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Abstract 

Computer vision and robotics suffer from not having good tools for manipulating three-dimensional objects. 
Vectors, coordinate geometry, and trigonometry all have deficiencies. Quaternions can be used to solve many 
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1. Introduction 

In computer vision and robotics, the nature of the mathematical tools available makes a large difference in 

the kind of things that can be done, both in theory and in practice. In deriving any relationship in computer 

vision, the researcher is often daunted if a large system of equations develops, and sometimes gives up. 

Formulation of equations is important in practice also: for example, in simulating the motion of a robot arm 

for the purpose of prediction, the complexity of the equations has a large influence on how fast the simulation 

can be done. So any tool which reduces the complexity of equations in a derivation or simulation must be 

seen as useful. 

Several different systems have been used to describe positions and motions in space in computer vision and 

robotics: they are three-dimensional vectors, three-dimensional coordinates, and trigonometry. Each of these 

has particular advantages and disadvantages. Vectors are the most elegant system, but unfortunately they are 

incomplete: certain operations, e.g. rotation, are not easily reprcscntable using vectors. Three-dimensional 

coordinates are complete, but often lead to lengthy and messy derivations, with many repetitive terms. 

Trigonometry is often quite useful in illuminating an otherwise difficult to see relationship (for example, 

Kanade's derivation of the "skewed symmetry "contraint" [2]) but here the derivations can be even messier, 

requiring clever use of half-angle relationships. 

What is needed is a tool which is as powerful as vector notation, but which allows the representation of 

operations not directly representable with vectors, such as rotations. The mathematical object called 

"quaternion" is such a tool. 

Quaternions were invented by Hamilton in the late 1890s [1]. They were the result of an attempt by 

Hamilton to resolve the question: What is the result of dividing one (three-dimesional) vector by another? 

The story [3] goes that Hamilton thought about this question for some time, then while walking across a 

bridge he saw the answer,"and carved in the stone the formula that was the basis for quaternions: 

. i 2 = j 2 = k 2 = ijk = - 1 (1) 

This formula gives the rule for multiplying two quaternions. What Hamilton had discovered is that while it is 

not possible to create a three-dimensional system (i.e., one consisting only of three-vectors) that enjoys a 

reasonable number of properties of the real and complex numbers, in four dimensions this is possible: in 

quaternions, all properties of the real and complex numbers are preserved except for commutativity of 

multiplication. Moreover, quaternions can be used to represent many operations in three-dimensional space, 

including rotations, affine transformations, and projections. 

There are several equivalent ways of writing quaternions in terms of their four components; one way that is 
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particulary useful is what Hamilton called Standard Quadrinomial Form: 

Q = {a + (3\ + yj + 5k : a,/?,y f5 real}, 

In this system Equation 1 gives the. rule for multiplications, so that ij = k but jl = — k. (Obviously 

multiplication is not commutative here.) These properties of complex and real numbers hold for the set of all 

quaternions Q as well: 

1. Addition: 

a. Closure: if P, Q eQ. then P + Q € Q. 

b. Commutativity: P + Q = Q + P for all P, Q e Q. 

c. Associativity:(P + Q) + R = P + ( Q + R) for all P, Q, R € Q. 

& Identity: There is a 0 e Q such that 0-J-P = P + 0 = P 

e. Inverse:For any P c Q t h e r e exists a ( - P ) € ( H such that P 4- ( - P ) = ( - P ) + P = 0 

Multiplication: 

a. Closure: if P,Q € Q then PQ € Q. 

b. Associativity: (PQ)R =. P(QR) for all P, Q, R € Q 

c. Identity: There is a 1 € Q such that IP = PI = P 

d. Inverse: If P * 0, then there is a P"" 1 such that P P " 1 = P - 1 P = 1 

2. Distributivity: P(Q + R) = PQ + PR and (Q + R)P = QP + RP for every P, Q, R € Q 

3. No zero divisors: If PQ = 0, then either P = 0 or Q = 0. 

2. Vectors as Quaternions 

The fact that the symbols i, j , and k are commonly used in vector analysis to represent elements of ai 

orthonormal basis suggests that quaternions of the form +y j + Sk might be interpreted as vectors, and thi 

is in fact the case. Moreover, if two vectors 

u = u x i + u y j + u zk, 

v = v x i 4- v y j + v z k 
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are multiplied as quaternions, the product is 

U Y = ( _ V x - u y v y - u 2 v z ) (2) 

+ ( v 2 - u z V 5 

+ ( V x - Vz>J 
4- (u v - u v )k 

v x y y xy 

= - (u • Y) + (u X v) 

WheFe u-v and uXv are the familiar "dot product" and "cross product" of vector theory. Thus, dot .and cross 

products, rather than being two separate forms of multiplication, are actually components of a single form of 

multiplication: quaternion multiplication. 

Since vu= - Y - U + VXU , dot and cross products can be isolated as follows: 

UV + YU 

2 = U V ( 3 ) 

=uxv (4) 

We also obtain the length of a vector, 

ii ii w / vv + vv v i /2 I—— / r x 

||v|| = V h = ( 5 >' = V ~ v ( 5 ) 

Thus, if v is a vector, then v/yj - v 2 is a unit vector, and n is a unit vector if and only if n 2 = — 1. 

3- Vector and Scalar Triple Products 

Using the equality (uXv) X w = (v • w)u + (u • w)v and expansion 2 from the previous section, one can 

obtain the expansion 

uvw = [- (u-v) + (uXv)]w 
= - ( U - Y ) W - ( U X Y ) W + (uXv)Xw 
= — [ u v w ] - (v-w)u + ( U W ) Y - ( U Y ) W 

where [u v \v] represents the "scalar triple product" (uXv)-w = u(vXw). 

By considering different permutations of u, v, and w, one can isolate scalar and vector triple products as 
follows: 

r , (wvu-uvw) 
[u v w] = j (6) 

( ~ w (uvw —wuv) (uxv)xw — 2 
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U X ( v X w ) = - — 

Thus, using quaternion notation, triple products are really no more difficult to represent than dot or cross 

products. 

4. Representation of Rotation 
The greatest strength of quaternions is their ability to represent rotations. In vector analysis, a rotation of 

angle 8 about an axis n is represented by some matrix; for example, the rotation matrix for rotation by an 

angle 8 around the x-axis is: 

T 1 0 0 1 
(a..) | 0 cos 8 - sin 8 | 

^ 0 s in0 cos0 J 

and the effect of applying this rotation to a vector v is given by matrix multiplication of (a^) by Y . The 

general matrix is very complicated and is given in books on computer graphics [4, 5]. The matrix (a^) must be 

a "unitary matrix", which means that its columns, treated as vectors, are orthogonal and of unit length. 

Finding n and 8 from (a^) involves finding the eigenvalues and eigenvectors of (a^) and can be rather 

awkward. 

By contrast, in quaternion notation, the same rotation of angle 8 about axis n is represented by 

v - ^ R v R - 1 

where 

R = ( c o s y - ) + ( s i n y - ) n . (7) 

The derivation of R, the explanation for the appearance of half-angles, and the proof that R v R - 1 really is a 

vector can be found in many places [3,1]. It should be noted that: 

1. It is much easier to retrieve the values of 8 and n, given R, than it is given the matrix (a^). 

2. The vector v and the rotation R are represented by the same kind of object, namely quaternions. 
In vector theory, rotation are represented by matrices, a much different object than a vector. In 
quaternion theory, rotations themselves can be rotated! 
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5. Democracy of Unit Vectors, and Consequences 

One of the most important features of quaternions is the fact that if n is a unit vector then 

{a+£n: a,/? real} 

is isomorphic to the complex numbers. (This follows from the fact that n 2 = — 1.) This means that no unit 

vector is really any more important than any other unit vector. In a sense, the choice of i, j , and k as 

coordinate bases is arbitrary;- any mutually perpendicular (anti-commuting) unit vectors will do as well. This 

concept will be referred to as the "principle of democracy". This principle will be used to extend many 

concepts in complex numbers to apply to quaternions as well. In the following /is the imaginary number v^—l 

One immediate consequence of this democracy is that any two quaternions of the forms a + /?n and y-f-Sn 

will commute under multiplication (after all, a+fli and y + 5/ commute.) Thus, although quaternions in 

general do not commute, certain classes.of quaternions do. (Note that commutativity of multiplication is an 

equivalence relation among non-real quaternions/) 

Another very important result is the following generalization of DeMoivres theorem: 

Definition 1: eSn - (cos d) + (sin 0)n 

Thus, a rotation of angle 8 about axis n can also be represented as 

R = e $ n / 1 (8) 

In the same way, we can define trigonometric and hyperbolic functions of quaternions in the same way as 

for complex numbers (e.g. since cos Oi = cosh 0, we have by democracy cos 6n — cosh #, for any angle 6 

and unit vector n.) 

Furthermore, since 

In [ e r (cos 6 + /sin 0)] = r + 6i 

then we should have 

Definition 2: In [ e r (cos 0 + n sin Q)] = r + On 

Here we should be careful in two respects: first we should always keep 0 in the interval (-77, it) to avoid 

ambiguity, and, secondly and more importantly, we must leave In a undefined for all a <0. After all, since 

Qirn __i f o r e v c r y n^ c v c r y u n i t v c c t o r h a s a c j a j m t 0 the v a j u c o f i r ^ - i ^ so l n ( - 1) will just have to stay 

undefined. 



6 

In any case, if P and Q commute, we can define 

Definition 3: P Q = exp [Q In P] 

Note that P and Q commute iff (In P) and Q commute. 

The following three relations hold for manipulating powers of quaternions: 

1. ( P Q ) " 1 = Q ^ P " 1 . 

2. Q a + £ = Q a Q ^ . 

3. Q a ^ = ( Q a / for ||Q || < 1 but in general, e p + Q * e p e Q and e P Q * ( e p ) Q . 

Actually, e p + ^ = e p e ^ iff P and Q commute. 

4. e P Q = ( e p ) Q if P and Q commute. 

Let u and v be unit vectors separated by an angle 0. Let g be the great circle containing u and v, and let n 

be the pole of g, as shown in Figure 6-1. 

Then, 

v u — vXu 
U - V + . uXv 
cos 0 + n sin 0 

V - v u (9) 

But e$Tl/2 is just the rotation with pole n that maps u into v. Thus, 

Theorem 4: If we want to rotate a sphere so that a unit vector u is shifted along a great circle 

until it reaches unit vector v, the proper rotation is V - v u . 
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A 

Figure 6-1: u is rotated into v along the great circle passing through them 

7. The rotation [(>vv — v\v) (wu — u w ) " 1 ] 1 7 2 

Suppose now that we wanted to rotate the unit sphere in such a way that u gets mapped onto v, but a third 

point w gets mapped onto itself, as shown in Figure 7-1. What rotation should be used now? Well, if g is the 

great circle with pole w then wXu and wXv will both lie on g, and wXu will be mapped onto wXv. Thus the 

appropriate rotation is 

[- (wXv)(wXu)] 1 / 2 = [ (wXvXwXu)" 1 ] 1 7 2 

= [((wv - vw)/2) ((wu - uw)/2)" l ] l / 2 

= [(wv - vw) (wu — u>v) ~ 

8. Reflections and Projections 

We turn our attention now to reflections about, and projections onto, a line or plane. Let n be a unit 

vector. Then we can speak of 

Definition 5: Line(n) = {v : nv = vn} 
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x w 

n. 

Figure 7-1: u rotates into v, while w is fixed 

Definition 6: Plane (n) = {v : nv = — vn} 

which are, respectively," die line passing through 0 and n, and the plane passing through 0 perpendicular to 

Reflecting a vector across Line(n) is the same as 180° rotation around the n-axis, which is accomplished by 

( cos — ) + ( sin - i y — )n = n (see Equation 8) 

Thus a vector v would be mapped onto the point nvn" 1 = — nvn. If we consider Figure 8-1 we see that 

Theorem 7: If v is a vector and n is a unit vector, then 

1. The projection of v onto Plane (n) is V " ^ " ^ • 

v — nvn 
2. The projection of v onto Line(n) is — ^ . 

3. The reflection of Y across Plane {n) is nvn 

4. The reflection of v across Line(n) is - nvn 
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v-nvn 

\ I 

M 
nvn 

Figure 8-1: Relationship between v, its projection, and its reflection 

9. Affine Transformations 

This section will describe two ways of representing affine transformations. The first method involves the 

formulas for representing reflections from Section 8. If n is a unit vector, dien the mapping 

v ^(l + q)y + ( l -q )nvn ^ 

"stretches" everything in the n direction by a factor of a, as shown in Figure 9-1. This can be seen by the fact 

that the right side of Equation 10 is a linear combination of v and - nvn, made in such a way that if a = 1 then 

v is mapped into v, and if a = - 1 dien v gets reflected into - nvn. 

Another form of affine transformation is the rotation 

v -* RvR"1 

Presumably, every affine mapping should be expressible as the composition of rotations and stretchings 

like Equation 10, but in practice, this could become clumsy if too many of these rotations and stretching are 
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nvn 

Figure 9-1: v is stretched by a in the direction of n 

used in a row. There is a much nicer and more general w.ay: 

Theorem 8: The linear transformation with eigenvectors a, b, c and real eigenvalues a, fi, y, is 

a[v b c]a + /?[a v c]b + y[a b v]c  
Y ~* [a be ] . 

Here, [a b c] and the like stand for the scalar triple product in Equation 6. It is easy to see that a is mapped 

into aa, b into /?b, and c into yc. One can also show that Equations 8 and 10 are just special cases of Equation 

8. 

10. Applications in computer vision 
Most important computer vision functions can be represented simply using quaternions. We have already 

seen how to represent general rotations and affine transformations. This section develops expressions for 

expressions that are used exclusively in computer vision. 
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We define the image plane to be Plane(v), the plane passing through the origin with surface normal v. 

From Section 8 we may define die (parallel or orthogonal) projection of a point p onto PIane(\) to be 

/ \ P + vpv 
pr(P>= 2 ' 

(Note that this is also a special case of Equation 10 with a = 0.) Similarly we may define the (central or 

perspective) projection of a point p to be 

PR(p) = - (p + vpv)/(vp + pv) 

_ vx(pxv) 
v-p 

as shown in Figure 10-1. 

Figure 10-1: Parallel and central projection 

Spherical projection onto a unit sphere can also be defined: 

spr(p) = p / ^ - p 2 

It was also mentioned in the last section that a general affine mapping can be represented as the 

composition of stretchings and rotations. However, if we are just studying a plane, all we need are 
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compositions of rotations arid projections. In particular, consider the mapping 

RvR~1 + nRvR~1n 
V " ~2 

where R is some rotation e^ p. This mapping will have the effect of rotating v by an angle 8 about the axis p, 

and then projecting it onto Plane {VL). If we allow R to be any quaternion, and not just a unit quaternion (a 

rotation), we can represent any affine transformation in this way, and can tiiink of R as representing the affine 

transformation. 

11. Describing the projection of the motion of a plane 

Quaternions can be used to develop an interesting equation that relates motion of a plane in space to 

motion as seen on the image plane. This relationship is quite important in three-dimensional computer 

vision, since many objects are planar, or nearly so, over small areas. The relationship developed here is 

similar to the relationships developed by Kanade[2] using trigonometry, and Webb [6] using vectors and 

gradient space. 

Consider a plane with surface normal n. Let the plane rotate by some quaternion Q (we are ignoring the 

effects of translation here). Assume.parallel projection. Under this assumption, the plane will be observed to 

move by some affine transformation; let this transformation be represented by the quaternion A. Let the 

image plane be Plane (y). 

First consider the motion of the point in space. Let y be a point on the plane. The position of y after 

rotation is QyQ . The position of this point on the image plane is - ^ - ^ 2 • N o w c o n s i d e r 

v ~f- yyy 

motion of the point on the image plane. The position of y before the motion is ^ — • ^ n e affine 

transformation moves this point to 
AyA"1 + AvyvA - 1 + vAyA - 1v + vAvyvA^v 

4 

The observed image plane motion and the projection of the real motion must be the same, so that 

0 y Q - i + v Q y Q - i v _ AyA"V+ AvyvA"1 + vAyA'V + vAvyvA^v 
— j 4 

The variable y in this equation is restricted to lie on the plane normal to n. This restriction can be 
x *4~ n\n 

incorporated into the equation by writing y = - — ^ — , i.e., by writing y as the projection of some arbitrary 

quaternion x. Once we do this substitution, we have an equation which is true for all quaternions. This 

equation can then be used to develop algorithms to determine motion in space from the observed affine 

transformation associated with the motion. 
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12. Representation of Robot Arms 

Another field in which quaternions should come in handy is die study of robot arm orientation. 

Traditionally a robot arm has been thought of as a series of links, each with its own coordinate system, as 

shown in Figure 12-1. The relation between succesive links' coordinate systems is expressed in terms of a 

series of angles a{ and 0V and involves the rotation matrix 

A 1 = 
A i -1 

cos 0{ 

sin 0. 

Figure 12-1: Coordinate system of a robot arm 

i - cos a{ sin 0. sin a{ sin 9[ 

cos crcos d{ - sin crcos 6[ 

sin a cos a. 
j 

But, recalling from Section 4 how much more elegantly rotations of coordinate systems can be expressed as 

quaternions, one is led to suspect that a quaternion representation of Aj_ 1 should exist. In fact it is 

R j _ 1 = e ^ V i k / 2 

These rotations are still composed 

R o = R o R l ••• R i - 1 

The only important change is that if represents a vector in link i coordinates, then its representation in 

link 0 coordinates is 



v 0 = ^ ( H f r 1 

instead of 

vo = A ? v i 

= <Ao>T*i 
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