
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

T C O L A d a :
Revised Report

on
An Intermediate Representation

for the
DOD Standard Programming Language

2 0 June 1 9 7 9

Joseph M. Newcomer
David Alex Lamb

Bruce W. Leveret t
David Levine**

Andrew H. Reiner
it*

Michael Tighe
William A. Wulf

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 1 5 2 1 3 USA

**lntermetrics, Inc., Cambridge, MA 0 2 1 3 8

This r e s e a r c h was sponsored by the Defense Advanced Research Projects Agency
(DOD) . The Carnegie-Mellon contract is monitored by the Air Force Avionics
Laboratory .

T h e v i e w s and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either e x p r e s s e d
or implied, of the Defense Advanced Research Projects Agency or t h e US
Government .

T C O L A d a I

<-'•' University L i b r a r i e s
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Table of Contents

1 . Format of this document 3

2 . Introduct ion 5

3 . LG 7

3.1 Primitive data types 8
3 .2 Composite data types 1 0

4 . T h e Compiler Model 1 3

5 . T h e Representat ion Model 1 7

6 . Notat ion 1 9

7 . Node t y p e s 2 3

7.1 The SOURCE attribute 2 4

Append ix Ada: TCOL for Ada 2 5

A d a - 1 . Introduction 2 7

A d a - 2 . Lexical elements 2 9

A d a - 3 . Declarat ions and Types 3 1

A d a - 4 . Names, Variables and Expressions 4 3

A d a - 5 . S ta tements 5 5

A d a - 6 . Dec lara t ive par ts , subprograms and blocks 7 1

A d a - 7 . Modules 7 7

A d a - 8 . Visibility rules 7 9

A d a - 9 . Tasks 8 1

A d a - 1 0 . Program structure and compilation issues 8 5

A d a - 1 1 . Exceptions 8 7

T C < > L A d a

A d a - 1 2 . Generic program units

A d a - 1 3 . Representat ion specifications

A d a - 1 4 . Input-output

A d a - 1 . Predef ined language attributes

A d a - 2 . Predef ined Language Pragmas

A d a - 3 . Predef ined Language Environment

A d a - 4 . Glossary

A d a - 5 . Syn tax Summary

I. Summary of TCOL operators

I I , Summary of node types

Index

T C O L A d a
lii

Table of Figures

Figure 3 - 1 : LG example 7
Figure 4 - 1 : Ada Compiler as viewed in this document 1 3
Figure 4 - 2 : Compiler decomposition with enhanced TCOL 1 4
Figure 5 - 1 : Hierarchy for names, symbols, types, etc. 1 7
Figure 5 - 2 : Hierarchy for program tree nodes 1 7
Figure 6 - 1 : TCOL representation of a node 1 9
Figure 6 - 2 : Notation for labels in attributes 1 9
Figure 6 - 3 : Simplified representation of literals 2 1
Figure A d a - 2 - 1 : PRAGMA SYM nodes 2 9
Figure A d a - 2 - 2 : Reference to PRAGMA SYM node in the t ree 2 9
Figure A d a - 3 - 1 : TYPE SYM and CONSTRAINTREP nodes 3 1
Figure A d a - 3 - 2 : SCALARREP nodes 3 2
Figure A d a - 3 - 3 : ENUMERATIONREP node 3 3
Figure A d a - 3 - 4 : Derived types and subtypes of ah enumeration type 3 3
Figure A d a - 3 - 5 : ARRAY REP nodes 3 5
Figure A d a - 3 - 6 : Array aggregate representation In T C O L A d a 3 6
Figure A d a - 3 - 7 : Example of an aggregate In T C O L A d a 3 7
Figure A d a - 3 - 8 : Example of a more complex aggregate In T C O L A d a 3 8
Figure A d a - 3 - 9 : RECORD REP nodes 3 9
Figure A d a - 3 - 1 0 : T C 0 L A d a representation of a record aggregate 4 0
Figure A d a - 3 - 1 1 : ACCESSREP node 4 0
Figure A d a - 4 - 1 : NAME NODE nodes 4 3
Figure A d a - 4 - 2 : T C 0 L A d a for indexed component 4 3
Figure A d a - 4 - 3 : T C 0 L A d a for selected component 4 4
Figure A d a - 4 - 4 : LITERAL REP nodes 4 5
Figure A d a - 4 - 5 : VARBL SYM nodes 4 5
Figure A d a - 4 - 6 : T C 0 L A d a representation for an array slice access 4 7
Figure A d a - 4 - 7 : TREE NODE in T C 0 L A d a 4 7
Figure A d a - 4 - 8 : LEAFjNODE in T C 0 L A d a 4 8
Figure A d a - 4 - 9 : Logical operators: source- to-TCOL A d a transformation 4 9
Figure A d a - 4 - 1 0 : Relational and membership operators: 4 9

s o u r c e - t o - T C O L A d a

Figure A d a - 4 - 1 1 : Adding operators: Source- to-TCOL A d a transformation 5 0
Figure A d a - 4 - 1 2 : Unary operators: source- to-TCOL A d a transformation 5 0
Figure A d a - 4 - 1 3 : Multiplying operators: source- to -TCOL A d a 5 1

transformation
Figure A d a - 4 - 1 4 : Exponentiation operator: source - to -TCOL A d a 5 1

transformation
Figure A d a - 4 - 1 5 : Use of a qualified expression 5 2
Figure A d a - 4 - 1 6 : Qualified expression which may Imply run-time type 5 2

conversion
Figure A d a - 5 - 1 : null statement 5 5
Figure A d a - 5 - 2 : Permissible representations for statement sequences 5 6

Iv
T C ° L A d a

Figure A d a - 5 - 3 : Flattening of " ; M operator nodes 5 6
Figure A d a - 5 - 4 : T C O L A d a tree for gotolabel and exitlabel operators 5 7
Figure A d a - 5 - 5 : LABELSYM nodes 5 7
Figure A d a - 5 - 6 : LABEL SYM and goto 5 8
Figure A d a - 5 - 7 : Interactions with LABEL SYM nodes 5 9
Figure A d a - 5 - 8 : T C O L A d a tree for assignment 6 0
Figure A d a - 5 - 9 : Subprogram call operator 6 0
Figure A d a - 5 - 1 0 : Default parameter representation 6 2
Figure A d a - 5 - 1 1 : T C 0 L A d a t ree for return statement 6 3
Figure A d a - 5 - 1 2 : T C 0 L A d a tree for return statement for value return 6 3
Figure A d a - 5 - 1 3 : T C 0 L A d a tree for if statement 6 4
Figure A d a - 5 - 1 4 : T C 0 L A d a tree for elslf clauses 6 5
Figure A d a - 5 - 1 5 : Short-circuit boolean operators: Source - to -TCOL A d a 6 6
Figure A d a - 5 - 1 6 : T C 0 L A d a representation of short-circuit boolean 6 6

operators
Figure A d a - 5 - 1 7 : T C 0 L A d a tree for case statement 6 7
Figure A d a - 5 - 1 8 : T C 0 L A d a tree for loop statement 6 8
Figure A d a - 5 - 1 9 : T C 0 L A d a tree for while statement 6 8
Figure A d a - 5 - 2 0 : T C 0 L A d a tree for for statement 6 9
Figure A d a - 5 - 2 1 : T C 0 L A d a tree for exit statment 6 9
Figure A d a - 5 - 2 2 : T C 0 L A d a tree for goto statement 7 0
Figure A d a - 5 - 2 3 : T C 0 L A d a tree for assert statement 7 0
Figure A d a - 6 - 1 : DECLARATION INFO node in T C 0 L A d a 7 1
Figure A d a - 6 - 2 : SUBPROGRAM~SYM node In T C 0 L A d a 7 1
Figure A d a - 6 - 3 : TREE NODEs for subprogram bodies 7 3
Figure A d a - 6 - 4 : T C 0 L A d a for a block 7 4
Figure A d a - 9 - 1 : TASK SYM node 8 1
Figure A d a - 9 - 2 : T C 0 L A d a representation for initiate 8 1
Figure A d a - 9 - 3 : T C 0 L A d a tree for initiating single members of a task 8 2

family
Figure A d a - 9 - 4 : T C O L A d a tree for initiating a family of tasks 8 3
Figure A d a - 9 - 5 : T C 0 L A d a form of accept statement 8 3
Figure A d a - 9 - 6 : T C 0 L A d a representation for the delay statment 8 3
Figure A d a - 9 - 7 : T C 0 L A d a representation for abort statement 8 4
Figure A d a - 1 1 - 1 : EXCEPTION SYM node ' 8 7
Figure A d a - 1 1 - 2 : T C 0 L A d a representation for exception handler 8 7
Figure A d a - 1 1 - 3 : T C 0 L A d a tree for raise statement 8 8
Figure A d a - 1 1 - 4 : TCOL tree for raise inside exception handler 8 8
Figure A d a - 1 2 - 1 : GENERIC JNFO node 9 1

1

2 T C 0 L A d a

Because of tight publication deadlines, primarily the need to circulate a draf t of

this specification widely by the end of June, some sections were not completed*

W e e x p e c t these sections to be completed in the final draft. Many sections contain

no prose because there is nothing in the Ada manual which applies to T C O L A d a . For

completeness, these sections are left in this manual.

W e solicit feedback on this edition of the document. Comments, questions, and

suggestions may be sent to:

Joseph M. Newcomer
Computer Science Department
Carnegie-Mellon University
5 0 0 0 Forbes Avenue
Pittsburgh, Pa. 1 5 2 1 3

or via the ArpaNet to:

NewcomerSCMU-10A

Later editions may be obtained by writing to the above U.S. Mail address, or by

sending a request via the ArpaNet. This document is also available in

machine-readable form suitable for printing on line printers, DECwri ters t m , D lab Io* m

or equivalent devices, and as general ASCII tex t for printing on other d e v i c e s 1 . The

machine-readable source, for the SCRIBE document production system, is also

avai lable. Direct inquiries to the above addresses.

' T h e primary di f ference among these devices is how underlining and overstriking are done; such f e a t u r e s
enhance the readabil i ty of the output when they are available.

P r e f a c e to the 2 0 June edition

T C O L A d a 3

1 . Format of this document
The document Is presented in several sections. The introductory and overv iew

prose is in numbered chapters; chapter 2 Is the introduction to TCOL; chapter 3 is a

brief overview of the language used to express TCOL.

The bulk of the document is given with chapters and sections with the pref ix

"Ada" and is keyed to the Ada Reference Manual [2] . If a section number is given

wi th a letter suffix, e.g., M Ada-5 .6 .c H , then that represents a finer breakdown than

given in the Ada reference manual for a particular section, e.g., section 5 . 8 . Severa l

appendices summarize the information distributed throughout the manual. A

comprehensive index and a bibliography are included.

Editorial comment, annotations, explanations, and other prose not related directly to the content o f
the document, but which may aid the reader's understanding either of the document or the mot ivat ions
o f the authors in making particular design choices is shown like this.

T C 0 l - A d a

T C O L A d a
5

2. Introduction
This document describes T C O L A d a , an intermediate representation for programs

wr i t ten In Ada. T C O L A d a is intended to be a uniform, machine-Independent

representat ion of Ada programs suitable for further processing by machine-

dependent compiler modules. It is intended that the T C O L A d a produced by a

parser /semantic analyzer be usable by many different implementations of Ada

compilers for many different machines.

This document uses the term "intermediate representation 1 1 to denote languages

suitable for representing source programs in the innards of a compiler. T C O L A d a .

one such intermediate representation for an Ada compiler, Is described here.

TCOL is the generic name given to a set of language-specific TCOL instantiations

such as T C O L A d a , T C O L P a s c a | , and T C O L B | i s s . All of the specific TCOLs are v e r y

similar; they differ in that each contains constructs for handling features unique to

its language. For instance, T C O L p o r t r a n would contain a construct for the DO

sta tement , T C O L B | j s s would have the ability to represent byte pointers, and so on.

TCOL was originally developed as tool for use in the Production Quality Compiler

Compiler (PQCC) project at Carnegie-Mellon University [3] . PQCC Is Investigating

techniques for automating compiler construction. A Production Quality Compiler

(PQC) produced by this technology is expected to be as efficient as the b e s t

hand-built compilers.

A PQC is phase-structured; it is composed of a linear sequence of phases tha t

each perform some task in the code generation process. Dialects of TCOL provide

communication among the various phases. For developmental purposes, It is

important that the TCOL be human readable (i.e., have an ASCII representation). I t

is also important that TCOL primarily represent the semantics of the language; this

allows the compiler to maximize the scope and magnitude of Its optimizations. TCOL

w a s designed so that its internal representation can be very efficient; a production

version of a compiler would not need to write the tex t files unless requested to do

so.

6 T C 0 L A d a

The language used to express T C O L A d a Is called M LG M , and Is described briefly In

chapter 3 .

I t Is important to understand that T C O L A d a serves two purposes: one Is to

spec i fy the intermediate representation of Ada programs, and the other is to make

this intermediate representation visible to people and other programs. Although the

TCOL representations shown here look complex, in fact they represent exact ly the

information that an equivalent internal form would possess. LG was designed to be a

readab le form of the conventional internal form of such complex structures, so that

in particular one is not forced to read octal dumps to determine the source of an

error. Within a research environment, it enabled separate phases of the compiler to

be built independently, because each phase would read and write TCOL t e x t f i les; In

p rac t ice , a compiler could pass information from phase to phase through memory,

e x a c t l y as conventional compilers do today.

The advantages of using a TCOL representation for Ada programs are numerous:

- A t ree-structured intermediate representation is more suitable for
program manipulation (e.g., optimization) than most other forms. Ada is
a language in which there are many opportunities for program
manipulation of various forms for optimization purposes.

- The ability to read and write an external form of T C O L A d a allows for
more flexibility in designing and building compilers.

- Separa te development of compiler phases is possible, and such
development can proceed on different machines; for example, a
complete parser/semantic analyzer may be developed, and Its output
could still be machine-independent. Machine-dependent code
generators could then be produced independently, with varying
degrees of sophistication. A complete new system would not have to
be brought up for each new machine.

- It will provide a medium of communication among the various groups
constructing Ada compilers. Implementors will speak the same
"language 1 1 when discussing how their compilers work.

3. LG

T C O L A d a 7

LG is fully described in [4] . A brief overview is given here. In addition to the LG

notat ioh, a se t of tools for reading, writing, and manipulating LG files exists , and a

s e t of tools for managing systems which use LG has been developed.

LG is a notation for expressing, in the form of readable t e x t , the Internal d a t a

s t ructures for a compiler or other complex data manipulation system. I t w a s

designed to meet the following requirements:

- The notation should be able to represent an arbitrary directed graph
wi th many links, including cyclic links.

- The notation should be able to represent information independently of
its implementation, e.g., representing a sequence of data which may be
stored as a list, a set, a vector, etc.

- The notation should be transformable to an efficient representation,
e .g . a highly packed bit representation with single bits for boo leans,
small fields for small values, etc.

- The notation should permit two phases which communicate by writing
to an intermediate file to be combined and communicate directly by
passing the data structures in memory.

- The implementation of a system which uses LG should pass information
it does not understand Idempotently through the phase, so that
information Is not lost.

These goals were driven by the desire to produce a system which was comfortable

and friendly for developing a system as a research system, and ye t suitable for

building a true production version of the same system without requiring a complete

recoding.

W e will first give an example in LG, and then explain the details of the notation.

8
T C ° L A d a

17x OBJECT
(NAME BALL)
(COLOR YELLOW)

23s ACTOR
(NAME JACK)
(AGE 6)

31s RELATION
(NAME PLAYS-MITH)
(WHAT 2 3 :)
(TOWHAT 1 7 :)

Figure 3 - 1 : LG example

This example was chosen because it has nothing whatever to do with compilers.

I t Is there fore possible to concentrate on what the notation says without worrying

about w h a t w e must say to describe a compiler data structure.

This shows that there exist things called OBJECTS that have names and colors.

ACTORs that have names and ages, and RELATIONS for connecting actors to objects

(or possibly objects to actors), which have names and directed arcs WHAT and

TOWHAT. Attribute names such as "NAME", "AGE", "WHAT", and "TOWHAT" are not

in te rpre ted by the LG support system — any other identifiers couid have been used

equally wel l . Moreover, the NAME fields In the three types of nodes, OBJECTS.

ACTORs, and RELATIONS, are not necessarily related to each other, or confused or

connec ted with each other in any way by the LG system. Thus LG could be the

e x t e r n a l representation of a conventional record structure, as provided by

languages like PASCAL.

3 .1 Primitive data types

The primitive types for the attribute values are:

integer represented externally by a string of digits, or by a symbolic
name;

T C O L A d a
9

label represented by an octal number followed by a colon (forward
references are handled correctly).

Identifier represented by a string of letters, digits, and even some
punctuation marks;

string quoted strings of arbitrary characters;

sequence sequences of values (separated by blanks) of any of the
above types, possibly with various types Intermixed.

Values of the Identifier type are represented internally by unique integers

g e n e r a t e d by the LG system; two of them can be tested for equality, but no other

meaningful operations can be performed.

An LG support package provides the software necessary to work with these

representat ions In a program. It contains:

- A definition-file generator, which takes a specification of the node
types , attribute names, and allowable value types and values, and
produces definition files used by the source program. These files
provide the necessary access to the fields, to the node information,
and to the representation. They additionally define the tables required
by the input/output support.

- Input/output runtime support, which reads and writes LG files.

- Runtime utility support, which provides procedures for set and list
manipulation, storage management, creation and deletion of nodes and
complex values, and error handling.

Attr ibutes of type integer and Identifier frequently appear similar In the ex terna l

representat ion. This is because of the. facility for defining symbolic names for

integer attr ibute values. Consider, for instance, the attribute COLOR, of "object 1 1

things. The user can specify that the only legitimate colors have symbolic names

BLUE, RED, YELLOW, and GREEN, and can further specify which integers these four

names represent . If, alternatively, the COLOR attribute had type Identifier, then

any name would be a legitimate color; two colors could be tested for equality, but no

other operations (such as typical integer operations) would be meaningful.

1 0 T C 0 L A d a

Attribute names and symbolic names, like identifiers, need only conform to the

v e r y permissive LG syntax for identifiers. Since most languages (BLISS In

part icular) have more restricted identifier syntax, the LG facility for defining them

allows them to be associated with "internal1 1 identifiers, which are expected to obey

t h e rules of the host language.

3 .2 Composite data types

The internal representation of a sequence Is defined by the user; thus, the

sequence

(SUBNODES 17: 44: 76: 122: 5 :)

may be stored as

an array: the order is preserved, and the / t h element of the array Is the
/ t h value in the sequence;

a set: the order is not preserved, and duplicate entries are omitted.
Insertion and retrieval are efficient;

a list: the order is preserved, and insertions and deletions are
efficient while indexing is not (lists are doubly linked).

(All of these representations are fully supported by the LG software.)

In addition, atomic types or arrays may contain values of type Item. An Item has

a value which can be any of the atomic types or composite types, and has a

t y p e - t a g indicating which type the value possesses. For example, the following

sequence could be stored only in an item-array, set, or list:

(THING-SEQUENCE " s t r i n g * 17: 45 any- id)

Similarly, the following two nodes would require that the VALUE field be of type /fern,

and the type of the item would be determined at run time by examining a tag f ield.

17 : SOMENDDE
(VALUE 4 4 :)

2 3 : SOMENODE
(VALUE 5)

T C O L A d a 11

In this example, the type tag associated with the VALUE field of node 1 7: would

indicate that the type of the VALUE field is label, and the type tag of the VALUE f ield

of node 2 3 : would indicate that the type of the value field was Integer. As with

"union mode" or "variant record" features in many languages, this feature d e f e a t s

some of the t y p e checking that normally is done.

1 2 T C O L A d a

T C O L A d a 1 3

For "Compiler Wr i te r ' s Virtual Machine" [1] ,

4. The Compiler Model

TCOL is a family of languages suitable for expressing the intermediate

representation of programming languages during the compilation process. There a re

major variants of this family, e.g., T C O L B L | S s w h , c h represents programs In BLISS,

and T C O L A d a which represents programs in Ada. There could also be T C O L p o r t r a n ,

T C O L p a s c a | , e tc . It is assumed that the commonality of these languages is greater

than their differences, so in fact there is some "core" which is actually common to

all languages. Extensions can be done so that some level of the compiler could

actually accept TCOL for several languages.

However, even within one TCOL there are many dialects; these represent t h e

additional information added by the various phases of the compilation process, or in

some cases, a "simpler1 1 TCOL dialect represents the binding of certain decisions

and the consequent discarding of information required to make the binding.

The compiler model, at a first approximation, is shown in figure 4 - 1 . It consists of

a Front End, which produces T C O L A d a | - p / E j , a module referred to as H C W V M H ^ which

binds implementation decisions and produces T C O L A d a j - C W V | y j - | , and a Back End

which generates code, and whose output is machine code. Within each of t h e s e

phases there can be several dialects of T C O L A d a .

This document speci f ies T C O L A d a as output by the Front End, I.e., semant ic

f?P£!y si? h £ s besPrfippe-

It is important to realize that this is a model of a compiler for purposes of

exposition. It is not a specification for the construction of a compiler. For example,

a Front End may be done as a separate parser and semantics analyzer which

communicate through files written in TCOL, or as a single phase from which t h e

T C O L A d a j - p / E j is produced.

The T C O L A d a as specified here is suitable as Input to a CWVM module. A given

1 4 T C O L A d a

I I I I I !
| Front End | > | CMVM | > | Back End |
I I TC0L F E | |TC0L C M Y M I I

Figure 4 - 1 : Ada Compiler as viewed in this document

implementation may actually incorporate the CWVM functions Into the Front End,

using a much richer representation internally than this specification requires, i ts

output would be the TCOL A d a [C vWM] s n o w n , n figure 4 - 1 . However, if such a

module were able to additionally produce a TCOL which satisfied the specifications

of this document, it would be suitable as an Ada Front End to any other system

which accepted the TCOL defined here as input. Such a decomposition Is shown in

f igure 4 - 2 .

+ +
I I
| Front End 1 |
I I T C 0 L F E # 1

+ +
I

> TCOL A d a

+-
I

TCOL A c | a > | Translat ion
I
+

Figure 4 - 2 : Compiler decomposition with enhanced TCOL

i

i

i
->| Back End 1 |

I

I
I
I

In example 4 - 2 , a particular Implementation of a Front End produces an enhanced

T C O L A d a 1 5

TCOL for its associated Back End* This may simply include more pointers of various

sorts , e .g . sibling pointers in record components, ancestor pointers in TREE NODEs,

e tc . , or may have other extensions which represent information the Front End has

discovered and which, If the communication were in pure T C O L A d a , the Back End

would have to discover for itself. However, the Front End also puts out a subset of

T C O L F E - j which satisfies the T C O L A d a specification, and a "translation" program

ex is ts which will take T C O L A d a and add the necessary enhancements required to

ach ieve T C O L p E - j . Such a compiler structure satisfies the requirements of

producing and accepting T C O L A d a .

The TCOL output by the Front End expresses a program entirely in terms of

language semantics. No implementation-specific or machine-specific semantics are

in t h e T G O L A d a j - p ^ E j . The TCOL output by the CWVM expresses a program in terms

of machine and implementation semantics as well, e.g., addition is no longer a single

operator, but the various sorts of addition supported by the target machine and

which are appropriate for the source language data types are all identified.

16 TCOL A d a

T C 0 L A d a 1 7

5. The Representation Model

The representation is inspired by the notion of class and subclass from

SIMULA-67. However, the limits of the L6 notation require that extensions to a

basic class be done by creating new "nodes" (which would be called "records 1 1 In

some languages). The hierarchy used In this document is shown In figure 5 - 1 .

This shows the hierarchical relationships among the nodes which represent

declarat ions. The first level, consisting only of NAME NODEs, is the w name tab le" of

a compiler. The next level, those nodes which can be* referred to by a NAME NODE,

Is t h e "symbol table" of a compiler. The LITERALREP nodes which are referred to by

VARBL SYM nodes comprise the "literal table". The remaining _REP nodes

(ACCESSREP, ARRAYREP, etc.) are extensions to the TYPESYM node.

In a conventional record-oriented language, these could be thought of as variants in the T Y P E . S Y M
record . In LG, the variants are implemented as new nodes, so the discriminant on the variant is the LG
n o d e - t y p e , which is easily determined.

The hierarchy for the nodes which represent the executable program t e x t is

shown in figure 5 - 2 . LEAF NODEs are an extension of TREE NODEs, and

DECLARATIONJNFO provides additional information for certain types of operators.

TREB_NODB
I
• LBAFJVODB
I
+ DECLARAT10N_ INFO

Figure 5 - 2 : Hierarchy for program tree nodes

is STJSSrCiflCati0n UNKAdE- ,NF0
 - ^ i o n s h i p to other nodes in figure 5 - 1 ,

1 8 T C O L A d a

NAME_NODB

ACCBSSJBP

ARRAYJIEP

CONSTRAINTJIEP

ENUMER AT I ONJBP

RECORDJBP

SCALAOSP

—EXCEPTION _SYM

—LABBL_SYM

—PRAGMA_SYM

—PACICAGB_SYM

—SUBPROGRAMS YM

~TASK_5YM

—VARBL_5YM
I
+ . LITBRAUBP

Figure 5 - 1 : Hierarchy for names, symbols, types, e tc .

TYPLSYM
I

I
+
I

I
4
I
I

6. Notation

T C O L A d a 1 9

This section deals with how TCOL nodes will be represented In this document for

purposes of exposition. Each node will be presented in skeleton form, which will be

a complete specification of the node. Usually, when a node appears In an example,

only a partial node will be shown.

TCOL nodes are described as In figure 6 - 1 . TCOL does not distinguish upper and

lower case , so frequently, for purely aesthetic reasons, some TCOL examples

contain lower case t e x t . In addition, "non-terminal1 1 symbols in the LG notation are

shown highlighted, as in figure 6 - 1 . In this example, the names "label: 1 1 and

"Identif ier" stand for any LG label and any LG identifier.

label: TREEJWDE
<0P identifier)

Figure 6 - 1 : TCOL representation of a node

To enhance readability, this document uses symbolic labels in the LG examples.

Actual LG support requires octal integer labels, which present no problem when t h e

TCOL is generated by machine.

A simple SNOBOL program exists which wil l do the translation when it is required. Any program
w h i c h generates TCOL should use the octal labels, to eliminate the need for an ex t ra step in the
compilation process. Although the program is simple, it is s low, and it requires t w o passes.

An attr ibute value which is actually an LG label will be shown prefixed with the name

of the node it points to. When it can point to several different types of nodes, t h e

t y p e s of nodes are usually given as a comment, as shown in figure 6 - 2 . Because

expressions in TCOL can be represented by either TREE NODEs or LEAF NODEs, and

because statements are also represented as TREENODEs, the special "node t y p e "

expr is used as a notationai convenience to indicate a pointer to either a

TREENODE, or where reasonable, a LEAF NODE.

2 0 T C 0 L A d a

label: TREEJIODE
(OP c a l l)
(SUBNODES SUBPROGRAM_SYM-/abe/.- expr-labehsequence)

label: TYPE.SYM
(NAME NAME_NODE-/abe/:)
(REP label:) !To ARRAYJ?EP,

J RECORDJ?EP,
1ENUMERATIONJ?EP>

I . • • e t c .

Figure 6 - 2 : Notation for labels in attributes

It is frequently inappropriate or unwieldy to give complete examples, so several

forms of ellipses are used:

- In examples of Ada code, comments are frequently used to indicate
f. "declarations 1 1 or "statements" where the exact contents are

irrelevant.

- In examples of Ada code, where specific expressions or statements
are to be shown in their relation to the TCOL tree, arbitrary groups of
statements are designated by S j and arbitrary expressions by e } . The
TCOL expansion of these statements is not shown in the TCOL
representation.

whi le eO loop s1 end loop;

l a b e l i TREE_N0DE
(OP whi le)
(SUBNODES eO: s i t)

- Attributes which are not relevant to the example are usually omitted;
for example, the SOURCE attribute which is present in every node
hardly ever appears in the examples; the NAME attribute in VARBL SYM
nodes and some others, which is simply a reference to the print name,
is frequently omitted.

- Within an attribute, which can consist of a sequence of LG items, a
sequence of dots indicates that several such items may precede or

T C O L A d a 2 1

follow the Item shown, e.g.

(SUBNODES . . . something! . . .)

The comment "etc." is used frequently in node descriptions to
indicated that some attributes are not shown.

- When a reference is made to an expression which has a numeric value,
and that value is a literal, a label with the literal name is given, but no
further description is given, as shown in figure 6-3.

sometreei TREEJIODE
<0P +)
(SUBNODES . . . one: . . .)

will imply the expansion of "one:" which Is:
one: LEAF.NODE

(OP l e a f)
(SUBNODES l l t - 1 :)

l l t - l i VARBL.SYM
(CONSTANT COMPILE)
(IN IT IAL IZE I f t v a l - l i)

l i t v a l - l ! LITERAL_REP
(VALUE 1)

Figure 6 -3 : Simplified representation of literals

2 2 T C O L A d a

7 . Node types

T C O L A d a 2 3

ACCESSREP

ARRAYREP

CONSTRAINT REP

DECLARATION INFO

ENUMERATIONREP

EXCEPTJONSYM

GENERICJNFO

LABEL SYM

LEAFNODE

LINKAGEJNFO

LITERALREP

NAMENODE

PACKAGE SYM

PRAGMASYM

RECORD REP

SCALAR REP

SUBPROGRAMSYM

TASK SYM

TREE NODE

Describes the properties of an access type variable.

Describes the properties of an array.

Describes the constraints of a type, subtype, or derived t y p e .

Describes the declarations to be processed for a subprogram,
module, block, etc.

Describes the properties of an enumeration type .

Describes an exception, either predefined or user-def ined.

Links together the instances of a generic subprogram.

Describes the properties of a program « l a b e l » .

A leaf node in the program tree, e.g., nodes representing
variables or constants.

A node which contains the details of the parameter passing
mechanism for a subprogram.

A node which holds the value of a literal. LITERALREP nodes
may be pointed at only by VARBL SYM nodes.

Holds the source language name; either an identifier or a

literal.

Describes the properties of a package.

Describes a language pragma.

Describes the properties of a record.
Describes the properties of scalar types for f i xed , f loat ,
integer and boolean types.

Describes the properties of a procedure, value-returning
procedure, function, or entry.

Describes the properties of a task.

A interior node in the "program tree", e.g., an operator node In
an arithmetic expression.

2 4 T C O L A d a

T Y P E S Y M Describes the properties of a type, derived type or subtype

VARBLSYM Describes the properties of a variable, constant, formal
parameter, or record component.

7 .1 The SOURCE attribute

AH TCOL nodes possess a SOURCE attribute. The SOURCE attribute is a string

which, when given to a suitable program for the machine and operating system, will

loca te the source character from which the node was created (in the case of

SYMBOL nodes, for example, this would be the first character of the lexeme In a

declarat ion) .

For example, on T O P S - 1 0 , a suitable string for a sequence-numbered f i le would be
"FILE.EXTj I ine /pageCchar}" , e .g . , • M Y P R O G . A D A ; 0 0 1 0 0 / 5 { 4 7 } " ; without sequence numbers, the "l ine"
par t would be the count of lines within the page, e.g. , "MYPROG.ADA; 1 / 5 (4 7 } \

This information is used to report error conditions during other phases of the

compiler. In addition, this information may be used by the code generator and

p a s s e d to a debugging environment so that errors, debug printout, e tc . may be

r e l a t e d back to the source program. If clever encodings are appropriate for

represent ing this information, these decisions belong elsewhere than the Front End;

t h e Front End should deliver a straightforward representation of the location in a

form which is easily human-readable.

The e x a c t form of the SOURCE attribute in the tree is Implementation-dependent,

but must be powerful enough to allow access to the source file in the environment

of t h e system. This means that the representation must be appropriately chosen for

t h e sys tem.

Appendix Ada: TCOL for Ada

2 6 T C 0 L A d a

A d a - 1 . Introduction

A d a - 1 . 1 Design Goals

A d a - 1 . 2 Language Summary

A d a - 1 . 3 Sources

A d a - 1 . 4 S y n t a x Notation

2 8 T C 0 L A d a

T C O L A d a 2 9

label: PRAGMA_SYM
(NAME NAME_NODE-/abe/:)
(ARGS label-sequence)

Figure A d a - 2 - 1 : PRAGMASYM nodes

T h e e x a c t specif ication of ARGS sequence has not ye t been decided.

In cases where a pragma must be referred to In the program tree, It is re fer red

to by a "pragma" operator in the tree, as shown in figure Ada-2 -2 .

Ada-Z. Lexical elements

A d a - 2 . 1 C h a r a c t e r set

A d a - 2 . 2 Lexica l Units and Spacing Conventions

A d a - 2 . 3 Ident i f iers

Identif iers are represented by NAME NODEs; see section Ada-4.1 •

A d a - 2 . 4 Numbers

Numbers are represented by VARBL SYM nodes which In turn refer to LITERALREP

nodes.

T h e e x a c t representation for real values is discussed in section Ada -3 .5 .5 .

A d a - 2 . 5 C h a r a c t e r Strings

A d a - 2 . 6 Comments

A d a - 2 . 7 Pragmas

A language pragma is described by a PRAGMA SYM node.

3 0 T C 0 L A d a

label: TREE.NODE
(OP pragma)

(SUBNODES PRAGHA_SYH-/a6e/.-)

Figure A d a - 2 - 2 : Reference to PRAGMA SYM node in the t ree

A d a - 2 . 8 Reserved words

T C O L A d a
3 1

A d a - 3 . 1 Declarat ions

A d a - 3 . 2 O b j e c t declarations

Declarations of variables is discussed in section Ada-4.3.

A d a - 3 . 3 T y p e and SubType declarations

Ada is a strongly typed language; every variable and expression has a type*

Overloaded operators, procedures and functions are disambiguated based on the

t y p e s of their operands or arguments. The Front End may require a richer

representat ion of type information in order to handle type checking and overloading

disambiguation; what is specified here is the representation required as input to t h e

remainder of the compiler.

M a n y di f ferent relationships may be required in a compiler, particularly for e f f ic ient ly locating
r e l a t e d information for types. Thus, it may be desirable to have all subtypes and derived types r e f e r
back to the root type from which they all have come. T C O L A (j a specif ies the minimum acceptab le
TCOL for the remainder of the compiler. Information which may be specif ic to e particular
implementat ion, and which can be regenerated from the T C O l A d a given in this document, is not part o f
this speci f icat ion. An implementation which claims to take T C O L A d a as input must accept w h a t this
document speci f ies. H o w e v e r , as shown in figure 4 - 2 , a particular implementation may, internal ly,
a c c e p t a richer TCOL.

The remainder of the compiler requires access to the type information for a number

of reasons; the representation of type information here is sufficient for t h e s e

needs . The reaons include range and subscript checking, constraint checking,

variant records and discriminants and attribute inquiries.

Ada-3. Declarations and Types

3 2 T C O L A d a

label: TYPE.SYM
(KIND DECLARED | SUBTYPE | DERIVED | PREDEFINED)
(NAME NAME_N0DE-/a6e/:)
(CONSTRAI NT CONSTRAI NTJREP-labehsequence)
(PARENT TYPE_SYM-/abe/.-)
(REP labelr)

(PACKING YES | NO)
(LENGTH integer)

I ACCESS_REP,
! ARRAY.REP,
I ENUMERATIONJREP,
I RECORD..REP,
I SCALARJ?EP
! Ada-13.2
1 Ada-13.2

label: CONSTRAI NT_REP
(RANGE expr-label: expr-label.)
(ACCURACY expr-label:)

Figure A d a - 3 - 1 : TYPESYM and CONSTRAINTREP nodes

The ACCURACY attribute is present only on CONSTRAINTREP nodes for variables

whose t y p e is FIXED or FLOAT; for FIXED nodes it is the delta and for FLOAT nodes It

is the digi ts .

A d a - 3 . 4 Der ived types

The TYPE SYM node for a derived type is described in section Ada-3.3 and is

identical to the TYPESYM node shown there except the KIND attribute is DERIVED.

The PARENT attribute refers to the TYPESYM node from which this type has been

der ived .

A d a - 3 . 5 S c a l a r types

T C O L A d a
3 3

label: SCALARJ?EP
(YARIETY FIXED | FLOAT | INTEGER | CHARACTER | BOOLEAN)

Figure A d a - 3 - 2 : SCALAR REP nodes

The number of types in the VARIETY is implementation-dependent, and may also

include LONGREAL, SHORTJNTEGER, etc., but only If these explicit representations

are specif ied in the source text , or as a consequence of a representation decisions

made in some separate compilation. Ordinarily, the Front End may only Indicate t h e

types suggested by the source text , and the machine-dependent part of t h e

compiler which follows the Front End decides the exact representation suitable for a

particular machine.

A d a - 3 . 5 . 1 Enumeration types

The REP attribute of the TYPE SYM node for an enumeration type points to an

ENUMERATION REP node.

label: ENUMERATI ON J?EP
(L I TERALS VARBL_SYM-/abe/-se<7C/ence)

Figure A d a - 3 - 3 : ENUMERATIONREP node

The CONSTRAINT REP node of the TYPE SYM node specifies the constraint on the

enumeration, in terms of the 'ORD attribute, and thus must be in the range from 1 to

the size of the enumeration, independent of any special representation given for the

t y p e . Thus, the constraints of the root node of an enumeration type E are

E'ORD(E'FIRST) and E'ORD(E'LAST). A subtype or derived type of the enumeration

type will have its constraints specified in terms of the 'ORD attribute of the root

t y p e , as shown In figure Ada-3-4 .

3 4 T C ° L A d a

t y p e COINS is (CENT, NICKEL, DIME, QUARTER, HALF);
- - T C O L A d a constraints would be 1 ..5

t y p e SILVER is new COINS range DIME..HALF;
T C O L A c | a constraints would be 3..5

subtype METER_SILVER is SILVER range DIME..QUARTER;
— T C O L A c j a constraints would be 3 - 4

f o r COINS use (CENT => 1 , NICKEL => 5, DIME => 10,
QUARTER => 25 , HALF => 50) ;

— this declaration would not change the constraints

Figure A d a - 3 - 4 : Derived types and subtypes of an enumeration type

A d a - 3 . 5 . 2 Charac ter types

A character type is represented by a TYPESYM node which specifies the

constraints, and whose REP attribute points to a SCALAR_REP node whose VARIETY Is

CHARACTER.

Ad a - 3 . 5 . 3 Boolean type

A Boolean type is represented by a TYPESYM node which specifies the

constraints, and whose REP attribute points to a SCALARREP node whose VARIETY Is

BOOLEAN.

A d a - 3 . 5 . 4 Integer type

An integer type is represented by a TYPE SYM node which specifies the

constraints, and whose REP attribute points to a SCALARREP node whose VARIETY Is

INTEGER. No commitment to a representation, such as LONGJNTEGER or

SHORTJNTEGER is made by the Front End.

A d a - 3 , 5 , 5 Real types

A real type is represented by a TYPE SYM node which specifies the constraints

and whose REP attribute points to a SCALAR REP node whose VARIETY is FIXED or

T C O L A d a
3 5

FLOAT. No commitment to a particular representation, e.g., LONG_FLOAT or

SHORT FIXED, is made by the Front End.

A literal whose type is one of the real types is represented by a VARBL SYM node

whose NAME attribute refers to a NAMENODE whose NAME attribute is the string the

user typed in the source program. Thus, u5.0"t

 M 5 M , "S.OOO" e tc . all have separa te

NAME NODEs. Once a representation is chosen, many of these literals may be pooled

because they will actually have the same representation. However, this Is a

decision which is bound after the Front End processing.

The reason this is done is so the parser and Front End may remain inachine-independent, and in
particular not be required to do conversions of real types to some particular representation.

T h e intent is that later phases of the compiler which have knowledge about the target machine
representat ion may generate the internal value by scanning the string in the V A R B L . S Y M node . T o
h a v e done the str ing- to-rea l (the 'VAL attribute in Ada) and then done a rea l - to -s t r ing (t h e ' R E P
attr ibute in Ada) in the arithmetic supported on the machine on which the parser runs could introduce
numeric errors which are unacceptable.

An al ternat ive representation suitable for Ada programs is to represent the value as an express ion in
terms of the 'VAL attribute, where the operand of 'VAL is the source string representat ion. S e e
sect ion A d a - 4 . 8 ; this section explains why a static expression may not require actual evaluat ion o f t h e
operands, which justi f ies the deferring of evaluation of static expressions involving rea l l i terals t o a
phase af ter the semantic analyzer.

A d a - 3 . 6 Array types

The REP attribute of a TYPESYM node for an array type points to an ARRAYREP

node.

label: ARRAY J?EP
(COMPONENT TYPE_SYM-/abe/.-)

Figure A d a - 3 - 5 : ARRAY REP nodes

In the TYPESYM node for an array type, the CONSTRAINTREP attribute points to

a sequence of TYPE SYM nodes which specify the constraints on the Indices of the

array. The REP attribute points to the ARRAY REP node.

3 6 T C O L A d a

If the array Is a subtype or derived type of an array type, the REP attr ibute is

not speci f ied and the PARENT attribute refers to the TYPESYM node of which this

array is a subtype or derived type.

For a particular implementation, it may be desirable to define the REP attribute for subtypes o f the
a r r a y t y p e to point to the same ARRAY.REP node as the root type; this, however , is an implementation
decis ion for a particular compiler. T C O L A d a requires that the REP attribute of a subtype or der ived
t y p e o f an array be unspecified.

For arrays which are subtypes or derived types of some other array type , a

complete CONSTRAINT REP list must be specified, even If some or all of the

constraints on the indices are the same as the parent type.

Since the TCOL representation of an Ada program is a graph, the CONSTRAINT attribute of a subtype
m a y point to the same CONSTRAINT.REP nodes as the parent type when the constraints are identical .

A d a - 3 . 6 . 1 Index ranges of arrays

A d a - 3 . 6 . 2 Aggregates

An aggregate is represented by a TREE NODE whose operator Is "aggregate" and

whose subnodes are TREE NODEs whose operator is "egg-choice", as shown In

f igure A d a - 3 - 6 .

label: TREE_NODE
(OP aggregate)
(SUBNODES TREEJ40DE-/abe/-se<7</e/>ce)

label: TREEJIODE
(OP agg-cholce)
(SUBNODES TREE_N0DE-/a/>e/-se<7(/ence TREE_NODE-/abe/)

J to TREE_NODEs for simple-expressions
J TYPE_SYM nodes for ranges
I or TREEJM3DE whose operator Is "others"

Figure A d a - 3 - 6 : Array aggregate representation in T C O L A d a

In the agg-choice operator nodes, the last subnode is the value to be assigned,

T C O L A d a
3 7

and the first sequence of subnodes are the indices for which that value Is to b e

assigned. In the case where explicit choices were not present In the source

language, an explicit choice must be supplied by the Front End. S e e f igures

A d a - 3 - 7 and A d a - 3 - 8 .

B : TABLE :« (5 , 4 , 8 , 1 , others •> 2 0) ;
— from Ada Reference Manual p. 3 - 1 1

agg: TREE.NODE
COP aggregate)
(SUBNODES f i rs t i second: third! fourths resti)

f i r s t ! TREE.NODE
(OP agg-cholce)
(SUBNODES one: f i v e :) I 1 => 5

second! TREE.NODE
(OP agg-choice)
(SUBNODES two: f o u r !) I 2 => 4

t h i r d : TREE.NODE .
(OP agg-choice)
(SUBNODES three : e i g h t :) I 3 => 8

f o u r t h : TREE.NODE
(OP agg-choice)
(SUBNODES four : one:) t 4 => 1

r e s t ! TREE.NODE
(OP agg-choice)
(SUBNODES othi twenty:) I others => 20

o t h : TREE.NODE
(OP others)

Figure A d a - 3 - 7 : Example of an aggregate in T C O L A c j a

3 8 T C ° L A d a

C : TABLE := (5 , 4, 8 , 5..7 => 2, 8 | 10 => 3, others => 1) ;
5 , 4 , 8 , 1 , 2 , 2 , 2 , 3 , 1 , 3

agg2J TREE_N0DE
<0P aggregate)
(SUBNODES s n l i sn2> sn3i sn4i sn5« sn6 i)

s n l i TREE_N0DE
(OP agg-choice)
(SUBNODES one: f l v e t) I 1 -> 5

sn2» TREE_NODE
(OP agg-cholce)
(SUBNODES two: f o u r :) ! 2 => 4

sn3: TREE.NODE
(OP agg-cholce)
(SUBNODES th ree : e i g h t :) I 3 -> 8

sr>4» TREE.NODE
(OP agg-cholce)
(SUBNODES f lve -seven i two:) ! 5 . . 7 *> 2

sn5: TREE_NODE
(OP agg-choice)
(SUBNODES e igh t : ten : t h r e e :) I 8 | 10 *> 3

sn6: TREE_N0DE
(OP agg-cholce)
(SUBNODES oth : one:) ! others «> 1

o t h : TREE NODE
mm 0

(OP others)
f i v e - s e v e n : TYPE.SYM .

(NAME) I Anonymous type
(KIND der ived)
(PARENT TYPE.SYM/abe/.-) \ of o b j e c t ' s

(CONSTRAINT c 5 - 7 :)
! Index type

T C O L A d a
3 9

c 5 - 7 * CONSTRAINT J?EP
(RANGE f l v e i seven:) 1 5 9 9 7

Figure A d a - 3 - 8 : Example of a more complex aggregate In T C O L A d a

A d a - 3 . 6 . 3 Strings

A d a - 3 . 7 Record types

The REP attribute In the TYPESYM node for a record type points to a

RECORDREP node.

label: RECORD J?EP
(FIELDS label-sequence) I to VARBL_SYM nodes

! or TREE.NODE
! (op case) nodes

Figure A d a - 3 - 9 : RECORD REP nodes

A d a - 3 . 7 . 1 Constant Record Components and Discriminants

A d a - 3 , 7 . 2 Var iant parts

The variant components of a record are represented by a tree nearly identical to

tha t produced by the case statement (see section Ada-5.5) . However, the last

operand of each "when" operator, instead of being a TREE NODE, is a VARBLSYM

node which represents the component of the variant which is selected by t h e

discriminant. Each of these VARBLSYM nodes is a component in an anonymous

record which holds all of the components of the variant. The null component list is

speci f ied by a TREE NODE whose operator is "null"; this is the same representat ion

as used for the null statement. See Ada-5.a.

4 0 T C 0 L A d a

A subtype or derived type of a record containing a variant is specified by having

a d i f ferent constraint on the variable which is the discriminant.

A d a - 3 . 7 . 3 Record Aggregates and Discriminant Constraints

A record aggregate is represented as shown in figure Ada-3 -10 . A TREE_N0DE

wi th operator "record-aggregate" refers to a set of subnodes which have the

operator "rec-cholce". As in array aggregates (section Ada-3.6.2) , the TCOL t r e e

must supply any component names which were omitted in the source because

positional notation was used. The first subnodes of the "rec-choice" operator node

a r e the names of the components to be assigned to, and the last subnode Is an

express ion representing the value to be assigned.

label: TREE.NODE
COP record-aggregate)
(SUBNODES expr-label-sequence)

label: TREE.NODE
(OP rec*-cholce)
(SUBNODES expr-label-sequence expr-label:)

I component names, value

Figure A d a - 3 - 1 0 : T C 0 L A d a representation of a record aggregate

A d a - 3 . 8 Access types

The REP attribute in the TYPE SYM node for an access type points to an

ACCESS REP node.

T C O L A d a
4 1

label: ACCESS_REP
(ACCESS-OF TYPE_SYM-/aZ>e/.-)

Figure A d a - 3 - 1 1 : ACCESSREP node

4 2 T C O L A d a

T C O L A d a 4 3

label: NAMEJIODE
(PNAME string)
(NAMES label-sequence) I TYPE.SYM,

I VARBL_SYM,
I EXCEPTION.SYM,
I LABEL.SYM,
I PACKAGE.SYM,
J PRAGMAJ5YM,
! SUBPROGRAM.SYM,
I TASK_SYM

Figure A d a - 4 - 1 : NAMENODE nodes

Severa l NAMENODEs may have the same print string, I.e., it is not required tha t

there be one and only one NAMENODE for each unique character string.

A NAME NODE exists for literal values also; the "name" is the source string

wr i t ten in the user program. This is particularly important for the representation of

real literals if cross-compilation or machine-independent parsing Is important; the

parser either should not or cannot determine the exact representation of a real
l i teral .

A d a - 4 . 1 . 1 Index components

label: TREE.NODE
(OP index)
(SUBNODES expr-label: expr-label-sequence)

Figure A d a - 4 - 2 : T C O L A d a for Indexed component

Ada-4. Names, Variables and Expressions

A d a - 4 . 1 Names

4 4 T C O L A d a

The first subnode evaluates to the name of an indexed entity. The remaining

subnodes evaluate to the indices. For a simple variable, the first subnode would

re fe r to a VARBL SYM node; for more complex names, such as an indexed component

of a record (an array component of a record), a general TCOL expression would be

r e f e r r e d to by the first subnode.

A d a - 4 . 1 . 2 Se lec ted components

Se lec ted components which are

- An enti ty declared in the visible part of a module

- An entity declared in an enclosing unit

- A user-defined attribute of a type

h a v e already been identified by the Front End, and references to the selection have

a l ready been resolved to point to the correct entities. The purpose of select ing

t h e s e entities is to provide a syntactic and/or semantic specification of which

ent i ty , of a possibly ambiguous set of entities, is desired.

For example , as shown in [2] page 4 - 2 , the selected component "DEVICE.READ" would a l ready
r e f e r to the e n t r y node for the task DEVICE. The name in the NAME.NODE is "READ* .

Thus, "selection" in T C O L A d a refers only to selection of record components.

label: TREE.NODE
<0P component-select)
(SUBNODES expr-/abe/.- VARBL_SYM-/abe/.-)

Figure A d a - 4 - 3 : T C O L A d a for selected component

The first subnode evaluates to the name of a record. The second subnode re fers

to a VARBL SYM node which names the field in the record.

A d a - 4 . 1 . 3 Predef ined attributes

T C O L A d a 4 5

A predefined attribute generates a unique operator for each attr ibute. The

complete list of operators for T C O L A d a is given in section Ada-A.

A d a - 4 . 2 Literals

S e e the discussion of literals in section Ada-3.5, particularly for real literals in

sect ion Ada-3 .5 .5 .

label: LI TERAL J?EP
(YALUE LG-literal)

Figure A d a - 4 - 4 : LITERALREP nodes

A LITERALREP node is referred to only by the INITIALIZE attribute of a VARBLSYM

node (see section Ada-4.3) . The VALUE of a LITERALREP node holds an LG sty le

l i teral . The interpretation of this literal depends upon the type of the VARBLSYM

node which refers to it.

T h e only meaningful LG literals which would appear in the VALUE attribute of a L ITERAL.REP node
are integers and strings. LG does not support "real* (i .e . , f ixed point or floating point) l i terals. As
discussed in sect ion Ada-3.5.5, such literals must be represented as the source t e x t characters w h i c h
specif ied the l iteral in the program. At some point in the compiler beyond the Front End, the compiler
may determine the correct bit pattern for a real literal and represent it as a LITERAL.REP node w h o s e
va lue is the bit pattern (expressed, for example, as an unsigned octal number).

It may also be necessary to express integer values as strings, if the machine on which the compiler
runs cannot express integers wi th the same range as the target machine.

N o t e that this does not a f fec t the determination of a value as a static expression, s ince a n
expression does not have to be evaluated in order to determine if it is static.

A d a - 4 . 3 Variables

A d a - 4 . 3 . a Named variables

4 8 T C O L A d a

label: VARBL.SYM
(NAME NAME_NQDE-/a/>e/;)
(TYPE TYPE_SYM-/abe/:)
(CONSTANT NO | UNKNOWN | COHPILE | LINK | EXECUTION)
(BINDING I N | OUT | INOUT) ! see tex t
(LOCATION expr-/abe/.-)
(LENGTH expr-/abe/.«)
(ALIGNMENT expr-fabe/)
(I N I T I A L I Z E expr-/abe/:)

Figure A d a - 4 - 5 : VARBL SYM nodes

The BINDING attribute Is present only for VARBLJ3YM nodes which represent

formal parameters.

The LOCATION specification applies to either variables or record components, and

is present only if an explicit representation or address has been specified (Ada

r e f e r e n c e chapter 1 3) . For a record, it specifies the bit offset at which the

component starts , relative to the start of the record; for variables, it specifies the

absolute bit address of the start of the variable.

T h e Front End must convert the expression in terms of storage units to an expression in terms o f
b i ts . This is a symbolic transformation, since the Front End cannot know how many bits comprise a
s torage unit.

The LENGTH and ALIGNMENT specifications apply only to VARBLSYM nodes

represent ing record components, and are expressed as bit lengths and bit

alignments. See section 13.4 in the Ada Reference Manual.

A literal in the source language Is always represented by a VARBL SYM node

whose NAME attribute refers to a NAME NODE which contains the source language

string and whose CONSTANT attribute Is COMPILE. The INITIALIZE attribute refers to

a LITERAL REP node which holds the value of the literal.

A d a - 4 . 3 . b Slices

A slice is represented in TCOL as shown in figure Ada-4-6. The first subnode

T C O L A d a
4 7

re fe rs to an expression which evaluates to the name of an array, subarray, or

a c c e s s object whose value designates an array. The range Is represented by the

second subnode, which refers to an anonymous TYPE node which is a derived t y p e

of the Index type of the array, and whose constraints specify the slice.

label: TREE_NQDE
(OP s l i c e)

(SUBNODES expr-label: TYPE_SYM-/a6e/:) .

Figure A d a - 4 - 6 : T C O L A d a representation for an array slice access

A d a - 4 . 4 Expressions

A d a - 4 . 5 Operators and Expression Evaluation

label: TREE_N0DE
(OP identifier)
(DEFN label:)
(SUBNODES expr-label-sequence)

Figure A d a - 4 - 7 : TREE NODE in T C O L A d a

The OP attribute contains an LG identifier which indicates the operation.

The DEFN attribute points to a TYPESYM node for predefined types, or arrays or

records, or points to a SUBPROGRAM SYM node for the function which Implements the

operator . This attribute applies only to unary or binary operators as defined In

A d a - 4 , and assignment of predefined types, arrays or records.

The DEFN attribute for predefined scalar types points to a TYPE.SYM node, whose REP f ie ld points
t o a SCALAR node. The information may be extracted by walking this chain of pointers and stored in
some implementation-specific field in the TREE NODE. However , this extension is not required by
T C O L A d a -

4 8 T C O L A d a

This attr ibute also permits a user to define a type-specif ic assignment operator if it w e r e
permissible in the source language.

TCOL can have t w o representations for a unary or binary operator: it can represent them as either
funct ion cal ls of 1 or 2 arguments or as operator nodes in the tree for each operator. In the particular
c a s e of predef ined types and types which are subtypes or derived types of the predefined types , it is
desirable to represent the unary and binary operators as operator nodes in the t ree , for purposes o f
var ious optimization techniques, e.g. , expression reordering, applying associativity, commutativi ty, or
unary complement optimizations, etc .

It is unclear from the semantics of Ada if an overloaded operator such as is e x p e c t e d t o
p r e s e r v e these properties, i.e., is associative, commutative, e tc ; do axioms such as
" (A - B) => - (B - A) " hold? It is also unclear whether or not this is also true of user-def ined types
w h i c h a r e not defined in terms of the predefined types, e.g. , arrays, records, etc .

T h e DEFN attribute a l lows us to represent operators, even those defined by explicit overloading, as
unary or binary t ree operators, which greatly simplifies the task of optimization. T o actually generate
t h e c o d e for such operators, the DEFN attribute makes the operator definition available.

A code generator may look at the DEFN attribute, or may require that any unary or binary operator
de f ined by a user-declared procedure be transformed into a procedure call node before code generat ion
begins. Such a decision is an implementation strategy in the Back End of the compiler and is made for a
part icular implementation. Such a transformation is essentially a simple t ree transformation.

In this specification of T C O L ^ d a , if the operator token for an operation as defined in

this sect ion appears in the tree, e.g., "and", M or w , , , + M , " * n

t

 H < M , etc. , then its

conventional arithmetic properties of associativity, distributivity, commutativity, e t c .

a re assumed to be preserved. In the case where semantic analysis wishes to

prohibit optimizations which rely on these properties, it must represent the

operat ions as function calls.

In addition to all of the standard operators described in sections Ada-4 .5 .1

through Ada-4 .5 .6 , there is a special operator, M paren H , which is used to indicate

associat ivi ty across parenthesized expressions is not valid. In any case where the

semantic analyzer wishes to block the use of associativity axioms by an optimizing

compiler, it can insert this operator in the tree. This allows other properties of the

operator node, such as commutativity, to be retained.. If the associativity could only

be prevented by using the procedure-call representation, other, permissible,

optimizations might be also prohibited/

T C O L A d a 4 9

label: LEAFJJODE
(OP l e a f)
(SUBNODES VARBL-/abe/;)

Figure A d a - 4 - 8 : LEAF NODE In T C O L A d a

A LEAFJJODE is a particular extension to a TREE NODE, and Is present because in

most implementations, the phases in the compiler which follow the Front End wish to

p lace different kinds of information in a LEAF NODE than In a TREENODE. Two

at t r ibutes which are common to both LEAF NODEs and TREE NODEs are the OP and

SUBNODES attributes; the OP attribute for a LEAF NODE always has the operator

" leaf" .

A d a - 4 . 5 . 1 Logical Operators

?oy»rc9 I £ Q k A d a

and and
or or
xor xor

Figure A d a - 4 - 9 : Logical operators: source- to -TCOL A d a transformation

In addition, there are two other boolean operators, cand and cor, representing

respect ive ly and- then and or-else, which are described in section A d a - 5 . 4 . 1 .

These are currently restricted to the conditional part of an i f statement, for no discernable reason .
In TCOL, they are valid binary operators on boolean operands.

A d a - 4 . 5 . 2 Relational and membership operators

5 0 T C 0 L A d a

< <
> >
<= <=
> = >=

/ = /=
I n in
not I n n o t - l n

Figure A d a - 4 - 1 0 : Relational and membership operators: s o u r c e - t o - T C O L A d a

A d a - 4 . 5 . 3 Adding operators

+ +

& &

Figure A d a - 4 - 1 1 : Adding operators: Source-to-TCOL A c | a transformation

A d a - 4 . 5 . 4 Unary operators

Source K Q U d a
u-

• u+
not not

Figure A d a - 4 - 1 2 : Unary operators: source-to-TCOL A c j a transformation

Unary plus is represented in T C 0 L A d a by a unique operator, "U+ M . The token

T C O L A d a 5 1

as a TCOL operator is permitted to represent only the binary addition operator.

Since the identity operator conveys no information, it may be omitted entirely by the semantics
phase and not appear in T C 0 L A f 4 s .

Unary minus is represented in T C O L A d a by a unique operator, M U - M . The TCOL token

" - " is permitted to represent only the binary subtraction operator.

The not operator is defined for boolean scalar operands and boolean-array

operands; the DEFN attribute will describe which one this represents.

A d a - 4 . 5 . 5 Multiplying operators

S£5i£££ ICQLAda * *
/ /
mod mod

Figure A d a - 4 - 1 3 : Multiplying operators: source - to -TCOL A d a transformation

A d a - 4 . 5 . 6 Exponentiation operator

Sflurce I£QkAda

Figure A d a - 4 - 1 4 : Exponentiation operator:" source-to-TCOL A c j a transformation

A d a - 4 . 6 Qual i f ied expressions

Qualified expressions serve several purposes. Some of those purposes are

purely an interaction at the semantic level, e.g., to disambiguate potentially

ambiguous expressions or literals.

5 2 T C 0 L A d a

In those cases where a qualification carries no semantic Information, the

qualification may be dropped by the semantic analyzer. An example of such a

situation is shown In figure Ada-4-15 .

t y p e color is (UV VIOLET BLUE GREEN YELLOW ORANGE RED IR BLACK);
t y p e STOPLIGHT is (RED YELLOW GREEN);
— without qualification, the following is ambiguous

PRINT(STOPLIGHT(RED));

Figure Ada-4-* 15: Use of a qualified expression

S i n c e , a t the output of the semantic analyzer, the literal RED would be uniquely identif ied, the
qual i f icat ion on the expression would be redundant, and could be eliminated.

However , in figure Ada-4 -16 , the qualification is important, and must not be

removed by the Front End. Since no representation decision has been bound by the

Front End (excluding explicit user specifications or specifications forced by

separa te ly compiled program units), a conversion from the representation of the

subtype to the type of the parent type may be necessary.

t y p e X Is n e w integer range 1..65535;
s u b t y p e Y is X range 1..7;

A, B : X;
C, D : Y;

~ statements
A X(C) + X(D);

F igure A d a - 4 - 1 6 : Qualified expression which may imply run-time type conversion

A d a - 4 . 6 . 1 Explicit t ype or Subtype specification

S e e section Ada-4 .6 .

T C O L A d a
5 3

A d a - 4 . 6 . 2 Type conversion

There is no implicit type coercion in T C O L A d a ; any type conversions must be

explicit ly represented in the TCOL tree.

A d a - 4 . 7 Allocators

A d a - 4 . 8 Stat ic expressions

A stat ic expression is represented by a VARBLSYM node (section A d a - 4 . 3)

whose CONSTANT attribute is COMPILE and whose INITIALIZE attribute re fers to a

LITERAL REP node or an expression whose operands are static expressions.

At various places, Ada requires static expressions to specify certain values. The semantic ana lyzer
m a y choose to evaluate expressions ("constant folding*1) to determine if they are stat ic expressions;
h o w e v e r , it need not evaluate any expressions, even though they may be static expressions, if s tat ic
expressions are not required by the language (e .g . , the range constraints on a type or subtype) .

In addition, the semantic analyzer may determine if an expression is a static expression wi thout
actual ly performing any evaluation, simply by determining, by a recursive t ree wa lk , that all the
operands of the expression are themselves static expressions. Ultimately, such a t r e e w a l k must
r e a c h e v e r y LEAFJYODE, which to satisfy the requirement of being a static expression must point to a
V A R B L . S Y M w h o s e CONSTANT attribute is COMPILE and whose INITIALIZE attribute points t o a
L I T E R A i . R E P node.

5 4 T C O L A d a

T C O L A d a 5 5

A d a - 5 . a Null s ta tement

The null statement is represented by a TREE NODE whose operator Is "null", as

shown In figure A d a - 5 - 1 .

n u l h TREE.NODE
(OP n u l l)

Figure A d a - 5 - 1 : null statement

A d a - 5 . b Sta tement sequences

A sequence of statements is represented by an n-ary tree node whose operator

is ;" and whose subnodes are each of the statements in the sequence* If a ";"

node happens to have only a single subnode, a reference to the 1 1;" node may b e

replaced by a reference to the subnode. This transformation is permitted to any

phase of the compiler beyond the parser, including the semantics phase.

An example of the two alternate representations of a sequence are shown In

f igure A d a - 5 - 2 ; in this example, the operator is some n-ary operator which can re fe r

to a statement sequence.

top i TREE.NODE
(OP Identifier)
(SUBNODES label: label: e i)

e : TREE.NODE
(OP :)
(SUBNODES s3 :)

I not shown for this example

Ada-5. Statements

5 6 TCOL A d a

or, alternatively

topt TREEJIODE
(OP identifier)
(SUBNODES label: label: s 3 i)

Figure A d a - 5 - 2 : Permissible representations for statement sequences

"Flattening" of such tree nodes Is permissible; that is, If any subnode of a " ; M

operator t ree node refers to another ";" node, the reference may be replaced with

t h e subnodes of the node referred to, as shown In figure Ada-5-3 .

stmntt TREE.NODE
<0P O
(SUBNODES . . . sO: . . .)

sO: TREEJ40DE
(DP f)

(SUBNODES s i : s2: s3:>

may be replaced by:
s t w n t i TREE.NODE

(OP ?)
(SUBNODES . . . s i : s2: s3: . . .)

Figure A d a - 5 - 3 : Flattening of ";" operator nodes

A d a - 5 . c S ta tement Labels

The label of a statement may be used either as the destination of a goto

s ta tement , or if the statement is a loop statement, as the operand of an ex i t

s t a t e m e n t . A label Is represented in TCOL as a LABELSYM node; because the use

of a label in a goto and exit are different, an Ada label may generate two label

T C O L A d a
5 7

nodes, one for the "goto" label and one for the "exit" label. In addition, the program

t r e e contains two operators, "gotolabel" and "exitlabel", which mark the point in t h e

program t ree where the label appears. Their form is shown In figure A d a - 5 - 4 .

These TREE.NOOEs are used by the code generator, to determine when to emit the label In the c o d e
s t ream. In addition, compilers which do f low analysis require these nodes so that the program graph
m a y be constructed.

label: TREE.NODE
(OP go to labe l)
(SUBNODES LABEL_SYM-/abe/; expr-label:)

label: TREE.NODE
(OP e x i t l a b e l)

(SUBNODES LABEL.SYM-label: expr-label:)

Figure A d a - 5 - 4 : T C O L A d a tree for gotolabel and exitlabel operators

A simple "gotolabel" is shown in figure Ada-5-6, while a label which is both a

••gotolabel" and an "exitlabel" is shown In figure Ada-5-7.

label: LABEL.SYM
(NAME NAME.NODE-/aoe/.0
(TREE expr-label:) I (OP g o t o l a b e l) OP

! (OP e x i t l a b e l)

Figure A d a - 5 - 5 : LABELSYM nodes

5 8 T C O L A d a

— statements
if A < B then goto Z end if;
— statements
« Z » A := XYZ;
— statements

z l b t LABEL.SYM
(NAME znameO
(TREE age ts t)

zname: NAME.NODE
(PNAME "Z")
(NAMES . . . z lb t , . ,)

pgm: TREE.NODE
(OP *)
(SUBNODES . . . t e s t i . . . agetsi . . .)

t e s t x TREE_N0DE
(OP I f)
(SUBNODES condt go:)

condi I not shown, boolean condit ion

go i TREEJIODE
(OP goto)
(SUBNODES z l b :)

a g e t s : TREE_NODE
(OP goto labe l)
(SUBNODES assgn:)

assgn: TREE.N0DE
(OP : =)
(SUBNODES . . .) .

Figure A d a - 5 - 6 : LABEL SYM and goto

T C 0 « - A d a

goto L;
— other statements
« L » loop

~ statements
exit L w h e n eO;
— statements

end loop L;

Inamei NAME.N0DE
(NAME "L")
(NAMES . . . e ibt g ib : . . .)

e l b : LABEL.SYM
(NAME I name:)
(TREE e l a b :)

g i b : LABEL.SYM
(NAME Inane:)
(TREE g l a b :)

pgm: TREE.N00E
(OP *)

(SUBNODES . . . go: . . . glab: . .

go i TREE.NODE
(OP goto)
(SUBNODES g i b :)

g l a b : TREE.NODE
(OP go to labe l)
(SUBNODES g ib : e l a b :)

e l a b : TREE.NOOE
(OP ex i t l a b e l)
(SUBNODES e l b : body:)

body: TREE.NODE
(OP loop)
(SUBNODES . . . e x i t : . . .)

6 0 T C 0 L A d a

ex i t s TREE.NODE
(OP e x i t)
(SUBNODES eO: e l b :)

Figure A d a - 5 - 7 : Interactions with LABELSYM nodes

A d a - 5 . 1 Assignment statements

label: TREE.NODE
(OP : =)
(SUBNODES expr-label: expr-label:)

I to dest Inat I on, expression t rees

Figure A d a - 5 - 8 : T C O L A d a tree for assignment

The first subnode of the assignment operator evaluates to the location to perform

t h e assignment. This may be an aribtrarily complex expression which could include

ar ray subscripting and component selection.

T h e semantics of an assignment in Ada is that it is a lways checked. The pragma to suppress the
R A N G E . E R R O R except ion wi l l appear in the DECLARATIONJNFO node of a block, subprogram, task,
e t c . , and is taken as advice to the compiler to suppress the exception. Whether or not the compiler
chooses to honor this pragma is an implementation decisions which is not in the domain of the Front
End; there fo re , the Front End does not include any explicit checking of the assignment nor does it
suppress any implicit checking of the assignment.

A d a - 5 . 1 , 1 Ar ray and Slice assignment

S e e section Ada-4.3.b.

A d a - 5 . 1 . 2 Record assignments

A d a - 5 . 2 Subprogram calls

T C 0 L A d a 6 1

label: TREEJ40DE
(OP c a l l)

(SUBNODES SUBPR0GRAM_SYM-/a.6e/; expr-/a6e/-sec7C/e/ice)

Figure A d a - 5 - 9 : Subprogram call operator

A d a - 5 » 2 . 1 Actual parameter associations

T C O L A d a requires that each call provide the correct number of actual parameters

in the correct positional order. Thus, the use of "keyword" parameters, where the

parameter names are supplied explicitly, is resolved during semantic analysis, and

the actual call TREENODE contains the parameters in the same order as the formal

parameters of the procedure declaration. See also section Ada-5.2.2.

A d a - 5 . 2 . 2 Omission of actual parameters

When an actual parameter may be omitted because the subprogram declaration

provides a default value, a mechanism must exist so the procedure call can provide

the correct value. As described in section Ada-5.2 .1 , the call must provide all of

the actual parameters in the correct order. Furhtermore, the value of the defaul t is

determined by elaborating the expression at the time the procedure declaration Is

e laborated, so the value must be stored so subsequent procedure calls can use ft.

As an optimization, the later phases of the compiler may determine that no call of the procedure
omits the parameter, so the default need not be evaluated since it is never used. H o w e v e r , this
decision cannot usually be made by the Front End. Because of interactions w i th separate compilat ion,
it may not be possible to determine if this optimization is possible except in some v e r y res t r ic ted
c a s e s .

When an actual parameter may be omitted because the subprogram declaration has

speci f ied a default value, the DECLARATION INFO node for the block which contains

the subprogram includes a dummy VARBL SYM node which identifies a runtime

location to hold the value of the default parameter expression. The default

parameter expression is elaborated when the declarations are processed, and the

result of the elaboration is stored in the location named by this dummy VARBL SYM

6 2 T C O L A d a

node. A call of the subprogram for which the actual parameter corresponding to this

VARBL SYM node has been omitted will contain, for the parameter expression, an

expression which refers to the VARBLSYM node.

d e c l a r e
•— other declarations
p rocedure OEFKparm : in color := My_Favorite_Color) is

— procedure body

— My_Favorite_Color is not a static expression
— and is a variable visible at this level

— more declarations
begin

— program t e x t
DEF1;
— program t e x t

e n d ;

d e c I s : DECLARATIONJ NFO
(SUBPROGRAMS d e f l :)
(VARBLS . . . dummy: , . ,)

d e f l : SUBPROGRAM_SYM
(PARAMETERS . . . parm: . . .)

parm: VARBL.SYM
(I N I T I A L I Z E dummy:)

dummy: LEAF.NODE
(OP l e a f)
(SUBNODES d - v l)

d - v i VARBL.SYM
(I N I T I A L I Z E fav -exp :)

f a v - e x p : LEAF_NODE
(OP l e a f)
(SUBNODES my-fav:)

m y - f a v : VARBL.SYM
(NAME . . .) 1 "My.Favorite.CoI or"
I . . . e t c .

http://My.Favorite.Co

T C O L A d a

c a l l i t : TREE_NODE
(OP c a l l)
(SUBNODES d e f l : dummyi)

Figure A d a - 5 - 1 0 : Default parameter representation

A d a - 5 . 2 . 3 Restrictions on subprogram calls

The Front End has the responsibility for checking the TYPEJSYM consistency

b e t w e e n procedure actual parameters and procedure formal parameters. The

constraints, if they are represented by static expressions, may be checked by the

Front End, but this is not required. The checking of constraints at the time of the

call is implicit, in the same way the checking of constraints during assignment Is

implicit; a code generator may or may not honor the RANGEERROR pragma.

A compiler may determine that the raising of an exception is either a lways the case or n e v e r the
c a s e a t subprogram call time, and as for assignment, may choose to eliminate the code to test for t h e
e x c e p t i o n and either a lways raise it or never raise it, as appropriate. H o w e v e r , this opt imizat ion
should not be made by the Front End.

A d a - 5 . 3 RETURN statement

re turn

/a6e/ ; TREE_NQDE
(OP r e t u r n)

(SUBNODES SUBPR0GRAM_SYM-/a6e/;) -

Figure A d a - 5 - 1 1 : T C O L A d a tree for return statement

6 4 T C O L A d a

return eO; — expression eO

label: TREE.NODE
<0P r e t u r n - v a l u e)

(SUBNODES SUBPRQGRAM_SYM-/abe/.- expr-/abe/.-)

Figure A d a - 5 - 1 2 : T C O L A d a tree for return statement for value return

Restrictions on return statements are assumed to be enforced by the Front End,

in the sense that a return operator node will always generate code to return from

the subprogram, even If, for some reason, it appeared in a context In which the

language forbids this. If the procedure returns a value, the return statement is

c h e c k e d by the Front End for conformity to the type restrictions of the return value;

a return-value operator that returns a result, or a return operator which does not,

are both assumed by the Back End to be valid in their context. The phases of the

compiler beyond the Front End assume that necessary checking has been done by

t h e syn tax and semantic analyzers.

A d a - 5 . 4 if s ta tements

label: TREE.NODE
(OP i f)

(SUBNODES expr-/abe/; expr-/abe/; expr-/abe/.0

Figure A d a - 5 - 1 3 : T C O L A d a tree for if statement

The if statement produces a ternary node whose first subnode Is the condition,

whose second is the then clause and whose third is the else clause.

The Front End treats the elsif clauses as else clauses, and transforms the If

s ta tement to a sequence of nested if statements. Any If operator nodes generated

T C O L A d a 6 5

from the elsif clauses have the operator "elsif".

In general , the processing of an "elsif- operator and an "if- operator in the back end of the compiler
w i l l be identical; the distinction is made for those cases in which the additional knowledge might be
used to some advantage.

if eO
then s1

elsif e 2
then s 3

elsif e 4
then s 5

else s 6
end if;

I f : TREE.NODE (OP I f)
(SUBNODES eO: s i : e l f l i)

e l f l : TREE.NODE (OP e l s i f)
(SUBNODES e2: s3t e l f 2 :)

e l f 2 : TREE.NODE (OP e l s i f)
(SUBNODES e4: s5: s 6 :)

Figure A d a - 5 - 1 4 : T C O L A d a tree for elsif clauses

If no else clause is present, a dummy TCOL node for a null statement must be

supplied by the Front End, so that every TREENODE with an "if" or "elsif" operator

has three subnodes: the boolean expression, the statements from the t h e n clause

and the statements from the else clause.

A d a - 5 . 4 . 1 Shor t -c i rcu i t conditions

The condition of an if is one of the forms:

6 6 TCOL A d a

expression

expression and then expression

expression or else expression

t h e short circuit operators shown in figure Ada-5-15 are represented as shown In

f igure A d a - 5 - 1 6 .

Figure A d a - 5 - 1 5 : Short-circuit boolean operators: Source - to -TCOL A d a

label: TREEJIODE
(OP cand) I and then
(SUBNODES expr-/a/>e/; expr-label:)

label: TREEJIODE
(OP cor) I or e lse
(SUBNODES expr-tebe/: expr-/a/>e/:)

F igure A d a - 5 - 1 6 : T C O L A d a representation of short-circuit boolean operators

T h e r e seems to be no good reason for the restriction of these operators to boolean conditions in I f
s ta tements . This representation demonstrates that they can easily be handled as binary operators.

£2UL££
and then
or e l s e

I££kAda
cand
cor

A d a - 5 . 5 Case statement

T C ° L A d a 6 7

c a s e eO of
w h e n e1. .e2 => s3
w h e n e 4 | e 5 => s6
w h e n others => s7 ;

label: TREE.NODE (OP case)
(SUBNODES expr-label: expr-/abe/-se(7</ence)

I to TREE.NODE of case Index expression, and
I to TREE.NODEs for each case

label:i TREE.NODE (OP when)
(SUBNODES expr-label-sequence expr-label:)

J sequence re fe rs to TREE.NODEs or
I TYPE.SYH nodes or TREE.NODE wi th "others*
j operator

I choice: others
label: TREE.NODE (OP others)

Figure A d a - 5 - 1 7 : TCOL A c | a tree for case statement

The semantics of a "when" operator node are that the last expression is the one

to e x e c u t e if any of the preceding choice expressions matched eO.

A choice may be represented by one of the following:

- A TREEJJODE which produces a single value.

- A TYPE SYM node which represents a range; an anonymous TYPE SYM
node will be created to represent each range, and will be a derived
type of the type of the case index.

- A TREE NODE whose operator Is "others". This TREENODE has no
subnodes.

Type-check ing be tween the case index eO and the selectors in the w h e n clauses is the
responsibility of the semantics phase. Optimizations, for example, constant folding to e l iminate
unreachable cases, may be done by the semantics phase, but this is not required.

8 8 T C O L A d a

loop
— body

e n d loop;

label: TREEJIODE
(OP loop)
(SUBNODES expr-label:)

Figure A d a - 5 - 1 8 : T C O L A (j a tree for loop statement

The LOOP operator implies a "loop forever" which may be terminated only by some

expl ic i t control transfer, e.g., exit, goto. The subnode of a loop operator t ree node

Is t h e body of the loop.

A d a - 5 . 6 . b w h i l e statement

w h i l e
— condition
loop

— body
end loop;

label: TREEJIODE
(OP whi le)
(SUBNODES expr-/abe/.- expr-/abe/:)

Figure A d a - 5 - 1 9 : T C O L A d a tree for while statement

A d a - 5 . 6 Loop statements

A d a - 5 . 6 . a loop statement

T C 0 L A d a 8 9

f o r var in [reve rse] discrete_range
loop

— body
end loop

label: TREE.NODE
(OP fo r -up | for-down)

(SUBNODES VARBL.SYM-/abe/.- TYPE.SYM-/abe/.- expr- /abe/:)

Figure A d a - 5 - 2 0 : T C O L A d a tree for for statement

The first subnode points to a VARBL SYM node which holds the value for each

i terat ion. The second subnode points to a TYPESYM node which specifies the range

of the iteration. In the case where other than a type-mark is given to speci fy t h e

range, an "anonymous type" is created to represent the range, and the subnode

re fe rs to the TYPESYM node for this anonymous type. The third subnode refers to

t h e program t ree representing the body of the loop.

A d a - 5 . 7 e x i t statements

label: TREE.NODE
(OP e x i t)
(SUBNODES expr-/abe/: LABEL.SYM-/abe/:)

Figure A d a - 5 - 2 1 : T C O L A d a t ree for exit statment

If the condition is omitted in the source program, the Front End provides a

r e f e r e n c e to a constant expression whose value is "true".

The statements in the body are performed while the condition is true.

A d a - 5 . 6 . c f o r statement

T C O L A d a

If the ex i t applies to an uniabelled construct, the Front End must supply a dummy

LA8ELSYM node and a TREE NODE whose operator Is "exitlabel" In the appropriate

p l a c e In the t r e e . See section Ada-5.c.

A d a - 5 . 8 g o t o s ta tement

label: TREEJIODE
(OP goto)

(SUBNODES LABEL_SYM-/a/>e/.-)

Figure A d a - 5 - 2 2 : T C O L A d a t ree for goto statement

I f the program label created two LABELSYM nodes, the target LABELJ5YM node

for a goto statement is the LABELSYM node whose TREE NODE refers to a t ree node

w h o s e operator is "gotolabel". See Ada-5.c.

A d a - 6 . 9 Asser t s ta tement

label: TREEJIODE
(OP a s s e r t)
(SUBNODES expr-/abe/.-)

I to TREEJIODE for condi t ion

Figure A d a - 5 - 2 3 : T C O L A d a tree for assert statement

T C 0 L A d a 7 1

Ada-6. Declarative parts, subprograms and blocks

A d a - 6 . 1 Declarat ive parts

label: DECLARATI ON J NFO
< SUBPROGRAMS SUBPROGRAM_SYM-/abe/-se<7t/efice>
(VARBLS VARBL_SYM-/abe/-se<7uence)
(TYPES TYPE_SYM-/abe/-seqfuence)
(EXCEPTIONS EXCEPTI 0N_SYM-/abe/-sec7t/ence)
(PRAGMAS PRAGMA_SYM-/abe/-se<7uence)
(TASKS TASK_SYM-/abe/-seguence)
(PACKAGES PACKAGE_SYM-/abe/-segt/ence)
(ELABORATION.ORDER label-sequence) I t o a l l nodes tn

1 above a t t r i b u t e s

Figure A d a - 6 - 1 : DECLARATION INFO node In TCOL

The DECLARATION INFO node specifies all of the declarations to be elaborated in

t h e declaration list. The attributes SUBPROGRAM SYMS, VARBLS, e tc . are used to

group declarations of one kind. However, since order is Important (a VARBL SYM

node may be used in the later elaboration of a PROCEDURE or TYPESYM node, for

example) , the ORDER attribute points to each object to be elaborated In the order in

which they must be elaborated.

f T Y P E . S Y M nodes must be elaborated in order to evaluate the bounds constraints. PROCEDURE
nodes must be elaborated to ascertain the value of default parameters, since the value of a defaul t
parameter is determined at the time the procedure declaration is elaborated, not at procedure calf t ime.

W h i l e it is true that some declarations need not be elaborated, (for example, declarations involving
s ta t ic expressions) , elimination of such nodes from the DECLARATtONJNFO node or the ORDER list is
str ict ly an issue of attempting to optimize compiler performance. Such an optimization is sole ly r e l a t e d
t o a particular implementation of a compiler, and is not to be performed by the Front End.

A d a - 6 . 2 Subprogram declaration

7 2 T C O L A d a

label: SUBPROGRAM_SYM
(NAME NAME_N0DE-/a6e/.->
(BODY expr-labehsequence)
(RESULT TYPE_SYM-/abe/:)
(KIND PROCEDURE | VALUE-PROCEDURE | FUNCTION

j ENTRY | TASK-BODY)
(PARAMETERS VARBL_SYM-/afce/-se<7i/ence)
(LINKAGE LINKAGE-/a6e/;)
(PRAGMAS PRAGMA_SYM-/afce/-seqi/e/Jce)
(DECLARATIONS DECLARATI ON J NF0-/a6e/.O
(EXCEPTION expr-/a6e/.-)
(LOCATION expr-/abe/:)

Figure A d a - 6 - 2 : SUBPROGRAM SYM node in T C O L A d a

The BODY attr ibute refers to only a single body for all subprograms except ENTRY

subprograms; for ENTRY subprograms, a sequence of zero or more body labels may

be given. S e e Ada-9 .5 .

LINKAGE nodes are not ye t specified. They contain information about the type of linkage to be used
t o cal l the procedure; this captures the information required to interface to various languages. In
addit ion, particular Ada implementations may use different calling conventions for procedures forming
the run- t ime system primitives.

The RESULT attribute is present only for functions and value-returning

p r o c e d u r e s , and indicates the type of the result which they return.

The LOCATION attribute is present only for subprograms for which an explicit

address specification has been supplied; see section Ada-13.5.

A d a - 6 . 3 Formal parameters

Formal parameters are represented by VARBLSYM nodes which are referred to by

the PARAMETERS attribute of a SUBPROGRAM SYM node (Ada-6.2) . The VARBL SYM

nodes also specify the binding of the parameters; see Ada-4.3. The INITIALIZE

at t r ibute of an in PARAMETER which has a default value is specified by having the

INITIALIZE attr ibute point to an expression which is used to determine the value to

b e passed by a call on the subprogram. This expression, because of the semantics

T C 0 L A d a 73

label: TREE.NODE
<0P procedure)
(SUBNODES SUBPROGRAM.SYrWafce/.- expr-label:)

label: TREE.NODE
(OP value-procedure)
(SUBNODES SUBPROGRAM.SYrWaoe/.* expr-label:)

label: TREE.NODE
(OP f u n c t i o n)
(SUBNODES SUBPR0GRAM.SYM-/a6e/; expr-/aoe/.-)

label: TREE.NODE
(OP task)
(SUBNODES SUBPROGRAM.SYrWabe/: expr-/abe/;)

label: TREE.NODE
(OP package)
(SUBNODES SUBPROGRAM.SYrWafce/.- expr-/afce/.-)

Figure A d a - 6 - 3 : TREE NODEs for subprogram bodies

The first subnode of a subprogram body is the SUBPROGRAMSYM node. The

second subnode of a subprogram body is a pointer to the tree which represents the

code of the body.

The specification of accept statements and their bodies is In section Ada -9 .5 .

of Ada, will always refer to a dummy variable created at procedure declaration

elaboration time and which holds the value computed at that time* The dummy

VARBLSYM node Is the the VARBLS list of the DECLARATION INFO node associated

with the subprogram, and Its INITIALIZE attribute refers to the expression to be

e laborated at procedure declaration time. For an example of all of this, see section

A d a - 5 . 2 . 2 .

A d a - 6 . 4 Subprogram bodies

7 4 T C O L A d a

T h e reason for the existence of such nodes in the program tree representation is to simplify the
code generator; w h e n such a node is encountered by the code generator, the prolog and epilog code
w i l l be emit ted (a s appropriate in the t reewatk) .

A d a - 8 . 5 Function subprograms

S e e Ada-6 .4 .

A d a - 6 . 6 Overloading of subprograms

A d a - 6 . 6 . 1 Overloading of operators

T C O L A d a requires that the semantics phase perform disambiguation on overloaded

operators. Thus, every operator in the tree is uniquely identified with the particular

implementation of that operator. If the operator is a user-defined operator, it may

b e represented either as a subprogram (function) call or as a binary or unary

operator as given in section Ada-4. If it Is represented as an operator node, the

DEFN attr ibute of the TREENODE for that operator points to the definition of the

function. This representation permits the standard arithmetic interpretations to be

p laced on all the operators, e.g., "+" is associative and commutative, and obeys the

distributive law with respect to "*"; "<" is a total ordering relationship whose

complement is ">=", e t c .

Because the DEFN attribute points to code which implements the operator, or to

some other definition (such as for builtin operators on integer types) , the same

token , " + " , can be used to represent many types of addition for which the standard

interpretations hold.

At some later stage in the compilation process, the TCOL operator may be uniquely identif ied such
that rea l arithmetic, integer arithmetic, e tc . all have unique TCOL operators in that dialect of TCOL.
W h e n , or if , this sort of transformation is done depends upon the particular compiler implementation.

A d a - 6 . 7 Blocks

A block is represented by a TREENODE whose operator is "block" and whose

subnodes refer to the DECLARATION INFO node for the block and the t ree which

descr ibes the body of the block.

e

T C 0 L A d a 7 5

label: TREE.NODE
(OP b lock)
(SUBNODES DECLARATIONJHFO-label: expr-label:)

Figure A d a - 6 - 4 : T C O L A d a for a block

7 6 T C O L A d a

Ada-7. Modules

T C O L A d a 7 7

The specification of modules specifies effects at syntax analysis and semantic

analysis time. The results of semantic analysis, and In particular, visibility of

variables or their representations (private declarations) are all Implicit in the

T C O L A d a t ree .

A d a - 7 . 1 Module structure

A d a - 7 . 2 Module specifications

A d a - 7 . 3 Module bodies

S e e Ada-6 .4 .

A d a - 7 . 4 Pr ivate type declarations

7 8 T C 0 L A d a

T C O L A d a r «

Ada-8. Visibility rules
The scope and visibility of a name are determined by the semantic analyzer. All

c a s e s of overlapping scope are resolved, and the TCOL representation always

r e f e r s t o the correct identifier; there is no concept of overlapping scope or

over loaded identifiers in the TCOL representation.

A d a - 8 , 1 Scope of Declarations

A d a - 8 . 2 Visibility of Identifiers

A d a - 8 . 3 Restr icted Program Units

0 J a - 8 . 4 USE clauses

A d a - 8 . 5 Renaming

T h e e f f e c t s of renaming on the TCOL representation have not ye t been specified.

A d a - 8 . 6 Predef ined Environment

8 0 TCOL Ada

T C O L A d a
8 1

label: TASK_SYM
(NAME NAME_N0DE-label:)
(DECLARATI ON DECLARATI ON J NF0-/abe/.-)
(BODY SUBPROGRAM_SYM-/abe/:)

Figure A d a - 9 - 1 : TASKSYM node

The TASK SYM node refers to a DECLARATIONJNFO node which contains the

declarations for the task. The BODY attribute refers to a SUBPROGRAMSYM node

for t h e task body; see section Ada-6.2.

This specif icat ion is preliminary.

A d a - 9 . 2 Task h ierarchy

A d a - 9 . 3 Task initiation

label: TREEJJODE
(OP i n i t i a t e)

(SUBNODES expr-/abe/-seqrt/ence)

Figure A d a - 9 - 2 : T C O L A d a representation for initiate

The subnodes of an initiate operator node are either task designators which are a

single task name (LEAF_NODEs pointing to TASK SYM nodes) or task designators

which specify one or more members of a family of tasks. For a single member, the

form is as shown in figure Ada-9-3, and for several members, the form is as shown In

figure A d a - 9 - 4 . If the source language specifies the name of a task family, t h e

Ada-9. Tasks

A d a - 9 . 1 Task declarations and task bodies

8 2 T C 0 L A d a

TCOL t ree represents the explicit range which for a family of tasks T runs from

T'FIRST to T'LAST.

t a s k T O . . 1 0) is
— task declarations

end T;
t a s k body T is

— body
end T;
in i t iate T (4) , T (6) ;

in i» TREE_NODE
<0P i n i t i a t e)
(SUBNODES t 4 : t 6 :)

t 4 l TREE.NODE
(OP index)
(SUBNODES task-T f o u r i)

t 6 : TREEJIODE
"(OP index)
(SUBNODES task-T s i x :)

t a s k - T i TASK.SYM
! . . . e t c .

Figure A d a - 9 - 3 : T C O L A d a tree for initiating single members of a task family

init iate T; — T as in figure Ada-9-3

I n ! t TREE.NODE
(OP i n i t i a t e)
(SUBNODES a l ! - t :)

T C O L A d a 8 3 .

a l l - t J TREE.NODE
(OP s l i c e)
(SUBNODES task-T» one- teni) I T (l . , 1 0) e x p l i c i t I

o n e - t e n : TYPE.SYM
I a der ived type of the index range of the task
1 f a m i l y , w i th the constraints 1..10

Figure A d a - 9 - 4 : T C O L A d a tree for initiating a family of tasks

A d a - 9 . 4 Normal termination of tasks

A d a - 9 . 5 Entry declarat ions and Accept statements

An ent ry declaration generates a SUBPROGRAMSYM node (section A d a - 6 . 2)

whose KIND is ENTRY and which contains multiple BODY pointers; there Is one pointer

to each body of an accep t statement.

tabeh TREE.NODE
(OP accept)

(SUBNODES SUBPR0GRAM.SYM-/a6e/.« expr-/a£»e/;)

Figure A d a - 9 - 5 : T C O L A d a form of accept statement

A d a - 9 . 6 DELAY statement

labeh TREE.NODE
(OP de lay)

(SUBNODES expr-/a£>e/.->

Figure A d a - 9 - 6 : T C O L A d a representation for the delay statment

8 4 T C O L A d a

label: TREEJIODE
(OP abor t)
(SUBNODES expr-label-sequence)

I t o same types of nodes as an
! i n i t i a t e statement

Figure A d a - 9 - 7 : TCOL A c j a representation for abort statement

A d a - 9 . 1 1 Signals and Semaphores

A d a - 9 . 7 SELECT statement

T h e e x a c t representation for the s e l e c t statement is not yet specified.

A d a - 9 . 8 Task priorities

A d a - 9 . 9 Task and Entry attributes

A d a - 9 . 1 0 a b o r t statements

T C O L A d a 8 5

Ada-1 0. Program structure and compilation issues

T C 0 L A d a does not normally specify the representation of data items e x c e p t when

this is explicit in the source code. However, knowledge from previous separa te

compilations, in which representation decisions have been bound, has the same

e f f e c t as an explicit representation specification, in that the remaining phases of

t h e compiler are not permitted to select a new representation.

It is therefore necessary for the information about representation choices be

made available to the Front End when separate compilation is done, so that the Front

End may bind any representation decisions which may not be changed. This requires

a specification of what information is required for separate compilation, and a

specification of how to generate this information from some later form of the TCOL

t r e e . Such a specification is beyond the scope of this document.

A d a - 1 0 . 1 Compilation units

A d a - 1 0 . 2 Subunits of compilation units

A d a - 1 0 . 3 Order of compilation

A d a - 1 0 . 4 Program library

A d a - 1 0 . 5 Elaboration of compilation units

A d a - 1 0 . 6 Program optimization

Although static expressions may be evaluated by the compiler Front End, there is

no requirement that this be done.

6 6 T C O L A d a

T C O L A d a 8 7

label: EXCEPTI ON.SYM
(NAME NAME_NODE-/abe/.-)

Figure A d a - 1 1 - 1 : EXCEPTIONSYM node

A d a - 1 1 . 2 Exception handlers

An exception handler looks almost like a case statment, except that the choices

are restr icted to being either exception names or others. Thus, separate operators

a r e used to represent the exception handler.

label: TREE.NODE
(OP excp-case)
(SUBNODES expr-/abe/-seguence)

label: TREE.NODE
(OP excp-when)

(SUBNODES EXCEPTI ON.SYM-/abe/-segt/ence expr-/abe/.->

Figure A d a - 1 1 - 2 s T C O L A d a representation for exception handler

The first subnode of an excp-when operator node may also be a TREE_NODE

whose operator is "others". If any of the exceptions named by the exception node

label sequence is the one which caused entry into the exception handler, the

s ta tements referred to in the last subnode are executed.

Ada-1 1 . Exceptions

A d a - 1 1 . 1 Exception declarations

An exception declaration creates an EXCEPTIONSYM node.

8 8 T C O L A d a

A d a - 1 1 . 3 r a i s e statements

ra ise exception_name;

label: TREE_NODE
(OP r a i s e)

(SUBNODES EXCEPTI0N_SYM-/a6e/;)

Figure A d a - 1 1 - 3 : T C O L A d a tree for raise statement

A ra ise statement with no exception named is legal only inside an except ion

handler, and it re-raises the exception which caused entry into the except ion

handler. This is identified in the TCOL tree by a separate operator, M re - ra lse M .

d e c l a r e
~ declarations

begin
— statements

e x c e p t i o n
— statments
ra ise;

e n d ;

label: TREE_N0DE
(OP r e - r a t s e)

Figure A d a - 1 1 - 4 : TCOL tree for raise inside exception handler

A d a - 1 1 . 3 . 1 Dynamic association of handlers with exceptions

A d a - 1 1 . 4 Except ions raised during tasking.

T C O L A d a 6 9

A d a - 1 1 . 5 Raising an exception in another task

This has not y e t been specified.

A d a - 1 1 . 8 Supressing exceptions

Exceptions are suppressed by the SUPPRESS pragma. The scope of this pragma

is the program unit in whose declarative part this pragma appears. Therefore, when

elaborating the DECLARATIONJNFO part of a program unit, the pragma can be found,

and its applicability decided (i.e., whether or not the compiler chooses to honor i t) .

Thus, there is no way the Front End can suppress the raise statement for a

suppressed exception; that is something only later stages of the compiler can

de f ine .

9 0 TCOL Ada

T C O L A d a
9 1

Ada-1 2. Generic program units

In order to faci l i tate certain optimizations in simple compilers, a QENERICJNFO node ex is ts t o link,
together al l instances of generic procedure bodies. The complete specification of the Q E N E R I C J N F O
node is not finished.

label: GENERIC J NFO
(NAME NAME_NODE-/abe/:)
(I NSTANCES SUBPR0GRAM_SYM-/a6e/-seguence)

Figure A d a - 1 2 - 1 : GENERICJNFO node

A d a - 1 2 . 1 Generic Clauses

A d a - 1 2 . 2 Generic Instantiation

9 2 T C O L A d a

T C O L A d a
9 3

A d a - 1 3 . 1 Packing Specif ications

The appearance of a packing specification in the source t e x t wilt cause t h e

(PACKING YES) attribute value to be set. See section Ada-3.3.

A d a - 1 3 . 2 Length Specif ications

The appearance of a length specification In the source t e x t will cause the

LENGTH attribute value to be set . See section Ada-3.3.

A d a - 1 3 . 3 Enumeration Type Representation

The appearance of an enumeration type representation In the source t e x t will

change the way in which the LITERALS of an ENUMERATION SYM node are assigned

values. See section Ada-3 .5 .1 .

A d a - 1 3 . 4 Record Type Representation

The presence of a record representation in the source t e x t provides values for

the LOCATION and ALIGNMENT attributes of the VARBLSYM node for the record

components. See section Ada-4.3.

A d a - 1 3 . 5 Address Specif ications

The appearance of an address specification in the source t e x t has the following

e f f e c t s :

- For a variable, this causes the LOCATION attribute of the
corresponding VARBL SYM node to be set 'to the value of the location
expression, expressed in bits. See section Ada-4.3. This must be a
symbolic expression, because the Front End does not know how many
bits comprise a storage unit.

- For the name of a subprogram, module or entry, this sets the LOCATION
field in the SUBPROGRAM SYM node; see section Ada-6.2.

Ada-1 3. Representation specifications

9 4 T C O L A d f l

A d a - 1 3 . 5 . 1 Interrupts

A d a - 1 3 . 6 Change of Representations

A d a - 1 3 . 7 Configuration and Machine Dependent Constants

A d a - 1 3 . 8 Machine Code Insertions

A d a - 1 3 , 9 In te r face to Other Languages

A d a - 1 3 . 1 0 Unsafe Type Conversions

T C O L A d a

Ada-1 4. Input-output

A d a - 1 4 . 1 General User Level Input-Output

A d a - 1 4 . 1 . 1 Files

A d a - 1 4 . 1 . 2 File Processing

A d a - 1 4 . 2 Specif icat ion of the Package INPUT OUTPUT

A d a - 1 4 . 3 T e x t Input-Output

A d a - 1 3 . 3 . 1 Standard Input and Output Files

A d a - 1 4 . 3 . 2 Layout

A d a - 1 4 . 3 . 3 Input-Output of Characters and Strings

A d a - 1 4 . 3 . 4 Input-Output for Other Types

A d a - 1 4 . 3 . 5 Input-output for Numeric types

A d a - 1 4 . 3 . 6 Input-output for Boolean

A d a - 1 4 . 3 . 7 Input-output for Enumeration types

A d a - 1 4 . 4 Specif ications of the Package TEXT JO

A d a - 1 4 . 6 Low Level Input-Output

9 6 TCOL Ada

T C O L A d a

•ACCESS SIZE

•ADDRESS

'BITS

'CLOCK

•COUNT

•DELTA

label: TREE.NODE
(OP access-size)
(SUBNODES TYPE_SYM-/aoe/.-)

label: TREE.NODE
(OP address)
(SUBNODES expr-/abe/.-)

label: TREE.N0DE
(OP b i t s)
(SUBNODES TYPE.SYrWaoe/:)

label: TREE.NODE
(OP task-c lock)
(SUBNODES expr-/a6e/.-)

The subnode evaluates to the name of a task.

label: TREE.NODE
(OP entry-count)
(SUBNODES SUBPR0GRAM-/a6e/.-)

Subnode refers to an entry subprogram node.

label: TREE.SYM
(OP d e l t a)
(SUBNODES TYPE.SYM-/ade/.-)

•DIGITS

label: TREE.SYM
(OP d i g i t s)
(SUBNODES TYPE.SYrWaoe/?)

A d a - 1 . Predefined language attributes

9 8 T C 0 « - A d a

•EXPONENT MAX

'EXPONENT MIN

•FIRST

•FIRST

'FIRST(I)

label: TREE..SYM
(OP exponent-max)
(SUBNODES TYPE_SYM-/aoe/.-)

label: TREE_SYM
(OP exponent-mln)
(SUBNODES TYPEjSYM-/a6e/.-)

On scalar types.

label: TREE_N0DE
(OP f i r s t)
(SUBNODES TYPE_SYM-/abe/.-)

If the source language refers to an Instance of a type then
the Front End must supply the type of the Instance as the
operand.

On arraysi see 'FIRST(/).

On arrays. If the parameter Is omitted In the source t e x t , the
TCOL tree must have an explicit parameter of 1 supplied.

label: TREE.NODE
(OP f i rs t -bound)
(SUBNODES TYPE_SYM-tebe/; expr-/atoe/.«)

If the source language refers to an instance of a type then
the Front End must supply the type of the Instance as the
operand.

•FIRST BIT

label: TREE_N0DE
(OP f i r s t - b i t)
(SUBNODES VARBL_SYM-/aoe/:)

where the VARBL SYM refers to a component VARBL In a
record.

T C O L A d a 9 9

'INDEX

'LARGE

•LAST

•LAST

'LAST(I)

label: TREE.NODE
(OP task- Index)
(SUBNODES expr-/aoe/.-)

The subnode evaluates to the name of a task.

label: TREE.SYM
(OP large)
(SUBNODES TYPE.SYM-/abe/.«)

label: TREE.NODE
(OP l a s t)
(SUBNODES TYPE_SYM-/abe/.-)

If the source language refers to an instance of a type then
the Front End must supply the type of the instance as t h e
operand.

On arrays, see 'LAST(/).

On arrays. If the parameter is omitted In the source t e x t , the
TCOL tree must have an explicit parameter of 1 supplied.

label: TREE.N0DE
(OP last-bound)
(SUBNODES TYPE.SYM-/abe/.- expr-labeh)

If the source language refers to an instance of a t y p e then
the Front End must supply the type of the Instance as t h e
operand.

•LAST BIT

label: TREE.NODE
(OP l a s t - b i t)
(SUBNODES VARBL.SYM-/abe/:)

where the VARBL SYM refers to a component VARBL In a
record.

1 0 0 T C 0 L A d a

'LENGTH
See 'LENGTHS).

'LENGTH(i)
On arrays. If the parameter is omitted in the source t e x t , the
TCOL tree must have an explicit parameter of 1 supplied.

label: TREEJIODE
(OP length)
(SUBNODES TYPE—SYM-/abe/.« expr-tebe/.-)

If the source language refers to an instance of a type then
the Front End must supply the type of the instance as t h e
operand.

label: TREEJIODE
(OP posi t ion)
(SUBNODES VARBL_SYM-/a6e/;)

where the VARBLSYM refers to a component VARBL in a
record.

•ORD

label: TREEJIODE
(OP ord)
(SUBNODES TYPE_SYM-/abe/.- expr-/aoe/.->

'POSITION

'PRED

label: TREEJIODE
(OP pred)
(SUBNODES TYPE^SYM-Zabe/; expr- /aoe/:)

'PRIORITY

label: TREEJIODE
(OP t a s k - p r i o r i t y)
(SUBNODES expr-/abe/.-)

The subnode evaluates to the name of a task.

T C 0 l - A d a 1 0 1

'REP

'SIZE

'SMALL

'SUCC

label: TREE.SYM
(OP rad ix)
(SUBNODES TYPE.SYM-teoe/:)

label: TREE.NODE
(OP rep)
(SUBNODES TYPE_SYM-/aoer\- expr-label:}

The DEFN attribute of the TREE.NODE refers to the function w h i c h
wi l l return the representation.

label: TREE_NODE
(OP s ize)
(SUBNODES TYPE.SYM-/ade/:)

If the source language entity Is the name of an instance of a
type instead of the name of a type, then the Front End must
supply the type reference.

label: TREE.SYM
(OP small)
(SUBNODES TYPE.SYM-/a6e/.*)

label: TREE.NODE
(OP succ)
(SUBNODES TYPE.SYM-/aoe/.- expr-label:')

'VAL

label: TREE.NODE
(OP v a l)
(SUBNODES TYPE.SYM-teoer'; expr-/aoe/.-)

The DEFN attribute of the TREE.NODE refers to the function w h i c h
wi l l return the value.

0 2 T C 0 L A d a

T C O L A d a

Ada-Z. Predefined Language Pragmas

0 4 T C 0 L A d a

T C O L A d a

Ada-3. Predefined Language Environment

0 6 T C 0 L A d a

Ada-4. Glossary

0 8 T C 0 L A d a

Ada-5. Syntax Summary

T C ° L A d a

I. Summary of TCOL operators

& Ada-3.6.3

* Ada-4.5.5

** Ada-4.5.6

/ Ada-4.5.5

+ Ada-4.5.4

- Ada-4.5.4

= Ada-4.5.2

/= Ada-4.5.2

< Ada-4.5.2

<= Ada-4.5.2

> Ada-4.5.2

>= Ada-4.5.2

I s Ada-5.1

I Ada-5.b

abor t Ada-9.10

accept Ada-9.5

a c c e s s - s i z e Ada-A

address Ada-A

agg-cho ice Ada-3.6.2

aggregate Ada-3.6.2

and Ada-4.5.t

a s s e r t Ada-5.9

b i t s Ada-A

1 1 2 T C 0 L A d a

b l o c k Ada-6.7

c a l I Ada-5.2

cand Ada-5.4.1

case Ada-5.5

component -se Iect Ada-4.1.2

cor Ada-5.4.1

d e l a y Ada-9.6

d e l t a Ada-A

d i g i t s Ada-A

e l s l f Ada-5.4

e n t r y - c o u n t Ada-A

e x c p - c a s e Ada-11.2

excp-when Ada-11.2

e x i t Ada-5.c, Ada-5.7

e x i t l a b e l Ada-5.c

exponent-max Ada-A

exponent -mln Ada-A

f i r s t Ada-A

f i r s t - b i t Ada-A

f i r s t - b o u n d Ada-A

f o r - d o w n Ada-5.6.c

f o r - u p Ada-5.6.c

f u n c t I o n Ada-6.4

goto Ada-5.c, Ada-5.8

T C O L A d a 1 1 3

gotolabel

I f

in

Index

i n i t i a t e

large

last

l a s t - b i t

last-bound

leaf

length

loop

mod

not

n o t - I n

nu l l

or

ord

others

package

paren

posit ion

pragma

pred

Ada-5.c

Ada-5.4

Ada-4.5.2

Ada-4 .1 .1 , Ada-9.3

Ada-9.3

Ada-A

Ada-A

Ada-A

Ada-A

Ada-4.5

Ada-A

Ada-5.6.a

Ada-4.5.5

Ada-4.5.4

Ada-4.5.2

Ada-5.a

Ada-4.5.1

Ada-A

Ada-3.6.2, Ada-5.5

Ada-6.4

Ada-4.1

Ada-A

Ada-2.7

Ada-A

1 1 4 T C O L A d a

p r o c e d u r e

r a d i x

r a i s e

r e - r a i se

r e c - c h o i c e

r e c o r d - a g g r e g a t e

r e p

r e t u r n

r e t u r n - v a l u e

s i z e

s i i c e

smal I

succ

t a s k

t a s k - c l o c k

t a s k - i n d e x

t a s k - p r i o r i t y

U+

U-

v a i

v a l u e - p r o c e d u r e

when

w h i l e

xor

Ada-6.4

Ada-A

Ada-11.3

Ada-11.3

Ada-3.7.3

Ada-3.7.3

Ada-A

Ada-5.3

Ada-5-3

Ada-A

Ada-4.3.b, Ada-9.3

Ada-A

Ada-A

Ada-6.4

Ada-A

Ada-A

Ada-A

Ada-4.5.4

Ada-4.5.4

Ada-A

Ada-6.4

Ada-5.5

Ada-5.6.b

Ada-4.5.1

T C O L A d a
1 1 5

label: ACCESS.REP
(ACCESS-OF TYPE.SYM-/abe/:)

label: ARRAY_REP
(COMPONENT TYPE_SYM-/abe/*)

label: CONSTRAI NT.REP
(RANGE expr-label: expr-label:)
(ACCURACY expr-/abe/.-)

label: DECLARATI ON J NFO
(SUBPROGRAMS SUBPROGRAM_SYM-/abe/-segt/ence)
(VARBLS VARBL_SYM-/abe/-seo;c/ence>
(TYPES TYPE_SYM-/abe/-se<7«ence)
(EXCEPTI ONS EXCEPTI ON_SYM-/abe/-seqi/e/>ce)
(PRAGMAS PRAGMA_SYM-/abe/-seouence)
(TASKS TASK_SYM-/abe/-seo;i/e/?ce)
(PACKAGES PACKAGE_SYM-/abe/-se<7«ence)
(ELABORATI0N_0RDER label-sequence) I t o a l l nodes I n

I above a t t r i b u t e s

label: ENUMERATION.REP
(L I TERALS VARBL_SYM-/abe/-seg</ence)

label: EXCEPTION.SYM
(NAME NAME_NODE-/abe/;)

label: GENERIC J NFO
(NAME NAME_NODE-/abe/;>
(I NSTANCES SUBPROGRAM_SYM-tebe/-seQt/ence)

label: LABEL_SYM
(NAME NAME_NODE-/abe/r)
(TREE expr-/abe/.->

label: LEAF.NODE
(OP l e a f)
(SUBNODES YARBL-/abe/;>

II. Summary of node types

1 1 6 T C 0 « - A d a

label: LI TERAL_REP
(VALUE LG-llteral)

label: NAME.NODE
(PNAME string)
(NAMES label-sequence) i TYPE..SYM,

! VARBLJSYM,
I EXCEPTION.SYM,
I LABEL.SYM,
I PRAGMA.SYM,
! PACKAGE.SYM,
J TASK.SYM,
I SUBPROGRAM.SYM

label: PACKAGE.SYH
(NAME NAME_NODE-/abe/;)

T h e specif ication of the remainder of the PACKAGE.SYM node is not complete.

label: PRAGMA^SYM
(NAME NAMEJJODE-/aoe/.-)
(ARGS label-sequence)

T h e e x a c t specification of the ARGS attribute is not complete.

label: RECORD..REP
(FIELDS label-sequence) I to VARBL.SYM nodes

J or TREEJIODE
J (op case) nodes

label: SCALAR J?EP
(VARIETY FIXED | FLOAT | INTEGER | CHARACTER | BOOLEAN)

label: SUBPROGRAM_SYM
(NAME NAME_NODE-/abe/:)
(BODY expr-/abe/-seq/c/e/)ce)
(RESULT TYPE_SYM-/abe/:)
(KIND PROCEDURE | VALUE-PROCEDURE | FUNCTION

| ENTRY | TASK-BODY)
(PARAMETERS VARBL.SYM-label-sequence)
(LINKAGE LINK AGE-/abe/.O
(PRAGMAS PRAGMA..SYM- /abe/-seQi/e/7ce)
(DECLARATIONS DECLARATI ON J NF0-/a6e/:)
(EXCEPTION expr-labeh)
(LOCATION expr-/abe/.-)

T C O L A d a 1 1 7

label: TASK.SYM
(DECLARATI ON DECLARATI ON J NFO-/abe/:)
(BODY SUBPROGRAM_SYM-/abe/:)

label: TREE.NODE
(OP identifier)
(DEFN label:)
(SUBNODES expr-label-sequence)

label: TYPE.SYM
(KIND DECLARED | SUBTYPE | DERIVED | PREDEFINED)
(NAME NAME_NODE-/abe/.-)
(CONSTRAI NT CONSTRAI NTJ?EP-/abe/-seoi/ence)
(PARENT TfPEJSYM-labeh)
(REP label:)

(PACKING YES | NO)
(LENGTH integer)

J ARRAY_REP,
! RECORD_REP,
I ENUMERATION_REP,
! SCALAR.REP
! Ada-13.2
! Ada-13.2

label: VARBL.SYM
(NAME NAME_NQDE-/abe/:)
(TYPE TYPE_SYM-label:)
(CONSTANT NO | UNKNOWN | COMPILE | LINK | EXECUTION)
(BINDING IN | OUT | INOUT) I see t e x t
(LOCATI ON expr-label:)
(LENGTH expr-labeh)
(ALIGNMENT expr-label)
(I N I T I A L I Z E expr-/abe/.-)

T C O L A d a

References

R.G.G. Cattel l .

Formalization and Automatic Derivation of Code Generators.
PhD thesis, Carnegie-Mellon University, April, 1 9 7 8 .

J.D. Ichbiah, J.C. Heliard, O. Roubine, J.G.P. Barnes, B. Krleg-Brueckner, B.A.
Wichmann.
Reference Manual for the Ada Programming Language.
SIGPI <W Notices 1 4 (6) : 1 , June, 1979 .

B.W. Leveret t , R.G.G. Cattell, S.O. Hobbs, J.M. Newcomer, A.H. Reiner, B.R.
Schatz , W.A. Wulf.
An Overview of the Production Quality Compiler-Compiler Project.
Technical Report CMU-CS-79-105, Carnegie-Mellon University, Computer

Science Department, February, 1979 .

J.M. Newcomer, R.G.G. Cattell, P.N. Hllfinger, S.O. Hobbs, B.W. Leverett , A.H.
Reiner, B.R. Schatz, W.A. Wulf.
POCC User's Manual.
Technical Report, Carnegie-Mellon University, Computer Science

Department, May, 1 9 7 9 .

T C ° L A d a 1 1 9

Index

& operator 5 0

•ACCESS.SIZE 9 7
•ADDRESS 9 7
•BITS 9 7
•CLOCK 9 7
•COUNT 9 7
•DELTA 9 7
•DIGITS 9 7
•EXPONENT.MAX 9 7
•EXPONENT.MIN 9 7
•FIRST 9 8
•FIRST.BIT 9 8
•INDEX 9 8
•LARGE 9 8
•LAST 9 8 , 9 9
•LAST.BIT 9 9
•LENGTH 9 9
'ORO 9 9
•POSITION 9 9
•PRED 1 0 0
•PRIORITY 100
•radix 1 0 0
•REP 1 0 0
•SIZE 1 0 0
•SMALL 1 0 0
•SUCC 1 0 0
»VAL 101

m operator 5 1
* * operator 5 1

+ operator 5 0
+ , unary 5 0

- operator 5 0
unary 5 1

/ operator 5 1
/ = operator 4 9

:= operator 6 0

; operator 5 5

< operator 4 9
<= operator 4 9

a operator 4 9

> operator 4 9
>= operator 4 9

Abort operator 8 4
Accept operator 8 3
A c c e s s - s i z e operator 9 7
ACCESS.REP node 2 3 , 4 0 , 115
ACCESS.SIZE attribute 9 7

1 2 0 T C ° L A d a

Accuracy constraint 3 1 , 3 2 , 115
Actual parameters 6 0 , 6 1
Adding operators 5 0
ADDRESS attribute 9 7
Address operator 9 7
Agg-choice operator 3 6
Aggregate 3 6
Aggregate operator 3 6
Alignment clause 9 3
Allocators 5 3
And operator 4 9
and t h e n 6 5
Array 3 5
Array aggregate 3 6
Array Component 4 3
Array T Y P E . S Y M node 3 5
ARRAY_REP~ node 2 3 , 3 5 , 115
Assert operator 7 0
Assignment 6 0
At clause 9 3

.Basic loop 6 8
BITS attribute 9 7
Bits operator 9 7
Block operator 7 4
Boolean type 3 4

Call operator 6 0
Cand operator 6 6
c a s e 6 6
Case operator 6 6
CLOCK attribute 9 7
Component-select operator 4 4
C O N S T R A I N T R E P node 2 3 , 3 1 , 115
Cor operator 6 6
COUNT attribute 9 7

DECLARATIONJNFO node 2 3 , 7 1 , 115
Default parameters 6 1
De lay operator 8 3
DELTA attribute 9 7
Del ta operator 9 7
DIGITS attribute 9 7
Digits operator 9 7
Division 5 1

Elsif operator 6 4 , 6 5
Entry-count operator 9 7
ENUMERATIOW.REP node 2 3 , 3 3 , 115
Equality 4 9
EXCEPTION.SYM node 2 3 , 8 7 , 115
E x c p - c a s e operator 8 7
E x c p - w h e n operator 8 7
Exit operator 6 9
Exit label operator 5 7
Exponent-max operator 9 7
Exponent-min operator 9 7
EXPONENT.MAX attribute 9 7
EXPONENT-MIN attribute 9 7
Exponentiation operator 5 1
Expressions, stat ic 5 3

T C O L A d a 1 2 1

FIRST attribute 9 8
First operator 9 8
First-bit operator 9 8
First-bound operator 9 8
F I R S T B I T attribute 9 8
f o r 6 9
F o r - d o w n operator 6 9
For-up operator 6 9
Formal parameters 7 2
Function operator 7 3
Function subprogram 7 4

GENERtCJNFO node 2 3 , 9 1 , 115
Goto operator 7 0
Gotolabel operator 5 7

Identif iers 2 9
i f 6 4
If operator 6 4
In 4 9
In operator 4 9
INDEX attribute 9 8
Index operator 4 3 , 8 2
Indexed Component 4 3
Inequality 4 9
Initiate operator 8 1
Integer type 3 4
I teration specif ication 6 8

LABEL.SYM node 2 3 , 5 7 , 115
Labels 5 6
LARGE attribute 9 8
Large operator 9 8
LAST attribute 9 8 , 9 9
Last operator 9 8
Last-bi t operator 9 9
Last-bound operator 9 9
L A S T B I T attribute 9 9
Leaf operator 4 8 , 4 9 , 115
LEAF.NODE node 2 3 , 4 8 , 115
LENGTH attribute 9 9
Length operator 9 9
U N K A G E J N F O node 2 3 , 115
L ITERAL.REP node 2 3 , 4 5 , 115
loop 6 8
Loop operator 6 8

Membership operators 4 9
Minus, unary.. 5 1
Mod operator 5 1
Module body 7 7
Multiplication 5 1
Multiplying operators 51

NAMEJVIODE node 2 3 , 4 3 , 116
Node ACCESS.REP 2 3 , 4 0 , 115
Node ARRAY.REP 2 3 , 3 5 , 115
Node CONSTRAINT.REP 2 3 , 3 1 , 115
Node DECLARATIONJNFO 2 3 , 7 1 , 115
Node ENUMERATION.REP 2 3 , 3 3 , 115

1 2 2 T C O L A d a

Node EXCEPTION.SYM 2 3 , 8 7 , 115
Node GENERICJNFO 2 3 , 9 1 , 115
Node LABEL.SYM 2 3 , 5 7 , 115
Node LEAF.NODE 2 3 , 4 8 , 115
Node LINKAGEJNFO 2 3 , 115
Node LITERAL.REP 2 3 , 4 5 , 115
Node NAME.NODE 2 3 , 4 3 , 116
Node PACKAGE.SYM 2 3 , 116
Node P R A G M A . S Y M 2 3 , 2 9 , 116
Node R E C O R D R E P 2 3 , 3 9 , 116
Node SCALAR.REP 2 3 , 3 2 , 116
Node SUBPROGRAM.SYM 2 3 , 7 1 , 116
Node T A S K . S Y M 2 3 , 8 1 , 116
Node TREE.NODE 2 3 , 4 7 , 117
Node T Y P E . S Y M 2 3 , 3 1 , 117
Node VARBU.SYM 2 4 , 4 5 , 117
n o t 5 1
n o t in 4 9
Not operator 5 0
N o t - i n operator 4 9
n u l l 5 5
Null operator 5 5
Numbers 2 9

Operator & 5 0
Operator * 5 1
Operator m m 5 1
Operator -4- 5 0
Operator - 5 0
Operator / 5 1
Operator / = 4 9
Operator 6 0
Operator ; 5 5
Operator < 4 9
Operator <= 4 9
Operator = 4 9
Operator > 4 9
Operator >= 4 9
Operator abort 84
Operator accept 8 3
Operator access-s ize 9 7
Operator address 9 7
Operator agg-choice 3 6
Operator aggregate 3 6
Operator and 4 9
Operator assert 7 0
Operator bits 9 7
Operator block 74
Operator call 6 0
Operator cand 6 6
Operator case 6 6
Operator component-select 4 4
Operator cor 6 6
Operator delay 8 3
Operator delta 9 7
Operator digits 9 7
Operator elsif 6 4 , 6 5
Operator en try-count 9 7
Operator excp -case 8 7
Operator e x c p - w h e n 8 7
Operator exi t 6 9

T C O L A d a

Operator exit label 5 7
Operator exponent-max 9 7
Operator exponent-min 9 7
Operator first 9 8
Operator f irst-bit 9 8
Operator first-bound 9 8
Operator f o r - d o w n 6 9
Operator for-up 6 9
Operator function 7 3
Operator goto 7 0
Operator gotolabel 5 7
Operator if 6 4
Operator in 4 9
Operator index 4 3 , 8 2
Operator initiate 8 1
Operator targe 9 8
Operator last 9 8
Operator last-bit 9 9
Operator last-bound 9 9
Operator leaf 4 8 , 4 9 , 115
Operator length 9 9
Operator loop 6 8
Operator mod 5 1
Operator not 5 0
Operator not - in 4 9
Operator null 5 5
Operator or 4 9
Operator ord 9 9
Operator others 3 7 , 3 8 , 6 7
Operator package 7 3
Operator paren 4 8
Operator position 9 9
Operator pragma 2 9 , 6 0
Operator pred 100
Operator procedure 7 3
Operator radix 100
Operator raise 8 8
Operator re - ra ise 8 8
Operator rec-choice 4 0
Operator record-aggregate 4 0
Operator rep 100
Operator return 6 3
Operator return-value 6 3
Operator Semicolon (5 5
Operator s ize 100
Operator slice 4 7 , 8 2
Operator small 1 0 0
Operator succ 100
Operator task 7 3
Operator task-clock 9 7
Operator task-index 9 8
Operator task-priority 1 0 0
Operator U«f 5 0
Operator U - 5 0
Operator val 101
Operator value-procedure 7 3
Operator when 6 7
Operator whi le 6 8
Operator xor 4 9
or e l s e 6 5
Or operator 4 9

1 2 4 T C 0 L A d a

O R D attribute 9 9
Ord operator 9 9
o t h e r s 6 6
Others operator 3 7 , 3 8 , 6 7

Package operator 7 3
PACKAGE.SYM node 2 3 , 116
Paren operator 4 8
Plus, unary 5 0
POSITION attribute 9 9
Position operator 9 9
Pragma operator 2 9 , 6 0
Pragma SUPPRESS 8 9
P R A G M A . S Y M node 2 3 , 2 9 , 116
P R E D attribute 100
Pred operator 100
PRIORITY attribute 100
Procedure operator 7 3

Qual i f ied expressions 5 1

Radix attribute 100
Radix operator 100
Raise operator 8 8
R e - r a i s e operator 8 8
R e c - c h o i c e operator 4 0
Record-aggregate operator 4 0
RECORD.REP node 2 3 , 3 9 , 116
Relat ional operators 4 9
REP attribute 100
Rep operator 100
r e t u r n 6 3
Return operator 6 3
Return-va lue operator 6 3
r e v e r s e 6 9

SCALAR.REP node 2 3 , 3 2 , 116
Semicolon operator 5 5
Sequence o f Statements 55
Short Circuit evaluation 6 5
SIZE attribute 100
S i z e operator 100
S l ice assignment 6 0
S l ice operator 4 7 , 8 2
S M A L L attribute 100
Small operator 100
SOURCE attribute 24
Sta tement labels 5 6
Statement sequence 5 5
Sta t ic expressions 5 3
Subprogram call 6 1
S U B P R O G R A M . S Y M node 2 3 , 7 1 , 116
Subtypes 3 1
SUCC attribute 100
Succ operator 100
Symbol table 4 3 , 116

Task operator 7 3
T a s k - c l o c k operator 9 7
Task- index operator 9 8
Task-pr ior i ty operator 100

T C O L A d a
1 2 5

T A S K S Y M node 2 3 , 8 1 , 116
T R E E . N O D E node 2 3 , 4 7 , 117
T y p e conversion 6 3
T Y P E . S Y M node 2 3 , 3 1 , 117
T Y P E . S Y M node, for array 3 5
T y p e s 3 1

U + operator 5 0
U - operator 5 0 , 5 1
Unary + 5 0
Unary - 5 1
Unary operators 5 0

V A L attr ibute 101
V a l operator 101
Va lue -procedure operator 7 3
V A R B L . S Y M node 2 4 , 4 5 , 117
Var iant components 3 9

w h e n 6 6
W h e n operator 6 7
w h i l e 6 8
W h i l e operator 6 8

Xor operator 4 9

SUBFTTX5Pt3ri_$TTl

CCaPFWTIOMS

OOMSTHRIMT

COMPUTER SCIENCE ENGINEERING LAB tltLE: Symbol T o b I e S t r u c t u r e
TCOL.Ado I I I u s t r o t I o n s

J o s e p h M. Newcomer
SYMTPBCC410JN11]

CPRCOlE-rtLLON UmCRSITY
2 1 - J U N - 7 9 0 1 : 0 9

t y p e A U 1 . . 1 0 0 0 ;

t y p e B I s n e w P 1 0 . . 5 0

s u b t y p e C I s A 5 0 . . 1 0 0

t y p e D I s n e w B 2 5 . . 3 0

{>rMNfir€

TTfC.SYM

TY^C_SYT1

KIND t«*tf

CONSTRAINT J B C F

PFLMCC

UBMCTV U U » W UBMCTV U U » W
NPTCMOOC J*5 UBMCTV U U » W

FNBMI M B "

Norcs

C C N S T P A I M T . H E P

PFLNGC
• * • * U . U L . "

PFLNGC

FICQFRCT

MRTCHDCt

C C N 3 T H A 2 N T J

PPNCC
. . . a * . .* l *« tal«*

PPNCC

ACCURACY

W9NGE W9NGE

ACCURACY

LJLJ

TLTJ COMPUTER SCIENCE ENGINEERING LPlB
T y p e s , s u b t y p e s ond d e r i v e d t y p e s

Joseph lj. Newcomer
TCOL.ftdo I l l u s t r a t i o n s

6*6dft BY*

TYPESCC410JN11]
V**£Gl£-rZULOH IWIUEPSTTT

2 1 - J U N - 7 9 0 5 : 1 1

t y p e U is new I n t e g e r 1 . . 2 * J ;

T T P E . S Y M

NflrC

KIND 4«e

CONSTRAINT

r u i
constpaintj^p

LE«TJCC€

4H

cwjstgnt •—•»!•

INITIALIZE

KIND HWiftnH

CONSTRAINT

TPCE_N0C€

J

CONSTANT •••*u«

OP •

SUBNCCCS SUBNCCCS
J . 1

NRrC.NOtC
$>| P»«r€ ' u U n r '

leaf.nocc
W OP immt

HPr€.NOt€
5

-j>| WLUE ;«536

NPME
TYPE

CONSTANT ••««»(<•

BINDING

LOCATION

LENGTH

ALIOWCNT

INITIALIZE INITIALIZE

NPTCS

- J > | UPLUE « 6 3 5

TTTLT7 COMPUTER SCIENCE ENGINEERING LPB
Con s I r o In U

TCOL. Ado I» I u s t r o t I o n s
|l**».H B?:

J o s e p h M . Ne h c o m e r
IOCCKED BT:

C*VU|»»T. U L E :

CONST[C410JN1 1] 2 0 - J U N - 7 9 2 3 : 4 4

INITIALIZE

Wtl.MtfC
«»»« "A"

-<t-

TYFC.SYTI

NPTCJCCC

*B"

UBRBL_$Tf1

UNOTN

I N I T I A L I Z E

LOFJCCC

P K * * " 2 '

_ 3 Y M

CONSTANT ••«•» «!•

ALXQffCNT

I N I T I A L I Z E

-<

NPTC *> NPTC 1*

KIND »f-«4*fu*4

1*

CONSTPAINT

1*

CONSTPAINT

\
PAPENT

\ \
SCALAR_REP

-J>| URRimr U !•••*>

TTTLT7 COMPUTER SCIENCE ENGINEERING LAB
E x p r e s s i o n t r e e

Ne wcomer J o s e p h M.
flLE:

E X F R [C 4 1 0 J N 1 1]

TCOL.f ido I I I u s t r o t I o n s

OATET

2 1 - J U N - 7 9 0 2 : 2 2

t y p e S is o r r o y (1 . . 1 0> 1 . . 2 0) o f boo I ecn ;

MPTC.NCCC

KIND 4««l«r*4

CONSTRAINT

PPPAY.PEP TYTt.SYtl

CCNSTWUNT

CONSTRAINT

$CALflP_RO»

—UPPIETt l»U|.r

COKSTPAIKT.RfP CONSTRAINT _REP

1 1 0 1 2 0

« - J > | UBRIETT

s u b t y p e 0 Is S(1 . . 1 0 , 5 . . 1 7) o f b o o l e a n ;

W r m c " Q "

KIND »r*4«fU«4

SCPLPR_PO»
•—5>l UPRIETY

NPrc.NOCC

CONSTRAINT.REP

5 1 7

JUU

COMPUTER SCIENCE ENGINEERING LQB
Ar r o y r e p r e s e n t o t l o n

FVOJECTi TCOL. Ado I I I us t r o t l o n e
C*v«M Br i J CHECKED ert
Jospph M. Newcomer

C*-UJU«3 FILE:
ARRf lY[C410JN1 1]

DSTET

2 1 - J U N - 7 9 0 6 : 4 6
CffctOtE-ttLLON ttitiitRSltT"

4*«L*R•

»ro«»4ur« PC V| ta loltftr) I*
Zt («
»•# »»

*- My <t
••«*;

•>•« »•
— <J

«**••<.(.•«

TFEE.NOOE

S L O « C C S S L O « C C S

TPEC.MOOE

CLABOPATIOfCCPCCP

MrtC.MXC

SU3PROOP**t>SYt1

< - J > 4 > W

Kit©

D E C L A R A T I O N S

LENGTH

- X "

NCtCS

MPPPUSYW NPTCNOCC

tCGLA»ATION.INro

81BPPOCPBMS

ELnWPATIOM.CPCCP

NPTC

INITIALIZE

NA)C_M0OE
f—J>j PNRTC ' INTEGER'

tWPiUSYtl MRfC-NOCC

A
CONSTANT

TtPc.stti

KIND »r^*f lM4

UWICTT

C O N S T R A I N T . A E P

uu
tlfutt C O N P U l b K S C I E N C E E N G I N E E R I N G I P R

P r o c e d u r e dec I o r o t t o r

L j ~ ° * e _ D h ^ ' Newcomer

TCOL.Pdo I I I us t r o t l o n e
lotoafeY, —

„ F R O C 1 [C 4 1 0 J N 1 1]
C t̂oli-tTELLON UNtU*sl?T

\b*u\Hb N>teb?,
3 1 - J U N - 7 9 0 3 : 0 9

p r o c e d u r e P(X : tn I n t e g e r : = Y* 1) Is
• 4»ml mr-mi,

— M y < | _

B*«TFT

TP£T_MCOE

0EOAPAT I O N . INTO

UOPGLS

EXCEPTIONS

£1AFCRAT ION_CPT€R|

SUBNODES

NBTCNOCC

NOTE PNCTC NOTE PNCTC

TYPE NPTCS

CONSTANT • • • « .

BINDING

LOCATION

LENGTH

ALIGNMENT TR£E_N0C€

I N I T I A L I Z E TV I N I T I A L I Z E OP 4>

SUBNODES 1 J

TREE.NODE

C O ! I
SUBNODES

RESULT

K IND » R « « * 4 * * *

LSNKACC

A

TREE.NCCC

SUBN0OE3

I—STT1

BINDING Km

COMPUTER SCIENCE ENGINEERING LQB
TTTLET D e f o u i t p o r o m e i e r r e p r e 8 e n t o t t o n
FVOJTCTT

TCOL.Ado I I I us t r o t l o n e
| < W F L BT, 1CHECKED BTT

Jo s e p h M. Newcomer
D E F P U L C C 4 1 0 J N 1 1]

CPWCOIE-RTLLON UHIICRSITT

IORAHINS HUMBERT OATET
2 1 - J U N - 7 9 0 5 : 0 6

—plTTsfluftdH WWLUAklA t6&43

