
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICT IONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CMU-C S - 8 2 - 1 4 5 

Problem Solving Techniques 
for the Design of Algorithms 

Elaine Kant and Allen Newell 

Department of Computer Science 
Carnegie-Mel lon University 

Pit tsburgh, Pennsylvania 15213 

23 November 1982 

This paper will appear in Information Processing and Management. 

Abstract 

By studying the problem-solving techniques that people use to design algor i thms we can learn 
something about bui ld ing systems that automatical ly derive algor i thms or assist human designers. In 
this paper we present a model of a lgor i thm design based on our analysis of the protocols of two 
subjects designing three convex hull algori thms. The subjects work mainly in a data-f low problem 
space in wh ich the objects are representat ions of partially specif ied algori thms. A small number of 
general-purpose operators construct and modify the representat ions; these operators are adapted to 
the current problem state by means-ends analysis. The problem space also includes knowledge-r ich 
schemas such as divide and conquer that subjects incorporate into their algori thms. A part icularly 
versati le problem-solving method in this problem space is symbolic execut ion, wh ich can be used to 
refine, verify, or explain components of an algor i thm. The subjects also work in a task-domain space 
about geometry. The interplay between problem solving in the two spaces makes possible the 
process of discovery. We have observed that the t ime a subject takes to design an algori thm is 
proport ional to the number of components in the algor i thm's data-f low representat ion. Finally, the 
detai ls of the problem spaces provide a model for bui lding a robust automated system. 

This research is suppor ted by the Defense Advanced Research Projects Agency (DOD), ARPA Order 
No. 3597, moni tored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539. The 
views and conclus ions contained in this document are those of the authors and should not be 
interpreted as representing the off icial pol icies, either expressed or impl ied, of the Defense Advanced 
Research Projects Agency or the U.S. Government. 



Table of Contents 
1. Algor i thm Design and Software Science 

1.1. Automat ion methods for algor i thm design 

1.2. Why study how people design algorithms? 

2. A Method for Studying Algor i thm Design 

2 .1 . The problem space theory 

2.2. The role of protocol analysis 

2.3. The issues 

2.4. The problem domain 

2.5. The subjects and the protocols 

3. Case Studies 

3 .1 . The problem 

3.2. Overview of behavior of S2 on Algor i thm GT (generate and test) 

3.2.1. Summary of algor i thm 

3.2.2. The story of S2's solving attempt 

3.3. Overview of behavior of S2 on Algori thm DC (divide and conquer) 

3.4. Overview of behavior of S4 on Algori thm DC (divide and conquer) 

4. A Model of Algor i thm Design 

4 .1 . An overview of the model 

4.2. A data-f low problem space 

4.3. The task-domain space 
4.4. Discovery 

5. A Comparison of Designs 

6. Discussion 

Acknowledgements 



ii 

List of Figu res 
Figu re 3 - 1 : A point set and its convex hull 6 

F i g u r e 3 - 2 : Edited protocol of S2 developing the initial a lgor i thm. E = experimenter; 7 

unattr ibuted lines are spoken by S2. Each line is about 2.5 seconds. 

F igu re 3 - 3 : Selected episodes in S2's Algor i thm GT (times are approximate). 8 

F igu re 3 - 4 : Final Algor i thm GT by S2. 8 

F i g u r e 3 - 5 : Selected episodes in S2's Algor i thm DC 10 

F i g u r e 3 - 6 : Selected episodes in S4's Algor i thm DC 12 

F igu re 4 - 1 : Problem Behavior Graph of S2 on fragment of Algor i thm GT (simplif ied). 21 

F i g u r e 4 - 2 : Figure for discovery of T e s t r 23 

F igu re 4 - 3 : Initial division of points and solut ion of subproblems by S2. 24 

F igu re 4 - 4 : Merge attempt in a f igure by S4. 25 

F i g u r e 5 - 1 : Decomposi t ion of design activit ies, in protocol l ines of 2.5 seconds / l i ne for 26 

S2 and 3 seconds/ l ine for S4 

F i g u r e 5 - 2 : Breakdown of main design and extra effort activit ies in protocol lines per 28 

component 



1 

1 . Algorithm Design and Software Science 
Software, as everyone knows, is expensive to build and maintain. One approach to the problem of 

generat ing the large volumes of software being demanded is to automate its product ion. There are 

many different types of software and many different phases in software development, and the type of 

automation tool that is appropriate varies accordingly. In this paper we discuss one of the activities in 

software development - algorithm design. This activity typically occurs after the decomposi t ion of a 

large system into modules and before the more straightforward coding processes to be accompl ished 

by programmers or automatic programming systems. It involves transforming a declarative statement 

of what is to be done into a procedural specif icat ion of how to do it. Of part icular interest here is the 

use of psychological knowledge to aid in the design of software tools. 

Algor i thm design, as pract iced by the computer scientist, is an activity requiring a great deal of 

knowledge and intel l igence. Al though there are both theories and analyses for simpler synthesis 

tasks, algori thm design is substantially more advanced than anything accompl ished to date. It would 

be quite useful to understand the types of problem solving that occur dur ing design. Our approach to 

understanding this problem solving involves analyzing protocols from sessions with people designing 

algori thms. Based on these protocols, we have developed a model of the human problem-solving 

process involved. In this paper we present our model and consider some lessons for automating the 

design process (see also [11]). First we discuss how algori thm design might be automated and the 

possible benefits of studying human design techniques. In Section 2 we present our methods for 

studying algori thm design and in Section 3 we give some case studies of two subjects designing three 

algori thms for the same task. We then (Section 4) summarize our model and discuss the role of 

discovery in problem solving. Finally, we compare the different designs of the case study according 

to our model (Section 5) and discuss some conclusions (Section 6). 

1 . 1 . A u t o m a t i o n m e t h o d s f o r a l g o r i t h m d e s i g n 

Al though little work has been done on high-level, creative algori thm design, there has been some 

related research on program synthesis and algorithm optimization that suggests some approaches for 

automating algori thm des ign. 1 Possible automation techniques include: 

• program transformation (based on expert knowledge) 

• formal derivat ion 

• inductive learning systems 

1 We are not concerned here with automation involving requirements languages or configuration management systems for 
large collections of simple components and interfaces. 



2 

Much of the existing work on program synthesis that comes closest to algori thm design [ 1 ,4 , 8, 23] 

uses successive refinement by program transformation as a basic organizing principle. Program 

synthesis involves implementing a program from a very high level speci f icat ion, but not automatical ly 

deriving an algori thm. These program synthesis systems usually focus on selecting data structures or 

applying user-specif ied transformations to develop an algori thm. The transformations modify 

program sect ions in a variety of ways based on expert knowledge about programming. However, 

these systems are rather brittle because they require that all details about programming be specif ied 

in advance; they do not have any general problem-solving knowledge and do not learn. 

Formal derivation systems apply only a small set of transformations that expand definit ions of 

recursion equations, recognize instances of expansions, replace them by funct ion calls, and 

accompl ish a few other similar, general tasks. Such approaches have been used to synthesize 

sort ing algori thms [5] and l ist-copying algorithms [14]. One problem not addressed by most formal 

derivation systems is how the axiom sets and appl icable transformation rules are chosen; human 

intervention is usually required to provide the creativity necessary to specify an appropriately limited 

axiom set and interesting auxil iary definit ions. The LOPS system [2] does address this problem by 

guessing recursive solut ions to problems specif ied in logical equations and by verifying or modifying 

the guesses with the aid of both a theorem prover and a small model constructed from the axioms. 

Another variant of the formal derivat ion approach with some affinities to the present work, [26], 

involves applying rules for moving constraints across and into generators rather than the appl icat ion 

of the standard transformation rules. 

Inductive learning of procedures f rom examples of input-output pairs has thus far only been 

appl ied to simple problems. This approach usually involves matching to schemas and heuristic 

search (for example [25]). Induction from traces has also been studied (for example [22]). If a 

problem solut ion can be inferred from watching a person solve a part icular example, then induct ion 

based on traces may be appropriate. These techniques have been around for some t ime and so far 

have shown little signs of evolut ion. 

Much of the activity of software construct ion discussed above is more routine than the algori thm 

design problem to be descr ibed here. Some varieties of software construct ion are already well 

enough understood to be totally automated wi thout any need to investigate how people perform the 

same tasks. For example, several strategies for data structure selection have been suggested 

[ 1 0 , 1 6 , 1 8 , 2 4 ] . Also, formal derivat ion techniques work when a problem is well specif ied and 

straightforward optimizations are required. 



3 

1.2. W h y s t u d y h o w p e o p l e d e s i g n a l g o r i t h m s ? 

We are interested in human problem solving and design strategies for many reasons. First, we do 

not yet understand how to automate the more diff icult parts of design, so studying how people 

develop complex algori thms shows us one possible app roach . 2 Second, a system with an 

organization similar to that of a human being allows the use of people as expert sources of techniques 

for gett ing the system started and as resources to be examined as the system evolves. Third, since 

the human system organization is one that permits cont inual augmentat ion and adapt ion, this 

approach may lead to an automatic system that could eventually learn some design principles on its 

own. Fourth, from what we already know of human behavior, the mechanisms and representations 

will be flexible and robust, propert ies sorely needed by current systems. Fifth, it is useful to 

understand how people think about design. A design assistant program that can follow suggestions 

to carry out routine subtasks, act as a sounding board, give advice to moderately skil led 

programmers, or teach novices, requires such understanding. Even the simpler, possibly 

automatically designed parts of a system may have to be explained or modified or interfaced to 

human-designed parts. Thus, there are many putative advantages to studying how humans design. 

The real issue is whether useful knowledge can be obtained. 

2. A Method for Studying Algorithm Design 

2 . 1 . T h e p r o b l e m s p a c e t h e o r y 

Our analysis is driven by a theory of how humans solve problems that has wide currency in 

cognit ive psychology [20, 21]. The central concept is the problem space. A problem space contains 

partial knowledge about a problem and its solut ion (the current state). The subject has a set of 

operators that can be applied to the current state to produce a new state. The subject starts with an 

initial state (here, the problem as posed by the experimenters) and tries to discover a state that 

contains a solut ion (here, an algorithm). Behavior in this space involves a search, s ince the subject 

usually does not have enough knowledge to proceed directly to the final desired state, especially if 

the problem is diff icult. The subject does, of course, have some (often substantial) search control 

knowledge that guides the selection of which operators to apply. But in general the subject will try 

various paths and run out false leads into dead ends, causing a return to earlier states that can be 

remembered (or constructed), and eventually will proceed down more appropriate paths. The current 

state grows throughout the problem solving, as the subject gradually explores the space and acquires 

knowledge of its various aspects. 

has been one interesting study about how people decompose complex programming problems [9]. 



4 

More than one problem space can be created dur ing problem solving. Satisfying subgoals may 

imply working in the same space or may require an entirely different space. For instance, if the main 

space is one of algori thms for the convex hul l , as in our task, a problem about the geometry of points 

in the plane must be settled in a space whose elements are point sets, not algorithms. 

2 . 2 . T h e ro le of p r o t o c o l a n a l y s i s 

The problem space theory says that people design algori thms by searching in problem spaces. To 

use that knowledge to help us design an algori thm discovery system, we need to find out what the 

problem spaces of the subjects are -- what representations and operators exist and what search-

control knowledge guides their search. Given such details, we can expect some strong hints about 

algori thm discovery systems. 

The appropriate experimental technique to answer these quest ions [21, 7] is to set qualif ied 

subjects some tasks of discovering algori thms and to have them talk aloud while work ing. We record 

a detailed protocol of their solving behavior, and then analyze this behavior in detai l . The analysis of 

the protocol involves hypothesizing problem spaces and showing by detai led analysis of the moves 

that the subject makes and the information mentioned that these are indeed the correct spaces. This 

requires specifying the states of the spaces, the operators, and the search control (i.e., operator 

selection heurist ics, state evaluations, goals, and methods). The same total body of evidence (the 

protocol) is used both to induct the problem spaces and to test them (indeed, the analysis is highly 

iterative). Thus, the evidence comes from the web of detailed agreement and the initially obscure 

comments of the subject that make sense given the final posited problem space organizat ion. We do 

not attempt to simulate the full protocols or understand all the steps the subjects take, but we must 

specify the results we take from the analysis well enough to be interesting for potential systems. 

2 . 3 . T h e i s s u e s 

Our initial protocol analysis (described in [11]) focused on understanding the problem spaces that 

our first subject used in the first segment of the design session. We identif ied two problem spaces, an 

algori thm design space and a task-domain space (a geometry space). The initial issues of interest 

were how to represent partial knowledge and problem-space operators and how to apply operators 

and contro l search. To address these issues, we constructed a detai led trace of the behavior of the 

subject in the main algori thm-design problem space, showing the goals and subgoals, the operator 

appl icat ions, and the search control knowledge used to make various select ions and evaluations. 

This resulting initial model of algori thm design enabled us to analyze some addit ional protocols 

much more quickly than our original attempt. We also analyzed, in less detai l , the problem solving in 



5 

much more quickly than our original attempt. We also analyzed, in less detai l , the problem solving in 

the task-domain space. This work revealed some new issues and al lowed us to compare several 

design sessions. While we are interested in the details of the subjects' problem spaces and how they 

fit together (the exact representations and operators that the subjects are using) because the spaces 

are major candidates for incorporat ion into an automated algorithm designer, the analyses are too 

long to present here. Instead, we summarize the general approach we have identif ied, concentrat ing 

on our new f indings about the search control mechanisms and about the process of making 

discoveries. We also compare the design sessions. 

2 . 4 . T h e p r o b l e m d o m a i n 

For this study, computat ional geometry, and in particular the convex-hul l construct ion problem, 

has been chosen as a realistic design domain. One advantage of this domain is that people have 

reasonable intuit ions about geometry, so the problem is easily explained and subjects need not have 

special ized backgrounds in computat ional geometry. Since the algorithms for convex hulls are not 

well known, it is possible to find naive but intelligent and theoretically sophist icated subjects who can 

concentrate on design rather than on remembering something learned previously. The problem itself 

is interesting because f inding convex hulls has a number of applications, and there are a variety of 

algori thms that vary in t ime complexity. On the one hand, many standard algori thm design 

techniques can be applied to generate the algorithms, but on the other, convex hulls can also be 

found by relying on visual intuit ion. This allows us to watch the interplay between people solving a 

problem themselves and trying to design a computational ly efficient algori thm. The use of geometry 

as a domain does have a potential disadvantage. People's visual intuit ion is not well understood, and 

it may lead to design strategies quite different f rom those that are easy to automate. 

2 . 5 . T h e s u b j e c t s a n d t h e p r o t o c o l s 

The first subject (S2) has a Ph.D. in computer science and is moderately sophist icated in theory 

and algori thm design, but knows little about convex hulls or complexity theory. The experiment was 

conducted informally in S2's off ice with a tape recording made of the proceedings. Before the 

experiment, we informed S2 that we were studying algorithm design, but did not suggest that any 

part icular approach was of interest. The problem was specif ied informally, and S2 was asked to 

" th ink out l oud " whi le working on the algori thm. While work ing, S2 made a number of diagrams on 

the blackboard which were copied by the experimenters. Occasional quest ions were asked of the 

subject dur ing the analysis. In the first fifteen minutes of the session, S2 developed an algorithm to 

f ind the convex hull of a set of points, based on generate and test. In the remainder (about an hour 's 

worth) S2 developed a second, more complex algori thm based on the divide and conquer paradigm. 



6 

The second subject (S4) is a graduate student in computer science who is fairly sophist icated in 

algori thm design and complexity theory but knows little about convex hull algori thms. Again, a tape 

recording was made of the proceedings, but this t ime the subject drew a number of diagrams on 

paper. In this experiment, it was suggested that S4 try a divide and conquer approach to the convex 

hull problem. Within about fifteen minutes, S4 sketched a solut ion. At the prompting of the 

experimenter, S4 spent the next fifteen minutes wri t ing down a descr ipt ion of the algor i thm, fi l l ing in a 

few more details, and descr ibing the t ime complexity in more detai l . 

3. Case Studies 
Before 'consider ing the lessons learned from the protocols about algori thm design, it is useful to 

have an overview of the probjem and of the behavior of the subjects. The reader may wish to skim 

these examples now, then return to them later. 

3 . 1 . T h e p r o b l e m 

The problem is to design an algori thm to find the convex hull for any given set of points. The 

convex hull is the smallest subset (in the sense of set inclusion) of the points that, when connected in 

a convex polygon, contains all the other points. Figure 3-1 shows an example of a point set and its 

convex hul l . The solut ion can be either the set of points on the hull given in arbitrary order, the points 

listed in the order they would appear on the polygon, or the polygon descr ibed by line segments. The 

problem descript ion given to the subjects was ambiguous about what was being asked for, but the 

subjects generated polygons as solut ions. 

Figu re 3 - 1 : A point set and its convex hull 

3 . 2 . Overv iew of behavior of S 2 on Algori thm GT (generate and test ) 

An overview of S2's behavior can be obtained in pari: by reading the edited protocol given in Figure 

3-2. To save space here, many interruptions, side comments, and false paths have been omit ted, 

al though they were important in the analysis. Each line has a label, such as L77, numbered accord ing 

to the original protocol . In the f igure, S2's behavior has been segmented into a series of short 

sect ions, called episodes, each of wh ich contains essentially a single event or topic. 



7 

Episode 1 
L1 E: [»Minute1«] Do you know what a convex hull is? 
L2 Vaguely. Why don't you give me all the definitions. 
L4 E: Suppose you have a set of points, ok... 
L7 E: well there s several ways you can define it. 
L8 E: Either the polygon that encloses all the other points 
L9 E: or the set of points on the polygon. 
L10 Yes, that's a hard problem 
L11 and I don't know any of the algorithms. 

Episode 2 
L18 Right. The problem is you've got a bunch of points. 
L19 Let's not worry about how they're specified. 
L20 What's a reasonable solution? 
L21 [>>Minute2«] Let's start with some point. 
L25 Either a point is on the convex hull or its not, right? 
L27 And the question is how to make this decision. 
Episode 3 
Episode 3.1 

L28 Let's take a few points here. (Draws 4 points.) 
L29 Well, that's not a good example, 
L30 because all four of them are on the convex hull. 

IS draws figure with 5 points not all in hull.] 
L35 OK, let's suppose I start with a point here. 
L36 And I'll just draw a line to some other point, right. 
L42 Now I can go in any one of three directions 

from this point. 
L43 [»Minute 3 « ] I conjecture that 
L44 if it's the case that I can choose two points, 
L45 such that I can go on either side of the given line, 
L46 then this line can't be on the convex hull. 
L47 And I had better retreat. 
1.51 Here's A, B, C, D, E, right [labels points in Figure 1]. 
L52 So I can go from A to 6. 
L53 And I find that from B 
L54 I can go either to C or D, 
L55 and C and D are on different sides of this line... 
L61 then clearly this line can't be on the convex hull. 
Episode 3.2 

L63 Let's retreat, uh, [»Minute 4 « ] 
L64 back... back to A 
L65 and choose some other point. 
L66 And this time we'll chose C. 
L67 Right? So now I have a line from A to C. 
Episode 3.3 

L68 Let me rephrase the problem to make it even harder 
on myself. 

L70 I had a line drawn from A to B, OK. 
L71 And I'm considering these five points here. 
L72 What I want to do is rephrase the problem 
L73 so that I'm starting at point B. [pause! 
L74E: Why pointB? 
L75 Because if I start at point B 
L76 and I go to A 
L77 then, either route here, 
L78 I still have that problem 
L79 and I want to retreat 
L80 back to point B. 
L81 But it turns out that no matter what... 
L82 which direction I go in from point B 
L83 I'm going to have the same problem. [»Minute 5 « ] 
L84 So point B can't possibly be on the convex hull. 

Episode 3.4 
L8o So let's go back once again to starting at A, 
L87 because A is going to be on the convex hull. 
L88 And we don't want to retreat too far, right? 
L90 OK, so I'm going to retreat here 
L91 from B back to A 
L92 and go to point C instead. 
L113 [»Minute 6 « ] And I see that, urn, 
L114 all the points are to one side of the line AC. 
L115 So I've got a candidate. 
L116 Now I'm at C and now I'll go again. 
L117 Choose some other point. 
L118 Suppose I choose B. [pause] 
L119 A goes to C goes to B. 
L120 Urn, now I see that uh, [pause] 
L121 there are points on either side of the line C-B, right. 
L122 there's E and there's A. 
L123 [»Minute 7«1 I guess I have to look at A 
L124 even though I've already got a line segment from it 

L125 So I know that the line C-B can't be on the hull. 
L126 So I have to retreat back to C. 
L128 It looks like I'm not going to come up with a linear 

algorithm to do this. 
L129 So therefore I'll go from C to some other point. 
L130 Same problem with D, so I'll go to E. 
L131 And I win: 
L132 all points are always on one side of the line. 
L133 If fact they're always on the... the right side, 
L135 if I give this directionality. 
L136 If I go from E to B I lose 
L137 because C is over here and B is over here. 
L138 So that leaves me D 
L139 and then I go back. 
L140 So I've got a convex hull. 
Episode 3.5 

L141 E: Now could you describe your algorithm? 
L142 Well, I'm not sure it's an algorithm yet, right? 
L143 Because if I start at a losing point, 
L144 if I were to have started at this middle point, B, 
L146 [»Minute 8 « ] I would have found that... 
L147 there's no point that I... 
L148 I couldn't have gotten to. 
L149 None of the segments from B, 
L150 B-A, B-C, B-D, or BE, uh, 
L151 would have given me a satisfactory line. 
L152 So I would have given up on B 
L153 and tried some other... 
L154 some other point to start with. 
L155 So, I keep doing that 
L156 till I get a point that satisfies it. 
L157 There must be such a point, 
L158 since there is a convex hull, presumably. 
L160 That sounds like the algorithm. 
Episode 3.6 

L168 Choose a point pO, ok. 
L169 Then, uh, choose a point p1 from the remaining 

set of points, 
L170 Draw that line segment. 
L171 Urn, if it's the case that 
L172 there are points on both sides of that line segment, 
L173 then, uh, give up on p1 and try some other point. 
L174 [Pause] All right, urn, and keep doing that, 
L175 »Minute 9<<1 and if you exhaust allthe points, 
L177 then pO can't be on the convex hull. 
L179 so you go try another point to start with. 
Episode 4 2 
L181 This looks to me like an N ... [»Minute 1CK<] 
L182 No, it's worse than that. 3 
L228 [>>Minute 11«] I guess it's N . [pause] 
L231 Because, why is that? 
L232 I choose a line segment. 
L233 If the line segment is successful, 
L234 I look at the end points. 
L235 If it fails, 
L237 I can look at up to N-1 line segments, 
L239 from a given point 
L243 Looking a line segment requires time N, 
L244 proportional to the number of points. 
L245 [»Minute 12«] OK so... [long pause] 
L248 And if the point fails 
L249 then I go to some other point, 
L250 and I know that that point is not on the convex hull, 
L251 so I don't have to consider it any more. 
L252 So it's N . 3 
L2531 know that N is an upper bound, 
L254 for this particular algorithm. 
L255 So it's not a very good algorithm. 
Episode 5 
L258 This is a first shot... 
L259 This is algorithm 1. 

F i g u r e 3 - 2 : Edited protocol of S2 developing the initial algori thm. E = experimenter; 

unattr ibuted lines are spoken by S2. Each line is about 2.5 seconds. 



8 

Figure 3-3 gives the major episodes in S2's design of an initial algori thm, indicating for each the 

name (which reflects its posit ion in the hierarchy), the sequence of lines it covers, the number of l ines, 

and a short descript ive phrase for the content. 

Description 
Acquire problem 
Design generate-and-test schema 

Interrupt (E2): specification of points 
Develop algorithm 

Find test 
- Get example figure 
Decide how to handle test failure 
Decide how to handle Interior start point 

Detect problem 
Find: can discard Interior point 

Push algorithm all the way to find CH 
Return to previous state after E3.2 
.Interrupt (S): Segment excluded, not point 
Interrupt (S): Greater than linear 

Develop Initialization 
Recap algorithm 

2 
worse than N 

E Lines sec 
El L1-L16 16 37.6 
E2 L16-L27 12 30 
E2.1 L22-L24 3 7.6 
E3 L28-L179 162 380 
E3.1 L28-L81 34 86 
E3.1. 1 L28-L32 6 12.6 
E3.2 L62-L67 6 16 
E3.3 L68-L85 18 46 
E3.3. 1 L68-L73 8 16 
E3.3. CM L74-L86 12 30 
E3.4 L86-L140 66 137.6 
E3.4. 1 L86-L92 7 17.6 
E3.4. CM L93-L108 16 40 
E3.4. 3 L127-L128 2 6 
E3.5 L141-L160 20 60 
E3.6 L161-L179 19 47.6 
E4 L180-L266 76 190 
E4.1 L180-L187 8 20 
E4.2 L188-L204 17 42.6 
E4.3 L206-L228 24 60 
E4.4 L229-L266 27 67,6 
E6 L266-L261 e 16 

Analyze complexity 
Time complexity 1s 
Time complexity 1s 
Time complexity 1s 
Confirm N 

Termination. 
Algorithm not good 

Algorithm 1s first try. 
261 662.6 

Figu re 3 - 3 : Selected episodes in S2's Algor i thm GT (times are approximate). 

3 . 2 . 1 . Summary of a lgor i thm 

Before trying to understand the course of the problem solving revealed in Figures 3-2 and 3-3, the 

reader needs to have a general idea of the algori thm that S2 finally developed. This is shown 

schematical ly in Figure 3-4. 

r 
>lete • 

delete • [x ] [yx] add [yx] 
{x} > > G e n e r a t e 1 — — ^ D r a w X z | h u » - s o - f a r } t T e s t ^ 

t [y ] t delete 

true 

false 

Figu re 3 - 4 : Final Algor i thm GT by S2. 

The algori thm starts with the original set of points, {x}, enumerates ( G e n e r a t e ^ them, and tests 

( T e s t ^ each one to see if it is on the convex hul l . The partial hull-so-far is held in { z | h u l l - s o - f a r } , 

wh ich is used as input to the test. Actually, the partial hull is extended at each step by the operat ion 

( D r a w ) of drawing a line from the prior final point (y) in { z } to the new one (x), and the test is whether 

this new line could be on the hul l . Thus, if the test fails (the false branch of T e s t ^ , then the latest 



g 

point must be deleted from { z } . On the other hand, if the test succeeds, then the point can be 

removed from the input set { x } . Not represented in the schematic f igure is S2's method for f inding 

the initial point on the hul l . This involves discarding any point that does not have at least one 

attached line that satisfies T e s t 1 (is on the hull). 

3 . 2 . 2 . T h e s t o r y o f S 2 ' s s o l v i n g a t t e m p t 

The solut ion attempt starts (Episode E1) with the experimenters giving S2 the problem. The subject 

immediately (E2) develops a schema for generat ing the points in the set and testing whether they are 

on the convex hull ( { x } — > G e n e r a t e 1 - > T e s t 1 — > { z } ) . During this episode, S2 decides not to worry 

about how to represent the points. The next episode (E3) is devoted to refining the schema just 

created. In the first subepisode (E3.1), S2 discovers a test ( T e s t ^ for a point being on the convex 

huH. This discovery involves creating on the blackboard an example f igure (E3.1.1 is devoted to 

gett ing this f igure, which starts with four points and then is enr iched to five). The net result of E3.1 is 

a test for an edge, wi th a shift f rom points to line segments between pairs of points (moving { z } to be 

the input of T e s t 1 and adding the operator D r a w to draw the line). The rest of E3 is driven by S2 

attempting to push the special case through the partially developed algori thm, a method we call 

test-case execution. This attempt leads to resolving several problems, with the consequent 

elaborat ion of the algori thm. E3.2 settles what to do when the test fails, and E3.3 settles what to do if 

the initial point is not on the convex hul l . There is a special problem with initialization, since the test 

requires both an old and new point. With these issues cleared up, the algorithm successful ly handles 

all the points in the example task (E3.4). This leads to recasting the initialization (E3.5) and then 

summarizing the entire algorithm (E.3.6). At this point the algori thm is complete. However, the 

subject is concerned about the t ime complexity of the algori thm. After several tries (E4.2, E4.3 and 

E4.4), S2 determines that the algori thm is N 3 . S2 concludes that the algorithm is not very good and 

(E5) terminates the initial attempt by declar ing that it is simply a "f irst shot " . 

3 . 3 . O v e r v i e w of b e h a v i o r of S2 o n A l g o r i t h m DC ( d i v i de a n d c o n q u e r ) 

Following the conclusion that an N 3 algori thm was not good enough, S2 produced a second 

algori thm. Figure 3-5 gives the major episodes in this design session. The algorithm was based on 

divide and conquer, for which S2 has available a moderately developed schema. In this attempt, S2 

runs into more diff icult ies than in the first design, but eventually outl ines a more'eff icient algori thm. 

S2 first decides (E2) to divide by drawing a line through the middle of the set of points, but then 

cannot f igure out how to do the merge (E4). Later (E5), S2 decides that it might be easier to merge if 

the dividing line goes through one of the points so that one point will be on both hulls. This allows a 

merge process to work outward from the shared point (E6). S2 then decides (E6.9) how to remove the 



10 

center point, which is not on the merged hul l , and how to cont inue the merging process in general 

(E6.10) by considering a limited number of cases. In E6.11-E6.13, S2 wraps up the design of the 

merge step by deciding when the merge can be halted, and gives a rough analysis of the t ime 

complexity of the merge. Next, S2 goes back to the divide and considers base cases (E7). In the 

process of testing examples, S2 discovers some degenerate cases in which the divide leaves all 

points on one side and does not reduce the problem at all. To get around this problem, S2 considers 

dividing through two points rather than one, which also slightly simplif ies the merge step (E8, E9). In 

E10, S2 tries to take advantage of dividing segments that are on the hul l , but this is a dead end since 

divide and conquer should bui ld up the solutions in the merge, not the divide. It also does not get to 

the root of S2's problem, which is that the dividing line needs to partit ion the points into sets with 

equal numbers of elements. After a hint from the experimenters, S2 realizes this (E11) and finishes 

the divide by deciding to sort the points in a prepass (E11.2) and then use the midpoints. S2 takes a 

slight side path here in considering using a lexicographic sort and also decides to go back to the 

single point divide (E11.3). Finally, S2 is convinced that the algori thm works and is an N log N 

algori thm (E12). 

Description 
Decide to try divide and conquer, recall schema 
Get example in geometry-space 

Refine divide step 
Zero-point divide (extra effort) 

Assume solve step can be done 
Refine merge 
Restrict attention to points on hulls 

Revise divide to line through point 
Resume refine merge 
Overview merge (work outward from line, 
stop when come 1n) 

Set up test case (for working outward) 
Note solve step handled by Induction 
Continue refining merge (with example) 
Refine merge (first segment) 
Refine stopping condition 
Refine how to go 1n other direction 
Consider complexity of merge (linear) 
Decide how to handle first point 1n algorithm space 
Refine how to go again 
Detail stopping condition 
Case analysis of how to go again 
Consider running time of algorithm 

Consider divide base case 
Two-point divide (extra effort) 
Revise merge to match divide 
Degenerate cases of divide (extra effort) 
Finish refining divide 
Read hint from book 
Want equal-size problem, solve by sorting 
Lexicographic sort (extra effort) 

Evaluate algorithm 

Figure 3 -5 : Selected episodes in S2's Algori thm DC 

E Lines 
El L1-L8 8 
El.3 L4-L8 3 
E2 L7-L81 76 
E2.4 L16-22 7 
E3 L82-L84 3 
E4 L86-L103 19 
E4.3 L93-L99 7 
E5 L104-L129 26 
E8 .L130-L686 467 
E6.1 L130-L160 21 

E6.2 L161-L168 8 
E6.3 L169-L162 4 
E6.4 L163-L182 20 
E6.6 L183-L219 37 
E6.6 L220-L223 4 
E6.7 L224-L233 10 
E6.8 L234-L263 20 
E8.9 L254-L324 71 
E6.10 L325-L410 86 
E6.ll L411-L474 64 
E8.12 L476-L614 40 
£6.13 L615-L648 34 
E7 L587-L817 31 
E8 L618-L636 18 
E9 L636-L669 34 
E10 L670-L1029 360 
Ell L1030-1231 202 
Ell.l L1030-1044 13 
Ell.2 L1046-L1109 66 
Ell.3 L1110-L1201 92 
E12 L1232-L1369 138 

http://E6.ll


11 

3 . 4 . O v e r v i e w of b e h a v i o r of S 4 o n A l g o r i t h m DC (d i v ide a n d c o n q u e r ) 

The major episodes in S4's solut ion are given in Figure 3-6. Without much hesitation, S4 accepts 

(E2) the experimenter 's suggestion to try a divide and conquer algori thm. S4 then proposes to divide 

(E3) by taking the median of the project ion of the points on the X-axis. This idea is formed quickly, 

based on previous experience with geometr ic divide and conquer problems. Hulls are then 

constructed for each half, recursively (E4). However, S4 has some trouble with the merge, rejecting 

as too expensive the solution of f inding addit ional edges for the merged hulls by generating and 

testing edges between pairs of points from different hulls (E5.8). In the process of drawing the 

addit ional edges, S4 notices that it would also be possible to divide through a shared point, and that 

this would allow a merge based on repeatedly el iminating concave angles starting at the median 

(E6.1). Whenever there is a concave angle, the two endpoints of the angle are joined and the old 

edges are removed; if this creates any new concave angles, the process is repeated. The merge is 

therefore at worst linear in the number of points on the subhulls. This key insight into the solution 

happens quite quickly. After determining the basic idea, S4 describes in more detail how to find the 

shared point (E7), tests the new merge (E8), and is then satisfied with the algorithm (E9). At the 

request of the experimenter, S4 summarizes the algori thm, in the process noting that there are 

separate cases for the division of even and odd numbers of points, and evaluating the cost of the 

merge (E10). The experimenter requests that S4 write down the algori thm. S4 then considers (E11.2) 

base cases and degenerate cases such as coll inear points (E11.3), and then writes out a program 

sketch. In a discussion fol lowing the design session (E12-E13), the experimenter asks S4 about the 

complexity of the algori thm. S4 states that it is N log N, then decides that this is true only if a prepass 

is added to sort the points (so that the median f inding can be done in constant time). S4 later noted 

that there is a linear median f inding algori thm, which permits the algori thm to be N log N without the 

prepass. However, S4's first plan is to find the median by sort ing on each recursive call, which would 

give an N l o g 2 N algori thm, but also suggests a prepass. 

4. A Model of Algorithm Design 

4 . 1 . An o v e r v i e w o f t h e m o d e l 

The behavior of both subjects on all three algori thm attempts presents an entirely consistent 

picture that fits well with the theoretical f ramework we have adapted and agrees with what has been 

reported in the literature about problem solving and design. Design, whether of programs, 

algori thms, or almost anything else, appears to involve hypothesizing a general schema or key idea or 



12 

E Lines #L Description 
El L1-L28 28 Understand problem 
E2 L29-L33 6 Decide to try divide and conquer 
E3 L34-L38 6 Refine divide (median of projection) 
E4 L39 1 Assume solve step can be done 
E6 L40-L98 69 Refine merge (first attempt) 
E6.1 L40-L45 6 Attempt straightforward union (fall) 
E6.3 L60-L59 10 Try an example 
E5.5 L62-L64 3 Compare final to subhull solutions 
E6.8 L69-L78 8 Get missing edges from bipartite graph 
E6.10 L86-L98 13 Try to avoid generating extra edges 
E6 L99-L116 17 Refine merge (successful attempt) 
E6.1 L99-L106 CO

 Idea for revision (share point) 
E6.2 L107-L112 6 Refine merge (replace concave angles) 
E7 L116-L131 16 Revise divide to share median 
E8 L132-L146 16 Test new merge 
E9 L147-L160 4 Evaluate algorithm 
E10 L161-L202 62 Describe algorithm 
E10.2 L148-L191 144 Analyze cost of merge 
E l l L2Q3-L401 199 Write down algorithm 
E l l . 2 L209-L230 * 22 Check boundary conditions and base cases 
E11.3 L231-L269 29 Check degenerate cases 
E12 L402-L444 43 Interruption: discuss how got algorithm Ideas 
E13 L446-L493 49 Discuss complexity of algorithm 

F igu re 3 - 6 : Selected episodes in S4's Algori thm DC 

solut ion plan and then proceeding by successive ref inement. 3 The protocol shows that S2 fits this 

part of the scheme without doubt. In the design of the first algor i thm, the first episode after the 

problem acquisit ion (E2) involves the creation of an initial schema of the algori thm (generate and 

test). This occurs very rapidly (which agrees with the other data that exists on human design). In 

part, the speed comes from the schema's simplicity; it is just a kernel of an idea, and everything 

remains to be done. The rest of the design t ime is spent in gradually refining this initial schema. 

Similarly, S4 accepts the suggest ion of trying divide and conquer after a few seconds thought, and 

expands this kernel idea into a divide, a solve, and a merge. S4 fills in the divide part of the schema 

with very little t rouble based on previous experience, then f lounders for a while on how to do the 

merge. A successful schema fol lows almost instantly after realizing another key idea about dividing 

through a shared point. Given the paucity of data about human design, it is important to have this 

conf i rmat ion of the refinement paradigm. 

However, successive refinement is not the whole story. The detai led construct ion of the algori thm 

is accompl ished by using two closely related methods: 

3 The published evidence for this is only modest. Some work on the psychology of programming supports this [3,9], and it is 
almost universally adopted in the existing systems that do programming of any complexity (see examples cited previously). 
Counterexamples seem to occur in tasks that have been restricted enough to become strongly combinatorial in a fixed space, 
so there is no constructive idea to be discovered (for example, space layout problems). 



13 

• S y m b o l i c e x e c u t i o n : Execution of the program with general symbols as input; the 
symbols become elaborated (with assertions) along with the algorithm (new components 
and assertions are added) in the process of execut ion. Processes in the algorithm 
descript ion are symbolically executed only once. 

• T e s t - c a s e e x e c u t i o n : Execution of the program on a specif ic test case, with the 
algori thm becoming elaborated as the process proceeds. There may be many cycles of 
execut ion if generators in the algori thm produce different test-case items. 

These methods are more than just code generators. They are the major device for generat ing 

consequences and exposing problems and compl icat ions. Only the concrete situation can uncover 

what really must be done by the algori thms, because human memory is essentially associative and 

must be presented with concrete retrieval cues to make contact with the relevant knowledge. These 

two methods serve this purpose. Furthermore, the protocols show that these methods are used after 

only a small amount of refinement. 

• The use of successive refinement and these execut ion methods does not imply that design is not 

search in a problem space. Initial kernel design ideas are sometimes wrong and have to be 

abandoned. Thus, the use of these methods implies only that the search space is one of schematic 

structures in which some operators refine partially specif ied structures or assertions and other 

operators carry out the execution methods. 

Most of the subject 's design behavior seems to occur within a single problem space which is a 

space of algorithms. However, the subjects occasionally solve subgoals and make discoveries within 

the geometric task-domain space, whose components are points and lines. This is not the only way it 

could have happened. For instance, the subjects could have (but did not) first solved the problem of 

f inding the convex hull in a geometr ical space and then transformed this knowledge into an algori thm. 

Thus, we can identify four elements that comprise the core of the subjects' general approach to 

f inding the convex hull algori thm: 

1. The very rapid development of a highly schematic key or kernel idea. 

2. The general use of successive refinement for further development. 

3. The main methods of symbolic execution and test-case execution, which involve 
execut ion of the (partial) algorithm against an appropriate data set. 

4. The use of a single main problem space for representing the algorithm with side 
excursions into a domain space for testing and discovery. 

These four elements do not by themselves determine behavior completely. Rather, they provide 



14 

framework within which addit ional search control knowledge occurs. For instance, a part of the 

algori thm must be selected to refine or symbolically execute. Also, there are usually many 

outstanding problems to solve, and their number tends to increase, since working on one problem 

often creates new ones. Which of these to work on must be selected. While the exact course of 

problem solving is determined by the applicabil i ty of operators and methods in the problem space, 

typically, design steps occur in the order shown below. Many of the steps descr ibed here are similar 

to those found by Jeffries et. al. [9] to be used in software design, al though they propose a product ion 

system model with the steps explicitly control l ing the problem solving process. 

• Select a problem - the problems are exposed by symbolic and test case execut ion. They 
are then considered right away or suspended. 

o If a problem is crit ical (other problems depend on it), work on it right away. 

o If the current problem is trivial, at least for the current level of detai l , do not 
consider it any further. 

o If a new component has been added, refine it right away to another level of detai l . 

o If a set of components has been added, start refining them in structure order, 
breadth-first. The structure order ing occurs as a natural consequence of the 
execution methods. 

• Problem solve try to get the kernel idea or solution plan. In an expert problem solver, 
several possibilit ies will suggest themselves. Evaluate each and take the best. This may 
result in declar ing the problem unsolvable. 

o If a plan or similar problem can be retrieved from memory, try to use it. 

o If retrieval fails, try to get more knowledge about the problem by experimenting in 
the domain space, for example using test-case execution on the partial algori thm 
design developed so far. 

• Structure -- lay down the basic structure such as generate and test or divide and conquer 
or input-process-output. This effectively decomposes a problem into subproblems, or 
outl ines the structure of a solut ion to a single problem. Many new problems or goals may 
be added as a result of structur ing. Structur ing occurs naturally as a result of selecting a 
kernel schema and then trying to execute it. 

• Elaborate fill in the detai ls of the structure. Use specif ic knowledge appropriate to the 
problem or task domain, or use the general technique of symbolic or test-case execut ion. 



15 

Verify if a previous pass of symbolic or test-case execut ion was successful ly completed with 
no inconsistencies or missing components, consider the (partial) algorithm verif ied. 

o If it is not very certain the (partial) algorithm will be used in the final solut ion, skip 
the verif ication. 

o If the partial algori thm is likely to be used, perform another pass of symbolic or 
test-case execution and check for inconsistencies, missing pieces, or unproven 
conjectures. 

o If an assertion is made about the task domain, the statement must be verified within 
the task-domain space, perhaps by test-case execution of the assertion. 

o If a very careful verif ication is desired (once the final solution is determined or 
before coding), symbolical ly execute the program, checking that initializations, 
base cases, degenerate cases, and so forth, are present. 

• Evaluate - decide on the goodness of the technique. The decision is usually based on 
the t ime complexity (or space, or simplicity) relative to other alternatives or known or 
estimated lower bounds. Thus, complexity analysis may be a subtask of evaluation; it 
also may be combined with verif ication. 

The literature on problem solving makes a dist inct ion between expert and naive problem solving 

styles. Al though our subjects are hardly naive about algori thm design and theoretical computer 

science, there is still substantial variation in the three attempts. In the initial attempt, S2 f inds the task 

relatively unfamiliar. S2's second attempt demonstrates both more familiarity with the convex hull 

problem, built up dur ing the first try, and a moderate experience with the divide and conquer schema. 

Finally, S4 knows more about the design of geometric algorithms and about divide and conquer than 

does S2. The successive increases in knowledge are clearly apparent in the three attempts. 

However, we do not find a major dif ference in design styles among our subjects, either in the methods 

used or in the order in which things are done. At t imes, all experts are at a loss for a quick solut ion. 

For example, S2 is not immediately able to state how to divide a set of points for a divide and conquer 

algori thm, whereas S4 immediately recalls that sort ing and taking the median is a standard technique. 

When knowledge is lacking, all subjects rely on general problem solving schema such as generate 

and test, they search the task-domain space for usable facts, and they make more use of the methods 

of symbolic and test-case execut ion. Whenever there is more knowledge, as in S4's more complete 

schema for divide and conquer, the extra knowledge is brought to bear and improves the problem 

solving, but does not affect the style. 



16 

4 . 2 . A d a t a - f l o w p r o b l e m s p a c e 

Looking in detail at protocols has al lowed us be very specif ic about how knowledge, operators, and 

control can be represented for algori thm design. These can only be summarized here. For a few 

more details, see [11]. 

A problem solver does not know the solut ion to a problem, but rather must perform a variety of 

operations to acquire addit ional increments of knowledge about its nature. Thus, the partial 

knowledge must be encodable in some internal representation so the problem solver can retain it 

while taking addit ional steps to elaborate or extend it. What representation of knowledge is 

appropriate for algori thm design? 

The subjects appear to work in a data-flow problem space (DFS) whose states represent partially 

specif ied algori thms. Figure 3-4 provides an example, although it leaves out some details in the 

interest of clarity. Each state is a data-flow configuration that includes pieces of algori thms, the 

data-f low links between them, the objects being manipulated, and assertions about the algori thm. 

The algori thm steps are represented by process components. There are a small number of generic 

process components (flow control lers such as generate or test) and some general constructs such as 

apply that can be specialized to domain operations such as draw-l ine-segment. The inputs and 

outputs of the process components are represented by ports connected by links. Process 

components can be further specif ied by assertions. The components and assertions together modify 

and control the flow of items that represent data objects such as points and line segments. 

Assertions can be attached to an object, to a process component or link, or to the space as a whole. 

The small number of components al lows the decision of which component to use to be based on 

relatively small amounts of knowledge. A more discriminative vocabulary, such as might be found in 

expert design, can be built up from the simpler vocabulary and can coexist with it. For example, the 

problem space can include a schema for and assertions about divide and conquer algorithms or 

about dynamic programming algorithms. DFS appears to be more appropriate than a purely 

algebraic, procedural representation for designing algorithms, especially before the problem is well 

understood, because it allows a spectrum of specif icat ion from assertional to algorithmic. We 

conjecture that most people's default design space is a variant of DFS and that DFS w i l l be an 

interesting default space for automated design. Data-flow representations are not new; they have 

been studied in computer archi tecture research, and they have been used to describe artif icial 

intel l igence programs [19] and recently to express algorithm transformations [26]. The structure of 



17 

DFS is similar to the data-f low model first used in [17] and [19 ] . 4 

DFS operators refine the component structures in an algorithm descript ion and implement 

problem-solving techniques such as symbolic execut ion. Many of these operators "ed i t " the DFS 

conf igurat ion to accompl ish very simple but very general tasks. For example, the operators add, 

delete, move, or modify process components, links, items, and assertions. They also execute 

components and control the problem solving process. 

Before applying a problem-space operator, some mapping must be constructed between the 

operator 's representation of entit ies and their representation in the current state. The more flexible 

and extensive this mapping, the wider the range of entities it will successfully apply to. Since the 

subjects' edit ing operators are very general, and hence flexible, the specificity in what they 

accompl ish comes from this mapping. In DFS, a good deal of search (and /o r knowledge) is required 

to decide how to instantiate an operator or fulfill its precondit ions. For frequently used generic 

components, a wealth of specif ic search control and instantiation knowledge is available. Operator 

selection rules describe which process components to add to the algorithm descript ion, how to link 

them to the other components, defaults for how to instantiate them, defaults for which components or 

parts of components to refine first, and so on. To apply operators in less common circumstances, 

more general techniques are needed. For example, S2 and S4 seem to use means-ends analysis to 

control the processes of adapting an operator to a specif ic problem state. 

The search control rules provide knowledge to the problem solver in operational form rather than 

as data to be interpreted. The set of search control rules includes a variety of methods such as 

means-ends analysis, symbolic execut ion (and its specializations to test-case execution and 

analysis), refinement, and divide and conquer. The methods are implemented by search control rules 

about when to apply the method, how to apply the method, and the defaults in the method. Other 

search control rules determine which operators are selected, evaluate the states, and decide whether 

to go forward in the current space, back up, or work in another problem space. 

Refinement of new components is the general process that drives the problem solving in algorithm 

design problems. But in the absence of any problem-specif ic knowledge, means-ends analysis is the 

default method. Means-ends analysis is the continual comparison of the current state with the 

desired state (or its descript ion); the result of the comparison (a dif ference or an opportunity) is used 

to select the next operator (to reduce the di f ference or exploit the opportunity). 

Many of our detailed descriptions of DFS are modelled after [12]. 



18 

Once at least one process component is present, symbolic execut ion can be used to get more 

information. Symbolic execution means running the process components on a partially specif ied 

computat ional state. The detect ion of diff icult ies and their solut ion leads to continual ly refining the 

process and computat ional state. If this is not sufficient, execution in the task environment can be 

tr ied. Test-case execution is a variant of symbolic execution in which all items in a set are examined 

individually rather than being represented by a single symbolic item. Test-case execut ion is more 

t ime consuming than symbolic execut ion because it is linear in the number of individual items for 

which the algorithm is executed whereas symbolic execut ion is linear in the size of the algori thm 

structure. Thus, whi le the subjects use test-case execution if needed to make progress, they usually 

shift back to symbolic execution when they can generalize a step sufficiently. Symbolic execut ion is 

used in a number of different c i rcumstances: 

• To elaborate the algorithm descr ipt ion (often the test-case variant is used for this). 

• To verify an algorithm (if no diff iculties are identif ied). 

• To describe an algorithm (intermediate and low level ref inements may or not be 
included). 

• To guide problem solving in domain space (often the test-case variant is used for this). 

• To analyze the t ime complexity of an algorithm (naive analysis is mostly a matter of 
count ing nested generators, as il lustrated by S2's diff iculty in identifying a factor of N 
corresponding to a reset of a generator). 

4 . 3 . T h e t a s k - d o m a i n s p a c e 

The applicat ion-domain space is the work-horse space for the test-case execut ion of algori thms, a 

space for problem solving about the domain, and a source of key insights for designs. In the convex-

hull design problem, the task-domain is a geometr ic space. The representations in this space are the 

geometric f igures, partly drawn on the board, using points, l ine segments and polygons, and involving 

relations between objects such as above, between, inside, and convex. This problem space has a 

number of geometry-specif ic operators (create a point, construct a line from x to y), as well as some 

general operators (f ind, part i t ion, test, enumerate) that are typically special ized in geometr ic ways 

(partit ion a point set, enumerate pairs of points). It also has a general percept ion operator which is 

specialized to the space in that it reflects spatial, geometr ic knowledge. 

Test-case execution requires a number of operations in the domain space. First, before execut ing 

a test case of a data-f low conf igurat ion, an example or test case must be produced (for example, a 

small set of points). The task space is the source of this example. The subjects clearly have rules for 

evaluating as well as generating examples and wil l remark on an example being too simple. During 



19 

test-case execut ion, assertions such as predicates on test components (for example, "are all points 

on one side of the line?") may have to be evaluated in the task space. Also, in the process of 

test-case execut ion, items from the example may be produced by a generator or stored in a memory. 

The representation in the geometry space of memory access operations may not correspond directly 

to the DFS algorithm descript ion. For example, stor ing a point in a memory is sometimes recorded in 

the geometry space by drawing a line on a f igure on the blackboard from the most recently stored 

point to the new point. In fact, many data-f low space operators (such as draw a triangle) update the 

example in the geometry space. This leads to much ambiguity in the data-f low representation about 

whether or not intermediate results are stored. 

Some problem solving occurs within the task space. Generating test cases (and attempting to find 

counterexamples) is one category of such problem solving. Other examples are f inding (visually, not 

algorithmically) the convex hull of point sets and compar ing (with means-ends analysis) two subhulls 

with the final hull to find differences. "Proofs" of conjectures occur partially within the space, usually 

by demonstrat ion on an example and some argument about general ization. However, most problem 

solving within the task-domain space consists of just a few operator appl icat ions. 

4 . 4 . Discovery 

Design and other diff icult problem solving is punctuated by moments of discovery. These can be 

identif ied as the sudden emergence, without apparent preparation, of new knowledge which 

subsequently plays an important role in the solution attempt. These are the moments when 

something new and important is suddenly "seen. " Within the total picture we have just sketched, 

many of the kernel ideas are discoveries, with successive refinement and symbolic execution being 

the working out of details. Understanding the nature of these discoveries is a central issue in 

obtaining a system that can discover algorithms on its own. Little work on discovery has been 

reported in the artificial intel l igence literature. The AM and Eurisko programs [6 ,15 ] are open-ended 

concept discovery and exploration systems that create interesting new concepts, but they are not 

problem-solving systems that focus on solving a particular problem and make discoveries relevant to 

that problem. 

Let 's look at how discoveries.occur in the protocols. One example is the discovery of T e s t 1 in S2's 

Algori thm GT. We will treat this in some detai l , for the discovery seems particularly creative and 

sudden from the protocol . The relevant fragment occurs at L35 to L46, which we reproduce from 

Figure 3-2. S2 has just started test-case execution and has drawn a sample f igure of five points on 

the board (without labels): 



20 

L35 Ok, let's suppose I start with a point here. 

L36 And I'll just draw a line to some other point, right? 

L42 Now I can go in any one of three direct ions from this point 

L43 I conjecture that 

L44 if it's the case that I can choose two points, 

L45 such that I can go on either side of the given line, 
L46 then this line can't be on the convex hull . 

In L35, S2 generates a point ( "A" in Figure 3-2) and then draws a line to another point, " B " (L36). 

There fol lows an irrelevant interruption by the experimenter and a response from the subject (L37 to 

L41 , not shown). Then the subject comments (in L42) that there are three possible direct ions to go 

from B and immediately thereafter enunciates clearly and completely T e s t 1 (L43 to L46). This seems 

to come out of the blue - a genuine discovery. It is rather neat and serves S2 through two attempts at 

an algori thm. The test itself is not particularly obvious. To be sure, there is L42 as an antecedent, but 

that also calls for explanation - what made S2 consider the three direct ions just at that point and what 

bearing, if any, does that have on the discovery. Also, we must explain why the test determines 

whether line segments are on the hull whereas the original goal was to generate and test points. 

We can analyze this discovery from the problem behavior graph [21] that summarizes S2's search 

behavior. The relevant fragment of the problem behavior graph is shown in Figure 4 - 1 . The nodes 

are the states in S2's problem space, numbered in order of occurrence. The arcs show the 

appl icat ion of the operators in either the algori thm space DFS (labeled execute, refine, add input, add 

component) , in the geometry space (labeled perceive, draw line), or the goals to be solved (labeled 

refine, instantiate). The results of applying an operator occur as the next state (the next node), and in 

effect move the subject through the graph. The graph is too big to fit into the f igure without folding 

back on itself (the dotted lines). The inset shows the graph drawn whole, but highly compressed, so 

its structure can be appreciated. The representation of subgoals can be seen clearly here: the 

branch for the goal is broken in the middle with a vertical dot ted line and then commences 

horizontally again further down the page. The entire subgraph to the right of the break is the search 

that occurs to achieve the subgoal. When the behavior internal to the subgoal finishes, new behavior 

cont inues along the vertical dotted l ine and the fol lowing horizontal l ine. Thus, goal behavior is 

represented twice, once as the search tree for the behavior inside the goal , and also as a single 

horizontal-vert ical-horizontal branch showing the goal attempt analogously to a single operator 

appl icat ion. Finally, underneath the branches are the protocol line numbers (for example, L35 below 

node [1]) corresponding roughly to what is happening at that point. 

As is apparent from the branching in the f igure, S2's problem-solving behavior is a search for an 



21 

Execute 
Generate. 

L35 

Result= 
Point A 

- [ 2 ] - -

Execute 
Test . 

I 
I 
| Goal 

[ 4 ] -

( f a i l to 
execute) 

— [ 3 ] 

Add 
Refine assert ion 
Test„ to Test, 

- [ 5 ] - — 

( to 23) 

1 1 

Input is 
candidate Move 
h u l l - s o - f a r component { z } 

C 6 ] - - - [ 7 ] : 

Goal 
.(7)- — 

I n s t a n t i a t e 
input to 
Test , 

[ 8 ] -'1 

Draw l i n e Line Perceive i f 
from A to B A-B good input ( f a i l ) 

L36 
- [ 9 ] 

I 
I 
I 
I 

[ 1 1 ] 
I 
I 

Draw 1 ine 

— L 

from B to C 

Draw 1 ine 
from 

i . 
B to E 

1 

Draw 1 ine 
from B to D 

(cancel ) 
— [ 2 1 ] 

L43 to L46 

L42 

Produce program 
fo r Test 1 in 
geometry space 

[10] 

Line 
B-C 
[12 ] " 

Perceive i f 
good input ( f a i l ) 

[ 1 3 ] 

Line Perceive i f 
B-E good input ( f a i l ) 
[ 1 5 ] - [ 1 6 ] 

Perceive 
Line Perceive i f t es t f o r 
B-D good input ( f a i l ) Test (succeed) 
[ 1 8 ] [ 1 9 ] i [ 2 0 ] 

(succeed) 
— [ 2 2 ] 

(from 4) 

Execute 
Test , 

[ 2 3 ] -

Result 3 

t e s t f a i l s 
- — [ 2 4 ] 

L47 

1 — 2 — 3 
I 
4- -5 — 6—7- -8—9—10 

I 
11—12 — 13 

I 
14--15 —16 

I 

1 7 - - 1 8 - - 1 9 - - 2 0 

-21 — 22 
-23 — 24 

Figu re 4 - 1 : Problem Behavior Graph of S2 on fragment of Algori thm GT (simplified). 



22 

algori thm. S2 searches primarily in the algori thm space and occasional ly solves subgoals in the 

geometry space. These are usually quite limited behaviors for execut ing or instantiating DFS 

components or assertions. However, in a few instances, such as nodes [6] to [19] here, substantial 

problem solving occurs in the geometry space. 

To set the stage for the discovery, prior to node [1] S2 has the basic schema 

{x}—>Genera te 1 ->Tes t 1 ->{z} and has begun test-case execut ion by construct ing the five-point 

f igure. Moving into the method, S2 first generates a point " A " (node [2]). That particular point is 

chosen because S2 knows that it is in fact on the hu l l . 5 S2 then moves to execute T e s t 1 on point A, 

but this fails because there is no actual test there (node [3]). Thus, S2 backs off and creates the 

subgoal of refining T e s t 1 (node [5]). This is the normal way test-case execut ion and symbolic 

execut ion work to extend an algori thm. 

The given form of input to the test is inadequate (node [5]), because S2 sees no way to test a single 

point algorithmically. The test input must be a larger structure, so S2 modifies the form of the input to 

the test f rom a point to a candidate convex hull (nodes [6] and [7]). Since {z} is already the hull-so-

far, this involves moving {z} from the output of T e s t 1 to its input. 

S2 must now find a suitable part of the hull to use as an input to T e s t v in order to discover an 

actual test predicate. Thus, S2 sets up the subgoal of f inding this instantiation (node [7]), which 

implies going to the geometry space. S2 draws a line from A to another point ( "B" ) , tentatively 

incorporat ing the segment A-B into the hull-so-far (node [9]). Point B could be selected because it is 

not on the hull or because it is a nearby point; the evidence is not clear. The line could be drawn from 

A to B because the hull is a polygon, but it could also be drawn just as a way to keep track of an 

ordered set of points. But S2 still cannot see how to determine whether the segment A-B is on the hull 

(node [10]), so A-B is unsuitable as the required input. Therefore, S2 again prepares to draw a 

segment from the last point (B) to another point. By now, having failed twice, S2 considers the 

alternatives that have not yet been selected, which are the three points C, E, and D. All are on the hul l , 

and S2 mentally draws a line to each possibility (nodes [11] through [19], protocol l ine L42), as shown 

in Figure 4-2. 

Each triple (A-B-C, A-B-E, A-B-D) is assessed as a potential input and is found inadequate (nodes 

[13], [16] and [19]). However each of these assessments yields a bit of partial information, and the 

The only facts known about the points are whether or not they are on the hull (see L30), so this is the only possible 
selection criteria. Additional evidence that the selection of A is deliberate is found in episode E3.3 when S2 decides to try 
starting from a point not on the hull to see how the algorithm will handle a "harder" case. 



23 

C 

A B „ 
. • • • • - . £ 

D 

F i g u r e 4 - 2 : Figure for discovery of T e s t y 

co-occurrence of all these bits of information in fact yields a successful predicate for T e s t n (node 

[20]). That is, what is perceived (discovered) is not a solution to the goal of f inding a suitable 

instantiation, but a solut ion to the main problem of f inding a test for being on the convex hul l . Thus, 

S2 cancels the instantiation subgoal (node [21]) and then, on returning to the subgoal of refining 

T e s t 1 , constructs the procedure for the test (node [23], protocol lines L43 to L46). 

To see the actual discovery, consider the conf igurat ion in Figure 4-2, which S2 creates in pursuing 

the instantiation goal. It consists of three lines radiating from A-B, with the middle one almost an 

extension of A-B. With these lines in place, S2 notices that the convex hull cannot lie above the line 

A-B (for example if it goes from A to B to C) because then D and E would not be inside the hull . But 

also the hull cannot lie below A-B (for example if it goes from A to B to D) because then C and E would 

not be inside the hul l . There are only two sides to the line A-B, so the edge A-B cannot be on the hull 

at all. 

Al though the discovery was made with three points, S2 generalizes the test to use two points in the 

conjecture of lines L43-46. Al though not part of the discovery, it is interesting that the program for 

T e s t 1 is in geometry space, not in algori thm space (DFS). Furthermore, the test is executed many 

times dur ing the rest of the session, but it is never recoded as an explicit set of components in 

algori thm space. 

The recognit ion involved in the discovery of the test involves drawing lines not explicit ly part of the 

algor i thm, seeing the complet ion of polygons, and reasoning in the geometry space. In an important 

sense, the discovery is an accident. S2 was not trying to f ind T e s t 1 at that point. On the other hand, 

the degree of preparedness was phenomenal. There was an active supergoal to refine T e s t 1 and the 

test explicit ly being made - whether the three points (two segments) was adequate to determine the 

hull and thus be a suitable input - was intimately related. Stil l, it required the fortuitous conjunct ion 

of the partial results to provide the local context in which the predicate for Test . , could be 

recognized. 



24 

S2 makes several other discoveries dur ing the construct ion of Algor i thm GT which we will not 

analyze in detail here. For example, in the preceding discovery, S2 assumes it is suff icient to look at 

the set of points remaining (not already on the hull) to test whether there are points on both sides of 

the edge. In a later situation (L120-L124), a segment is clearly not on the hull (that is, the fact can be 

perceived directly in geometry space) but points from the remainder set are all on one side. S2 

notices a violation of the earlier assumption. Points from the entire set, not just the remainder set, 

have to be considered. Here the discovery does not satisfy a previously unsatisfied goal, but does 

pertain to an unverif ied assumption about T e s t r Another discovery occurs when S2 finds a second 

segment on the hull (L133-L135). Here, S2 notices that when a segment is on the hull, the points are 

not only always on one side, they are always on the same side if the segments are given directionali ty. 

This observation yields an addit ional assertion about T e s t r 

Both subjects make the same crit ical discovery, though in different ways, in their divide and 

conquer algori thms. They both discover that is much easier to merge the convex hulls if the points 

are divided so that one point is shared by the two resulting point sets (and is therefore shared by the 

two hulls in the subproblem solutions). Both S2 and S4 originally divide the input points into two 

disjoint sets by drawing a line through the middle, but then have trouble f iguring out how to merge. In 

both cases, the discovery of the possibility of dividing through a central point is quickly fol lowed by 

progress in refining the merge step. 

A number of factors contr ibute to causing S2 to focus on including the center point in both hulls. 

S2 is looking at the f igure Figure 4-3, wi th the goal of f inding a way to restrict attention to the points 

on the two hulls that would be kept in the merged hull . 

Figu re 4 - 3 : Initial division of points and solut ion of subproblems by S2. 

First, the experimenter interrupts and asks whether S2 is assuming that all points on the hull after the 

merge are on one of the two hulls in the subproblem solut ion. The interruption seems to be 

misunderstood by S2 to be asking whether each point is exclusively in one of the two hulls, perhaps 

suggest ing that some point should in fact be included on both hulls. Also, S2 seems to shift focus to 



25 

points not on the merged hull , since restricting attention to points on the hull does not lead anywhere. 

The center point is the only such point. Finally, several physical features in the diagram itself focus 

attention on the center point. First of all, it is the center of the picture. Also, it is at the tip of one 

tr iangle and would also be the tip of another tr iangle if the.f igure were comple ted . 6 As a result of all 

these factors, S2 considers including the center point on both hulls. This provides the opportunity to 

start the merge at an interesting point that is symmetrical for both subproblems. 

The other subject, S4, comes to the same conclusion by a different discovery path. S4 compares 

the two subhul ls with the desired merged hull (which is easy to construct in geometry space), notices 

that there are some edges missing, and considers exhaustively generat ing the possible missing edges 

by drawing lines from points on one subhull to points on the other. After drawing in some of the 

edges (Figure 4-4), S4 concludes that most edges are not needed and that construct ing them will be 

too expensive. 

\ 
Figure 4 - 4 : Merge attempt in a f igure by S4. 

S4 is focused on the new lines trying to decide which one are useful and which are not. At this 

point, enough lines have been drawn on paper so that two convex polygons share a point near the 

center of the f igure. Since S4 has already mentally deleted some of the extraneous lines (the ones to 

"ex t remal " points), these connected polygons are readily apparent. S4 is familiar with other 

geometr ical merging algorithms that start f rom a shared point (reported later in protocol). Therefore 

the visual reminder of the possibility of a non-disjoint division, after the previous diff iculty in f inding a 

merging process, gives S4 enough incentive to change the divide step to use a line through a point. 

Thus, we see that discovery is the sudden viewing from a new perspective of a structure (or 

technique) that is already in existence for another purpose. Often the discovery solves a previously 

posed but unsatisfied problem, but sometimes it is an unlooked for refinement. Thus, we might say 

that the problem solver is doing the right thing for the wrong reason, and that this is made possible by 

6Other evidence for the tendency of subjects to complete polygons that are only missing one side is described in [13]. 



26 

the existence of a prepared mind. 

The discoveries we have observed take place in the geometry space, whereas the problems they 

solve are posed in the algori thm space. In particular, visual not icing seems to be a combinat ion of 

unsatisfied goals in the background and certain involuntary operators in the task space. At least in 

geometry space, there are certain conf igurat ions of data items that lead to recognit ion or automatic 

inferences (for example, complet ing polygons that are missing one edge and seeing polygons in 

regular patterns of points). Discoveries often occur when a subject is looking at a f igure dur ing 

test-case execut ion. Particularly when subjects are lost, they repeat test-case execut ions or stare 

blankly at f igures. 

Discoveries and refinements also occur when a subject is explaining an algori thm. Explanation is 

not a neutral activity; it can be dynamic problem solving, not just a repeating of past history or a 

simple readout of an algori thm structure. Subjects sometimes explain algorithms at the request of the 

experimenters, but often produce explanations for their own sake when they do not fully understand 

how to proceed. The process of explanation is another instance of symbolic execut ion and holds the 

same possibil it ies of not ic ing untested assumptions, untr ied cases, inconsistencies, and fortui tous 

conf igurat ions in sample f igures. For example, S4 adds a prepass to the divide and conquer 

algori thm to sort the points dur ing an explanation of why the algori thm was N log N, after the design 

session officially is over. 

5. A Comparison of Designs 
Figure 5-1 shows the number of lines of protocol corresponding to a variety of design activit ies for 

Algor i thm GT and Algori thm DC of subject S2 and Algori thm DC of subject S4. As the totals show, 

S2's second design takes 5 t imes as long as the first. Why? S2 arrives at a more efficient algori thm, 

but is it 5 t imes as complex? Our analysis has shown that S2 uses essentially the same discovery and 

derivation techniques, applying even more extensive algori thm knowledge in Algori thm DC. 

Furthermore, there is no interference from the first algori thm. In fact, there is a useful carry over of 

the test whether a segment is on the hul l . Similarly, S4 finds a divide and conquer algori thm in less 

than half the t ime it takes S2. Is this because S4 is smarter? 

' Problem Main Extra Algorithm Interrupts Total 
Acquisition Design Effort Evaluation 

S2, Alg GT 18 114 0 53 76 261 
S2, Alg DC 0 496 282 68 633 1369 
S4, Alg DC 28 172 0 10 26 268 

Figu re 5 - 1 : Decomposit ion of design activities, in protocol lines of 2.5 

seconds/ l ine for S2 and 3 seconds/ l ine for S4 



27 

Figure 5-1 separates the t ime devoted to the main design (as it finally emerged) from the times for 

understanding the problem speci f icat ion, for extra effort not contr ibut ing directly to the final 

algori thm, for evaluating the final design, and for interruptions not relevant to the design task. It 

reveals that the main design t ime for S2's second algori thm is 4.4 times that of the first, but that if the 

extra effort is considered, the ratio is 6.8. If we define the diff iculty of the subject in designing the 

algori thm to be the ratio of t ime spent on extra effort to t ime directly relevant to the final design, then 

S2 has 0 diff iculty with the first algori thm, but 57% diff iculty with the second. S4 has 0 diff iculty. How 

do we understand these differences? 

The number of components used to represent an algorithm in DFS provides a measure of the 

structural complexity of the final algori thm. Though simple, it reveals the nature of the subjects' 

processing. Figure 5-2 further subdivides the activities into adding components, adding assertions, * 

execut ing (symbolic and test case) partial algorithms, and other problem solving. (The decomposit ion 

of the extra effort is discussed below.) Each row includes the number of components and then, for 

each type of activity, the t ime per component (in protocol lines). 

The t ime per component in the main line of the design of the two algori thms is approximately 

constant for the activities of adding components, adding assertions, and execut ion, totall ing 18 

protocol lines per component (45 sec) for S2 and 12.3 lines per component (37 sec) for S4. The 

number of assertions per component is about 1 (.86, .96, and .82 for Algori thms GT and DC of S2 and 

Algori thm DC of S4 respectively). In problem-space terms, this means that the great bulk of activity is 

not problematic, but is proport ional to the structural complexity of the algorithm being designed. 

Thus the factor of 4.4 between S2's algori thms and the factor of 2.4 between S2's Algori thm DC and 

S4's Algori thm DC are simply because S2's Algori thm DC has more components. 

The results for S4 are similar to those for S2 with a few except ions. The number of protocol lines 

per component is quite similar for adding components and assertions, but less t ime is spent on 

symbolic execut ion and more on other problem solving. In fact, since S4 spends 3 seconds per line of 

p ro toco l , 7 S4 actually spends a little more time than S2 in adding components and assertions. These 

dif ferences can be explained by the fact that S4 has a broader base of algori thm design experience 

than S2 and spends more t ime in expert design activities - evaluating general principles and 

consider ing analogous algori thms and less t ime in the naive design activity of test-case execut ion. 

The analysis reveals that S2's extra effort in Algori thm DC is devoted to four dist inct problems. The 

S4 pauses more frequently and for longer periods of time than S2. 



28 

Mumber of AddiM . Adding Symbolic and Other 
Components Components Assertions Test-case Problem 

S2, Algorithm GT E x e c u t 1 o n Solving. 
Main line 7 i Q A - 4 A , 

l . a 4.3 10.1 0.0 
S2, Algorithm DC 

M a 1 n 1 1 n e 27 1.8 6.0 10 6 i n Extra Effort 1 0 , 5 1-° 
0-po1nt divide 2 2.0 0.5 0 6 n n 
(Episode E2.4) °-5 °-° 

2-po1nt divide 3 2.3 2 3 A * 
(Episode E8) 2 , 3 a ' 3 5 ' 3 

lexicographic sort 2 1.0 4 6 18 o 
(Episode E11.3) 

lost on divide 3 1,7 2,0 42 0 
(degenerate cases) 
(Episode E10) 

0.0 

12.3 

S4, Algorithm DC 

Main line 14 1.9 4.4 4.0 2.0 

F i g u r e 5 - 2 : Breakdown of main design and extra effort activities in protocol lines per component 

first three are addit ional algori thm construct ion steps similar to the main design but superseded by 

subsequent search (for example, since the dividing line finally passes through 1 point, the 0- and 

2-point solut ions become extra effort). This extra effort fits into a standard search framework as 

addit ional branches. 

The fourth case is different. It is much longer (62% of all extra effort), and the construct ion of three 

extra components, counted at the standard 18 lines per component , accounts for only 3 1 % of the 

work. S2 becomes lost in this problem, worrying about how to take advantage of degenerate cases 

rather than how to avoid them, and wanders around, repeatedly fail ing to make progress and not 

retrieving enough knowledge to posit new components and investigate them. 

This fourth case makes evident the role of symbolic and test-case execut ion. S2's behavior shows 

that the algori thm structure is not grown in a simple depth-f irst fashion, but rather that the execut ion 

steps scan this partial structure to f ind the next place to extend i t Thus, in the last extra-effort case, 

the amount of t ime devoted to execut ion steps is very large (42 lines per new component) , compared 

wi th that for the main line (10 lines per component) , because the subject cannot f ind any new 

information to use, so repeatedly scans over the structure in vain. 

6. Discussion 
Our analysis of the human design process suggests that an automated design system could be built 

around the same problem-space model that people seem to fit (one benefit of studying human 

design). We have appl ied the operators we postulate for the data-f low space and geometry space to 



29 

explain most of the major jumps and shifts in the protocols (although some steps remain to be 

explained in detail), which gives evidence that the problem-space model accounts for our subjects' 

behavior. From this behavior of S2 and S4, we conc lude that an automatic system of analogous 

design should have the fol lowing properties: 

• Algori thm representations must be deliberately ambiguous in order to handle partial 
states of knowledge and assertions that have not been fully integrated dur ing the design 
process. 

• A variety of algori thm design schema such as generate and test or divide and conquer 
must also be available. 

• A variety of search control methods must be available. Symbolic and test-case execut ion 
and means-ends analysis are versatile general methods. 

• To provide for flexibility or robustness in unforeseen situations (which are by definit ion a 
common occurrence in design), a few general purpose operators with a powerful 
mapping process (such as means-ends analysis) should be used. Local adaptat ion to 
br idge the gap to the best available knowledge is preferable to providing many detailed 
operators whose applicabil i ty is determined by a simple pattern match. 

We have also made some observations about the process of human discovery that could be 

incorporated into an automatic design system to allow it to exhibit a good deal of flexibility, 

robustness, and creativity: 

• Discovery involves a prepared problem state (unsatisfied goals in the algori thm space). 

• Discovery requires an act of recognit ion in the task-domain space. 

• As a result, discovery means doing the right th ing for the wrong reason. 

Since we have looked only at a small number of protocols and subjects, many interesting quest ions 

remain unexplored. How does the design process vary from person to person? How much does it 

vary with the domain of the algori thm being constructed? Is the main design t ime always proport ional 

to the number of components in the design? How important is the process of analogy for adapting 

known algori thms to solve new problems? We expect that the study of addit ional human protocols 

will shed some light on these quest ions and may also give us some hints about how to automate the 

process of learning. For example, we would like to know whether the use of analogy is a component 

of learning, and whether mult iple spaces are important for automated design. The main spaces in the 

designs studies so far seem to be only the task space and DFS, with the task-domain space used as a 

subspace of the main space DFS. If mult iple spaces turn out to be important, we will have to decide 

how to build dif ferent problem spaces to work in and how to construct operators. Little research has 

been done on this. It may turn out to be some sort instantiation process of special izing more general 

spaces to particular situations. It may shed some light on how algori thm design is learned. 



30 

We are not current ly aware of any serious l imitations in the basic data-f low and successive 

ref inement approaches at this t ime, but we have hardly resolved all the issues in building an expert 

design system. One issue is how to store and access the large volume of knowledge that will be 

required for high performance; this also implies that good search controls will be necessary. Another 

issue is how the subjects (and hence automatic design systems) switch between problems spaces. 

For example, how does a problem solver bui ld a program in geometry space or algori thm space from 

remembered previous problem-solving actions? Finally, we still need to explore in more detail the 

process of a visual "no t i c i ng " and the details of the geometry space. This area is poorly understood 

despite an immense amount of research on visual percept ion. 

We are actively studying the issues involved in bui ld ing an expert design system and have begun an 

implementat ion of a simulat ion system that wil l recreate the algori thms designed by S2 and S4. We 

wil l also cont inue studying human protocols. As we add more and more algori thm and search control 

knowledge based on these studies, the system will gradually be extended into an automatic algori thm 

discovery system. 

Acknowledgements 
We thank our subjects for their t ime and interest in this project. David Steier careful ly read a draft 

of this paper and provided many helpful comments. Steier, Edward Pervin, and Brigham Bell are 

helping to implement a simulat ion system to test our hypotheses. 



31 

References 

1 . Balzer, R. "Transformational implementat ion: an example." IEEE Transactions on Software 

Engineering SE-7, 1 (January 1981). 

2 . Bibel, W. and Horning, K. M. LOPS - A System Based on a Strategical Approach to Program 

Synthesis. Proceedings of the International Workshop on Program Construct ion, France, 

September, 1980. 

3 . Brooks, R. A model of human cognitive behavior in writing code for computer programs. Ph.D. 

Th. , Carnegie-Mellon University, 1975. 

4 . Cheatham, T. E., Townley, J . A., and Holloway, G. H. A system for program refinement. 

Proceedings of the 4th International Conference on Software Engineering, September, 1979, pp. 

53-63. 

5 . Darl ington, J. "A synthesis of several sort ing algor i thms." Acta Informatica 11,1 (1978). 

6 . Davis, R. and Lenat, D. B.. Knowledge-based Systems in Artificial Intelligence. McGraw-Hil l , 1981. 

7 . Ericsson, K.A. and Simon, H. A. "Verbal Reports as Data." Psychological Review 8 7 , 3 (May 

1980), 215-251. 

8 . Green, C. C , Gabriel , R., Kant, E., Kedzierski, B., McCune, B., Phillips, J . , Tappel, S., and Westfold, 

S. Results in knowledge-based program synthesis. Proceedings of the Sixth International Joint 

Conference on Artif ical Intell igence, Tokyo, Japan, August, 1979, pp. 342-344. 

9 . Jeffries, R., Turner, A. A., and Poison, P. G. The Processes Involved in Designing Software. In 

Cognitive Skills and Their Acquisition, John R. Anderson, Ed.,Lawrence Erlbaum Associates, 1981, 

c h . 8. 

1 0 . Kant, E.. Efficiency in Program Synthesis. UMI Research Press, 1981. 

1 1 . Kant, E. and Newell, A. Naive algori thm design techniques: a case study. Proceedings of the 

European Conference on Artif icial Intel l igence, Orsay, France, July, 1982. 

1 2 . Laird, J. , and Newell, A. Planning: A problem-space perspective, (in preparation) 

1 3 . Larkin, J . Spatial Reasoning in Solving Physics Problems. Tech. Rept. C.I.P. # 4 3 4 , Carnegie-

Mellon University, Department of Psychology, 1982. 

1 4 . Lee, S., De Roever, W. P, and Gerhart, S. L. The evolution of l ist-copying algori thms and the 

need for structured program veri f icat ion. Proceedings of the Sixth Annual ACM Symposium on 

Principles of Programming Languages, San Antonio, Texas, January, 1979, pp. 53-67. 



32 

1 5 . Lenat, D. B. Heuret ics: Theoret ical and Experimental Study of Heurist ics Rules. Proceedings of 
the National Conference on Artif icial Intel l igence, August 18-20,1982, pp. 159-163. 

1 6 . Low, J. R. "Automat ic data structure select ion: an example and overview." Comm. ACM 21,5 
(May 1978). 

1 7 . Moore, J . A. The Design and Evaluation of a Knowledge Net for MERLIN. Ph.D. Th. , Carnegie-
Mellon University, 1971. 

1 8 . Morgenstern, M. Automat ing the software design process for management information systems. 

IEEE Computer Software and Appl icat ions Conference, November, 1977, pp. 642-647. 

1 9 . Newell , A. Heuristic programming: III s t ructured problems. In Progress in Operations Research, 
Aronofsky, J . , Ed.,Wiley, 1969, pp. 360-414. 

2 0 . Newell, A. Reasoning, Problem Solving, and Decision Processes: The Problem Space as a 
Fundamental Category. In Attention and Performance VIII, Nickerson, R., Ed.,Erlbaum, Hillsdale, N.J., 
1980. 

2 1 . Newell , A. and Simon, H.. Human Problem Solving. Prentice-Hall , 1972. 

2 2 . Petry, F. E., and Biermann, A. W. Reconstruct ion of algor i thms from memeory snapshots of their 

execut ion. Proceedings of the 1976 Annual Conference, ACM, New York, 1976, pp. 530-534. 

2 3 . R ich ,C . Inspection Methods in Programming. Ph.D, Th. , Massachusetts Institute of Technology, 
June 1980. 

2 4 . Rovner, P. D. Automatic representaton select ion for associative data structures. Tech. Rept. 

TR10, The University of Rochester, Computer Sc ience Department, September, 1976. 

2 5 . Shaw, D., Swartout, W., and Green, C. Inferring LISP programs from examples. IJCAI4, Tbil isi, 
USSR, 1975, pp. 260-267. 

2 6 . Tappel , S. Some Algor i thm Design Methods. Proceedings of the First Annual National 

Conference on Artif icial Intel l igence, August 18-21,1980, pp. 64-67. 


