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Abstract

In this paper, preliminary considerations and some experimental results are presented in an effort to design
Very Large Vocabulary Recognition (VLVR) systerns, We will first consider the applicability of current
recognition techniques and argue their inadcquacy for VLVR. Possible alicrnate strategies will be explored
and their potential uscfulness statistically evaluated. Qur results indicate that suprasegmental cues such as
syllabification, stress paitems, rhythmic patterns and the voiced - unvoiced patterns in the syllables of a word
provide powerful mechanisms for search spa:;:e reduction. Suprasegmental features could thus operate in a

complementary fashion to segmental features.
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1. Introduction to the Problem

A typical adult human being with average education can (on the average) recognize words from a
vocabulary on the order of 40,000 words quite reliably. Current speech recognition technology is capable of
handling vocabularies of only up to 200 words when no contextual, semantic, pragmatic or syntactic
information is given to such a system! and vocabularies of up to 1000 words in speech understanding systems
when a full sentence and a rigid recognition grammar is givenz. Although it is no doubt true that such
systems can already preform satisfactorily in a number of practical applications, they are nevertheless severely
limited in generality , extensibility and robustness and do not approach human performance. As a step in the
direction of unrestricted épeech recognition the barriers imposed by vocabulary size must be resolved. These
limitations first have to be removed in the acoustic domain before we attempt unrestricted speech recognition.
As a task we propose the design of a 20,000 isolated word recognition system. A vocabulary of this size is in
the order of magnitude of the command of language of human beings. It also contains the whole spectrum of
word recognition problems, since various levels and kinds of confusability will certainly be encountered. The
most successful current recognition strategies have in their present usage insurmountable limitations, when

the vocabulary size rises to the proposed dimensions.

1.1 Dynamic Pfogramming Template Matching

Dynamic Programming Template Matching is out of several reasons not easily extensible to very large
vocabularies.  First, d;e practicality of a system that -has to be trained for very large vocabularies is
questionablé. Possible e_xtensions can therefore only be obtained if subunits {e.g., syllables, demisyllables or
phonemes) smaller than the 'word are extracted from an unknown word and matched to the pertinent
templates. A second difficulty is given by th-e increase in recognition difficulty. Large vocabularies contain
phonetically very similar sounding words (BUCK-DUCK, TWO-TO) and disambiguation requires
computationally expensive detailed phonetic analysis. In contrast, there are phonetically totally non-
ambiguous word pairs (ANTIDISESTABLISHMENTARIANISM - IN) and inappropriate candidates should
be discarded immediately. Thus it 1s important to recognize word classes to eliminate the inappropridte
candidates before identifying the recognized word. In this fashion, DP-matching methods have been
successfully applied to somewhat larger vocabularies than 200 wordsS.

1.2 Harpy

Efficient search of a large pronunciation nctwork has successfully been achieved in HARPY? for tasks

involving larger vocabularies (~1,000 words). HARPY's success is due to such virtues such as the HARPY



network which provided a constrained search space incorporating syntactic and semantic information, and the
efficiency of the: scarch that yiclded the overall -correct recognition result in spite of errorfull phonetic
labeling. For Very Large Vocabularies, in an isolated word recognition task (no syntax/scmantics), however,
straight apblication of the HARPY approach leads to very large branching factors that make search an
expensive operation, Moreover, phonetic recognition errors will more readily result in high word recognition
error rates because of the size and confusability of the vocabulary. More detailed acoustic and phonetic as

well as prosodic information needs to be exploited.

1.3 Search Spacé Reduction Techniques

For Very Large Vocabulary Recognition (henceforth VLVR) computationally inexpensive, robust and
powerful mechanisms for Search Space Reduction are necessary ingredients for a successful system. Zue and
Shipman4 have recently demonstrated that substantial search space reduction can be achieved using 2-way
(Consonant-Vowel) or 6-way featural segmental classification schemes. Nevertheless, large subvocabularies
remain, particularly when increased class sizes must be presumed in the presence of error. Furthermore,
some class distinctions based on linguistic notions require detailed anzilysis and are by no means a robust
trivial first pass elimination heuristic. A consonant-vowel distinction, for example, can be excecding}y
difficult in cases like liquids, glides and nasals. Cole et al.? have recently shown (for the alpha-digit task) how
a systemétic xnowledge engineering approach can yield superior performance by applying featural knowledge
to making fine phonetic distinctions. Yet, robust criteria to perform highly selective preclassification in all
generality have not been demonstrated to date and await further study. One aspect of human speech is
known to have great impact on intelligibility and naturalness of speech and yet has been largely ignored for
speech recognition devices: prosody, or more generally, suprasegmentals. In this paper wé demonstrate the

potential impact that a set of suprasegmemal features might have on Very Large Vocabulary Recognition.

In the next chapter we will introduce several Very Large Vocabulary Databases that were compiled and
evaluated. The properties of Very Large Vocabularies will be discussed. The remainder of the paper will
demonstrate the potentjal of using a combination of suprasegmental and segmental features as filters in the

recognition process. Experimental results using the dictionaries described will be reported.
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2. Creating a Database for VLVR

A database as a research vehicle for the VLVR task has to be designed according to two major criteria.
First, it has to comprise a selection of words that both are commonly used in natural language/speech and
impose the whole spectrum of recognition difficulties encountered in VLVR. Second, it has to provide
various kinds of information that are needed or useful in the actual recognition process. In the following

sections we describe four corpora of very large vocabularies that have been investigated.
: 7

2.1 Four Sources for the Design of a VLV Database

2.1.1 Webster’s Dictionary

One of the corpora available is a machine readable form of Webster's Dictionary containing the
orthographic and phonemic representation for 20,000 words. In the phonemic spelling syllable boundary
markers are provided. Homographs have'separate entries with pertinent separate phonemic spellings. Some
of the problems encountered with this corpus are: typographical errors, archaic, inaccurate or incorrect

phonemic transcriptions and the inclusion of words that are not common in present-day American English.

2.1.2 The Brown Corpus - Fonﬁ B

A corpus of about 1,000,000 words selected from various American texts was collected and evaluated at
Brown Universitys. This plarticular' version of the corpus contains the orthographic spelling of the words as
wél] as a count of number of occurrences (word frequencies) in the various source-texts. The strength of this
corpus is the provision of the word frequency counts and as a consequence the fact that only commonly used

American English words are included. Its major drawbacks for our purposes are:

e Homographs are collapsed due to their identical spelling, an issue that when dealing with speech
recognition tasks has to be resolved.

¢ The corpus is based on written text and thus is biased towards common occurrences in writing
rather than common words in speech. For example, formulas and punctuation marks are included
here. Indicative of the bias is, for example, the fact that the most frequent word in written text is
the word "THE", while in spoken speech "I" occurs most often.

¢ There is no provision for phonemic information or other pronunciation related cues.

Unlike Webster’s Dictionary, this corpus also includes various forms derived from a basic root word. Thus
for example, "USE", "USES", "USED"”, "USUALLY", etc. arc all listed separately. This property is actuaily



desirable, since it reflects a real problem in VLVR because of the high phonetic similarity amoﬁg some of

these words;

. A further caveat is warranted here: the word frequencies intraduce a very strong bias towards a set of about
- 100 most frequent words, which occur about 50% of the time in written English text. Building 2 VLVR
system optimized for words as they occur most frequently would mean building a 100-200 word recognition
system specialized in dealing with the highly (for VLV) atypical class of the 100 most frequent. words in
English text. This class largely consists of monosyllabic function words that may or may not be useful for
VLVR depending on the recognition task. These properties of a large vocabulary are illustrated in figures
2-1and 2-2. In Fig.2-1 the average number of syllables per hundred words is shown for the 20,000 words of
the Webster's dictionary sorted .according to the word frequencies provided by the Brown Corpus.
Fig.2-2 shows analogously the percentage of polysyllabic words per hundred for the same vocabulary. Itcan
be seen that, the distribution of syllable counts over the word frequency sorted 20,000 word vocabulary
stabilizes after the first 300 most frequent words. The words in rank less frequent than the first 200 or 300 '
~ might have different properties from those very frequent words.
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2.1.3 The Carterette and Freedman Corpus

The Carterétte and Freedman Corpus’ is a corpus of 16,000 spoken words. The speech was recorded
without the prior knowledge of the subjects. 1t is conversational speech (“'small talk") of students in a waiting
room. Not unlike Brown Corpus - Form B, a list of words and their word frequencies have been generated
and are available on line. Although there is significant overlap in-the overall collection of words between the
words in this corpus and those in the corpora discussed above, new aspects are gained from this particular
selection of words. First, a word frequency count is obtained based on spoken language rather than written
language. Second, a set of words more particular to spoken speech appear more noticeably: names of peopie
and cities, numbers (digits, years, etc.), letters (presumably for spelling of acronyms) and finally exclamations

(Oh, Uh, Nah, Um, etc.). Caveats and drawbacks similar to those for the Brown Corpus apply here, too.

2.1.4 cmut - an additional source of information

An additional source of information available in our facilities, a PASCAL version of the MITalk Text-To-

8.9

Speech system®™ °, can be run to obtain speech related information, such as:

¢ phoneme strings
¢ phoneme durations

e FO target values

e various markers, such as Morph Boundary Markers, Syllable Boundary Markers, Stress Markers,
Function or Content Word Marker, and, if so desired, Part of Speech Information

It is therefore possible to derive various kinds of speech related information from an orthographic
representation, without the necessity of transcribing by hand all the words in a corpus or actual speech
measurements. Of course; this information is synthetically derived and the processes that generated it are not
problem-free. Thus one has to use this information cautiously as an approximation to real speech.

Nevertheless, a corpus can be generated that contains useful additions to the corpora discussed above,

2.2 Design and Realization
In this section, we will-briefly discuss two databases that we h.ave created for two distinct research efforts

leading towards VLVR.

The first, a 20,000 word database, is intended to investigate and experiment with the properties of VLV’s,

The objective is to consider the effects of various recognition strategies (given certain assumptions) on



performance. The prime goal is to develop methods that filter out a subvocabulary of preferably small size by
means of robust detectors of features of various kinds. Since these detectors will include various aspects of
speech, it is useful to have a database of words complemented by phonemic, prosodic and possibly
morphCmic-and syntactic information. To this end, an augmented version of the Webster’s Dictionary has
been created. It contains in addition to the orthographic and phonemic representation, various additional
aspects derived from running the individual words from this dictionary through cmut as described above and

adding the word frequency count from the Brown Corpus.

The second, a speech database, is intended to provide the framework for the initial stage of the actual
implementation of a VLVR system. The union of the 900 most frequent written words (Brown Corpus) and
the 900 most freciuent spoken words (Carterette and Freedman Corpus) was.selected to provide the basis for
this database. The union contains equal shares of about 450 words that are either unique to the first 900-
spoken words, unique to the first 900 written words, or common (0 both sets. All exclamations, acronyms,
titles and names were preserved. The special punctuation symbols, formulas, etc., contained in the written
corpus were eliminated, as well as the somewhat arbitrary selection of numbers and isolated letters. Instead, a
list of all the numbers from 1 through 20, the numbers 30, 40, ...., 90, 100 and 1000, and a list of all the letters
in the alphabet were added to the corpus. Also to provide instances of long words, a set of 115 words was
added that have four or more syllables. The resulting collection of words thus contains approximately 1500

tokens.

The speech database based on this selection of words is currently being collected using four native speakers
of American English, several reading sessions each. '
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- 3. Suprasegmental and Segmental Filters.in VLVR -

3.1 Methodological Comments

In this chapter results of a theoretical exploration of possible sources of information will be presented. By
"theoretical” we mean that no actual speech database was used. Rather in order to obtain insights into the
properties of very large corpora (20,000) the information from the dictionaries discussed in the previous
éhapter was used. More specifically, the au ;frlented Webster’s dictionary discussed in section 2.4 was used.
This corpus of 19955 (nominally 20,000) words not only has the orthographic aﬁd phonetic representation,
but also contains entries for segmental durations, FO targets and various markers as discussed previously. As
was pointed out, this information has been obtained in part synthetically. Syllable boundaries, segmental
durations, etc. have so far not been available for corpora of this size, such that synthetic data provides the best
interim solution currently obtainable. It must be pointed out, however, that the results presented here must
therefore be interpreted only as a first order approximations to the properties of 20,000 words in Webster’s
dictionary when spoken by humans. As a motivation to using this corpus, however, a few supportive

comments are in order. -

e The phonetic transcription obtained from synthesis has been found usefuf for our purpose. It was
designed to produce intelligible speech and it is believed to be closer to actual specch and contain
finer phonetic distinctions than the description found in the regular Webster's dictionary. This
can and has provided valuable additional information that would otherwise not be available. One
might understand this distinction by the underlying philosophy behind the transcriptions. The
synthetic transcription does not intend to instruct proper pronunciation, but rather attempts to be
a close approximation to real contemporary American speech. It is thus more useful for the
specific problem we set out to solve, to recognize contemporary American speech.

» Synthesis was obtained (see chapter 2) using a version of MITalk-79%? an ambitious large scale
effort aimed at unrestricted Text-to-Speech synthesis, MITalk-79 was undoubtably developed to a
level that is comparable to human speech in intelligibility and naturalness. Many of the
pronunciation rules as well as prosodic parameters (such as segmental durations) were obtained
from measurements of spectrograms taken from one speaker. The particular sound speech quality
might therefore reflect one speaker’s peculiarities but resembles closely actual human speech.

e Durations have been obtained from spectrogram measurements at the segmental level. Based on
measured segmental durations and a set of 11 modification rules MITalk predicts segmental
durations, synthetically. The synthetic segmental durations have been found to differ from
measurements on independently collected speech by a standard deviation of 17 msec®. These
short deviations arc less than the just noticeable difference (JND) of temporal variations in
speech.  The synthetic durations could thus be considered perceptually accurate. Al statistics
collected in the following involving durations will be limited to the suprasegmental structure of
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the words. This climinates to some extent the possibility of a circular reasoning between synihetic
data and the desire to find regularity in the data. More specifically, the segmental durations used
in MITalk have been obtained without particular attention to isechrony in English or to the
concept of rhythmic beats.! We believe therefore that it is valid to consider syllable durations
obtained in this fashion. ‘

'The word frequency count (obtained from the "Brown Corpus") was added to our database. Most statistics
reported in the following, however, will not be based on frequency weighted occurrences for the reasons

outlined in the previous chapter, i.e., to avoid a heavy bias towards a rather limited set of function words.

Before we turn to a statistical evaluation of possible suprasegmental filters a few methodological comments
are in order. In the following sections, we attempt to define measures of the speech signal that are robust and
reduce the number of remaining candidates as much as possible. In other words we seek to evaluate a
measure’s power to prune the vocabulary to preferably small remaining “cohorts”. As a means of evaluation,
average cohort size has been used in previous evaluations. This statistic has the disadvantage of not accurately '

reflecting the amount of pruning of a given measure if the cohort sizes are rather disperse.

We therefore propose the usage of expected cohort size given by
- ECS[s} = E $o * DSy _
where p S(SO) is the probability of any given word to fall into a cohort of size s Expected cohort size would
thus take into consideration the likelihood of any particular cohort size to occur. The result could be
interpreted as the size of the cohort that a given unknown utterance is expected to fall into after application of

~one or more search space reduction mechanisms (filters).

Fig.3-1 illustrates the difference between 'avcrage cohort size and expected cohort size. If for example,
(after application of a given measure) two remaining cohorts have size 19,999 and size 1 respectively, then the
average cohort size would be 10,000. If in turn the two cohorts both had size 10,000 their average cohort size
would also be 10,000. The practical usefulness, howéver, of a measure giving rise to this latter distribution of -
words into cohorts is much greater, since the likelihood of a random word to be found in either cohort is 50%
and thus the effective pruning much greater. The expected cohort size (ECS) in contrast can be evaluated for
the first case to be 19998 which corresponds to a pruning to only 99.99% of the original vocabulary, while m
the second case the ECS is 10,000 which in turn corresponds to 50% pruning.

Based on these considerations we will report in the following either expected cohort size or else whenever

useful maximum cohort size (i.c., worst case assumption).

1Carlson ct al.. however, report partial isochrony as a result of application of the prosedic component in MITalk
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Figure 3-1: Comparison of Measures for Various Cohort Sizes

3.2 Some Properties of a Very Large Vocabulary

Various studies have already examined the statistical properties of phoneme distributions m larée
vocabularies. Denes!® in 1963 reports phoneme and digram distributions for 72,000 phonemes as well as the
freqﬁency distribution of consonantal minimal pairs. He found AX (schwa), IH, T, N, S, D the most frequent
phonemes, thus making consonants with alveolar place of articulation the most common. These and other
results are supported by our data. Denes also reports the most common minimal pairs in such a database, i.e.,
the discriminating phoneme pairs in word pairs that differ only by these phonemes. Most minimal pairs are

distinguished by their manner of articulation rather than their place of articulation.

We have found the number of such "similar"? word pairs to be surprisingly large. In a previous study
using the original phonetic labeling from the Webster’s dictionary it has been found that a total of 28,335
pairs of words can be found that differ by one phoneme only. A total of 6263 word pairs differ by the absence

(deletion) of one phoneme in one word with respect to the other.

VLVR, however, is complicated not only by the very high number phonetically similar word pairs but also
by similarities that cannot be disambiguated on the basis of phonetic identity alone in the first place,

2Note that these pairs do not in all cases have to be similar sounding from a perceptual point of view. ANIMATION
- ANNOTATION may for example cause Jess confusion to humans than MEDITATION - MEDICATION. In some of these cases,
prosodic differences or similarities might give rise to better or worse discriminability.  Different stress levels might improve
discriminability perceptually. Finally, dilferent phonetic calegorics might difier in their discriminatory powecr,
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e There are 376 word pairs (i.., the recognition of 752 words is affected) that are indistinguishable
by discrimination of phonemes o stress patterns or syllable boundary location (c.g., TWO - TOO,
RED - READ, ctc.) Discrimination can be done only on the basis of contextual cues, or
likelihood of occurrence (as primed by cultural bias, experience, context or simply word
frequency).

e An additional 55 word pairs are discriminable on the basis of stress only (e.g., ‘Increase
- incr'Ease). Note that this number is derived from words having identical phonetic spelling with
the exception of their stress location. Most words pairs, however, that differ in stress patterns also
differ in some aspect of their phonetic realisation (P’Erfect - Perf’Ect).3 Stressed vowels when
destressed, frequently change to reduced vowels and therefore their spectral characteristics
change. The real number of pairs that are distinguishable mainly by stress is therefore probably
much higher.

e 24 word pairs differ in the presence or the location of a syllable boundary only (e.g, Unreel
- Unreal, Dower - Dour). Again this number was computed on the basis of words that other than
the syilable boundary have identical phonetic strings, This number is presumably much greater in
reality also, since some word pairs differing in syllable boundary only, will nevertheless be
represented in our corpus by differing phonetic strings. This might for example be the case for
vowel - vowel sequences that within one syllable would be represented by diphtongs.
Discrimination between these pairs might be possible based on accurate location of the syllable
boundaries or by analysis of the temporal structure of the word in question.

From the points raised above it seems clear that there is a substantial number of words that are
discriminable from others on the basis of prosodic information. But could prosodic or more generally

suprasegmental information be of use as preliminary filters to climinate unlikely candidates in general ?

3.3 Syllable Counts

One possibility for a crude search space reduction mechanism would be to reject candidates that do not
have the same number of syllables as the unknown utterance. It has been shown that the detection of syliable
boundaries can be performed with an accuracy of better than 90% correct on continuous speech. In
Fig.3-2 the number of occurrences of words with a specific number of syllables can be seen. The broken line
shows the distribution over the 20,000 word vocabulary discussed. The solid line indicates the distribution of
the same vocabulary, but weighted by the frequency of occurrence in the brown corpuss. The implicit
assumptions in these two graphs are that ifi the first case all words occur with equal frequency and in the

second case that a given word occurs as frequently as indicated by the Brown Corpus frequency. In the latter

3im:’idt:ntally. most of the 118 Homographs found in our corpus differ by stress only with or without corresponding phonemic
alterations.
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case, for example, this means that in a recognition task the word THE is assumed to have occﬁrred 69971
times and is counted as sucﬁ while the word ABNORMALLY is counted only ‘once. It is clear from this
~ cxample and trom Figures 2-1 and 2-2 that the Irequency weighted distribution has a strong bias towards
monosyllabic words: frequent words, in particular function words, tend to be shorter in number of syllables.
In English entire paragraphs of monosyllabic words'! are possible without any noticcable distortion in
naturalness, Thus syilable counts could be considered as a means for classification in a large vocabglary with
relatively limited potential for search spacc reduction. The ECS for the frequency weighted vocabulary is
12,628 which corresponds to an effective reduction to 63%. Assuming that all words are equally probable the

ECS is 5013, i.e., an effective pruning down to 25% of the corpus.
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3.4 Stress patterns

Stress and .1'hythmic patterns have been discussed by several authors!®13.14.15 Depending on the
psycholinguistic model they develop these two linguistic concepts may not easily be separable. For this

experimental evaluation, however, we have chosen to explore stress and rhythm as independent entities.

From our 20,000 word corpus patterns were extracted that were cither unstressed or carried primary stress.
We have not considered stress levels other than primary stress, since the possibility of detecting them robustly

is rather un]ikely4.

A total of only 45 um‘ciue stress patterns was identified, some of which occured very infrequently and may
in fact due to incorrect or questionnable stress labels in the input. The three most frequent stress patterns are
(1 = primary stress; u = unstressed) : 1-u, 1, and 1-u-u. In all three cases the stressed syllable is in‘ word
initial position. 12,252 words {more than half the dict.ionary) fall into either category. Following in frequency
are u-1 (like in UNITE) and u-1-u, etc. If we were to use Stress patterns as a filter for VLVR, the resulting
- ECS would be 3055, which corresponds to 15.3% of the corpus.

3.5 Rhythm and Suprasegmental Duration Patterns

17 cause considerable difficulty in intelligibility to normal native speakers

Deaf speech16 and foreign accents
of a language. One major reason for the poor intelligibility is that the temporal structure in both cases is
anomalous. The English language is isochronous and stress timed. In fluent speech speakers of English place
intervals of approximately equal duration between syllables carrying primary stress. If several unstressed
syllables are to fill this interval they are reduced in duration, in theoryr15 to 1/2 or 1/4 units. A consequence
of shorter or longer syllables are the metric feet that make up the rhythmic structure of English speechls.
Other languages (for example French) are syllable timed languages, i.c., all syllables are of equal length.
These differences in rhythmic patterns give rise to some of the difficulties foreigners encounter wheh learning
a new language and of course create perceptual problems when trying to decode foreign accents!’. Indeed the |

lack of rhythm is one of the major difficulties in deaf speech16

If we assume 'that in normal English speech there is a consistent rhythmic structure, and if native English
speakers seem to be making strong use of this structure in the perceptual process, then it is reasonable to
examine the durational patterns for VLVR. In-this section, we will examine two forms of suprasegmental
temporal patterns: 1.) syl]able durations and 2.} the ratio in durations of voiced and unvoiced segments in a
syllable,

ln the psycholinguistic literature this has been found to be a task. that is difficult even to the human listcner. Stress may in fact be
parually a psychological phenomenon, that may er may not be readily available from the signal)
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In order to render this measure meaningful. we need to define the extent of a Syllable first. The location of
the syllable boundaries given by our synthetic data was found rather inconsistent over the whole 20,000 word
vocabulary. It should also be our concern here o identify a sylluble boundary location that is identifiable in
the speech éignal. Allen? presents a very thorough treatment of syllabic boundary location by humans. He
suggests that the apparent perception of syllable boundaries is in fact the perception of rhythmic beats and
measures their location in a serics of click matching and tapping tasks. Syllable boundaries are found quite
reliably (with little variability) at the onset of stressed syllables. Generally a syllable boundary is placed
somewhat before the onset of the nuclear vowel of the syllable in question. The time interval by which the
syllable boundary precedes the vowel nucleus is determined by the consonant {cluster) at the boundary. For
sonorant syllable junctures the onset of the return from the maximum formant excursion towards the vowel

nucleus is the boundary.

As a first order approximation, the onset of the vowel nucleus can be considered to be the syllable
boundary. For our database, all syllable boundary markers were adjusted to reflect this change. One of the
disadvantageous side affects of this adjustment is that segments leading a word initial syllable stand alone and
are not included in any syllable. From a practical point of view, however, this is a quite useful situation, since
the duration of leading segments such as voiceless stops can not ¢asily be measured (due to the leading silence

interval). If one sets out to measure real speech one does have to resort to this solution®®,

3.5.1 Syllable Durations

- Syllable durations for each syllable defined in this fashion were computed by summing up the segmental
durations. In Fig.3-3 and 3-4 we find histograms of syllable durations with the sylla'blé being in non-word-
final position or in word-final position for polysyllabic words and in Fig.3-5 with the syllable durations of
monosyllabic words. As should be expected, the average syllable length in word-final position is longer than
in non-word-final syllables. To provide a unified measure, the distributions of Fig.3-3 and 3-4 were collapsed
by “"shortening” all word-final syllables by 9 csec (i.e., left shifting the histogram of Fig.3-4 by 9 csec) and
combining it with the histogram of 3-3. The resulting histogram is shown in Fig.3-6. Fig.3-6 shows three
major excursions and \;ve will define these peaks as the short, medium and long syllables assumed in the
theory. When we place boundaries at the major dips in the histogram, i.e., at 10 and at 16 we obtain three
groups that will be labeled L, M or H for Low, Medium, or High Syliable duration. In the case of

monosyllabic words, only one boundary wz;s chosen at 44 csec, resulting in only two classes, Low and High.
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Using these labels duration and stress were first evaluated together. 75% of all syllables carrying primary -
stress fall under category High, 10% under category Medium and 15% under Low. 14% of the 15% Low
duration primary stressed syllablics, however, are monosyllabic words. Thus it could be said that in the

majority of polysyliabic words stressed syllables carry a High label.

Using this classification scheme all words in our corpus were represented by n syllable duration labels (H,
M or L) where n is the number of syllables in the word.> A total of 362 unique patterns were found. The
largest group consists of 2965 words with id ént.ical patterns. The ECS is 1249, i.e., after elimination of the
inappropriate prosodic patterns a subvocabulary of only 6% the size of the original vocabulary remains if we

assume that any word of our original corpus is equally likely to be the unknown word.

3.5.2 Voiced/ Unvoiced Ratio

An additional measure was motivated by the possibility that the relative share of voiced or unvoiced
segments in a syllable could provide some overall early rejection or acceptance of a word candidate. In
spectrogram rcading experiments labels such as "mainly voiced", -"all voiced" or "mainly unvoiced" have
proven to be useful methods to early rejection of unlikely word candidates?®. We have here evaluated this
measure in an analogous fashion as the syllable durations. For each syllable the voiced to unvoiced ratio is
computed. The resulting histogram is shown in Fig 3-7.5 Again three groups can be identified and will be
labeled as Low, Medium and High, where High represents the "all voiced" syllable case. Syllables that have
voiced to unvoiced ratio of Jess than 1, i.e., that contain more unvoiced speech (frication, silence, aspiration)
than voiced (e.g.. SIX) are labeled L. M are all the syllables containing a smaller proportion of unvoiced than
voiced segments. Finally, afl uniquely voiced syllables are labeled H. In Fig.3-7 H syilables are indicated by
the triangle in the upper right corner (the UV/V - ratio is infinity in this case). It should be noted here that
we call here "unvoiced” or "voiced”, respectively, what we believe can be detected in the signal as an
aperiodic or a periodic signal. Thus, for example, we call voiced stops (B, D, G) unvoiced, since a pitchtracker
will typically label the segment unvoiced in spite of the occasional presence of periodic low amplitude

prevocalization pulses. Alternatively, flaps (e.g., the T in WRITING) are labeled as voiced.

Grouping all words according to their V/UV label patterns, we obtain 352 cohorts, the largest of which
contains 2098 words. The ECS is 909 words or 4.5% of the original corpus.

SNote that syllable count information is implicitly used here.

6Se;r)aratf: treatment of word-initial. word-final syliables or monosyllabic words has resuited in similar resuits. Hence, only the
collapsed distribution for all the syllables in the corpus is presented here.
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3.6 Filter Combinations - Results

A number of e;cpcrirnents were performed to examine the cffect that a combination of the labeling schemes
discussed in the previous sections could have on pruning the 20,000 dictionary. Once again, what we are
interested in is the application of filters that provide crude, first pass, robust classifications that eliminate all
enirics fi'om considcration that do not belong 1o a set of near miss alternatives. The thesis of this paper is that
for a task of this size, prosody might provide a powerful robust near miss mecharism that could potentially
operate in parallel with segmental classification schemes. In this section we will combine some of the
suprascgmental classification schemes developed above with each other as well as with carefully selected sets
of segmental classifications. Above all, it has been our attempt to use classification criteria that we believe can
robustly be derived from the speech signal. The criteria have been selected based on the experien;es gained

from a feature based recognition approach to small vocabulary word recognit.ions.

The results of the various experiments are displayed in Fig.3-8. In all cases the vertical axis shows the ECS
for the various filter combinations. In the first and second column the ECS is given for the case that words
are classified by crude segmental feature patterns only or by duration patterns only, respectively, as discussed
in the previous section. The third column shows the case where primary stress markers were added into the
duration patterns, The resulting ECS of 978 corresponds to an expected pruning of the vocabulary down to
4.9%. The fourth column represents the results for the duration ratios of voiced to unvoiced segments
v/ UV-ratio) ina syllab.le.as discussed in the previous section, In the fifth column the duration labels and the
V/UV ratio-labels were jointly used to classify the vocabulary into 1891 cohorts the largest of which identifies
1411 words (no stress markers were used here). The ECS is-381 (1.9% of the original vocabulary). In column
6, like in column 3, the duration labels, V/UYV ratios as pattern generators are given with the addition of the

primary stress markers whenever appropriate.

Columns 7 and 8 finally illustrate the usage of the suprasegmental filters as in column 6 with the addition
of segmental filters. For segmental filters, two levels of detail were chosen. The first attempts to only capture
very crude phonétic features, e.g., the strong fricatives S, SH, Z, ZH and the voiceless stops P, T, K, CH, J. It
is believed” that these labels can easily be detected in most cases. The resulting ECS is only 62 words which
corresponds to a reductionto 0.3% of the vocabulary. When allowing for a slightly more detailed featural
analysis an even more remarkable search space reduction can be achieved. Included were (see Appendix)
subsets of the closed or open vowels (major g’iteriﬁm in the selection was again identifiability - here the
guideline was whether a particular sound can be robustly classified by a low or high F1. Ambiguous sounds
were left unlabeled and-hence do not appear in the patterns). Moreover voiceless stops werc included as well
as weak and stréng fricatives and the liquids W and WH. 14,080 unique patterns were identified. The largest
cohort contains 94 words. The ECS was found to be 6 words which corresponds to a reduction to 0.03% of the -

. .- scarch space.
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The drop in ECS when combining segmental and suprasegmental features is surprisingly large. This .
behavior might be hypothesized (at least in part) by the complementary nature of the two domains. It appears

that suprascgmental information provides a powerful new perspective to analyze a given unknown uticrance.

For completeness, Fig.3-9 shows the same filter combinations for the frequency weighted vocabulary. As
could be predicted from the previous discussion, the high frequency of the monosyllabic function words
introduces a strong bias towards the propertics typical for monosyllabic words. The most prominent effect in
this case, the comparably small benefit 0{ durational patterns is easily explained by the fact that for
monosyllabic function words only a two way distinction had been made. In contrast, phonetic features,

however crude they may be, provide more discriminatory information in this particular case.
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4. Conclusions

In this paper we have examined the problems and some potential solutions to very large vocabulary
recognition. We have presented a large vocabulary database. Based on synthetic data generated for this
vocabulary, we have shown that prosodic f'éatures as well as a set of phonetic features can provide powerfut
cues to narrow down the large search space given by a very large vocabutary recognition task. The prosodic
features of rhythm arid the ratio of un\ioiced to voiced segments have been found to be largely
complementary to phonetic features, ie., Lﬁey are not redundant. Stress patterns yield little additional

reduction of the search space, given rhythmic (duratiorial) patterns,

Additional prosodic features, such as amplitude patterns and pitch contours have not been examined in this
paper. Such additional, potentially uscful prosodic features as weil as the robustness of those discussed in this
paper will have to be tested in a recognition system. The 1500-word speech database described above will

serve as a starting point for our efforts in this direction.

The present results indicate that the study of prosody might provide substantial additional information for
a very large vocabualary (~20,000 words) isolated word recognition system. Moreover, when expanding
towards connected speech (e.g., a dictation machine), recognition of the prosodic information in speech,

appears indispensable.
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Appendlx | Table of Phonemes and Feature
- - Labels

in the foilowing a table of features is given. The phonetic alphabet in the first column is the Arpabet zis
used by Mi’i‘alk. The labels in the second column indicate voiced (1 or 2), unvoiced (0) segments or other
markers produced by MITalk (-1). In the third column the segmental labels are given: open vowels (o),
closed vowels (c), weak fricatives (v), stfong fricatives (f), voiceless stops (s}, W-sounds (w} and nasals (n).
The labels are in some cases unorthodox depending whether they are readily extractable in speech. The fields
on the right are example words from our corpus. Notice that the syllable boundaries are not adjusted here,

Le,, differ from the representation used for the prosodic measurements.

#C -1 he content word

#F -1 . function word

. -1 » morph boundary

- -1 - syllable boundary

1 -1 b primary stress

2 -1 * secondary stress .

AA 2 0 NOT AU N1 AA T AXP

AE 2 0 HAVE H#C . H.1.AE.V

AH 2 0 OTHER #C.1.AH.DH.~_ER

AOQ 2 0 LONG #C.L.1.A0.NG

AW - 2 0 ouT HCO1 AW T, AXP

AX 2 * ABOUT HC AX.-.B.1.AW.T.AXP
AXP 0 . up AC.1 AH.P.AXP

AXR 1 0 PART H#C.P.1.AXR.T.AXP

AY 2 o NIGHT JHC.N.1.AY.T.AXP

B 0 * BETTER #C.B.1.EH.DX.-.ER

CH 0 S CHURCH H#C.CH.SH.1.ER.CH.SH

) ] » DONE AC.D.1.AH.N

DH 1 v THUS - LHC.DH,1.AH.S

DX 1 . MATTER LH#C.M.1.AE.DX.- ER

EH 2 . THEM #F.DH.EH.M

EL 1 * FINALLY HC.F.1.AY . N.-.EL.*, - L. IY
EM 1 n ISM H#C.1.IH.-.Z.EM

EN 1 n PERSONAL HAC.P.1.ER.S.-.EN.*.-.AX.LX
ER 1 * FIRST .#C.F.1.ER.S.T.AXP

EXR 1 * THERE H#C.DH.1.EXR

EY 2 - MADE HC . M.U1 EY.D.AXP

F 0 v FOR JH#F.F.0XR

G 0 d GOOD A#C.G.1.UH.D.AXP

GpP 0 . GET HC.GP.1.EH.T. AXP

H 0 v HE HF.H. 1Y

HX 0 v PERHAPS H#C.P.ER.- . HX.1.AE.P.S
IH 2 ¢ IN #F . IH.N

IX 2 . MEXICAN HC M1 EH.K.S.* .~ IX.K.*.-.AX.N
IXR 1 c HERE HC . H, 1. IXR

1Y 2 c THESE HF . DH.2,1Y.2Z



£)

J 0 ] JUST #C.J.ZH.1.AH.S.T.AXP
0 s . MAKE AHC.MULLEY K, AXP
KP 0 s CAME AC.KP.1.EY.M
L 1 * LEFT AC.L.U1,EH.F.T AXP
LX 1 . ALWAYS AC. 1 A0.LX. - W.EY.Z
M 1 n MORE ~ L#F.M.2.0XR
N 1 n NO : HC.N.1.0W
NG 1 n THINK HC.TH.1.IH.NG.K.AXP
oW 2 o ONLY J#F .2 0 .N. - L.IY
OXR 1 o COURSE .#C.K.1.0XR.5
oy 2 . POINT ; LHAC.P.1.0Y.N.T.AXP
P 0 ] PEOPLE .* H#C.P.1.1IY.-.P.EL
R 1 > VERY ' . H#C.V.1.EH.R.-.IY
S 0 f 50 HC.5.1.0W
SH 0 f SHOULD #F.SH.UH.D.AXP
T 0 s TO JHEC.T.1.UW
TH 0 v THREE LHAC.TH.R, 1, IY
TQ 1 he WRITING HC.R.1.AY.TQ.*.-.IH.NG
UH 2 . COULD H#F _K.UH.D.AXP
uwW 2 c SCHOOL HCL5.K 1 UW, LX
UXR 1 - YOUR #F.Y ,UXR
v 1 v EVERY L#F.2_EH.V.-.R.1IY
W 1 w WAR - LH#C.W.1,0XR
WH 1 w WHY JHCWH, 1. AY
Y 1 . YOUNG AC. Y. 1. AH NG
YU 1 c HUMAN LH#C.H.1.YU.-.M.AX.N
Z 1 f PRESIDENT HC.P.R.1, EH.Z.- AX.- . TQ.EN.T.AXP
ZH 1 f D.IH.*.-.S.1.IH,ZH.- . AX.N

DECISION .#C.
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