labeh) 
(LOCATION expr-/abe/.-) 
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label: TASK.SYM 
(DECLARATI ON DECLARATI ON J NFO-/abe/:) 
(BODY SUBPROGRAM_SYM-/abe/:) 

label: TREE.NODE 
(OP identifier) 
(DEFN label:) 
(SUBNODES expr-label-sequence) 

label: TYPE.SYM 
(KIND DECLARED | SUBTYPE | DERIVED | PREDEFINED) 
(NAME NAME_NODE-/abe/.-) 
(CONSTRAI NT CONSTRAI NTJ?EP-/abe/-seoi/ence) 
(PARENT TfPEJSYM-labeh) 
(REP label:) 

(PACKING YES | NO) 
(LENGTH integer) 

J ARRAY_REP, 
! RECORD_REP, 
I ENUMERATION_REP, 
! SCALAR.REP 
! Ada-13.2 
! Ada-13.2 

label: VARBL.SYM 
(NAME NAME_NQDE-/abe/:) 
(TYPE TYPE_SYM-label:) 
(CONSTANT NO | UNKNOWN | COMPILE | LINK | EXECUTION) 
(BINDING IN | OUT | INOUT) I see t e x t 
(LOCATI ON expr-label:) 
(LENGTH expr-labeh) 
(ALIGNMENT expr-label) 
( I N I T I A L I Z E expr-/abe/.-) 
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Index 

& operator 5 0 

•ACCESS.SIZE 9 7 
•ADDRESS 9 7 
•BITS 9 7 
•CLOCK 9 7 
•COUNT 9 7 
•DELTA 9 7 
•DIGITS 9 7 
•EXPONENT.MAX 9 7 
•EXPONENT.MIN 9 7 
•FIRST 9 8 
•FIRST.BIT 9 8 
•INDEX 9 8 
•LARGE 9 8 
•LAST 9 8 , 9 9 
•LAST.BIT 9 9 
•LENGTH 9 9 
'ORO 9 9 
•POSITION 9 9 
•PRED 1 0 0 
•PRIORITY 100 
•radix 1 0 0 
•REP 1 0 0 
•SIZE 1 0 0 
•SMALL 1 0 0 
•SUCC 1 0 0 
»VAL 101 

m operator 5 1 
* * operator 5 1 

+ operator 5 0 
+ , unary 5 0 

- operator 5 0 
unary 5 1 

/ operator 5 1 
/ = operator 4 9 

:= operator 6 0 

; operator 5 5 

< operator 4 9 
<= operator 4 9 

a operator 4 9 

> operator 4 9 
>= operator 4 9 

Abort operator 8 4 
Accept operator 8 3 
A c c e s s - s i z e operator 9 7 
ACCESS.REP node 2 3 , 4 0 , 115 
ACCESS.SIZE attribute 9 7 
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Accuracy constraint 3 1 , 3 2 , 115 
Actual parameters 6 0 , 6 1 
Adding operators 5 0 
ADDRESS attribute 9 7 
Address operator 9 7 
Agg-choice operator 3 6 
Aggregate 3 6 
Aggregate operator 3 6 
Alignment clause 9 3 
Allocators 5 3 
And operator 4 9 
and t h e n 6 5 
Array 3 5 
Array aggregate 3 6 
Array Component 4 3 
Array T Y P E . S Y M node 3 5 
ARRAY_REP~ node 2 3 , 3 5 , 115 
Assert operator 7 0 
Assignment 6 0 
At clause 9 3 

.Basic loop 6 8 
BITS attribute 9 7 
Bits operator 9 7 
Block operator 7 4 
Boolean type 3 4 

Call operator 6 0 
Cand operator 6 6 
c a s e 6 6 
Case operator 6 6 
CLOCK attribute 9 7 
Component-select operator 4 4 
C O N S T R A I N T R E P node 2 3 , 3 1 , 115 
Cor operator 6 6 
COUNT attribute 9 7 

DECLARATIONJNFO node 2 3 , 7 1 , 115 
Default parameters 6 1 
De lay operator 8 3 
DELTA attribute 9 7 
Del ta operator 9 7 
DIGITS attribute 9 7 
Digits operator 9 7 
Division 5 1 

Elsif operator 6 4 , 6 5 
Entry-count operator 9 7 
ENUMERATIOW.REP node 2 3 , 3 3 , 115 
Equality 4 9 
EXCEPTION.SYM node 2 3 , 8 7 , 115 
E x c p - c a s e operator 8 7 
E x c p - w h e n operator 8 7 
Exit operator 6 9 
Exit label operator 5 7 
Exponent-max operator 9 7 
Exponent-min operator 9 7 
EXPONENT.MAX attribute 9 7 
EXPONENT-MIN attribute 9 7 
Exponentiation operator 5 1 
Expressions, stat ic 5 3 
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FIRST attribute 9 8 
First operator 9 8 
First-bit operator 9 8 
First-bound operator 9 8 
F I R S T B I T attribute 9 8 
f o r 6 9 
F o r - d o w n operator 6 9 
For-up operator 6 9 
Formal parameters 7 2 
Function operator 7 3 
Function subprogram 7 4 

GENERtCJNFO node 2 3 , 9 1 , 115 
Goto operator 7 0 
Gotolabel operator 5 7 

Identif iers 2 9 
i f 6 4 
If operator 6 4 
In 4 9 
In operator 4 9 
INDEX attribute 9 8 
Index operator 4 3 , 8 2 
Indexed Component 4 3 
Inequality 4 9 
Initiate operator 8 1 
Integer type 3 4 
I teration specif ication 6 8 

LABEL.SYM node 2 3 , 5 7 , 115 
Labels 5 6 
LARGE attribute 9 8 
Large operator 9 8 
LAST attribute 9 8 , 9 9 
Last operator 9 8 
Last-bi t operator 9 9 
Last-bound operator 9 9 
L A S T B I T attribute 9 9 
Leaf operator 4 8 , 4 9 , 115 
LEAF.NODE node 2 3 , 4 8 , 115 
LENGTH attribute 9 9 
Length operator 9 9 
U N K A G E J N F O node 2 3 , 115 
L ITERAL.REP node 2 3 , 4 5 , 115 
loop 6 8 
Loop operator 6 8 

Membership operators 4 9 
Minus, unary.. 5 1 
Mod operator 5 1 
Module body 7 7 
Multiplication 5 1 
Multiplying operators 51 

NAMEJVIODE node 2 3 , 4 3 , 116 
Node ACCESS.REP 2 3 , 4 0 , 115 
Node ARRAY.REP 2 3 , 3 5 , 115 
Node CONSTRAINT.REP 2 3 , 3 1 , 115 
Node DECLARATIONJNFO 2 3 , 7 1 , 115 
Node ENUMERATION.REP 2 3 , 3 3 , 115 
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Node EXCEPTION.SYM 2 3 , 8 7 , 115 
Node GENERICJNFO 2 3 , 9 1 , 115 
Node LABEL.SYM 2 3 , 5 7 , 115 
Node LEAF.NODE 2 3 , 4 8 , 115 
Node LINKAGEJNFO 2 3 , 115 
Node LITERAL.REP 2 3 , 4 5 , 115 
Node NAME.NODE 2 3 , 4 3 , 116 
Node PACKAGE.SYM 2 3 , 116 
Node P R A G M A . S Y M 2 3 , 2 9 , 116 
Node R E C O R D R E P 2 3 , 3 9 , 116 
Node SCALAR.REP 2 3 , 3 2 , 116 
Node SUBPROGRAM.SYM 2 3 , 7 1 , 116 
Node T A S K . S Y M 2 3 , 8 1 , 116 
Node TREE.NODE 2 3 , 4 7 , 117 
Node T Y P E . S Y M 2 3 , 3 1 , 117 
Node VARBU.SYM 2 4 , 4 5 , 117 
n o t 5 1 
n o t in 4 9 
Not operator 5 0 
N o t - i n operator 4 9 
n u l l 5 5 
Null operator 5 5 
Numbers 2 9 

Operator & 5 0 
Operator * 5 1 
Operator m m 5 1 
Operator -4- 5 0 
Operator - 5 0 
Operator / 5 1 
Operator / = 4 9 
Operator 6 0 
Operator ; 5 5 
Operator < 4 9 
Operator <= 4 9 
Operator = 4 9 
Operator > 4 9 
Operator >= 4 9 
Operator abort 84 
Operator accept 8 3 
Operator access-s ize 9 7 
Operator address 9 7 
Operator agg-choice 3 6 
Operator aggregate 3 6 
Operator and 4 9 
Operator assert 7 0 
Operator bits 9 7 
Operator block 74 
Operator call 6 0 
Operator cand 6 6 
Operator case 6 6 
Operator component-select 4 4 
Operator cor 6 6 
Operator delay 8 3 
Operator delta 9 7 
Operator digits 9 7 
Operator elsif 6 4 , 6 5 
Operator en try-count 9 7 
Operator excp -case 8 7 
Operator e x c p - w h e n 8 7 
Operator exi t 6 9 
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Operator exit label 5 7 
Operator exponent-max 9 7 
Operator exponent-min 9 7 
Operator first 9 8 
Operator f irst-bit 9 8 
Operator first-bound 9 8 
Operator f o r - d o w n 6 9 
Operator for-up 6 9 
Operator function 7 3 
Operator goto 7 0 
Operator gotolabel 5 7 
Operator if 6 4 
Operator in 4 9 
Operator index 4 3 , 8 2 
Operator initiate 8 1 
Operator targe 9 8 
Operator last 9 8 
Operator last-bit 9 9 
Operator last-bound 9 9 
Operator leaf 4 8 , 4 9 , 115 
Operator length 9 9 
Operator loop 6 8 
Operator mod 5 1 
Operator not 5 0 
Operator not - in 4 9 
Operator null 5 5 
Operator or 4 9 
Operator ord 9 9 
Operator others 3 7 , 3 8 , 6 7 
Operator package 7 3 
Operator paren 4 8 
Operator position 9 9 
Operator pragma 2 9 , 6 0 
Operator pred 100 
Operator procedure 7 3 
Operator radix 100 
Operator raise 8 8 
Operator re - ra ise 8 8 
Operator rec-choice 4 0 
Operator record-aggregate 4 0 
Operator rep 100 
Operator return 6 3 
Operator return-value 6 3 
Operator Semicolon ( 5 5 
Operator s ize 100 
Operator slice 4 7 , 8 2 
Operator small 1 0 0 
Operator succ 100 
Operator task 7 3 
Operator task-clock 9 7 
Operator task-index 9 8 
Operator task-priority 1 0 0 
Operator U«f 5 0 
Operator U - 5 0 
Operator val 101 
Operator value-procedure 7 3 
Operator when 6 7 
Operator whi le 6 8 
Operator xor 4 9 
or e l s e 6 5 
Or operator 4 9 
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O R D attribute 9 9 
Ord operator 9 9 
o t h e r s 6 6 
Others operator 3 7 , 3 8 , 6 7 

Package operator 7 3 
PACKAGE.SYM node 2 3 , 116 
Paren operator 4 8 
Plus, unary 5 0 
POSITION attribute 9 9 
Position operator 9 9 
Pragma operator 2 9 , 6 0 
Pragma SUPPRESS 8 9 
P R A G M A . S Y M node 2 3 , 2 9 , 116 
P R E D attribute 100 
Pred operator 100 
PRIORITY attribute 100 
Procedure operator 7 3 

Qual i f ied expressions 5 1 

Radix attribute 100 
Radix operator 100 
Raise operator 8 8 
R e - r a i s e operator 8 8 
R e c - c h o i c e operator 4 0 
Record-aggregate operator 4 0 
RECORD.REP node 2 3 , 3 9 , 116 
Relat ional operators 4 9 
REP attribute 100 
Rep operator 100 
r e t u r n 6 3 
Return operator 6 3 
Return-va lue operator 6 3 
r e v e r s e 6 9 

SCALAR.REP node 2 3 , 3 2 , 116 
Semicolon operator 5 5 
Sequence o f Statements 55 
Short Circuit evaluation 6 5 
SIZE attribute 100 
S i z e operator 100 
S l ice assignment 6 0 
S l ice operator 4 7 , 8 2 
S M A L L attribute 100 
Small operator 100 
SOURCE attribute 24 
Sta tement labels 5 6 
Statement sequence 5 5 
Sta t ic expressions 5 3 
Subprogram call 6 1 
S U B P R O G R A M . S Y M node 2 3 , 7 1 , 116 
Subtypes 3 1 
SUCC attribute 100 
Succ operator 100 
Symbol table 4 3 , 116 

Task operator 7 3 
T a s k - c l o c k operator 9 7 
Task- index operator 9 8 
Task-pr ior i ty operator 100 
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T A S K S Y M node 2 3 , 8 1 , 116 
T R E E . N O D E node 2 3 , 4 7 , 117 
T y p e conversion 6 3 
T Y P E . S Y M node 2 3 , 3 1 , 117 
T Y P E . S Y M node, for array 3 5 
T y p e s 3 1 

U + operator 5 0 
U - operator 5 0 , 5 1 
Unary + 5 0 
Unary - 5 1 
Unary operators 5 0 

V A L attr ibute 101 
V a l operator 101 
Va lue -procedure operator 7 3 
V A R B L . S Y M node 2 4 , 4 5 , 117 
Var iant components 3 9 

w h e n 6 6 
W h e n operator 6 7 
w h i l e 6 8 
W h i l e operator 6 8 

Xor operator 4 9 
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