NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-C5-82-155

Deriving Efficient Graph Algorithms

John H. Reif! William L. Scherlis?
Aiken Computation Laboratory Department of Computer Science
Harvard University Carnegie-Mellon University

December 1982

Abstract. Ten years ago Hoperoft and Tarjan discovered a class of very fast
algorithms for solving graph probiems such as biconncctivity and strong connee-
tivity. While these depth-first-search algorithms arc complex and can be difficult to
understand, the problems they solve have simple combinatorial definitions that can
themselves be considered algorithms, though they might be very incflicient or even
infinitary. We demonstrate here how the cfficicnt algorithms can be systematically
derived using program transformaltion steps from the inilial definitions. This is the
first occasion that these cfficient graph algorithms have been sysiematically derived.

There are several justifications for this work. First, the derivations illustrate
several high-level principles of program derivation and suggest methods by which
these principles can be realized as scquences of program transformation steps.
Second, we believe that the evolutionary approach used in this paper offers more
natural explanations of the algorithms than the usual a posteriori proofs that
appear in textbooks. Third, these examples illustrate how externai domain-specific
knowledge can enter into the program derivation process. Finally, we believe that
future programming tools will be semantically based and are likely to have their
foundations in a logic of program derivation. By working through complex examples
such as those presented here, we make steps towards a conceptual and formal basis
for these tools.

Categories and Subject Descriptors: D.1.2 [Programining Techniques!: Automatic Programming: F.2.2
[Analysis of Algorithms and Problem Complexity|: Nonnumerical Algorithms and Problems—com-
putations on discrete structures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs; 1.2.2 [Artificial Intelligence]: Automatic Programming

General Terms: Algorithms, Design, Languages, Verification

Additional Key Words and Phrases: Program Derivation

1'I‘his regsearch was supported in part by Mational Science Foundation Grant NSF-MCS879-21024 and in part
the Office of Naval Research Contract NODQ14-80-C-0647.

2Tfhis; research was supported in part by the Defense Advanced Research Projects Ageucy (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory under Contract [F33615-81-K-1539, and in part by the U.S.
Army Communications R&D Command under Contract DAAKS0-81-K-0074. The views and conclusions contained
in this document are those ol the authors and should not be interpreted as representing the official policies, either
expressed or impiied, of the Defense Advanced Research Projects Agency or the U.5. Government.

1

1. Introduction.

Discovery of efficient algorithms is a complex and creative lask, requiring sophisticated knowl-
edge both of general-purpose algorithm design techniques and ol special-purpose mathematical
{acts related to the problems being solved. While the process of algorithm discovery is certain
to be exceedingly difficult to mechanize, there is much to be learned—both about algorithms and
about programming—f{rom the study of the structure of derivalions of complex algorithms.

Program derivation techniques provide a natural way of explaining and proving complicated
algorithms. Conventional proofs may succeed in convincing a reader of the correctness of an
algorithm without supplying any hint of why the algorithm works or how it came about. A
derivation, on the other hand, is analogous to a constructive proof; it takes a reader step by step
from an initial algorithm he accepts as a specification of the problem to a highly connected and
efficient implementation of it. Our approach, then, is to explicate algorithms by justifying their
struciure rather than by merely establishing their correctness.

Specifications and algorithms. In this paper we demonstrate how program transforma-
tion techniques can be used to derive efficient graph algorithms from intuitive mathematical
specifications. These specificalions are simple combinatorial definitions that we choose to interpret
as algorithms, even though-—as algorithms-—they might be very ineflicient or even infinitary. To
illustrate how simple these specifications can be, we give here our specification of the path predicate
for directed graphs. Let G be a directed graph with vertices V and adjacency-set function Adj.
The predicate path(u, v) is true when there is a path in G from vertex u to vertex v. That is,

path(u,v) += (u=vwv or (3w € Adyu))path(w,v)).

Note that this definition—when interpreted as a sequential algorithm in the usual way--does not
always terminate.

With this definition, we obtain a straightforward specification of the strongly-connected com-
ponents of a directed graph. Two vertices ¥ and v are in the same strongly-connected component
if there is a path from % to v and a path from v to u. The strongly-connected components of G
are thus the elements of the set strong, where

strong & |,y {{s €V | path{r,s) A path(s,)}} .

Outline of paper. In Section 2 of this paper we derive a series of simple algorithms leading to
a family of depth-first search algorithms. These are generalized and ulilized in quite different ways
in the strong-connectivity algorithms of Section 3 and in the biconnectivity algorithms of Section
4. These algorithms were discovercd by Hoperoft and Tarjan and are (conventionally) presented in
[Tarjan72] and [AHU74]. The variant of Tarjan’s strong-connectivity algorithm that we derive in
Section 4 is attributed to Kosaraju and is similar to the algorithm sketched in [AITU83]. {Similar
techniques can be used to derive the almost-linear-time algorithm of [Tarjan73] for flow-graph
reducibility.) In the conclusion we discuss further the implications of this work.

The use of combinatorial lemmas. The derivations suggest ways in which programming
and algorithm-design techniques separate from domain-specific knowledge. While the depth-first
algorithms we derive depend on deep combinatorial properties of depth-first spanning forests, this

2

knowledge can be expressed in the form of a small number of lemmas. These lemmas are used to
justily initial specifications of program components and to establish preconditions in later program
derivation steps. While we could prove the lemmas entirely in the language of a programming
logic, the resulting account of the algorithms would likely be awkward and unnatural. We have
thus sought an appropriate balance in our use of facts from graph theory and our use of general-
purpose program derivation techniques. {The balance will shift, of course, as our knowledge of
programming techniques improves.)

Program transformation techniques. Because we seek to demonstrate how derivations,
clearly presented, can lead to a better understanding of the algorithms derived, the emphasis in
this paper is primarily on the conceptual structure of the derivations and only secondarily on the
actual formal transformation techniques. We make use of transformations lor realizing complex
recursive control structure as explicit data strueture that are similar to those described in [Bird80],
[Scherlis80], and [Wand80]. These transformations, which are used to “coercc lermination” in
infinitary delinitions such as specification of path above, are described in a separate report.

In addition, we make use of the transformations of [Scherlis81] (which are similar in spirit to
those described in [Burstall77], but for which there is a guarantee of strong equivalence) in order
to specialize function definitions and to effect the merging or “jamming” of loops. Disecussion of
loop jamming techniques also appears in [Paige81]. No prior knowledge of the details of these basic
transformation techniques is required for the purposes of this paper.

Programming language for program derivation. The programming language we use is
an ML-like applicative language (see [Gordon79}) supplemented with certain imperative features
to allow sequencing and reference to state. Because it is hard to reason about and manipulate
programs the are overly committed with respect to order of computation and data representation,
we have sought to keep the programming language as unconstraining as possible. In addition,
certain features that are difficult to implement but which have clear semantices are included because
they often allow derivations to be quite straightforward. The inlinitary definition of path above
provides an example of such a feature; it has straightforward fixed-point semantics.

This approach, in which commitments to sequencing and representation are delayed as long as
possible, is also vividly illustrated in the case of the SETL language in the derivations of [Paige81).
Another example is the language used in [Scherlis81], which was extended (to include expression
procedures—used, for example, in Algorithm 2.3 below) in order to keep the set of transformations
simple and yet strong-equivalence preserving. We will explain the unusual features of the language
as they are encountered.

Mechanization. We expect that the program derivation techniques such as those refined
and applied here and elsewhere will ultimately be of use in practical mechanical programming aids
designed to help the programmer in his daily activity.

As in [Clark80], we are deriving a family of related algorithms. Even though the algorithms
we derive here do not all have the same specifications, the strong relations between them become
maniflest in the explicit structure of their derivations. Indced, it appears that reasoning by analogy
will play a very important role in the automation of these techniques.

Other examples and approaches to program derivation are described in [Clark80], [Barstow80],
{Green78], [Manna81], and [Bauer81], among others.

3

2. Depth-First Search.

We start by deriving a family of simple depth-first search algorithms. These derivations and
the algorithms that result will be used, either directly or by analogy, in the later derivations.

The devclopment in the first part of this section is identical for directed and undirected graphs.
We therefore carry out the development for directed graphs and consider undirected graphs as a

special case.

Let ¢ = (V, E) be a finite directed graph with adjacency list representation—for each v €
V, Adjv) is the set ol vertices adjacent to v. For undirected graphs v € Adj{u) if and only if
u € Adf{v).

Paths. We consider first a simple combinatorial definition of a path in a graph. Let v and v
range over vertices.

path{u,v) & (u=1v or (3w € Adj{u))path(w,v)) (2.1)

While this definition seems to capture the notion of path, it cannot be interpreted in the usual
way—either as a nondeterministic sequential algorithm or as a parallel algorithm—since in certain
cases it would have no finite execution paths.

The finite closure transformation. We can, however, distinguish two kinds of infinite
exccution paths—looping paths and divergent paths. Roughly put, a nonterminating path is a
looping path if only finitely many distinet recursive calls are made along that path; if the number
of distinct calls grows withont bound, then the path is divergent. In the case of finite graphs (the
only graphs we consider) Algorithm 2.1 can exhibit looping, but, because u and v are vertices and
the set of vertices is finite, it cannotl exhibit divergence.

By framing this as a finite closure problem, we can apply transformations that eliminate the
looping paths, and hence all non-terminating paths. Suppose a function f over a finite domain is
defined recursively

fla) = nz) & P f(z), (2.2)
zEg(x)

where h and g do not call f and, in addition, § is a semilattice with identity in which infinite
sums are defined (that is, the partial order induced by & is a complete partial order). This
definition has a natural, but unconventional, fixed-point semantics in which f is always defined.
The transformations allow this definition to be replaced by an cquivalent (with respect to the
unconventional semantics) but always terminating (with respect to the conventional semantics)
definition, essentially by replacing all redundant recursive calls to f by the identity of . (A
full account of this technique is beyond the scope of this paper. The transformations, which are
related to the closed-world database techniques described in [Clark78] and [Reiter78|, are sketched
in [Scherlis80].)

In the case of path, @ is disjunction and has identity (i.e., minimal element) false. The effect
of the transformation is thus to repiace all redundant calls to path with false.

In order to carry out the transformation, however, it is necessary to introduce mechanism
to keep track of the sequencing of computation, collecting values of z as recursive evaluations

4

of f proceed. This forces us to introduce notions of state and state change into the definition.
State changes can be made either implicitly (by introducing imperative operations) or explicitly
(by adding a new “memo” parameter to f}). More concretely, we introduce explicit data structure
to mark vertex pairs as they are considered; by examining this data structure, the program can
foreclose any potentially looping execution paths.

It is difficult to manipulate programs involving state, however, so it is best to delay this
transformation whenever possible. We will, therefore, postpone the improvement to path until the
next transformation is complete.

The specialization transformation. Nearly all of the program derivation steps in our
derivations are specialization steps. This simple technique, which is presented in detail and proved
correct in [Scherlis80], is deseribed here informally by means of an example involving the path
definition.

Suppose we desire to collect the vertices v reachable from a given vertex wu.

{v | path(u, v)}

If path is computable, then the value of this set can be calculated simply by enumerating all
vertices v and testing path(u,v) for each. This method is inefficient, however, since it requires
multiple traversals of the same graph. We therefore consider spectalizing the definition of path to
the computational context of the set abstraction.

The transformation has three steps. First, both sides of the definition of path
path(u,v) & (u=v or (3w € Adju))path(w,v))
are substituted inlo Lhe set expression, forming the definition,
{v | path{u,v)} & {v| (u=v) or (Jw e Adju))path(w,v)}. (2.3)

This definition, called an ezpression procedure, is easily given meaning within the framework of a
nondeterministic text-substitution evaluator model; roughly, it denotes a procedure for computing
values of instances of its left-hand side.

The second step of the transformation is to simplify the right-hand side of the new definition
until an instance of the left-hand side appears there. This is accomplished by distributing the set
abstraction inward and simplifying.

{v]path(u,m)} = {u} U Uneadgion (v | path(w, o)} (2.4)
Observe now that this definition is recursive, and that it makes exactly one recursive call lor each
w, rather than one (to path) for each w and v pair, as in the earlier version.

The third and final step of the transformation is to rename all instances of the set expression
to a new function name with appropriate parameters. {This has the effect of pruning the tree of
nondeterministic computation paths.) The only free variable in the expression is u, so we obtain

dis(u) = {u} U Uyecadj)dsw). (2.5)

5

(The choice of the name “dfs” will be justified shortly.}) Now, since
path{u,v) = v € {v | path(u,v)}, (2.6)

we obtaln
path{u,v) & v € dfs(u)

(2.7
dts(u) & {r} U Uyecadju) dfs(w).

This new definition of path provides a performance advantage over the original definition of path
if, in a series of computations, u changes infrequently compared with v and dfs(u) is precomputed.

Finite closure revisited. At this point we can make the finite closure transformation that
was postponed earlier. Like disjunclion, the accumulator function ‘U’ has the nccessary algebraie
properties. We thus replace redundant calls to dfs by g, which is the identity of union.

path(u,v) + begin
visit]V'} « false;
v € dfs{u)
end 2.9)
dis(u) &« begin
visit[u] « true;
{u} U UwEAdj(u)(if visit{w] then ¢ else dfs(w))
end

(In general, the value of a block is the value of the last expression unless some other expression is
marked by the word value. In that case, the value of that expression is saved when it is evaluated,
and the saved value is returned after evaluation of the remainder of the block is complete; see, for
example, Algorithm 2.19. By convention imperative statements are always enclosed in bloeks.)

This program requires some explanation. We have made use of implicit state (i.c., imperative
operations on global data structure) to keep the “memo” set, representing it in its characteristic-
function form by the array visit. The definition of path has been modified to initialize the memo
set by storing false in every element of the array; this indicates that initially no vertices have been
visited. (We use the word “memo” to draw analogy with the less powerful—since it has no effect
on termination—‘memo-function’ transformation suggested by Donald Michie.}

In spite of the dependence of intermediate values of visit on the choice of computation ordering
{(which is only partially committed above}, it is a property of the finite closure method that the
ultimate value of visit {and, of course, dfs) is independent of the order of evaluation of both the
binary union and the quantified union. Sequential evaluation of the outer union results in the
natural depth-first search ordering.

As noted above, the same effect could be achieved using a purely appiicative program. The
imperative program has the advantage, however, of using a notation that aveids commitment to a
particular order of computing the unicns, and thus is more clear for our purposes.

This transformation step and the prior specialization step commute, but, because of the explicit
sequencing of computation, it is more difficult to carry out the specialization once state has been
introduced by finite closure,

Connected components of undirected graphs. We can now derive a linear-time program
for coilecting the connected components of an undirected graph.

comps ¢ ,oy {{v|path(r,v}}} (2.9)

(This union of singletons can, of course, also be notated using set abstraction, but the result is less
perspicuous.

{{v | path(r,v)} | r €V}
Tarski’s “big-E” notation provides a more succinct, but less widely-known notation for the set.

ErEV {'U I path(r,v)})

Substitution of the improved definition of path above and simplification yield
comps & UrEV { begin visit[V'] — false; dfs(r)end}. {2.10)

Many redundant searches are performed, so this definition is not optimal; indeed, its worst case
running time is O([V|?).

We observe, however, that redundant searches can be avoided by making use of the visit array
used by dfs. Using the specialization technique, we obtain the linear-time program
comps(V) + begin
visit{V] « false; (2.11)
U, <y (if visit[r] then o else {dfs(r)})
end .
The edges traversed by this program form a depth-first search forest whosa roots are the values
of » for which dfs is called in the definition of comps. It is easy to see that this algerithm runs in
time linear in the number of vertices and edges in the graph. This is shown by associating with
each vertex and edge of the graph a constant number of program steps. As before, the sequencing
of the union affects intermediate states but not the final result, so we need not commit ourselves
to an order of consideration of the elements of V.

Trees and tree traversals. The fast depth-first search algorithms rely on subtle com-
binatorial properties of the depth-first spanning forests implicit in the prior algorithms. We now
derive some simple algorithms for trees that will be useful in the later development.

The depth-first search algorithms we derive maks extensive use of “non-local” properties of
depth-first search trees they induce. In particular, both the biconnectivity and strong connectivity
algorithms are based on lemmas that make use of ancestor or descendent orderings in the scarch
forest. Both of these orderings relate vertices that may be an arbitrary distance apart in the trees.
We make derivation steps here that will enable these relations to be computed cfficiently.

A treeis a directed graph all of whose vertices have indegree one except the roof vertex, which
has indegree zero. A vertex with zero outdegrec is called a leaf; the others are internal nodes.

The set of vertices of a tree can be enumerated without repetitions by traversing the edges of
the tree and recursively enumerating subtrees.
trav(u) ¢+ begin
examine(u) // forpar w suchthat u — w do trav(w) (2.12)
end

7

(The symbol *//* indicates parallel execution, which we use (in terminating programs) to indicate
explicit avoidance of commitment to computation ordering. Similarly, the notation ‘forpar’
indicates parallel {or unordered sequential) execution of all the specificd instances of the loop body.
In general, explicit sequencing (with ;') will be avoided whenever possible. Finally, the notation
‘y — w’ is shorthand for ‘{u,w) € E', where E is the set of edges in the tree. Note that this
program is executed for the side effect of calling examine; it has no value.)

Il r is the root of the tree T, then trav(r) will cause examine to be called exactly once for each
vertex of T.

Preorder and postorder enumeralion are obtained by making differing commitments to com-
putalion sequencing in the definition above. Preorder enumeration results, for example, when

the instance of ‘//" is replaced by ‘;’. For ordered trees, the loop cases must also be evaluated
sequentially.
trav(u) & begin
examine(u); (2.13)
for w suchthat u — w do trav(w)
end

In the case of binary trees {i.e., all vertices have outdegree either zero or two), inorder can also
be easily obtained. In this case, we would need to introduce case analysis on u to determine its
outdegree.

Relative preorder position can be tested using an instance of Algorithm 2.13, but more efficient
programs can be derived. Both preorder and postorder are (finite) linear orderings, and so can be
represented by sequences of vertices. With this representation, two vertices can be compared in
pre- or postorder simply by examining their relative positions in ithe appropriate sequence.

A sequence can be represented as an array mapping vertices to integers representing their
positions. Let r be the root of a tree.
begin p «- 0; trav(r); pre[V] end;
trav(u) <= begin
preful —pe—p+1;
for w suchthat u — w do trav{w)
end

(The first block is a specification of the computation to be performed.) The result of this program
is now an array containing the preorder numbers assigned to the vertices of the tree rooted at r.
For brevity, we have omitted the intermediate derivation steps by which this imperative algorithm
is obtained.

(2.14)

A similar algorithm can be derived for computing the postorder numbering. By merging
Algorithm 2.14 with this new algorithm, we obtain

begin p «— 0; €« 0; trav(r); (pre[V], post[V]} end;

trav{u) < begin
preful — p—p+1; (2.15)
for w suchthat v — w do trav(w);
postju] —ee—e+1
end .
(Again, we omit transformation steps. A detailed example of the merging technique, which is just

a special case of the speciaiization transformation, is presented in a later section.)

8

Tree orderings. The descendent ordering > is the transitive closure of the ordering repre-
sented by the edges of a tree. That is,

v u if and only if there is a path of tree edges from u to v.

It is undesirable to compute descendency (or ancestry) using a naive implementation of transitive
closure, since that would require O(|V|3) time. We therefore investigate whether we can take
advantage of the special properties of trees.

LEMMA 2.1. Let T be a tree with vertices numbered in preorder in array pre{V] and in postorder
in array post(V]. Then

u v if and only if prelu] > pre[v! and
post(u] < post[v] .

That is, u is a proper descendent of v if and only if both 4 succeeds v in a preorder traversal and
4 precedes v in a postorder traversal.

This lemma justifies replacing tests in programs of the form » > v by tests of the form
pre(u] > pre(v] A postu] < post(v],

As shown in the previous section, both numberings can be computed in linear time and in a single
tree traversal, so we can now test ancestry in constant time with linear-time precomputation.

Furthermore, u is to the left of v in T if and only il % precedes » in both preorder and
postorder. Thus, the relative position of two arbitrary tree vertices can be determined by checking
their relative positions in the two orderings.

Depth-first search trees. The depth-first search algorithms on graphs derived earlier impose
a natural tree structure on the edges of the graph being searched. That is, the subset of the edges
actually traversed forms a forest.

We indicate such facts in our programs by writing assertions, which are expressions enclosed
in the special brackets ‘[]’ and located at points in the program where the facts are true. (This
notation is also used to denote preconditions. See, for example, the derivation of Algorithm 2.21.)
For example, we can annotate Algorithm 2.8 to obtain

path{u,v) = begin visit]V] — false; v € dis(u) end

dis(u) < begin
visitiu] « true;
{u} U UweAdj(u)(if visitiw| then ¢ else [u — w] dfs(w))
end

(2.16)

In the else clause we have asserted that (u,w} € E is a tree edge. This set of tree edges forms the
depth-first search forest.

We are now ready to develop an algorithm for carrying out a preorder traversal of a depth-
first search tree of a graph. This will be accomplished by deriving a program that simultaneously
computes dfs and trav. We indicate the simultaneous computation by writing a block,

begin trav(u); (dfs(u), pre[V]) end.
9

Recall that trav (see Algorithm 2.14) returns a value—the pre array-—only implicitly. Thus, the
effect of the computation of this block will be to store values into the pre array and to return
the set of nodes reachable from w. For simplicity, we assume [or the moment that the graph is
connected.

Let 7 be a vertex of G. By substituting both definitions into the block and making obvious
simplifications, we obtain
begin p « 0 // visit[V] « false; (begin trav(r); {dfs(r), pre[V]) end) end
(begin trav(u); dfs(u) end) ¢
begin
visitiu] «~ true J/ prefuj —p+—p+1;
{u} U (begin
for w suchthat u — w do trav(w);

(U we Ady{u) d’S(’lU))

Sttt [w]

(2.17)

end
end

(We have carried out some trivial transformations on the initial specification in order to bring it
into the form of the definition.) Now u — w if and only if w € Adj{u) A —~visit{w), so the two loops
range over the same set. Since they do not interact, this implies that they can be merged—the
pair of iterations can be combined into a single iteration.

At this point, we can make two further simplifications. First, we rename the block being
defined to the simple name dfs {superseding the previous use of this name}), and, second, we observe
that if pre[V] is initialized to 0, then

visitiu]| = false if and only il prelu] =0,
and we can eliminate the visit array and use pre instead. The following much shorter program
results.

begin p — 0 // pre[V] — 0; § — dfs(r); (S, pre[V]) end

dfs(u) =
begin
preful —pe—p+1; (2.18)
{‘u.} U UwEAdj(u) dfs(w)
prefwi=0
end

The ordering represented by pre is called a depth-first-search ordering of the vertices of the graph.

By a development similar to that for pre and a merge step similar to the one just completed,
the post ordering can be computed as well.

begin p+ 0 // e — 0 // pre[V] «— 0; S « dfs(r); (S,pre[V], post[V]} end

dis(u) &
begin
prefu] — pe—p+1; (2.19)
value {u} U (U we Adj{u) de(‘w)) 3
pre(w|=0

postu] —e«—e+1
end

19

Depth-first search in undirected graphs. We now consider the special case of depth-first
search in undirected graphs. In this case, the depth-first search divides the edges of a graph into
two sets, tree edges, the edges actually traversed during search, and the other edges, which are
called fronds. While the tree edges are directed edges, we leave the fronds undirected (for the
moment). We use the notation u « v to indicate fronds and, as before, u — v to indicate tree
edges. Thus, every cdge {u, v} is either a tree edge, a reverse tree edge, or a frond.

We will occasionally need to distinguish the fronds explicitly during search. With respect to
Algorithm 2.8, we observe that the fronds are exactly those edges (u, w) for which the visit[w] test
Is true but (since the graph is undirected) such that w is not the {ather of % in the search tree.

dfs(u) &
begin
visit[u] + true;
{#} U Uyeadjp(if visitfw] (2-20)
then (if w £ father(u) then [u«» w]) o
else [u —w A u=father{w)] dfs(w))
end

Here we have decorated Algorithm 2.8 with assertions distinguishing the two sets of edges. The
father function can be considered to be defined implicitly by the assertion. (In the case of a root,
father can return a special value, say A, that will cause the test to fail.)

Observe now that the father of u is known whenever dfs is called recursively. Using the
specialization technique, we can eliminate all references to the father function/array by introducing
a new parameter to dfs that will be the father of u in the depth-first-search tree being generated.
We do this by forming an expression procedure for

[v = father(u)] dfs(u) .
{(In an expression procedure name an assertion denotes a precondition.) We obtain

[v = father(u)] dis(u) «
begin
visitfu| — true;
{8} U Upeadyw)(if ~visitfw] then [u— w A u = father(w)] dfs(w) (2:21)
elseif w 7 father(u) then Ju«» w] o
else fw — u] @
end.

(For aesthetic reasons we have also reoriented the nested conditionals.) This is simplified by
replacing father(u) in the test by v. After renaming (again superseding the name dfs), we have the
definition

dis(u,v) =
begin
visit{u] «— true;
{u} U UwEAdj(u)(if -visit|w] then [u — w] dis(w, u) (2.22)
elseif w 7 v then Ju «» w] o
else [w — u] g)
end .

11

Finally, we carry through the transformation steps described earlier to obtain an algorithm
similar to Algorithm 2.19.

begin p— 0 // e« 0 /] pre[V] « 0; S «— dts(r,A); (S, pre[V], post[V]) end

dfs(u, v) =
begin
preful —pe—p+1;
value {u} U Uwf;';Adj(u)(if pre{w] = 0 then [u — w] dfs(w,u)
elseif w £ v then Ju«w w] ¢
eise [w — u] 8);

(2.23)

postju] —e—e+1
end

(We use A to stand for a value not equal to any vertex.)
A further specialization. In the biconnectivity algorithm derivation, we will need to classify
fronds into forward fronds and reverse fronds. Observe that if u <> w then either u is a descendent

of w or vice-versa. If u > w then (u, w) is a reverse frond, notated u -+ w; otherwisc the edge is a
forward frond, and we write w + u.

Lemma 2.1 provides a fast method for distinguishing forward and reverse fronds. It is an
immediate consequence of the lemma that

pre[u] < pre[w] implies uFw,

and similarly for post. Therefore, if it is known that two vertices are related by the descendency
relation, but it is not known in which direction, then it suffices to check either the preorder or the
postorder numberings.

On the basis of this fact, we obtain the lollowing depth-first search algorithm.

begin p «— 0 // pre[V] « 0; S «— dts{r,A); (S,pre{V]) end

dfs(u,v) &
begin
preful —pe—p+1;
{u} U UweAdj(u) (if prefw] == 0 then [u -» w] dis{w,u) (2.24)
elseif w = v then [w — u] @
elseif pre[u] > pre[w] then [u+ w] ¢
else [w+u] ¢
end

Observe that the four cases can be distinguished in constant time (given the prior linear-time
computation of the pre array).

Although this classification of cases clearly does not help solve the immediate problem of
collecting reachable vertices, it will be very useful when we use specialization to merge this
algorithm with other algorithins obtained in the derivations for biconnectivity in Section 4, below.

12

3. Strongly-Connected Components.

In this section we derive an interesting linear time algorithm for strong connectivity that is
attributed to Kosaraju. Let G = (V, E) be a directed graph and let u and v range over the vertices
V. Recall the original definition of path,

path(u,v) &= (u=v or (Jw € Adju))path{w,v)) . {3.1)

The path relation holds between u and v just when there is a directed path in G from u to v. Since
we are dealing with directed graphs, it makes sense to consider reverse paths as well.

revpath(u,v) < (u=1v or (3w& Ady'(u)) revpath(w, v)) (3.2

(Here, Ady! denotes the inverse adjacency function defined such that v € Adj{u) if and only if
u € Ady'(v).) Clearly, path{u, v) il and only il revpath(v, u).

Two vertices v and v in a graph are strongly connected if path(u,v) and revpath{u,v) both
hold. A maximal set of strongly connected vertices is called a strongly connected component. To
find the strongly connected component associated with a particular vertex r, it suffices to collect all
vertices u such that path(r,u) and path{u,r). For, if both » and w have this property with respect
to r, then by transitivity ol the path relation, they are themselves strongly connected. This implies
that the strongly-connected components partition the vertices of a directed graph. We therefore
take the following definition as our starting specification of the strongly-connected components.

strong & U,y {{s | path{r, s} A path(s, r)}} (3.3)

If path requires time linear in the number of vertices, then this definition, evaluated naively,
requires O([V'|*) titne. To simplify the derivation steps, however, we start with the infinitary
version of path given above.

First steps. Our strategy for improving this definition is to focus on the inner set and develop
a method for calculating its value efficiently. A natural first step is to specialize the definition of
path to the context

{s | path{r, 8) A path(s,r}},

but, the specialization transformation fails because after substitution and simplification the param-
eters in the pair of recursive calls do nol match. A natural response is to generalize, separating
either the 7 or s pairs of parameters into distinct variables. {Generalization is a common heuristic
for obtaining inductive proofs and has been incorporated into several automatic systems; [Boyer75]
and [Manna79] describe exampies.)

{s | path(u, a) A path(s,)}

&= {s]|((u=s)or (Gw € Adj{v)) path(w, 3)) A path(s,r)} (34)

We have substituted the definition of path in the first instance, but not the second. As in the very
first specialization example, we simplify by distributing the set abstraction inward.

{s | path(u, s) A path(s, r}}
= {s|u=09 A path(s,r)} U Uyuecaqju{s|path(w,s) A path{s, r)}

13

(3.5)

This expression procedure is recursive, so our simplification is partly successful.

Unfortunately, we are forced to test path(u,r) on every iteration. This predicate is certainly
true, for example, on the initial call,

strong = U,cy ({ [oath(r,r)] {s | path(r, s) A path(s,)}}), (3.6)

and appears to be true on the others. To test this latler conjecture, we specialize the already
specialized definition a bit further, to a context in which path(u,r) is assumed to be true on entry.

[eath(u, r)] {s | pathiu, s} A path{s,7)} &
{.‘] ‘ U =3 A path(.s,'r)} U UweAdj{u) (37)
{s | path{w, s} A path(s,r)}

The assertion can be established, or not, for the recursive case by introducing an obvious case
analysis.

[oath(x, r)] {s | path{u, s) A path(s,r)} ¢+
{u} U Uneadjiu)

(if path{w,) then {s | path(w, s) A path{a, r)}
else {s | path(w,) A path(s, r)})

(3.8)

The assertion is clearly true in the then clause. In the else clause, it follows from transitivity of
path that the set must be empty.

lpath(u, r)] {s | path(u, s) A path(s,r)}
{u} U Uweadsw)

(if path(w,) then [path{w,)] {s | path(w, s) A path(s,r}}
else a)

(39)

The effect of this transformation sequence is now clear; the path(u, r) test has simply been shifted
to the caller, and so the conjecture is not established. Although this is not a very significant
improvement, these definitions will prove easier to manipulate than Algorithm 3.5. Also, note that
the definition is still infinitary, but it does have the prerequisite structure for the finite closure
transformation. As before, however, we will postpone making that tiransformation as long as
possible.

The final transformation step in the specialization sequence is to rename the expression
procedure for

[path(u,)] {s | path(u, s) A path(s,)}
to sc(u, r).

strong & U, ey {se(r,r)}

sc{u,r) & {u} U UweAdj(u) (ifpath(w, r) then sc(w, r) else a) (3.10)

14

The reversed algorithm. The key insight in this derivation can now be revealed: We observe
that the second parameter of the path relation remains constant on all recursive calls of s¢ for a
particular root. This suggests that we should be able to do a single depth-first traversal from r
and, il possible, use the orderings defined in Section 2 to test ancestry.

There are two ways we could obtain this advantage. First, we could use revpath instead of
path, and compute ancestry using s depth-first scarch tree (since the dfs realizations of path and
revpath both do recursion on the first parameter). Alternatively, we could reverse the direction
of the search in s¢ above (using Ady! instead of Adj), causing the path test parameters to be
reversed, and thus use the path search tree. In either case, we will need to traverse the graph in
both the forward and backward directions.

The situation is symmetrical, and we arbitrarily choose the latter alternative. By reversing
Algorithm 3.10 and applying the finite closure transformation (as we did in Algorithms 2.8 and
2.11), we obtain

strong ¢+ begin
visit2 [V] — false;
U,y (if visit2[r] then ¢ else {scr(r, r)})
end
scr{u,r) & (3.11)
begin
w'sit2{u] -~ true;
{u} U UweAdJ-x(“) (if —visit2{w] A path(r, w) then scr(w, 7))

end

{We have reserved the name visit for use in the depth-first scarch tree precomputation required for
testing path(r, w).)

A blind alley. [t may appear that we could obtain an acceptable implementation of Algorithm
3.11 by replacing path(r,w) with the test w € dfs(r) and using specialization to factor the dfs
calculation out of scr into strong.

strong & begin
visit2[V] « false;
Usev (if visit2[r] then ¢
else begin
visit[V] « false;
{scr’(r, T, dfs(r))}
end) ' 3.12
end ’ ()
scr'(u,r, D) &
begin
visit2[u] «— true;
{u}) UweAdJ—l(u)(iff _'WSH2[1U} AwéE D then SCF’(‘I‘.D, r, D))

end

Unfortunately, the set of roots required for the reverse-scarch forest is not necessarily the same
as that required for forward search, and so the dfs(r) calculation in strong could do redundant
traversals. This algorithm runs in time O(|V|%).

15

file:///Jrev

Strongly-connected component roots. Qur ability to use the ancestry test techniques of
Section 2 depends on a crucial lemma. This lemma captures most of the non-trivial graph-theoretic
knowledge required in the derivation of the strongly-connected components algorithm.

LEMMA 3.1. Let G be a directed graph with a depth-first search forest F' that has ancestry
ordering >. For each strongly-connected component S of G there is a unique vertex 7 called the
root of S such that r = min, (S}.

This lemma has several important consequences.
(1) The roots of the forest F are roots of strongly-connected components.

(2) For each strongly-connected component S and for each v € S and w & § such
that v — w, w is the root of a strongly-connecled component.

(3) Ttems (1) and {2) above yield all the strongly-connected compenent roots.

(4) If r is the root of a strongly-connected component and path(w,r) is true in G,
then

path(r, w) if and only if w > T,

Operationally, the lemma suggests that we try to arrange that scr(r,r) be called {in the
definition of strong) for the strongly-connected component roots and no ather vertices. All the
strongly-connected components will still be found, and, by the fourth consequence above, if we
guarantee that r is a root, then the path(r, w) test can be replaced by the constant-time test w >
r. (We do this below.)

To find the roots, we must first collect the depth-first-search forest roots, and then, as we find
compeonentis, locate the remaining roots.

Our first order of business, then, is to construct the depth-first-search forest I'. (Recall that
this is distinct from the reverse forest constructed by scr.)

forest & begin
prefV] —0//p—0/fe—0
for » € V do (if pre[r] = 0 then dafs(r))
end
dis(u) ¢= begin
prefuj —p—p+1;
for w € Adj{u) do
if pre[w] = 0 then dfs{w);
postju] — e«—e+1
end

(3.13)

The ancestry test. The fourth consequence of Lemma 2.1, as noted above, allows replace-
ment of the path test in scr by a test of the ancestry relation, under the condition tht r is always
the root of a strongly-connected component. The ancestry test, as shown in Section 2, can be
accomplished in constani-time by an examination of the pre and post numberings obtained in

16

Algorithm 3.13.

strong(R) += begin
visit2[V] « false;
UrER{Scr(rr 1")}
end
scr(u,r) &
? A
begin (3.14)
visit2[u] «— true;
{u} U Upcadri (if —visit2[w] A pre[r] > prejw| A post[r] < post[w]
then scr(w,r))
end

We must now focus on the problem of finding the roots required by strong.

Finding some rocts. The first consequence of the lemma suggests that we collect the roots
of the forest F as they are found.

forest « begin |

pre(V] =0 //p—0 /e 0;
deEV(if pre[r] = 0 then begin dfs(r); {r} end) (3.15)

Thus, forest yields a nonempty subset of the final set of roots.

Finding the remaining roots. By the lemma, the remaining roots can be found by
examining strongly-connected components as they are found. If r is a root then scr(r,r) returns
returns the vertices of its corresponding strongly-connected component. Let § be a strongly-
connected component. The following definition is a direct realization of consequence {3) of the
lemma.

update(S}

U”GS (U'IJJEAdj{U) (if _|Visft2(w) MNv—w then {’LU} else ﬂ)) (3.16)
Given a strongly-connected component S, update(S) returns the set of strongly-connected com-
ponent roots the are direct descendents of vertices in §. This definition can be improved in several
ways, for example by replacing the v — w test by a comparison of pre- and postorder indices. (See

Algorithm 3.20.)

An alternative approach to finding roots (which we do not follow here but which is used in
[AHUS83]) is to rely on a further consequence of the lemnma. It is always the case, after zero or
more strongly-connected components have been found, that the unvisited (in the reverse search)
vertex with smallest preorder number {in the original forward search) will be a strongly-connected
component rool. Initially, this is the first vertex visited by dfs. A final algorithm could be obtained
by deriving a simple program and associated data structure that quickly yields the vertex with
minimum preorder number. This would be done by merging a simple minimum-finding program
with scr to keep track of the minimum preorder index as vertices are visited.

In this presentation, however, we retain the update procedure above.

17

Final improvements. The final algorithm is obtained by merging two programs. The first,
Algorithmn 3.14 derived earlier, finds strongly-connected components, given a set of roots.

strong(R) ¢+ begin
visit2[V'] «— false;
U.er{ser(r,)}
end
scr(u, r) & (3.17)
begin
visit2[u] « true;
{u} U UwEAdJ"(u) (if —visit2{w] A pre[r] > prefw] A post[r] < post{w]
then scr(w, 7))
end

The second, which follows directly from the lemma, is an infinitary definition of the set of roots.
R «= forest U |J,-p update(scr(r,r)) (3.18)

(To avoid trouble with the visit2 array, we assume for the moment that the infinitary scr is used.)

We omit here this straightforward merge of strong with the definition of R. Its result is the
following new definition of strong.

strong(lorest)

strong(R) «=
if R = ¢ then g (3.19)
else let r = choose £ in
let § = sc¢r(r,r) in
{8} U strong{update(S)U R — {r})

(The choose operation picks an arbitrary element of its argument, which must be a set. The let
construct is used to bind local names.)

18

The strong connectivity algorithm. We have resolved the strong conneetivity algorithm,

strong(forest) ,

into two basic phases. First, forest is used to collect the depth-first search forest roots and to
precompute the pre- and postorder numberings used for testing ancestry. Second, strong is used
to do reverse depth-first searches from these roots, collecting strongly-connected components and
new roots along the way.

var p, e, pre[V], post[V];
strong(forest)

forest =
begin
prelV] —0//p—0/}/ e
Urev (if pre[r] = 0 then begin dfs(r); {r} end)
end
dfs{y) &
begin
prefu] —p—p+1;
for w € Adj{u) do
if pre[w] = 0 then dfs(w);
postu] «— e — e+ 1
end
strong(R) «
if R = ¢ theng (3.20)
else let r = choose R in

let § = scr{r,r)in [9 is a strong component]
{8} U strong(update(S)U R — {r})

scrf{u, 1) &=
begin
visit2[u] «— true;
{v} U Upcadri) (if ~visit2[w] A pre[r] > pre[w] A post[r] < post(w]
then scr{w,)
else ¢)
end
update(S) ¢«

Uves (Uweadsiv) (if —visit2(w) A pre[v] > pre[w] A post[v] < post[w]
then {w}
eise g))

This algorithm runs in time linear in the number of vertices and edges in the graph. As before,
we demonstrate this by associating with each vertex and edge of the graph a constant number of
program steps.

The procedure forest is a simple iteration in which each vertex r in V is considered exactly
once. Because of the pre array, dfs is called (by forest and recursively) at most once for each vertex
in the graph. On each call to dfs, the loop body is executed once for each edge leaving the node
u. Thus, overall, dfs visits each vertex once and each edge twice.

A similar argument applies to strong and scr. This leaves update, which is called exactly once
for each strongly-connected component. In a given call to update, each vertex in the component

19

- N _ am

A& & = |

is examined once in the outer union, and each edge connected to that vertex is examined exactly
twice (overall) in the inner union. Thus, overall, update cxamines each vertex once and each edge

twice.

Further steps. Of course, the program derivation process has no definite termination criteria.
We could continue improving this algorithm by realizing the various implicit loops, by frequency
reduction (e.g., for pre(r) calculation), by eliminating set operations (e.g., in strong), and in many
other ways. We conclude at this point, however, since the structure of the linear-time algorithm
is now most clearly apparent and since the next set of derivation steps fall within the range of

established techniques.

4. Biconnected Components.

Let G == (V,E) be an undirected connected graph. An aerficulation point is a vertex whose
removal disconnects G. A graph is biconnected if it has no articulation point. A biconnected
component is a maximal set of edges that contains no vertex whose removal disconnects the

vertices contained in the edges of C.

Our specification for the biconnected components of a graph makes use of a modified version
of the original path definition. Let u, v, and a be vertices in an undirected graph.

path,(u,v}) 4.1)
u=1v or (3w€ Adj{u}))(w=v or (w5~ qand path,(w, v})) (4.

There is a path from « to v that aveids a if » and v are equal or if there is path avoiding a from
a vertex w adjacent to u to v. (The subscripting of the parameter a is for syntactic convenience

only.) Observe that
path,{u, v) il and only if path,(v,u) .
There is a natural special case of this definition, obtained by an obvious specialization step.

[u 5% a A v £ a] path,(u,v) & (4.2)
u=1v or (3w Adju)) ((w # a and [w % a A v # a] pathy(w, v))) '

Two adjacent edges (u,v} and (v,w) are biconnected if path,(u,w). Thus, the biconnected
component associated with a graph edge (u,v) is a set of edges,

[4
be((u,v)) & {{u,v)} U (U (v w)EE bC((v,w)))- (4.3)

path, (v, w)

(The specialized definition of path will suffice in this context.)

Finally, Let G = (V, E) be an undirected graph with no self-loops (edges of the form {u,u)).
Then the set bcomps contains the biconnected components of G.

beomps = U, vyem {be({y, v))} (4.4)

20

Specialization to depth-first search. The essence of the biconnectivity algorithm is in
the definition of bc. Our initial goal will be to obtain a finitary—and eflicient—version of this
definition. We will not apply the finite closure transformation directly, as this would cause us to
have to mark edges as being visited. Rather, we will assume that a depth-first search forest already
ezists, and specialize the definition of bc to traverse tree edges in depth-first search order. That
is, we will merge the bc definition with a simple depth-first search traversal of the graph.

Note that this merge must actually incorporate a finite closure transformation, as we will be
changing the termination properties of bc. Rather than carrying this out formally (which would
invelve going into the technical details of the finite closure transfermation melhod), we will make
informal arguments concerning the order of depth-first scarch traversal. The specialization process
will be more difficult than in previous examples because we will need to make use of auxiliary
lemmas concerning graphs and trees.

We start by assuming the edge given to bc is a tree edge and that previous tree edges have
already been traversed in depth-first search order. Our approach will be to consider a variety of
cases for the body of the union, depending on the type of the edge {(v,w). Recall from Section
2 that an undirceted graph edge is either a tree edge, a reverse tree edge, a forward frond, or a
reverse frond. The first step is to introduce a conditional into the body of the union Lo distinguish
the four cases. Our goal will be to simplily this definition in such a way that bc is called recursively
for tree edges only and that the edges are traversed in a depth-first search order.

[u— v] be({u,v)) &
{{u,v)} U U(u,w}EE(if v — w then (if path, (v, w) then be((v, w)) else)
elseif u = w then (if path, (v, w) then be({v, w}) else g} (4.5)
elseif v = w then (if path,{u, w) then be({v, w)) else g)
else [w = v] (if path,(u, w) then be((v, w}) else %))

We have distributed the path test into the four cases. We now consider each of the cases in-
dividually,

Suppose u = w; that is, w is the father of ». In this case path,(u,w) is trivially true, so
we must compute be{{v, w)). But {v,w) = {u,v), and we are already computing be((u, v}), so (by
our finite closure argument) we replace the new bc call by ¢. To simplify notation, we also apply
transformations so bc is passed two adjacent vertices, rather than the edge between them.

[— v] be(u,v) &
{{u,v}} U U(u,w)eE(if » — w then (if path,(u, w) then bc(v, w) else @)
elseif 4 = w then ¢ (4.6)

elseif v +— w then (if path,(u, w) then bc{v, w) else 9)
else [w = v] (if path, (v, w) then bc(v, w) else 2))

We next consider the case of a reverse frond v +» w. In this case, path,{u,w) is always true
since v is a direct descendent of w and w is an ancestor of u. We must therefore include be{v, w).
Now (v, w) is not a tree edge, so this recursive call will not be in the specialized form. We therefore
expand the definition of bc in this context and simplify based on the assumptions. Since w is an
ancestor of u and there is an edge adjacent to w already known to be in the same component
as {u,v), we can (by the finite closure argument and by the assumption of depth-first order of
traversal) replace all the recursive bc calls from w by ¢ and retain only the single edge (v, w).
Observe that this implies all reverse fronds from a vertex are collected at that vertex.

21

The third case, w ++ v, reduces to g. In this case (v, w) is a forward frond, and there must be
a vertex ¢ such that ¢ is an ancestor of w and such that v — ¢ has already been traversed. Now, if
(v,w) is in the same component as (u, v), then it will have been found already (by the immediately
preceeding case and by the assumption of depth-first order of traversal). Il not, then the path test
would fail and the result would be . Thus, the result is ¢ for both possible eventualities.

The final case turns out to very easy. If {v,w) is a tree edge, then the recursive call to bc is
already in the specialized form.

We thus obtain the following finitary definition.

[u —] befn,v) &
{{x,9}} U U, wieg(if v — w then (if path,(u, w) then [v — w] be(v, w)
else g)
elseif v = w then ¢
elseif v + w then {{v, w}}
else Jw o v] @

(4.7)

There are two ways in which the biconnected components algorithm can now be improve
First, the path test in be could be made more efficient, and, second, the definition of bcomps could
be improved to avoid collecting redundant components.

Articulation edges. The improvement of the biconnectivity algorithm bcomps depends on
the following lemma.

LEMMA 4.1. Let G be an undirected graph with depth-first search forest F. Every biconnected
component B contains a unique tree edge u — v, called the articulation edge, such that u is an
ancestor of every vertex in the edges of B.

This lemma has two useful consequences.

(1) Every tree edge leaving the roots of the trees in a depth-first search forest is an
articulation edge.

(2) If v —» v and v — w, then

path,,(u, w) if and only if {v,w) is not an articulation edge.

An immediate application of the lemma is to the original definition of bcomps. Since every
biconnected component has a unique articulation edge associated with it, bcomps can be modified
to call bc for articulation edges only. Let aedges be the set of articulation edges.

beomps = Uiy u)casages 12 —] {bc(u, v)} (4.8)

Note that since every articulation edge is a tree edge and since the set of biconnected components
is a partilion of the set of edges, the specialized version of be can be applied here.

Collecting biconnected components. Since articulation edges are tree cdges, we will
attempt to collect them in a single depth-first search. We assume, again, that the tree edges are
already so classified and, in addition, we assume that root(r) is true if r is a root in the depth-first

22

search forest. The algorithm below reduces the problem to testing individual tree edges using a
predicate aedge.
aedges & Uoo(r) ({(r,8)} U aelr,3))

r—3

[v— v] ae(n,v) = Uwecadjiv) (if aedge(v, w) then {{v,w)} U aefv, w) (4.9)
: vow else ae(v, w))

The second consequence of the lemma enables replacement of the test ‘aedge(v,w)’ by the test
‘—pathy,(u, w).’

It is now a natural step to merge this search for articulation edges with the algorithm bcomps
for collecting the edges of individual components. The following algorithm results after an obvious
specialization step.

beomps <= U oa(ry ({6(r,3)} U ae(r, 3))

. (4.10)

[v — v] ae{u,v) = Uweaaj) (if aedge(v, w) then {bc(v, w)} U ae(v, w)
v—w else ae(v, w))

The function ae now returns a set of biconnected components.

It is clear from the structure of this algorithm that it would be advantageous to merge the
computations ol ae and bc. We do this by developing an expression procedure for the pair

[u — v} {be{u,v), ae(u,v)).

The result of this program wiil be a pair of sets. The first is the set of edges of the current
component accumulated thus far; the second is the set of components accumulated thus far. After
substitution and simplification, we obtain

beomps & Uiy ({B}UA where (B,A) = {be(r, 3), ae(r, 3)))

r—s

[e— v] (be(u,v), ae(u,v)} +
({(u,;)} U B, A)
(Bl‘4') = (U’ U)wEAdj(u)
(if v — w then (if ~path,(u, w) (4.11)
then [aedge(v,w)] (s, {B'} U A")
else (B, A")
where {8, 4") = [v — w] {be(v, w), ae(v, w))
elseif « = w then (g, 8}
elseif v — w then {{{v, w)},s)
else (3,8)) .

(We have, in this example, introduced a new notation for the simultaneous accumulation of sets.
Suppose the function f returns a pair of sets. Then the notation

U, Ulwes (f(w))

describes a pair of sets and yields the same result as

(Unes (irstlf(w)]), Uyes (secondf(@)])),
23

where first and second select the corresponding elements of a pair.)

We complete the specialization step by renaming the pair to a simple name, ba.

bcomps & Uou(r) ({B} UA where (B, A) = ba(r, s))
ba(u,v} &=
{{{w, v}} U B, A)
where (B: A) = (U: U)weAdj(u)
ifv—w
(then ((if ~path,(u, w) (4.12)
then f[aedge(v, w)] {8, {B'} L A"}
else (B/, A"))
where (B', A’} = ba(v, w))
elseif u = w then (g, a}
elseif v = w then {{{v, w)}, 8}
else {3,0)) .

It now remains to derive a method for efficiently testing —path,(u, w).

Finding articulation edges. In order to implement the path test efficiently, we need a
second technical lemma.

LEMMA 4.2. Let G be an undirected graph with depth-first search forest ' and let w — v and
v — w be edges in F. Then

path,(u, w) = (3s,t) (u > tAt e s As > w)
={Js,t)(v>tAtesAs> w).

That is, there is a path from u to w avoiding v exactly when there is a frond extending from
a descendent s of w to a proper ancestor ¢ of v.

Our goal is to compute this test efficiently in the course of a single depth-first search. The
key insight at this point is to represent the set of possible values of ¢ such that ¢+ s and s > w by
a single value—the most remote ancestor found thus far. If this ancestor turns out to be a proper
ancestor of v, then there is indeed a path avoiding » from u (the father of v) to w (a son of v}

In other words, we seek to compute something like
fow(w) ¢ min- ({t{{(38)s 0t A s> w}) .

Unfortunately, because the elements of the set are not always pairwise comparable, this minimum
is not well defined. It is the case, however, that each element of the set is either an ancestor or a
descendent of w. Furthermore, all ancestors of w are themselves pairwise comparable. Since v is an
ancestor of w and since we are only interested in ¢ that are proper ancestors of v, descendents of w
can be ignored during search. We implement this improvement by means of a simple modification
to the above specification. This modification is easily seen to follow from the lemma.,

fow{w) = miny ({w} U {t|(Ts)sot A s> w}) : (4.13)
24

Now, v > low(w) if and only if path,(u,w). In other words, v — w is an articulation edge if and
only il low(w) > v.

In order to develop a depth-first search algorithm for computing fow, we separate the com-
putation into two stages.
fow(w) & minx({w} U lowset(w))
4.14
fowset(w) < {t|(3s)s vt A s> w} (t.14)
Lowset computation. We observe first that {s | 8 > w} is exactly dfs(w). We recall the
definition of dfs from Section 2.
begin p « 0 // pre[V] « 0; § « dfs(r,A); {S,pre[V]) end

[u— v] dis(u,v} &

begin
prefvl —pe—p+ 15
{v} U UwEAdj(v)(ir pre[w] = 0 then [v — w] dfs(v, w) (4.15)
elseif w = u then [w — v] 2
elseif pre[v] > pre(w] then [v o w] o
else [w = o] 8
end

(in order to maintain consistent notation in this section, we are using a slightly different vertex
labeling convention that of Section 2.)

Since dfs requires a father parameter, we revise slightly our definition of Jowset.
[u — o] lowset(u,v) < {¢ | (Fs) s =t A s € dfs(u,v)} (4.18)

As before, we assume u — v. We also assume that a special value A is passed for u when v is a
root. (We are renaming parameters to be consistent with their subsequent usage.)

Direct substitution for dis in the definition of lowset and preliminary simplification yield the
expression procedure,
[u—v]{t|(3s)s»t AsE dfs(u,v)} &
begin
prelv] —pe—p+1;
{t1Gs) st A s€ (o)}
L {t | (33) st A 3E UweAdj(v) (4-17)
(if pre[w] = 0 then [v — w] dfs(v, w)
elseif w = u then [w — v] ¢
elseif prelv] > pre[w] then {v -+ w] 8
else [w =] o
end .)
We now distribute the set absgraction into the union and conditional and simplify.

Tu—o]{t|(3Bs)s>t A s € dfs(u,v)}

begin
prefoj —pe—p+1;
{t|v»t}
U U {1 prefw] =0)
V GAJJ(")(t[‘.h]en [o—w] {t|(Bs)s>t AsE dfs(v, w)} (4.18)
elseif w = u then [w — v] @
elseif pre[v] > pre(w] then [v -+ w] @
else fwv] 8 }
end .

25

Finally, we can form a recursion. As before, we do this by renaming all instances of the set
abstraction to a simple name.

lowset(u,v) &

begin
prejv] «— pe—p+ 1;
{t|vot}
U UwEAdj(v) (if pre[w] = 0 then fv — u] fowset{v, w) (4.19)
elseif w = u then [w — v] @ :
elseif pre(v] > pre[w| then [v+=w] o
else [w+—v] o
end

Now since {t | v = t} is equivalent to
UweAdJ-(v)(if v w then {w} else @),

we substitute this into Algorithm 4.19, merge the unions, and simplily on the basis of the assertions
to obtain the final lowset program.

fowset{u,v) &=
begin
prﬂ[v] —p—p+]_;
UWEAdj(v)[if pre[w] = 0 then l[v — w] lowset{v, w)
elseif w = u then [w - o] ¢
elseif prefv] > prefw] then [v+ w] {w}
else fw -+ o] o)}

(4.20)

end

26

Low computation. A similar specialization sequence is now used to transform this algorithm
into a program for fow(u, v), defined

fu = v] low{n,v) & mins { {v} U lowset{u,v)).

We obtain

low(u,v) &
begin
prefv] —pe—p+1;
miny, e 4d;(v) { min(z, (if prejw] = 0 then [v — w] Jow(v, w)
elseif w = u then [w — v] oo
elseif pre[v] > pre[w] then [v -+ w] w
clse [o] %))

(4.21)

end

(Here oo denotes a maximal vertex value; note that v would do.) An immediate simplification is
to distribute the inner ‘min’ into the conditienal.

.
low(u,v) +

begin
prefv] = p—p+1;
miny e dj(v) { If pre{w] = 0 then [v — w] min(v,low(v, w)) (1.22)
elseif w = u then [w — v] »)
elseif pre[v] > prejw] then [v -+ w] minfv,w)
else w o] v
end

Using preorder numbers. Recall that according to the lemma, if fow(v, w) is a descendent
of v, then v — w is an articulation edge. Furthermore, it is always the case that the result of
jow is an ancestor or a descendent of v, so we can test the relation using the preorder numbering.
This prompts us to specialize the definition of Jow to return preorder numbers rather than vertices.
After several straightforward transf ormations, we obtain

low(u,v) &
begin
m e prefo] —pe—p+1;
for w € Adj{v) do
if pre[w] = 0 then begin [v — w]
m « min(m, &) [/
(if £ > prelv| then [aedge(v, w)]) (4.23)
end
where { = low(v, w)
elseif w = u then [w — vl
elseif pre[v] > pre[w] then [v-sw] m«— min(m, pre(w])
else w - v])))

end .

(We have aded an assertion noting when articulation edges are found.) Note that there is no action
for two branches of the conditional.

27

Collecting components, revisited. Armed with this effcient method of locating articula-
tion edges, we recall the bcomps algorithm derived earlier. That algorithm simultaneously collects
the set of biconnected components and the set of edges in the current component. We now show
how this algorithm can be merged with fow to obtain an algorithm that simultaneously collects
edges in the current component, collects biconnected components, and keeps track of the current
fow value. The resulting algorithm, while somewhat complicated, is very efficient, requiring time
linear in the number of vertices and edges.

We start by substituting to obtain an expression procedure for the expression
(ba(u, v), low(u,v)) .

After simplifying and renaming, we obtain

bcomps
begin
prelV] — 0 J/ p+ 0
Usoor(r) ({B}UA where (B,A,8) = balow(r, 3))
r—a

end

balow(u, v}
begin var m;
m e prefvj — pe—p+1;
{{w,v)} U B, A, m)
where (2, A} = {|J, U)weAdj(u]
(if prefw] =0
then (let (B' A") = balow(v, w} in (4.24)
if £ > prejv]
then begin
m + min(m, ¢);
{2, {B'}U &)
end
else (B, A'})
elseif pre(w] < prefv] A w £«
then begin
m «— min(m, pre[w]);
({(v, w)}, 8)
end
else (g, g})
end.

(This algorithm returns a triple instead of two nested pairs.} We now have a linear-time algorithm
for computing the set of biconnected components in an undirected graph.

28

The biconnectivity algorithm. It is traditional in presentations of the biconnected com-
ponent algorithm that components be emitted as they are found, rather than coltected explicitly
{as they are in the second component of the result of balow). The traditional presentation can
be derived easily using transformations that introduce operations on global state and climinate
corresponding operations on explicit results. (The finite closure transformation makes implicit use
of such transformations. Again, we do not go into details of the transformation method here;
rather, we present this and the next transformation step in an informal manner.)

To carry out the transformation, we distinguish all operations that directly change the ac-
cumulated value of the second result. There is (essentially) only one place where this happens,
which is when B is added to A’ in the innermost conditional. The effect of the transformation is
to assert that B’ is a biconnected component at that point.

bcomps &
begin
pre[Vi—0 jf p+—0;
for r € V do (if pre[r] = 0 then bafow(A, 7))

end

balow(u, v} =
begin var m;
m e pre[v] —p—p+1;
(B, m)
where B = UwEAdJ(U)
(if prefw] =0
then (let (B',£) = batow(v, w) in
let B = B'U {{u,v)} in (4.25)
if £ > pre[v]
then begin [B” is a component]
m «— min(m, £);
@
end
else B)
elaeif pre[w] < pre[v] A w # u
then begin
m +~ mio(m, pre(w]);
{{o, wl}
end
eise o)

end

(We have, in addition, “rotated” the outermost union to the caller; this allows most of the top-level
loop of bcomps to be inecorporated into balow.) In this program, bcomps is executed only for its
side-effect of emitting components; its value can be is ignored.

29

A final transformation. Although it is not a necessary part of our development, a similar
transformation can be carried out to eliminate the first result. In the prior example, the net effect
on state of accumulating the set of biconnected components proved to be very simple; biconnected
components were simply added to the set as they were found. In this case, however, the net
changes to stale corresponding to the way the edge set (viewed globally) is accumulated have a
stack-like discipline; this is a result of our transformation of merging bc and ae. The difficulty
here is that it is not known whether the edges found by the innermost call to bajow are part of the
current component until the low value is tested. The transformation method provides a means for
introducing mechanism (in the form of data structure) to keep track of these changes in values.

There are three places where the accumulated set of edges is modified or used. At two of these,
an edge is added to the current set. The third, in the innermost conditional, results in the possible
removal of a number of edges from the accumulated set (depending on the jow value). These edges
are those that have been most recently accumulated, however, and they are all distinct. The data
structure that results is thus a stack, and the following algorithm is obtained.

becomps &
begin
prelV]—0 j/ p—0 J stack —empty;
for € V do (if pre[r] = 0 then balow(A, r))
end

balow(u,v) &=
begin var m;
m — pre[v] «—pe—p+1;
for w € Adj{v) do

if prefw] =0
then begin
Push (v, w);
let £ = balow(v, w) in (4.28)
if £ > pre[v]
then begin
m «— min(m, £);
Pop to (v, w)
end
end

elseif prefw] < prefv] A w4y
then begin
m «— min(m, pre[w]);
Push (v, w)
{nd;

m
end

The stack-pop operation, ‘Pop to (v, w),” pops all edges on the stack up to and including the edge
{v,w) and emits this set, of edges as a biconnected component.

30

5. Conclusions.

This work is a step towards developing a new paradigm for the presentation and explication
of complex algorithms and programs. It seems to us insufficient to simply provide a program or
algorithm in final form only. Even wilh “adequate” documentation and proof, the final code cannot
be as revealing to the intuition as a derivation of that code from initial specifications.

Ideally, a mechanical programming environment should support the programmer in the process
of building derivations.

In a specific problem domain, such as graph algorithms, certain facts and fundamental al-
gorithms should be available for access. The value of this store of facts should not be underes-
timated. In our derivations, {or example, certain algorithms were repeatedly used as paradigms for
the development of other algorithms. This kind of analogical development is similar in heuristic
content to the goal-directed transformation of algorithms required to carry out the loop merging
optimization or in order to create recursive calls during specialization.

We are still very far from automating the heuristic side of the derivation process. In fact, we
argue that at this point our efforts are better directed at discovering and exercising useful transfor-
mations, developing foundations for proving their correctness, and developing tools for interaciive
program development that can make appropriate use of outside domain-specific knowledge. For
example, it appears that once the necessary outside leminas are stated and proved, only a modest
deduction capability would be required in such a programming environment; it would be used
mainly to establish precounditions for transformations and application of lemmas.

Finally, by storing program derivations as data structures in a program development system,
program modifications can be carried out simply by making changes at the appropriate places
in the derivation structure; on the other hand, if only the final code is available, the conceptual
history of the program must, in effect, be rediscovered.

Acknowledgements. We thank Margaret Beard and Greg Harris for careful readings of the
manuscript and for insightful comments.

31

AHU74]
[AHUS3]
[Barstow80]
[Bauer81]
[Birds0]
[Boyer75]
[Burstall77]
[Clark78]
[Clark80]
[Gordon79)
[Green78}
[(Knuth74]
[Manna79]
[Manna81]
[Paige81]
Reiter78]
[Scherlis80]
[Scherlis81]
[Tarjan72]
[Tarjan?3]
[Tarjan77)

[Wand80]

Bibliography

Aho, A. V., J. E. loperoft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

Aho, A. V., J. E. Hopceroft, and J. D. Ullman, Data Structures and Algorithms.
Addison-Wesley, 1983.

Barstow, D. R., The roles of knowledge and deduction in algorithm design. Yalc Research
Report178, April 1980.

Bauer, F. L., et al., Programming in a wide spectrum language: a collection of examples.
Science of Computer Programming, Vol. 1, pp. 73-114, 1981.

Bird, R. S., Tabulation techniques for recursive programs. Computing Surveys, Vol. 12,
No. 4, pp. 403-417, 1980.

Boyer, R. 8. and J. 8. Moore, Proving theorems about LISP functions. Journal of the
ACM, Vol. 22, No. 1, 1975.

Burstall, R. M. and J. Darlington, A transformation system for developing recursive
programs. Journal of the ACM, Vol. 24, No. 1, pp. 44-67, 1977.

Clark, K., Negation as failure. In: Logie and Databaaes. (allaire, H., and J. Minker,
eds., Plenum, 1978,

Clark, K. and J. Darlington, Algorithm classification through synthesis,
Journal, Vol, 23, Ne. 1, 1980.

Gordon, M. J., Milner, A. I., and C. P. Wadsworth, Edinburgh LCF. Springer-Verlag

Lecture Notes in Computer Scicuce, 1979.

Computer

Green C. C. and D. R. Barstow, On program synthests knowledge. Artificial Intelligence,
Vol. 10, p. 241, 1978.

Knuth D. E., Structured programming with goto statements. Computing Surveys, Vol. 8,
No. 4, pp. 261-301, 1974.

Manna Z. and R. Waldinger, Synthesis: dreams = programs. IEEE Transactions on
Software Eugineering, Vol. SE-5, No. 4, July 1979.

Manna Z. and R. Waldinger, Deductive synthesis of the unification algorithm. Science of
Computer Programming, Vol. 1, pp. 5-48, 1981.

Paige, R. and 8. Koenig, Finite differencing of compuiable erpressions. ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 3, pp. 402-454, 1982.

Reiter, R., On closed world data bases. In: Logic and Databases. Gallaire, Il., and J.
Minker, eds., Plenum, 1978.

Scherlis, W. L., Ezpression procedures and program derivation. Ph. D. thesis, Stanford
University, 1980.

Scherlis, W. L., Program improvement by internal specialization. Kighth Symposium on
Principles of Programming Languages, pp. 41-49, (981.

Tarjan, R. E., Depth first search and linear graph algorithms. SIAM Journal of Computing,
Vol. 1, No. 2, pp. 146-160, 1972.

Tarjan, R. E., Testing flow graph reducibility. Fifth ACM Symposium on the Theory of
Computing, pp. 96-107, 1973.

Tarjan, R. E., Complezity of combinatorial algorithmas.
Report, 1977.

Wand M., Continuation-based program transformation strategies. Journal of the ACM,
Vol. 27, No. 1, pp. 164-180, 1980.

Stanford Computer Science

32

