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1. Introduction 

A binary tree created by inserting n randomly chosen keys into an empty tree has an expected 

internal path length of J n « 1.386nlgn.t Randomly deleting k nodes from such a tree yields 

a tree whose expected internal path length is In-k- Unfortunately, performing insertions after 

deletions does not produce binary trees whose internal path length is predicted by this function. 

A theoretical explanation of the effect of performing deletions and then insertions on binary trees 

is still lacking. [Knuth 73, Section 6.2.2] 

This paper presents an empirical study on the effect of applying random insertions and 

deletions to random binary search trees and analyzes results of experiments comparing asymmetric 

and symmetric deletion algorithms. In a previous empirical study, Knott [Knott 75] suggests that 

the expected internal path length tends to decrease after repeated insertions and asymmetric 

deletions. In this study, the large number of insertions and asymmetric deletions performed 

suggests that the expected internal path length first decreases but eventually begins to increase. 

For sufficiently large trees, expected internal path length becomes worse than that of a random 

tree. However, experiments using the symmetric deletion algorithm show that performing a large 

number of insertions and symmetric deletions decreases the expected internal path length (making 

the trees better than random). 

Section 2 describes the insertion and deletion algorithms used in this study and provides an 

overview of some of the previous work in this area. The statistics used in this study are defined 

in Section 3. Section 3 also mentions a few specifics about how the data was gathered. The 

observations in Section 4 give an interpretation of the data and the conclusions are summarized in 

Section 5. 

2. Background 

Insertion Algorithm: The structure of binary trees naturally leads to one insertion algorithm. To 

insert a node into a binary tree (known not to contain the node), compare the new and current 

keys and insert the node into the left or right subtree, whichever maintains the invariant of the 

data structure. The Pascal code for this algorithm is provided in Figure 1, below. For further 

t Throughout this paper, Ig x denotes log 2 *. 

1 



PROCEDURE Insert (VAR root : NodePtr; x : DataType); 
BEGIN 

IF root = NIL 
THEN BEGIN 

NEW(root); roott.data := x; 
roott.lChild := NIL; roott.rChild := NIL 

END 
ELSE IF x < roott.data 

THEN Insert(roott.lChild, x) 
ELSE Insert(roott.rChild, x) 

END; 

Figure 1: The insertion procedure. 

explanation see [Knuth 73, Section 6.2.2, Algorithm T]. 

Unlike insertion, there are many reasonable deletion algorithms from which to choose. This 

paper describes experiments with Knuth's asymmetric deletion algorithm and a trivially modified 

version of this algorithm to make it symmetric. 

Asymmetric Deletion Algorithm: A node's successor is defined to be the smallest node in the right 

subtree. Similarly a node's predecessor is defined to be the largest node in the left subtree. To 

delete a node from a binary tree, replace the node with its successor, ue., the node that contains 

the next larger key. The Pascal code for this algorithm is given in Figure 2, below. Figure 4* shows 
examples of the insertion algorithm and this deletion algorithm applied to a particular binary tree; 

for further explanation see [Knuth 73, Section 6.2.2, Algorithm D]. 

Symmetric Deletion Algorithm: To delete a node from a binary tree, replace the node with its 
successor or predecessor. Alternately choose the successor and predecessor (so that half the time 
the RightDelete routine is called and half the time a suitably modified version of this routine, 

Lef tDelete, is called). 

Consider building a binary tree using n keys chosen randomly from a uniform distribution 

(ue., all n! permutations of the keys are equally likely). There are (2„)/(n + 1) possible shapes for 
this tree [Knuth 68, Section 2.3.4.4], each with some probability of occurring; call the distribution 

Dn. By this definition, inserting a new node into this binary tree would yield a tree of size n + 1 

whose shape occurs with a probability defined by Dn+1. Binary trees whose distribution of shapes 

t Figures 4-11 are at the end of the paper. 
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PROCEDURE RightDelete(VAR root : NodePtr; x : DataType); 
VAR copy, successor, succPtr : NodePtr; 

BEGIN 
IF x < roott.data 

THEN RightDelete(roott.IChild, x) 
ELSE IF x > roott.data 

THEN RightDelete(roott.rChild, x) 
ELSE BEGIN 

copy := root; 
IF roott.rChild = NIL 

{ Case I: There is no successor. } 
THEN root := roott.IChild 

ELSE IF roott.rChildt.IChild = NIL 
{ Case II: The successor is the right child. } 

THEN BEGIN 
roott.rChildt.IChild := roott.IChild; 
root := roott.rChild 

END 
{ Case III: The successor is the leftmost child in the right subtree. } 

ELSE BEGIN 
succPtr := roott.rChild; 
WHILE succPtrt.lChildt.IChild <> NIL DO 

succPtr := succPtrt.IChild; 
successor := succPtrt.IChild; 
succPtrt.IChild := successort.rChild; 
successort.IChild := roott.IChild; 
successort.rChild := roott.rChild; 
root := successor 

END; 
DISPOSE(copy) 

END 
END; 

Figure 2: The asymmetric deletion procedure, 

is Dn are called random binary trees. 

Thomas Hibbard [Hibbard 62] proved that deleting a random node (i.e., where each node has 

an equal probability of being deleted) from a binary tree of size n, with distribution of shapes Dn9 

yields a tree with a distribution of shapes Dn-%. 

Strangely, performing random insertion and deletion operations on a random tree does not 
preserve this distribution of shapes. Consider building a binary tree of size n, as described above. 

Since the keys are chosen from a uniform distribution, the probability of inserting a new node in 
any particular interkey gap is After one random deletion, the distribution of shapes will be 
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D n _ i , but the probability of inserting a new node where the deleted node used to be will be 

(while all other places are still ). Knuth [Knuth 73, Section 6.2.2] describes this phenomenon 

as follows: 

The shape of the tree is random after deletions, but the relative 
distribution of values in a given tree shape may change, and it 
turns out that the first random insertion after a deletion actually 
destroys the randomness property on shapes. This startling fact, 
first observed by Gary Knott in 1972, must be seen to be believed. 
Empirical evidence suggests strongly that the path length tends to 
decrease after repeated deletions and insertions, so the departure 
from randomness seems to be in the right direction; a theoretical 
explanation for this behavior is still lacking. 

Knuth feels that binary trees tend to improve because "path length tends to decrease." One 

way to compare binary trees is to measure their internal path lengths. The internal path length 

of a tree is defined as the sum of the depths of the nodes in the tree, 

IPL = ^ distance(r oot9 i). 

For a random tree containing n nodes, the expected IPL is denoted as In and the expected number 

of comparisons in a successful search is denoted as C n . Knuth [Knuth 73, Section 6.2.2] gives the 

expected number of comparisons in a successful search, Cn, as approximately equal to 1.386 lgn. 

Substituting into the relation J n = n(Cn — 1), one obtains the approximation J n « 1.386nlgn. 

A distribution of trees is said to be "better than random" when the expected IPL is less than J n 

(since the expected number of comparisons is proportional to the IPL). 

3. Methodology 

If a random sequence of insertions and deletions were applied to a random tree of size n, the 

resulting tree would probably not have the same number of nodes. The original tree's IPL would 

therefore not be directly comparable with the IPL of the new tree. In this study, sequences of 

insertion/deletion pairs (I/D pairs) are applied to random trees. Since the resulting tree always 

has the same size, it is easy to see whether any improvement has been made. (Knott's data was 

also obtained by using I/D pairs.) The first step of the simulation is therefore to insert n nodes 

into an empty tree, after which successive pairs of insertions followed by deletions are performed. 

Let IPLn¿ denote the measured mean IPL of an n-node binary tree after applying i I/D pairs. 
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Figures 5 through 10 show IPLnfi/In plotted as a function of i. This ratio shows the improvement 

of the resulting tree's expected IPL as a fraction of the random tree's expected IPL. 

The deletion algorithm given above generally replaces the node to be deleted with its successor, 

the "left-most node in the right subtree". The left and right subtrees are treated differently and, 

as observed below, this appears to have a profound affect on the behavior of binary trees. Such a 

deletion algorithm is called an asymmetric deletion algorithm. The symmetric deletion algorithm 

which is examined in this study is a trivially modified version of the asymmetric algorithm. This 

symmetric algorithm alternately replaces the node to be deleted with its successor or its predecessor. 

The algorithm requires a small amount of state information, but similar results have been obtained 

by randomly replacing the node to be deleted by its successor or predecessor. 

To ensure that the results were not an artifact of the random number generator, simulations 

were performed on both DEC-20s and Perqs. In the DEC-20 simulations the random number 

generator used the linear congruential method to produce 36-bit pseudorandom numbers [Knuth 

69, Section 3.2]. The random number generator for the Perqs is the feedback shift-register 

pseudorandom number generator as described in [Lewis 73]. The data presented in this paper 

was generated on the Perqs and took about one month of CPU time, but similar results were 

obtained for the smaller trees on the DEC-20&. 

The outer loop of the simulation program is very simple. First, build a tree with tsize nodes, 
then gather data before and after each interval of isize I/D pairs. 

FOR i := 1 TO tsize DO Rndlnsert; 
... gather data ... 
FOR i := 1 TO intervals DO BEGIN 

FOR ] := 1 TO isize DO BEGIN Rndlnsert; RndDelete END; 
... gather data .. • 

END; 
FreeTree; 

Figure 3: The inner loop of a simulation. 

4. Observations 

The graphs in Figures 5 and 6 show the expected internal path length of n-node binary 

trees plotted against the number of insertion and asymmetric deletion pairs. Initially, IPLnt% 
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decreases, as Knott and Knuth observed. After some critical point, though, IPLn,i starts to 

increase, eventually levelling off after approximately n 2 I/D pairs. Figure 7 is a comparison chart 

in which IPLnti/In is plotted as a function of i/n2 for each of the values of n tested. (The latter 

ratio normalizes the x-axis.) 

Perhaps the most significant observation is that as n increases so does the asymptotic value 

for IPLnti/In. Since binary trees can be modeled by Markov Chains, and any binary tree may be 

obtained by applying some combination of I/D pairs to any other binary tree, the l im^oo IPLn,% 

exists [Ross 70, Theorem 4.9]. Figure 7 suggests that 

lim TPLnti > In 

for sufficiently large values of n (roughly greater than 128). Thus binary trees seem to become 

"worse than random" after many insertions and deletions. 

The comparison chart in Figure 11 shows the asymptotic values of IPLnii/In for both deletion 

algorithms plotted against n (on a log scale). The data given in Table 1 was obtained by summing 

all the IPLn,% and 7PLni, when t > n 2 . 

n Samples 7 F Z „ , .>n* Variance 

64 6000 0.97 0.01652 

128 6800 1.00 0.01340 

256 2300 1.06 0.00985 

512 1200 1.16 0.00970 

1024 750 1.30 0.01013 

2048 5340 1.49 0.00771 

Table 1: Data for Asymmetric Deletions. 

The asymmetric curve appears to be quadratic. A least-squares multiple regression weighted by 

the inverse of the variance yields the following approximation: 

TPL 

lim r

n , f w 0.0202 lg 2 n - 0.241 Ign + 1.69. 

Substituting In w 1.386nlgn we obtain 
lim 7FLnti « 0.0280n lg 3 n - 0.334n lg 2 n + 2.34n lg n. 



The graphs in Figures 8 and 9 show the corresponding plots of the data in Table 2 for the 

expected internal path length for symmetric deletions. 

n Samples Variance 

64 6000 0.905 0.01654 

128 6800 0.890 0.00916 

256 2300 0.888 0.00615 

512 1200 0.890 0.00347 

1024 750 0.881 0.00235 

2048 5340 0.883 0.00269 

Table 2: Data for Symmetric Deletions. 

The IPLnti decreases initially, as in the case of asymmetric deletions, but the asymptotic value 

of the expected internal path length seems to remain lower than that of a random tree. The 

comparison charts in Figures 10 and 11 indicate that 

1 > lim , » 0 . 8 8 

or that 

In > lim 7FZn,i « 1.22nlgn. 
¿—•00 

The comparison chart in Figure 11 shows the asymptotic value of JPL n ,» slowly decreasing as n 

increases. Since a binary tree with n nodes cannot have an internal path length less than that of 

a perfect tree, we know that 

lim 7FZn,< = n (n logn) . 

5. Conclusions 

The expected internal path length of a random binary tree is In = O(nlogn). Empirical 

evidence suggests that performing many insertion and asymmetric deletions yields binary trees 

with an expected internal path length of IPLn,% = 0 ( n l o g 3 n ) . Thus performing asymmetric 

deletions causes binary trees to become more unbalanced. Amazingly, the expected path length 

does not increase by a constant factor, but rather by a factor of log 2 n . However, experiments show 
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that the symmetric deletion algorithm improves the balance of binary trees leaving the expected 

internal path length ©(nlogn), but with a smaller constant coefficient than the expected internal 

path length of a random binary tree. 

Because this is an empirical study, the above conclusions can only be conjectures. No one has 

provided a theoretical explanation of the behavior of a binary tree's path length after applying 

deletions and then insertions. There is no proof that the asymptotic value of iPL«, t is less than 

In when performing random insertions and symmetric deletions or that the asymptotic value of 

7PL n > t is greater than In when applying insertions and asymmetric deletions. 

In closing, it should be noted that the results of this study will have little impact on the use 

of binary trees in practice. It takes approximately 1.5 million random insertions and asymmetric 

deletions to make a 2048- node binary tree worse than a random tree, and 4 million before its 

expected internal path length reaches the asymptotic value (which is just 50% worse). When so 

many operations are required, other data structures are probably more appropriate. 
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Figure 4 : Examples of Insertion and Asymmetric Deletion. 
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