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1.0. Abstract. 

In this paper we compare the descriptive power of three programming logics by studying 
the elementary equivalence relations which the logics induce on nondeterministic state-transition 
systems. In addition, we compare these relations with other natural state-equivalence relations 
for nondeterministic systems. We find that the notions of bisimilarity (Park [P], Ogden [O]) and 
observation equivalence (Milner [M]) are very strong equivalences compared with those induced 
by the logics. These three comprise regular trace.logic (RTL), propositional dynamic logic (PDL), 
and Hennessy-Milner logic (HML). Regular trace logic is a new logic which can be used to give 
behavioral specifications for concurrent systems (e.g. Wolper [W], but with significant differences). 
It is a way of formalising those properties of programs which have been given informally in terms 
of path expressions [CH]. The model theory and axiomatics of this logic are interesting in their 
own right. Propositional dynamic logic is well-known; our treatment differs from the standard one 
only in that we regard the modalities as specifying intended behavior instead of being programs. 
Hennessy-Milner logic is a simplified modal logic which those authors used as a characterisation 
of their notion of observation equivalence, which we call weak observation equivalence in this 
paper. We also include a brief treatment in this context of two other natural equivalences for 
nondeterministic systems: failure equivalence [HBR] and trace equivalence [H], both of which are 
weaker than the relations induced by the logics but can be characterised using appropriate logical 
subsets. 

1.1. Introduction. 

In this paper we generalise the notion of state-equivalence, familiar from the theory of se­
quential machines, to the case of nondeterministic transition systems, and use it to investigate 
some issues in the semantics of parallel processes. We are motivated by several recent studies of 
parallelism and concurrency. In particular we are interested in modelling systems which can be 
controlled through interactions with a surrounding environment, but which are also capable of 
making internal or hidden moves, in a way which cannot be influenced by an outside agent. This 
sort of behavior naturally demands a nondeterministic model, especially when no probabilities can 
reasonably be attached to the internal actions. 



Hennessy and Milner [HM] seem to have been the first to consider this modelling problem 
explicitly. They give a 'general definition of observational equivalence and prove a basic charac­
terization of the property in terms of a simple modal logic Milner subsequently considered several 
variations of the definition in his CCS [M]. These studies rely on the idea of a transition system 
with explicitly named actions and hidden actions. A similar model was used by Keller [K] in his 
early work on formalizing the notion of concurrent computations. The present work differs from 
Keller's in that the result of a single transition may be nondeterministic, and in having implicit or 
hidden transitions as well. 

Our work can be seen as a direct extension of the Hennessy-Milner results. We introduce 
several alternatives to the definition of observational equivalence. The first was suggested to 
us by W. Ogden, and we subsequently learned from R. Milner that the same definition was 
independently given by David Park, who called it bisimulation. This mathematically appealing 
relation is the strongest of our equivalence relations. Next we consider a class of equivalences 
based on distinguishability by logical formulae. These formulae are drawn from three logics: the 
first is the original Hennessy-Milner logic (HM); the second, is a version of Pratt-Fischer-Ladner's 
propositional dynamic logic (PDL); and the third, called regular trace logic, is a new logic intended 
to express the nondeterministic capabilities of transition systems in a way not possible with PDL. 
We do not treat temporal logic in this respect since our semantics deals only with finite sequences 
of states and actions. Indeed, because our logics talk only about what properties of a system can 
be observed during the occurrence of a finite sequence of transitions, this treatment cannot cope 
with eventualities and fairness conditions as can temporal logics [Pn] and process logics [HKP]. 
We hope that our techniques can be extended to these systems. Milner and Hoare, however, have 
emphasised that the concept of finite observability is all that one could ever reasonably use in 
practice to detect behavioral differences between concurrent systems. 

We compare the strength of these various equivalence relations, including the one already 
proposed by Hennessy and Milner. Under the hypothesis that all transitions have a finite number 
of possible outcomes, the definitions all coincide; a theorem amounting to this was proved by 
Hennessy and Milner. In the absence of this hypothesis, however, significant differences emerge. 
Perhaps the most interesting of these is the one which states that observational equivalence is a 
strictly stronger relation than the relation of indistinguishability by formulae of regular trace logic. 
The proof of this fact uses a rather delicate argument involving the pumping lemma for regular 
sets. 

1.2. Fundamental definitions. 

Our fundamental model of computation is the labelled transition system. This very general 
model was first used by Keller to study concurrent systems, although its origins can be traced back 
to Petri nets and to the nondeterministic automata of Rabin and Scott [RS]. Formally, a labelled 
transition system is a tuple 

(Q,E,<7o,-*) 

where Q is a set of states (at most countable), E is a finite alphabet, q0 £ Q is the initial state and 
—• is a transition relation, i.e. a ternary relation on Q X (E U { r }) X Q. The special symbol r 
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(not in Q) is used to denote a hidden action. We will write A for the set E U { r }. The variable fi 
will range over A. If (q, fi, qf) £—•, we write q o[. 

As usual, E* (resp. A*) denotes the set of finite strings over E (resp. A); the empty sequence is 
6, and we use s, t,u to range over E*, and vy w over A*. The operation\r of deleting all occurrences 
of r in a sequence converts w £ A* into w\r £ E*. The transition relation extends in the usual 
way to a relation on Q X A* X Q. For s £ E* we define the relation ===» on Q X Q by: 

' <=> 3wE A \ q ^ q f & W\T = s. q=^q 

Notice that the symbol r does not appear in any of the strings s used in the previous definition. 
This is because we are only interested in the aspects of behavior which can be inferred from 
"experimenting" with externally visible events. We need to retain the possibility of uncontrolled 
behavior in the underlying system, however; this behavior might be caused, for example, by an 
unfair scheduler or some other unfriendly agent. 

A transition system can be "unrolled" into a tree in the usual way. The initial state labels the 
root, states label the nodes, and elements of E U { r } label the arcs. The resulting tree is called 
a synchronisation tree (ST). Often, where the set of states is implicit, we will identify this tree 
with the transition system. When we do this, the transition relation on trees is as given by Milner 
[M]. A transition system (or ST) has finite branching iff for each q £ Q and each s £ E* the set 
{qf \ q =^=> q'} is finite. This property obviously holds if Q is finite, but note that it is not implied 
by the condition that the set { qf \ q qf} is finite for all JJL £ E U { r }. This latter condition is 
known as image-finiteness of the transition system. 

We write aS for the synchronisation tree with a unique initial branch labelled a £ A and 
subtree S attached. If { Si | i £ / } is a family of STs we denote by 
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the tree obtained by identifying the root nodes of all the S{. The trivial tree, with a single node 
and no arcs, is NIL. 

Finally, we will use a to denote a regular subset of E*. We will not generally distinguish 
between a regular expression and the language it denotes. 

1.3. Equivalences. 

(i) Bisimulation. 

Let S = (Q, E,<7o> —•) be a transition system. A relation 7 C Q X Q is invariant if whenever 
a £ A and p p1\ then there is a ql such that q ql and p'^q'. A bisimulation is a relation 

7 such that both 7 and its inverse relation 7 — 1 are invariant. Two states p and q are bisimilar if 
there is a bisimulation 7 such that p^q. We write pBq in this case. This definition can be used 
to extend bisimulation to a relation on synchronisation trees, with initial states, in the obvious 



way. Note that if 7 is invariant, then whenever p~jq and s £ E * any transition sequence p ===* p ' 
corresponds to a sequence q ===> q' for which p'^q*. This can be shown by induction on the length 
of the transition sequence. The following properties of bisimulation are elementary. 

PROPOSITION 1.3.1. The relation of bisimulation is an equivalence relation. 

Proof. The composition of two bisimulations is again a bisimulation. | 

PROPOSITION 1.3.2. The relation B is itself a bisimulation, and any bisimulation on Q is a subset 
ofB. 

Example 1. Consider the two STs a(6 + c) and a(6-f c) + a(6 + c). If the root nodes of these two 
trees are states in some transition system, then there is an obvious bisimulation. However, there 
is no bisimulation between ab + ac and a(b 4- c). 

(ii) Observational equivalence. 

DEFINITION 1.3.3. Let p and q be states of some transition system. We define a sequence « n of 
equivalence relations as follows: 

p ~o q always 
P ~ n + i q <=* V s 6 E*. 

(i) 3g\g p' « n g' 
(ii) g =L=> 3p'.p ^=> p ' & p' » n g'. 

We define pOg <=> Vn.p « n g. 

Example 1. We present a sequence (Sk, Tk) of pairs of trees in which the nth pair is n-equivalent 
but not ( n + l)-equivalent, for all n. 

S0 = aNIL T0 = NIL 
Sn+i = aSn + aTn Tn+i = aSn 

It is easy to check that these pairs have the desired properties. 

DEFINITION 1.3.4. (Weak observational equivalence) Let p and q be states in Q as above. Say 
that p is weakly equivalent to q iff p q for all n, where « J f is defined inductively by 

p q always 

V ~n+i <7 * V a 6 E u { 6 } . 

(i) p ^ pf ^ 3 ^ . g ^ & p ' « n g ' 
(ii) q ^ q > 3p'.p ^=>p'&p' w » g'. 

Weak observational equivalence is obtained by restricting attention at each stage in the 
construction to sequences of visible actions of length at most one. The relation W of weak 
observational equivalence is in general weaker than observation equivalence, although, as Milner 
states, the two relations coincide on image-finite trees. We are not making the assumption that all 
transition systems are image-finite. 



(iv) Failure equivalence. 

In the failure set semantics of nondeterministic communicating processes [HBR], the behavior 
of a process is described in terms of so-called failures: each failure is a pair (s,X) in which s records 
a possible sequence of visible transitions and X is a set of transitions which the process may, as 
the result of a nondeterministic decision, be incapable of performing on the next step. This leads 
naturally to a failure equivalence relation on synchronisation trees (see also [Bl]). 

D E F I N I T I O N 1.3.5. The failure set of a synchronisation tree S is 

failures(S) = {(s,X) \ 3Sf.S =3=* S' & Vx £ X S' #=>}. 

We use the abbreviation 5 = ^ f o r ->3S'(S ===* Sf). The failure equivalence relation is defined as 
follows: 

D E F I N I T I O N 1.3.6. Trees S and T are failure equivalent iff failures(S) = failures(T). An extensive 
discussion of the properties enjoyed by this equivalence relation, and its use in giving a semantics 
to concurrent processes, can be found in [HBR] and [RB]; fuller accounts are provided in [B2] and 
[R]. 

(v) Trace equivalence. 

An early model for process semantics was based on the notion of traces [H], A trace is a finite 
sequence of visible transitions, and two synchronisation trees are trace-equivalent iff they have the 
same set of possible traces: 

D E F I N I T I O N 1.3.7. Two trees S and T are trace-equivalent iff 

Ms £ E*.(3S'.S =5=* 5') <=> (3T ' .r T'). 

This is a very simple equivalence relation, and coincides with Milner's « i above. 

(vi) Logical equivalences. 

We present three logics which can be interpreted in state transition systems, and which describe 
aspects of the behavior of such systems. The behavioral equivalences induced by these logics are 
exactly the elementary equivalences for the corresponding models. 

These logics are all specializations of regular trace logic (Rounds and Gurevich), with which 
we begin our definitions. 

Syntax. The formulas <£, ifi, of regular trace logic (RTL) are built up from constants T and F, 
by means of boolean combinations using &, V and - i , and by modal combinations Va{<£) and Va[<£]. 
Here a is a regular expression over E. 

Semantics. We interpret RTL formulas in state transition systems. A structure for RTL 
consists of a transition system 5 = { Q , E , g 0 , -+) and a state q£Q. The system S will usually be 



understood. We define the satisfaction relation as follows, by structural induction on the formulas: 

always 
q\=F never 

q\=<t>&j> ^ 1 N 4> and q j= i> 
1 ^ <j> or q \= ip 

Q N= -«f> <=> not q\= <f> 
q (= Va(^) «=> Vs € a.3g' g g ' & ? ' [= <f> 
q f= Va[*] 

Remarks: 

1. a is a regular expression for the syntax, and denotes a regular subset of S* for the semantics. 

2. Propositional variables have been omitted. We are interested in purely behavioral properties, 
and not in the conditions holding of a state. 

3. We may define two further modalities: 

3a(<£) = -(Va[-tf]) 
3a[4>] = n ( V a ( ^ ) ) , 

Clearly, 

g [= 3a(<£) 4=> 35 G ot3q! q = M g' & g' (= <£, 
g [= 3a[0] 35 6 a.Vg' g =̂ => g' => g' f= <f>. 

D E F I N I T I O N 1.3.8. PDL (propositional dynamic logic) is obtained from RTL by omitting the 
modality Va(-). 

D E F I N I T I O N 1.3.9. HML (Hennessy-Milner logic) is obtained from RTL by restricting the sets a 
used in modalities to be singletons. 

Notice that if a = { s } is a singleton set then the existential and universal quantifiers have 
the same effect. We abbreviate V{ s}[<f>] and 3{ s}[<j>] to s[<f>] and similarly for the other modality. 

We will be interested in the possibility of distinguishing between states of a transition system 
by the sets of formulas which they satisfy. If L is a subset of the class of RTL formulas, we define 
//-equivalent states to be states which satisfy precisely the same formulas from L. In the sequel we 
will use the name L to denote these equivalence relations, where L can be HML, PDL or RTL. 

2. Classifying equivalence relations. 

In this section we compare the various equivalence relations introduced so far. We consider 
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the following relations on transition systems: 

B bisimulation 
O observational equivalence 
W weak observational equivalence 

RTL 
PDL equivalence w.r.t. formulas of a logic 
HML 

F failure equivalence 
T trace equivalence 

We obtain the following diagram, in which the strongest equivalences are at the top: 

B 

We will show that the equality HML = W holds when S is finite. Hennessy and Milner's results 
established that B = O = HML = W in case all relations are of finite image. 

T H E O R E M 2.1. B CO C RTL C PDL C HML CFCT. 

Proof. We only prove in detail the inclusions J 5 C O C RTL. First we indicate briefly the reasons 
for the final two inclusions in our diagram. The other cases are also straightforward. 

(HML C F C T ) Trace equivalence is clearly the elementary equivalence induced by the set 
of formulas of the form s(T) of HML, and failure equivalence is characterised similarly by the set 
of formulas of the form s(ip), where ip has the form a\ [F] & .. .an[F] for some set { a i , . . . , a n } C 
E. (We adopt the convention that an empty conjunction denotes T.) Thus it follows easily that 
HML CFCT. 

(B C O) To prove that bisimilarity implies observation equivalence, let 7 be a bisimulation. 
We show that p^q =4 p « n q, for all n. We proceed by induction on n. The case n = 0 is trivial, 
since « o is the universal relation. Suppose the result holds for n = k. Let p^q. If p ===>• pf, then by 
bisimilarity of p and q there is a state q' such that q ==• q* and j/^q'. By the inductive hypothesis, 
this implies p* q', which is the conclusion we need for fc + 1-equivalence of p and q. The converse 
(for q ) goes through similarly. Thus we have proved by induction that p^q =4 Vn.p « n q. Thus, 
p~fq => pOq. 
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(O C RTL) For the inclusion O C i?TX, we argue by induction on the length of formulas, 
showing that 

V*.(p « f c g =» V<£(length(0) < f c = > ( p f = < £ ^ g | = 0 ) ) ) 

Again the base case is trivial. Assume the result for length k. Let <j> have length k + 1, and assume 
that p «j t+i g. There are several cases, depending on the structure of </>. 

Case 1: <f> is with length^) < k. In this case we use the fact that p g p g, 
easily established by induction. Then we have by inductive hypothesis that p \= ij) «=• q (= ^, 
giving also p (= - i ^ «=> g |= as required. 

Case 2: <f> is Va(^), with length(V>) < k. Suppose p (= 0 and let s 6 a . Then there is a state 
p' such that p ==* p' and p' (= ij). Since we are assuming that p «fc+i g, there is also a g ; such 
that g ==} g7 and p1 «j t g'. By the inductive hypothesis, we must have g' |= Since we chose 8 
arbitrarily in a this argument shows that q f= Va(^), as required. The converse (q \= <j> => p (= <£) 
is similar. 

Case 5: is Va[^], with length(^) < Suppose p (= <j>. We want g f= </>. Let s E a and 
suppose g ==> g', for some g'. Then we know there is a state p ' such that p ===> p' and qf « j t p', 
because p and g are assumed to be k -f- 1-equivalent. Since p [= 0 , we know that pf (= ̂ . By the 
inductive hypothesis, g' (= ip. This gives g (= Va[^],b as required. The converse is again similar. 
I 

The rest of this section is devoted to establishing that the inclusions of Theorem 2.1 are proper. 

T H E O R E M 2.2. Observation equivalence properly includes bisimulation, O D B. 

Proof. We find U and V which are observation equivalent but not bisimilar. To begin, let us 
define some auxiliary trees. Let (SnjTn) be a sequence of.pairs in which the nth pair is « n - i 
equivalent but not « n equivalent, for each n. An example of such a sequence was given in the 
previous section. If 5 is an ST and s 6 £*, we write sS for the tree obtained by prefixing a path 
s to the root of 5 . Let c 6 £ . Define for each i > 0, 

and let 
oo oo 

Let U = Y^iLi °Ui a n d V — U + aC/o,. Now we show that 

(T) V*.(0i tfw & Ui+! « t - * 7 W ) 

This is easy to establish. For each f, C/w =^=* 5,-, but the subtree 5t- is missing from £/ t. In fact, if 
U{ ==» T and T 5t- then the only possibility would be that T = T t, which cannot happen by 
construction. On the other hand, for j > i, we know that Sy « t - 7y. Thus, (c J5y + c'ly) « i c?Tj 

8 



for each such j . It follows that 

u»«. ( f ; c?Tj + *si) = u ^ 

This shows that (f) holds. To see why (f) implies the desired conclusion, suppose for a contradiction 
that U and V are bisimilar. Let 7 be a bisimulation such that U7V. Since V ==$ Uu, by 
construction of U there must be an i such that U ===* C/t- and U^U^. But this implies UiBU^, 
which contradicts Theorem 1, since we have C/t 961- £7̂ , by (f). Thus U and V are not bisimilar. 
On the other hand, U « t - ^ for each 1. Indeed, let i be fixed and let V ===* V for some s £ E*. We 
show that [/ has a similar transition sequence to some U' with [/' V 7. The only interesting 
case is when the transition of V enters the subtree J7W, clearly. In this case, s must have the form 
at, and U„ ±=> V. By (f), t/t+i «» t / w . Therefore t7 =S=» C/ t >i t/ ' for some subtree [/' of 
C/i+i with U' « t ~ i V - This is the conclusion needed for ^-equivalence of U and V. So U and V 
are observation equivalent but not bisimilar, as required. I 

Next we investigate the logical equivalences. 

T H E O R E M 2.3. RTL properly contains O: RTL D O. 

Proof. The proof of this theorem is quite intricate, and is deferred until we have established some 
definitions and lemmas. 

For any set L C E*, we let SL be the synchronisation tree determined by L : having one 
branch for each s £ L; 

S L = ]T 3ML. 

When L is a singleton { s } it determines the tree sNIL with a single branch; we will identify this 
tree with the string s where there is'no possibility of confusion. 

L E M M A 2.4. Let <j> £ RTL. Then the set L(<f>) = { s £ E* | sNIL |= <f>} is regular. 

Proof. Induction on the structure of RTL formulas. The base case, when <f> is either T or F, 
is trivial: L(T) = E*, L(F) = 0. The boolean combinations go through because regular sets are 
closed under complement, intersection and union: 

L[<j> & i>) = L{<f>) n W>), 
L{<f> V V) = L{<f>) U U&). 

If a denotes an infinite regular set, then L(\/a\<f>]) = L{ia{<j>}) = 0, because each tree under 
consideration here is finite. Otherwise, let a denote the finite set { s i , . . . , }. Then L(Va(<j>)) = 
C\i=i siL(<f>). The same holds for the other modality, because the trees here have only a single 
branch. That concludes the proof of Lemma 1. I 

L E M M A 2.5. Suppose a denotes a regular set not containing the empty sequence. Let <f> be of the 
form Vaty] or 3a[ip\. Then for all L, if S{L) f= <f> then S{L') \= <j>, for all U C L. 
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Proof. Routine application of the definitions. | 

Now consider the language 

K = { a n V + ' | n > 1,0 < j < n}. 

Let W — SK, and for each pair n,j let W*- be the tree obtained from W by removing the 
branch an2bn+3. Notice that K is not a regular language. We will use the properties of this set 
in constructing two trees which cannot be distinguished by any RTL formula, but which are not 
observation equivalent. First we establish an important property of the synchronisation tree. W 
determined by K. 

L E M M A 2.6. Let <j> be an RTL formula. IfW\=<j> then for all but finitely many pairs n,j the tree 
Wj also satisfies <f>. 

Proof. First put <j> into monotonic form, by moving all the negations through to the inside. Then 
<j> has one of the forms: 

T, F, tys/B), (i>&0), 
3a{V>, 3a[r/>], Va(V), Vaty], 

where ip and 9 are also in monotonic form. We proceed by induction on the structure of monotonic 
formulas. The base case and the boolean combinations are straightforward. The first three 
modalities are simple, with the help of Lemma 2.5. The final case is when <j> is Va(^). Notice 
that the st-ucture of W allows us to assume without loss of generality that a does not contain the 
empty string, as W has no nontrivial empty transitions. We therefore assume e a. Moreover, we 
claim that without loss of generality we can assume that a C a + . To show this, first notice that 
because W (= Va('0), every string in a is a prefix of some string in K; thus a C a*b*. Suppose 
that aD a*b+ is infinite. For each n, the number of strings of the form a^b3 which are prefixes 
of members of K is finite, because j can be at most 2n. Therefore, the set 

{tea*b\ 3w (<t i6anaV)} 

is an infinite regular subset of {an b | n > 0 }, which is impossible. Therefore a fi a*6 + is finite, 
say { t\,.. .tm }. We may therefore write 

' Va{V) = WW & «! W & .. .tm(i/>), 

where /? C a + . The claim follows using the inductive reasoning for the & connective. 
• 

Now suppose the conclusion of Lemma 2.6 to be false for Va(/0), where a C a + . Then W |= 
Va(^), but for infinitely many pairs n,j f= ->Va(V>). Let s = an bn+3 be a trace corresponding 
to such a pair.' For each such s there must therefore be a prefix t < s such that t 6 a and 

f= t[-*})). This t must be a prefix of s because W f = t{ij)) and differs from W only in the 
s-branch. We may therefore write s — tu, where t £ a* and u (= Furthermore, for any w 7̂  s 
in K if w = tv for some v then v \= Recall that L(ip) is a regular language. Let k be the 
number of states of a FSA accepting this language. Choose an s 6 K as above but such that it 
has the form an 6 n + J with n > 2k. Decomposing s into tu as above, the number i of 6's in u must 
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satisfy 
n < i < 2n, 

because 0 < j < n. Since u £ L(ij)), the FSA accepting u must repeat a state while reading across 
the fr's. Further, this happens in at most p steps, where p < k. We then have 

u = arb\ 

for some r, and hence arbx~p £ L(^). If i—p > n we have a contradiction, because then tarbx~p 6 
K, and arbx~p \= - i ^ , which is impossible. But if i—p < n we have 

i -H p < n + 2p < n + 2A; < 2n, 

because 2ifc < n. Therefore arbx+p £ Lty) and tarbiJrp £ if. Therefore a r 6 l + p f= ^ 0 , again a 
contradiction. That completes the proof of Lemma 2.6. I 

Now we are ready to prove Theorem 2.2. Define the two trees 

U = Y^aW^, 

V = U + aW. 

It is clear that U V, because V ==* W, and for each n,j pair we have W" 7 ^ 1 W. So U and V 
are not observation equivalent. We claim that U and V satisfy precisely the same RTL formulas: 

V<£ £ RTL. (U [= <f> & V f= <j>). 

The proof is again by induction on the structure of <j>. The base case and the boolean connectives 
are trivial. We consider the cases (j> = 3a(/ip) and <f> = 3a[^] in detail. The other modalities can 
be deduced using the argument for negation. 

Case 1. Let <j> = 3a{ /0). Clearly if U f= <j> then so does V. Conversely, if V \= <j> then choose 
t £ a and V9 such that V ±=> V1 and V1 \= ip. If t = e then we must have V = V, and V f= ^ ; 
then by inductive hypothesis, U |= ip, from which we get U \= <j>. The only other possibility is that 
t = au for some u. If V =^=* VKy ==* V there is no problem, because U has a similar subtree. 
Suppose that V ==• =̂ =» V . Then W f= w{'0)> so by Lemma 2.6 there is a VKy also satisfying 
this formula. Hence, U \= aufy) and U \= (/>. 

Case 2. Let <f> = Va(^)- Consider the possibilities for s £ a. In each case we must show that U 
has an s-branch leading to a subtree where tp holds. If s = e we can use the inductive hypothesis. 
If s is traceable into some there is no problem, because U has a corresponding transition. If 
s is traceable into W, then s = at for some £ which must be a prefix of a string w m K.lf t = e 
then s = a and VK f= - 0 ; by Lemma 2.6 there is a pair n, j with VV̂  f= ^ . Otherwise, H s a prefix 
of some string in K, and for all but one pair n, j the tree VK" has a branch £. In each case we have 
shown that U has a corresponding s-branch. That completes the proof. | 

T H E O R E M 2.7. i2TX zs properly contained in PDL. 
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Proof. We give only an example to show that the inclusion cannot be reversed. The proof that 
PDL cannot distinguish the two trees follows the lines of Theorem 2.2 but is much easier. Define 

n 

sn = Z biNIL> 
1 = 1 

oo 

t = i 

Let U and V be the trees 
oo 

U = 2 « S n , 

7 1 = 1 

V = U + aS„. 
Then the RTL formula a(V6+(T)) is satisfied by V but not U, since only V has an a-branch to 
a place where arbitrarily many Z?-tonsitions can be made. (Here we have used the notation 6 + 

for b*—{e}.) However, all PDL formulas agree on U and V. The relevant lemma is: for any PDL 
formula <f>, if f= <f> then for all but finitely many n Sn f= <f>. I 

T H E O R E M 2.8. PDL properly is contained in HML. 

Proof Again we exhibit an example. Let U = 5 Z i > i ^bNIL, and V = U + a"NIL. Then the 
PDL formula a[3a*(b(T))] is satisfied by U but not V, because V has an a-branch to a place where 
no future 6-transitions are possible. However, all HML formulas agree on U and V, because if 
is an HML formula and au f= then a n \= ip also holds for all but finitely many n. I 

Theorem 2.8 will also follow from the fact that U and V are weakly observation equivalent, 
once we have established that W = HML. Hennessy and Milner proved this result in the case 
when the underlying system has the finite-image property: for each a 6 A and each q £ Q the set 

is finite. They also showed the identity HML = B under the finite-image hypothesis. We now 
show that the result W = HML still holds when the finite-image hypothesis is not assumed, 
provided we assume that £ is finite. Since we are allowing infinitely branching systems, finiteness 
of E does not, of course, imply the finite-image property. Our proof makes use of normal-form 
arguments for HML which are of independent interest. Indeed, these normal form results can be 
used to show that a natural pseudometric structure on synchronisation trees induces a compact 
metric topology on the set of W-equivalence classes (see [GR]). 

T H E O R E M 2.9. 7/E is finite, then HML C W. 

Proof. Let = denote the relation of logical equivalence between HML formulas: 

<j> = ip & \/p(p J = <j> p f= ij>). 

Define the depth of an HML formula as follows: 
depth(T) = depth(F) = 0 

depth(-<£) = depth(^) 
depth(<£ V t/>) = depth(<£ & if)) = max(depth(<£), depth(^)) 

depth(a(<£)) = .1 + depth(^). 
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The depth of a formula is the maximum number of nested modalities. We let Hk = { 0 | depth(0) < 
k }, for each k > 0. Then for each k there is an integer Ek such that = partitions Hk into at most 
Ek equivalence classes. To show this, we give an algorithm for converting an arbitrary <f> £ Hk into 
a disjunctive normal form <f>* such that distinct normal forms are logically inequivalent and the 
number of distinct normal forms is less than or equal to Ek- We use induction on depth. Every 
HML formula is either basic, which we define to mean of the form T or F or a{ip) for some 
or else a boolean combination of such basic formulas. It is easy to see that a depth 0 fomula is 
logically equivalent to either T or F, so that HQ is partitioned into two distinct equivalence classes. 
We may, therefore, put EQ = 2. For the inductive step, let <j> £ Hk+i—Hk, and suppose that Hk 
is partitioned into Ek equivalence classes. Let the modal subformulas of <j> be ai(0i); each at- can 
be assumed to belong to the set E U {^}, and each 0 t has lower depth than <j>. Put each 9{ into 
normal form. There are at most Ek possible normal forms for each 0 t , and we may replace logically 
equivalent formulas. We can then treat <j> as a propositional combination of at most m = Ek X (| 
E | +1) variables, and as such put it into disjunctive normal form. In order to guarantee that 
Hk-\-\ has no more than Ek+i equivalence classes, we may take Ek+i = 2 2 m . Now we prove by 
induction on k that 

(1) Vfc.Vp,g [p q = > 30(depth(<£) < k & p \= </> & q f = 

The base case is trivial, as we may choose <j) = T. Assume the result for k, and suppose p 7 ^ ^ _ i q-
Then for some a £ E U { € } there is a p' for which p =^=* p1 and p1 is not « ^ to any ql such that 
q =HL=$ qf. Let the set of possible a-derivatives of q be { qi \ i £ I}. Notice that we are not assuming 
this set to be finite. By hypothesis there are distinguishing formulas 0*, each of depth at most k, 
such that for each i £ J we have 

p1
 | = & q i f = Oi. 

For each i £ / let 0± be a normal form logically equivalent to 9{. Note that depth(^) = depth(^) < 
k. Only finitely many of these normal forms can be logically inequivalent, say 9\,..., 0^ . Let <f> = 
a(6\ & ... & 0^). Then p (= -*</> and q J = 0 . That completes the proof. I 

C o r o l l a r y 2.10. 7 / E is /mite, HML = W. 

Proof. The inclusion W C HML follows by a straightforward induction, using the converse to 
the inductive hypothesis of Theorem 2.8. This does not depend on the finiteness hypothesis. I 

3. Conclusions. 

We have investigated the descriptive power of three programming logics by examining the 
elementary equivalence relations induced on nondeterministic state transition systems by the logics. 
These equivalence relations have also been examined in the context of some other natural behavioral 
equivalence relations from the literature. An exact characterisation of a behavioral equivalence as 
the elementary equivalence induced by a particular logic provides an indication of the essential 
semantic properties of the equivalence; equally, delineating the relationships between the various 
existing equivalences serves to illuminate their differences. 

We have shown that in general the three logical equivalences are not as discriminating as 
other natural behavioral equivalences such as Milner's observation equivalence, but are themselves 
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finer than failure equivalence and trace equivalence. These latter two relations are, in fact, 
characterizable as the elementary equivalences generated from restricted sets of logical formulas. 

We finish with a remark on complexity. If we interpret the logics in nondeterministic finite 
state automata, the finite-branching condition holds, and all of the logical equivalence relations 
coincide with observation equivalence and the bisimulation relation; moreover, it can be shown 
that these equivalences are decidable in polynomial time. In contrast, failure equivalence of finite 
automata turns out to be a PSPACE-complete problem. 
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