
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS -80 -110

Physical Symbol Systems
Allen Newell

March 1980

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Paper given at the La Jolla Conference on Cognitive Science, 15 Aug 1979.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD) , ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

UNIVERSITY LIBRARIES '
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

A B S T R A C T

Allen Newell, Carnegie-Mellon University

O n the occasion of a first conference on Cognitive Science, it seems appropriate to review the

basis of common understanding between the various disciplines. In my estimate, the most

fundamental contribution so far of artificial intelligence and computer science to the joint enterprise

of cognitive sc ience has been the notion of a physical symbol system, ie, the concept of a broad class

of systems capable of having and manipulating symbols, yet realizable in the physical universe. T h e

notion of symbol so defined is internal to this concept, so it becomes a hypothosis that this notion of

symbols includes the symbols that we humans use everyday of our lives. In this paper we attempt

systematically, but plainly, to layout the nature of physical symbol systems. Such a review is in ways

familiar, but not thereby useless. Restatement of fundamentals is an important excercise.

Table of Contents
1. I N T R O D U C T I O N 1

1.1. Constraints on Mind 4
1.2. Plan 7

2. SS: A P A R A D I G M A T I C S Y M B O L S Y S T E M 9
3. U N I V E R S A L I T Y 16
4. G E N E R A L S Y M B O L S Y S T E M S 25

4.1. Designation. 26
4.2. Interpretation 28
4.3. Assign: The creation of designations 30
4.4. Copy : T h e creation of new memory 31
4.5. Write: The creation of arbitrary expressions 32
4.6. Read: Obtaining the symbols in expressions 33
4.7. Do: The integration and composition of action 34
4.8. Exit-if and Continue-if: T h e conversion of symbols to behavior 35
4.9. Quote: T h e treatment of processes as data 37
4.10. Behave and Input: The interaction with the external world. 38
4.11. Symbol systems imply universality 38

5. T H E P H Y S I C A L S Y M B O L S Y S T E M H Y P O T H E S I S 41
5.1. Why might the Hypothesis Hold? 42

6. R E A L I Z A T I O N S AND S Y S T E M L E V E L S 44
7. D I S C U S S I O N 48

7.1. Knowledge and Representation 48
7.2. Obstacles to Consideration 50
7.3. The Real-time Constraint 52

8. C O N C L U S I O N 54
9. R E F E R E N C E S 56

List of Figures
F igu re 1 - 1 : Constraints on Mind. 4
F igu re 2 -1 : Structure of SS , a paradigmatic symbol system 9
F i g u r e 2 - 2 : Operators of S S 11
F i g u r e 2 - 3 : Operation of S S ' s C o n t r o l 13
F igu re 3 - 1 : Simulation of arbitrary Turing machine by SS . 20
F i g u r e 3 - 2 : Correct simulation of arbitrary Turing machine by SS. 23
F igu re 4 - 1 : Elimination of conditional operators from simulation of Turing machine. 35

PAGE1

PHYSICAL SYMBOL SYSTEMS1

1. INTRODUCTION
The enterprise to understand the nature of mind and intelligence has been with us for a long time.

It belongs not to us alone, who are gathered at this conference, nor even to science alone. It is one of

the truly great mysteries and the weight of scholarship devoted to it over the centuries seems on

occasion so oppressively large as to deny the possibility of fundamental progress, not to speak of

solution.

Yet, for almost a quarter century now, experimental psychology, linguistics and artificial

intelligence have been engaged in a joint attack on this mystery that is fueled by a common core of

highly novel theoretical ideas, experimental techniques and methodological approaches. Though

retaining our separate disciplinary identities, we have strongly influenced each other throughout this

period. Others have been involved in this new attack, though not so centrally - additional parts of

computer science and psychology, and parts of philosophy, neurophysiology and anthropology.

Our communality continues to increase. In consequence, we are engaged in an attempt to bind

our joint enterprise even more tightly by a common umbrella name, Cognitive Science, a new society,

and a new series of conferences devoted to the common theme - the outward and institutional signs

of inward and conceptual progress. O n such an occasion, attempts to increase our basis of mutual

understanding seem to be called for.

In my own estimation (Newell & Simon, 1976), the most fundamental contribution so far of artificial

intelligence and computer science to this joint enterprise has been the notion of a physical symbol

system. This concept of a broad class of systems that is capable of having and manipulating symbols,

yet is also realizable within our physical universe, has emerged from our growing experience and

analysis of the computer and how to program it to perform intellectual and perceptual tasks. T h e

notion of symbol that it defines is internal to this concept of a system. Thus, it is an hypothesis that

these symbols are in fact the same symbols that we humans have and use everyday of our lives.

Stated another way, the hypothesis is that humans are instances of physical symbol systems, and by

virtue of this mind enters into the physical universe.

In my own view this hypothesis sets the terms on which we search for a scientific theory of mind.

Herb Simon would be a co-author of this paper, except that he is giving his own paper at this conference. T h e key ideas are
entirely joint, as the references indicate. In addition,. I am grateful to Greg Harris, J o h n McDermot t Zenon Pylysyhn and Mike
Rychener for detailed comments on an earlier draft.

P A G E 2

What we all seek are the further specifications of physical symbol systems that constitute.the human

mind or that constitute systems of powerful and efficient intelligence. The physical symbol system is

to our enterprise what the theory of evolution is to all biology, the cell doctrine to cellular biology, the

notion of germs to the scientific concept of disease, the notion of tectonic plates to structural

geology.

The concept of a physical symbol system is familiar in some fashion to everyone engaged in

Cognitive Science. Familiar, yet perhaps not fully appreciated. For one thing, this concept has not

followed the usual path of scientific creation, where development occurs entirely within the scientific

attempt to understand a given phenomenon. It was not put forward at any point in time as a new

striking hypothesis about the mind, to be confirmed or disconfirmed. Rather, it has evolved through a

much more circuitous root. Its early history lies within the formalization of logic, where the emphasis

was precisely on separating formal aspects from psychological aspects. Its mediate history lies within

the development of general purpose digital computers, being thereby embedded in the instrumental,

the industrial, the commercial and the artificial - hardly the breeding ground for a theory to cover

what is most sublime in human thought. The resulting ambivalence no doubt accounts in part for a

widespread proclivity to emphasize the role of the computer metaphor rather than a theory of

information processing.

The notion of symbol permeates thinking about mind, well beyond attempts at scientific

understanding. Philosophy, linguistics, literature, the arts - all have independent and extensive

concerns that focus on human symbols and symbolic activity. Think only of Cassirier or Langer or

Whitehead, in philosophy. Consider semantics, concerned directly with the relation between

linguistic symbols and what they denote. O r Jung, in a part of psychology remote from

experimentation and tight theory. These are vast realms of scholarship, by any reckoning.

I cannot touch these realms today in any adequate way. Perhaps, I can let one quote from

Whitehead stand for them all:

"After this preliminary explanation we must start with a definition of symbolism: The human
mind is functioning symbolically when some components of its experience elicit
consciousness, beliefs, emotions, and usages, respecting other components of its
experience. The former set of components are the 'symbols', and the latter set constitute
the 'meaning' of the symbols. The organic functioning whereby there is transition from the
symbol to the meaning will be called 'symbolic reference'." (Whitehead, 1927, pp7-8)

This statement, from over fifty years ago, has much to recommend it. Let it serve as a reminder that

the understanding of symbols and symbolism is by no means brand new. Yet the thread through

computer science and artificial intelligence has made a distinctive contribution to discovering the

nature of human symbols. Indeed, in my view the contribution has been decisive.

P A G E 3

The notion of a physical symbol system has been emerging throughout the quarter century of our

joint enterprise always important, always recognized, but always slightly out of focus as the decisive

scientific hypothesis that it has now emerged to be.

For instance, recall the rhetoric of the fifties, where we insisted that computers were symbol

manipulation machines and not just number manipulation machines. The mathematicians and

engineers then responsible for computers insisted that computers only processed numbers that the

great thing was that instructions could be translated into numbers. On the contrary, we argued, the

great thing was that computers could take instructions and it was incidental, though useful, that they

dealt with numbers. It was the same fundamental point about symbols, but our aim was to revise

opinions about the computer, not about the nature of mind.

Another instance is our ambivalence toward list processing languages. Historically, these have

been critically important in abstracting the concept of symbol processing and we have certainly

recognized them as carriers of theoretical notions. Yet we have also seen them as nothing but^

programming languages, ie, as nothing but tools. The reason why Al programming continues to be

done almost exclusively in list processing languages is sought in terms of ease of programming,

interactive style and what not. That Lisp is a close approximation to a pure symbol system is often not

accorded the weight it deserves.

Yet a third instance can be taken from our own work. When we laid out the notion of physical

symbol system in our book on human problem solving (Newell & Simon, 1972), we did this as an act of

preparation, not as the main point. We focussed the theory on how people solved problems, given

that they were symbol manipulation systems. Even when, a little later, we chose to focus on the

physical symbol system hypothesis per se (Newell & Simon, 1976), it was in the context of receiving an

award and thus we described it as a conceptual advance that had already transpired.

A fourth and final instance is the way information processing systems are presented in cognitive

psychology. Even in the best informed presentations (eg, Clark & Clark, 1977-, Lindsay & Norman,

1977, Rumelhart, 1977) there is little emphasis on symbolic functioning per se. When concern is

* expressed about the adequacy of information processing notions for psychology (eg, Neisser, 1976),

the role of symbolic functioning is not addressed. There are some very recent exceptions to this

picture (Lachman, Lachman & Butterfield, 1979). But some of these (Allport, 1979, Palmer, 1978)

seem to view such developments as rather new, whereas I see them as having been the taproot of the

success in Artificial Intelligence right from the start almost 25 years ago.

In sum, it seems to me, a suitable topic for this conference is to attempt, systematically but plainly,

to lay out again the nature of physical symbol systems. All this will be in some ways familiar, but I

hope far from useless. Restatement of fundamentals is an important exercise. Indeed, I can take my

P A G E 4

text from Richard Feynman. He is speaking of Fermi's law of optics, but it applies generally:

"Now in the further development of science, we want more than just a formula. First we
have an observation, then we have numbers that we measure, then have a law which
summarizes all the numbers. But the real glory of science is that we can find a way of
thinking such that the law is evident." (Feynman, 1963, p26)

Physical symbol systems are becoming for us simply evident. But they are our glory, and it is fitting

that we should understand them with a piercing clarity.

And so, if you cannot stand what I say here as science, then take it as celebration.

1.1. C o n s t r a i n t s on M ind

Let me provide a general frame for the paper. The phenomena of mind have arisen from a complex

of aspects of the physical universe, localized strikingly (though possibly not exclusively) in us

humans. We scientists, trying to discern the physical nature of mind, can cast these aspects as a

conjunction of constraints on the nature of mind-like systems. Then our discovery problem is that of

finding a system structure that satisfies all these constraints. In trying to make that discovery, we can

use any tactics we wish. The constraints themselves are simply desiderata and have no privileged

status.

There is no magic list of constraints that we can feel sure about. Their choice and formulation is as

much a step in the discovery process as solving the constraint satisfaction problem after positing

them. However, it is easy to list some candidate constraints that would find general

acknowledgement. Figure 1-1 presents a baker's dozen.

These constraints are far from precisely defined. Operationalizing the notion of self-awareness

poses difficult problems, however critical it seems as a requirement. Even what constitutes the brain

is open, moving over the last thirty years from an essentially neural view to one that includes

macromolecular mechanisms as well. Not all the constraints are necessarily distinct. Conceivably,

human symbolic behavior and linguistic behavior could be the same, as could development and

learning. Not all constraints are necessarily independent. To be a neural system implies being a

physical system, though there can be reasons to consider the more general constraint separately.

Some of the constraints are familiar back to Aristotle. Others are recent additions. Who would have

thought to add the concern with robustness under error, if computers and their programs had not

exhibited the sort of brittle, ungraceful degradation that we have all come to know so well.

What seems clear is that, when we finally come to know the nature of mind in humans, it will be

seen to satisfy all of these constraints (and others that I have neglected tojist) . And when we finally

come to know the nature of intelligence generally, it will be seen how its variety arises from a release

P A G E 5

1. Behave as an (almost) arbitrary function of the environment (universality).

2. Operate in real time.

3. Exhibit rational, ie, effective adaptive behavior.

4. Use vast amounts of knowledge about the environment.

5. Behave robustly in the face of error, the unexpected, and the unknown.

6. Use symbols (and abstractions).

7. Use (natural) language.

8. Exhibit self-awareness and a sense of self.

9. Learn from its environment.

10. Acquire its capabilities through development.

11. Arise through evolution.

12. Be realizable within the brain as a physical system.

13. Be realizable as a physical system.

F i g u r e 1-1: Constraints on Mind.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

P A G E 6

from some of these constraints.

O u r difficulty, as scientists, is that we cannot solve for systems that satisfy such simultaneous

constraints. Indeed, we cannot usually do better than to generate on one constraint and test on the

others. Thus, particular constraints are taken by various groups of scientists as the frame within

which to search for the nature of mind. One thinks of Ashby (1956) and his formulation in terms of

general differential equation systems, which is to say, basically physically realizable systems. Or the

endeavor of those working in the fifties on self-organizing systems to work within neuron-like systems

(Yovits & Cameron, 1960, Yovits, Jacobi & Goldstein, 1962). Or the emergence of a sociobiology that

works primarily from evolutionary arguments (Wilson, 1975). And, of course, both the

neurophysiologists and the linguists essentially work from within their respective disciplines, which

correspond to constraints in our list. Artificial intelligence works from within the digital computer,

sometimes it seems even from within Lisp. However, the computer is not one of these constraints,

though strongly associated with the first item, and my purpose is not to identify particular constraints

with particular disciplines. The constraints are conceptual aspects of the nature of human mind, and

they must all be taken into account in the final analysis, whatever the starting point.

Which constraint forms a preferred basis from which to conduct the search for the nature of mind?

Most important, a constraint must provide a constructive definition of a class of systems. Otherwise,

search within it cannot occur, because it will not be possible to generate candidates whose properties

can then be explored. Several of the constraints have real difficulty here -- development and learning,

robustness, real-time operation. For instance, we simply have no characterization of all systems that

show development; all we can do is pose a system described within some other class and ask about

its developmental characteristics. The constraint of development must remain primarily a test, not a

generator. On the other hand some constraints, such as using language, do very well. The formalisms

for grammars provide potent generative bases.

The strength of a constraint, or its distinctiveness with respect to mind, also weighs in the balance,

however difficult the assessment of such a characteristic. For example, one real problem with the

evolution constraint is that we know it gives rise to an immense diversity of systems (organisms). It is

not clear how to get it to generate systems that are shaped at all to mind-like behavior. Again

linguistics has fared much better in this regard. For linguistics has appeared, until recently, to be

distinctively and uniquely human. As a last example, one major argument against the universal

machines of logic and computer science has always been that universality had been purchased at the

price of total inefficiency, and a class which relied on such an aspect seemed irrelevant to real

systems.

But such considerations are only preferences. Our joint scientific enterprise demands that

P A G E 7

substantial groups of scientists focus on all these constraints, and their various combinations. It

demands that new constraints be discovered and added to the list, to provide new ways from which to

seek the true nature of mind.

My focus on physical symbol systems in this paper certainly amounts to an argument for taking one

particular class of systems as the base - as the generator - for the search for mind. This class

appears to satisfy jointly at least two of the constraints in the list - universality and symbolic behavior

- and to give good evidence of being able to be shaped to satisfy other constraints as well, while still

remaining usefully generative. But, as the discussion should make clear, this is just an argument over

scientific tactics - over the right way to go about untying the great puzzle knot that is the mind. O n

the matter of scientific substance, we need to understand all we can about all the aspects represented

in these constraints.

1.2. P lan

Let me preview what I intend to do, so as to be as plain and straightforward as possible.

T o present the notion of a physical symbol system, I introduce a specific example system. This

permits a concrete discussion of the key property of universality, the first constraint on our list. With-

this concept in hand, I generalize the example system to the class of all physical symbol systems. This

makes evident that systems that satisfy the constraint of universality also are capable of a form of

symbolic behavior. The Physical Symbol System Hypothesis states in essence that this form of

symbolic behavior is all there is; in p a r t i c u l a r human symbolic behavior. I turn briefly

to the question of system levels, which allows the placement of the symbol level within the larger

frame of physical systems. With ail these elements on the table, I then discuss some issues that are

important to understanding the notion of physical symbol system and the hypothesis, and their role in

cognitive science.

So far I have been careful always to refer to a physical symbol system, in order to emphasize two

facts. First, such a system is realizable in our physical universe. Second, its notion of symbol is a

priori distinct from the notion of symbol that has arisen in describing directly human linguistic, artistic

and social activities. Having been clear about both of these, we can drop the adjective, except when

required to emphasize these two points.

As already stated, the fundamental notion of a physical symbol system presented here is not novel

scientifically. Even the formulation presented does not differ in any important way from some earlier

attempts (Newell & Simon, 1972, Newell & Simon, 1976). I am engaged in restatement and

explication. The details and the tactics of the formulation are new and J hope thereby to make matters

exceptionally clear and to highlight some important features of such systems. Still, it does not follow

P A G E 8

that the notion of physical symbol system and the particular hypothesis about it are accepted by all,

accepted in exactly the form that is given here.

P A G E 9

2. SS: A PARADIGMATIC SYMBOL SYSTEM
Figure 2-1 lays out our example symbol system schematically. We will call it SS (Symbol System)

for short. It is a machine which exists in an environment consisting of objects, distributed in a space

of locations. We can imagine the objects having some sort of structure and dynamics, and doing their

individual and interactive thing in this space.

SS consists of a memory, a set of operators, a control, an input and an output. Its inputs are the

objects in certain locations; its outputs are the modification or creation of the objects in certain

(usually different) locations. Its external behavior, then, consists of the outputs it produces as a

function of its inputs. The larger system of environment plus SS forms a closed system, since the

output objects either become or affect later input objects. SS 's internal state consists of the state of

its memory and the state of the control; and its internal behavior consists of the variation in this

internal state over time.

The memory is composed of a set of symbol structures, { E 1 f E 2 , .. E m } , which vary in number and

content over time. The term expression is used interchangeably with symbol structure. T o define the

symbol structures there is given a set of abstract symbols, {S1t S 2 , S n } . Each symbol structure is

of a given type and has some number of distinguished roles, { R ^ R 2 , . . . } . Each role contains a

symbol, so if we take the type as understood implicitly and the roles as the successive positions on the

paper, we could write an expression as:

[S 1 S 2 . . . S W]

If we wanted to show the roles and the type explicitly we could write:

[T y p e r T R ^ S , R 2 : S 2 . . . R n : S „]

The roles (and their number) are determined by the type, of which there can be a large variety. The

same symbol, eg, S k , can occupy more than one role in a structure and can occur in more than one

structure. By the content of an expression is meant simply the symbols associated with the roles of

the expression.

SS has ten operators, each shown as a separate box in the figure. Each operator is a machine that

takes one or more symbols as input and produces as output some symbol (plus possibly other effects)

as a result. The behavior that occurs when an operator and its inputs combine is called an operation.

The details of the behavior of the system comes from these operations, which we will go over in a

moment.

The behavior of the system is governed by the control. This is also a machine. Its inputs include

the operators: it has access to their inputs and outputs, and can evoke them. It also has as an input

the symbol for a single expression, which is called the active expression. The behavior of the control

P A G E 10 •

ASSIGN

COPY

WRITE

READ

INPUT LJ

Î
RECEPTORS

CONTROL

Active
(Si , . . .)

DO

E X I T - I F

CONTINUE-IF

QUOTE

BEHAVE

F i g u r e 2-1 : Structure of SS, a paradigmatic symbol system

SS: EXAMPLE SYMBOL SYSTEM

MEMORY

(Si, S2, . • • . Sn)

P A G E 11

consists of the continual interpretation of whatever expression is active. If this specifies an operation

to be performed, then the control will bring the input symbols to the input locations of the indicated

operator and then evoke the operator to produce the result, ie, it will effect the combining of data and

operators. The control also determines which expression shall become active next, so that the

behavior of the total system runs on indefinitely. We will describe the control in detail after discussing

the operators.

Figure 2-2 lists the operations of SS. There exists a type of symbol structure, which we will call a

program, which has roles corresponding to an operator and the inputs appropriate to that operator.

These program expressions are shown in the figure at the right.

• A s s i g n a symbol. This establishes a basic relationship between a symbol and the entity
to which it is assigned, which we call access. While it lasts (ie, until the assignment is
changed), any machine (ie, the ten operators and the control) that has access to an
occurrence of this symbol in an expression has access to the assigned entity. If a
machine has access to an expression, then it can obtain the symbols in the various roles
of the expression and it can change the symbols in these roles. Symbols can be
a s s i g n e d to entities other than expressions, namely, to operators and roles. Access to
an operator implies access to its inputs, outputs and evocation mechanism. Access to a
role of a given type implies access to the symbol at that role for any expression of the
given type and access to write a new symbol at that role.

• C o p y expression. This adds expressions and symbols to the system. The new
expression is an exact replica of the input expression, ie, the same type and the same
symbols in each role. A new symbol is created along with the new expression (a
necessity for gaining access to the expression).

• W r i t e an expression. This creates expressions of any specified content. It does not
create a new expression (c o p y does that), but modifies its input expression. What to
w r i t e is specified by giving the roles and the new symbols that are to occupy these roles.
W r i t e permits several symbols to be written with a single operation; it could as well have
permitted only one. For example, given a type with roles R 1 t R 2 , etc., in order, and given
an expression (X Y Z) , (w r i t e (X Y Z) R j A R 3 C) produces a modified expression (A Y C) .
W r i t e establishes a symbol at a given role whether or not there was a symbol at that role
before, and independent of what symbols exist at other roles. W r i t i n g nil at a role
effectively deletes it.

• Read the symbol at a specific role. This obtains the symbols that comprise an
expression, given that the expression has been obtained. It is possible that no symbol
exists for a given role; in this case read produces the symbol nil. (Thus it can be seen
why w r i t ing nil at a role effectively deletes it.)

• Do sequence. This makes the system do arbitrary actions, by specifying that it do one
thing after another. There are an unlimited number of input roles, one for each element in
the sequence. The last expression produced during such a sequence is taken to be the
result of the sequence. All the expressions produced by earlier items in the sequence are
ignored. Of course, actions may have taken place along the way (often referred to as side
effects), eg, assignment of symbols.

P A G E 12

A s s i g n symbol S t to the same entity as symbol S 2

Produces S 1 with new assignment

C o p y expression E (create new symbol)
Produces newly created expression and symbol

W r i t e S t at role R t , i n expression E
Produces the modified expression
nil is the same as doesn't exist

Read symbol at role R of E
Produces the expression or nil

Do sequence S 1 S 2 S 3 . . .
Produces the expression produced by last Sj

Ex i t sequence if the prior result is E
Produces prior expression

C o n t i n u e sequence if the prior result is E
Produces prior expression

Q u o t e the s y m b o l s
Produces S without interpretation

B e h a v e externally according to expression E.
Produces feedback expression

Input according to expression E
Produces new expression or nil

(a s s i g n S 1 S 2)

(c o p y E)

(w r i t e E R 1 S 1 ...)

(read R E)

(do S 1 S 2 . . .)

(ex i t - i f E)

(c o n t i n u e - i f E)

(quote S)

(b e h a v e E)

(input E)

F i g u r e 2 - 2 : Operators of SS

P A G E 1 3

• E x i t - i f and C o n t i n u e - i f . The system behaves conditionally by continuing or exiting .
(terminating) the execution of a sequence. A conditional operator tests if the expression
produced at the immediately preceding step of the sequence is the same as its input
expression. It then takes a specific control action. For example, (do ... A (ex i t - i f A) ...)
would exit, ie, would not complete the rest of the sequence. If symbols A and B designate
different expressions, then (do ... B (c o n t i n u e - i f A) . . .) would also exit. The output of the
operator is the expression tested, which then becomes the output of the sequence if there
is termination.

• Q u o t e a symbol. The control automatically interprets every expression that becomes
active. This operator permits it to not interpret a given expression, but to treat its symbol
as the final result.

• B e h a v e externally. There exists some collection of external behaviors controllable by
SS. Symbol structures of some type exist that instruct the organs that produce this
external behavior. It will be enough to have an operator that evokes these expressions.
Execution of the operator will produce some expression that provides feedback about the
successful accomplishment (or failure) of the external operation.

• Input from environment. Inputs from the external environment enter the system by
means of newly created expressions that come to reside in the memory. These inputs
occur when the input operator is evoked; there may be different channels and styles of
input, so that input takes an expression as input to specify this. The input expressions
are processed when input is evoked, since the resulting expression is interpreted by the
control, though presumably the new expressions are not of type program, but some type
related to describing the external environment.

The operation of the control is shown in Figure 2-3. The control continuously interprets the active

expression. The result of each interpretation is ultimately a symbol, though other actions (ie, side

effects) may have occurred during the act of interpretation, which are also properly part of the

interpretation.

Control interprets the active expression by first determining whether it is a program symbol

structure. Thus the control can sense a structure's type. If it is not a program, then the result of the

interpretation is just the symbol itself (ie, the symbol is treated as data).

If the active expression is a program, then the control proceeds to execute the operation specified

by the program. However, the actual symbols in the program at the roles for the operator and its

inputs must themselves be interpreted. For these symbols might not be the operator and inputs,

respectively, but programs whose interpretations are these symbols. Thus, the control interprets

each symbol in the program, until it finally obtains the actual symbols to be used for the operator and

the inputs. Then , it can actually get the operation performed by sending the input symbols to the

appropriate operator, evoking it, and getting back the result that the operator produces.

Control then interprets the result (as arrived at through either of the routes above). If it is a new

P A G E 14

Interpret the active expression:

If it is not a program:
Then the result is the expression itself.

If it is a program:
Interpret the symbol of each role for that role;
Then execute the operator on its inputs;
Then the result of the operation is the result.

Interpret the result:

If it is a new expression:
Then interpret it for the same role.

If it is not a new expression:
Then use as symbol for role.

F i g u r e 2 -3 : Operation of SS 's Control

PAGE15

expression, then it proceeds to interpret it. If it is not new, then it finally has obtained the symbol.

The control has the necessary internal machinery to interpret each operator or input symbol in a

program until it obtains the symbol finally to be used for each role in the program. This will be the one

that is finally not a program type of structure. The control remembers the pending interpretations and

the results produced so far that are still waiting to be used. The normal way to realize all this in current

technology is with a pushdown stack of contexts; but all that is specified here is end result of

interpretation, not how it is to be accomplished.

We now have an essentially complete description of one particular symbol system. T o generate a

concrete (and particular) behavioral trajectory, it is only necessary to provide an Initial condition,

consisting of the set of initial expressions in the memory and the initial active expression. The system

behaves in interaction with the environment, but this is accounted for entirely by the operation of the

input and b e h a v e , operators. The operation of these two operators depends on the total

environment in which the system is embedded. They would normally be given by definite mechanisms

in the external structure of the system and the environment, along with a set of laws of behavior for

the environment that would close the loop between output and input. From a formal viewpoint the

operation of these two operators can just be taken as given, providing in effect a boundary condition

for the internal behavior of the system.

This sort of a machine is certainly familiar to almost everyone in Cognitive Science, at least in

outline. The virtue of SS, over others that might be even more familiar, is that it is designed to aid

understanding the essential features of symbols and symbolic behavior. There are no irrelevant

details of SS's structure. Each operator (and also the control) embodies a generalized function that is

important to understanding symbolic systems.

The expository virtues of S S aside, it remains a garden variety, Lisp-ish sort of beast.

P A G E 16

3. UNIVERSALITY
That our example symbol system is garden variety does not keep it from being a variety of a very

remarkable genus. Symbol systems form a class. It is a class that is characterized by the property of

universality. We must understand this remarkable property before we can generalize appropriately

from our paradigmatic symbol system to a characterization of the entire class.

Central to universality is flexibility of behavior. However, it is not enough just to produce any output

behavior; the behavior must be responsive to the inputs. Thus, a universal machine is one that can

produce an arbitrary input-output function, that is, can produce any dependence of output on input.

Such a property is desirable for an adaptive, intelligent system, which must cope with environments

whose demands are not known at the time the system is designed. Indeed, this property heads the

constraints in Figure 1-1. Being able to produce any behavior in response to a situation is neither

absolutely necessary nor hardly sufficient for success. But the rnore flexibility the better; and if

behavior is too unresponsive, the system will fail against its environment. Almost all purposive

behavior shows intricate dependence on the environment, ie, shows the flexible construction of novel

input-output functions - an animal circling its prey, a person in conversation with another, a player

choosing a chess move, a student solving a physics exercise, a shopper bargaining with a seller, and

on and on. This was the classic insight of Cybernetics - systems appeared purposive when their

behavior was dependent on the environment so as to attain (or maintain) a relationship; and feedback

was necessary to obtain this dependence with a changing environment. T h e formulation here

separates the ability to produce the dependence (universality) from the way such an ability can be

used to produce purposiveness, the latter residing in the rationality constraint in Figure 1-1.

The property of universality cannot be quite so simply defined. Four difficulties, in particular, must

be dealt with.

The first difficulty is the most obvious. Any machine is a prisoner of its input and output domains.

SS, our example system, presents an abstract machine-centered view, so that the external world is

pretty much what is seen by the machine. But this is deceptive. Machines live in the rea l world and

have only a limited contact with it. Any machine, no matter how universal, that has no ears (so to

speak) will not hear; that has no wings, will not fly. Thus universality will be relative to the input and

output channels. Such a consideration is alleviated in theoretical discussions by the simple expedient

of considering only abstract inputs and ouputs. It can be alleviated in the real world by providing

transducers that encode from one input-output channel to another. Thus, being able to produce any

function between two given domains, permits inducing any function between two other domains, if the

PAGE17

domains are hooked up appropriately. 2 But this interface limit must always be remembered.

The second difficulty is also obvious. In the physical world there are limits - limits* to the speed of

components, to spatial and energy sensitivity, to material available for memory, to reliability of

operation, to name just the more obvious. T o state a tautology: No system can behave beyond its

physical limits. Thus, the universality of any system must be taken relative to such physical

implementation limits.

The third difficulty is more serious. A machine is defined to be a system that has a specific

determined behavior as a function of its input. By definition, therefore, it is not possible for a single

machine to obtain even two different behaviors, much less any behavior. The solution adopted is to

decompose the input into two parts (or aspects): one part (the instruction) being taken to determine

which input-output function is to be exhibited by the second part (the input-proper) along with the

output. This decomposition can be done in any fashion, for instance, by a separate input channel or

by time (input prior to a starting signal being instruction, afterward being input-proper). This seems

like an innocent arrangement, especially since the input-proper may still be as open as desired (eg, all

future behavior). However, it constitutes a genuine limitation on the structure of the system. For

instance, the instruction must have enough capacity to specify all of the alternative functions. (Eg, if

the instruction to a machine consists only of the setting of a single binary toggle switch, then the

machine cannot exhibit three different input-output behaviors.) Most important, the basic

decomposition into two parts has far reaching consequences - it guarantees the existence of

symbols.

The fourth difficulty is the most serious of all. There appears to be no way that a universal machine

can behave literally according to any input-output function, if the time over which the behavior is to

occur is indefinitely extended (eg, the entire future after some period of instruction). This is the

import of the discovery of non-computable functions, which is an important chapter in the theory of

computing machines (Minsky, 1967, Brainerd & Landweber, 1974). The difficulty is fundamentally that

there are too many functions - too many ways to have to instruct a machine to behave.

This can be appreciated directly by noting that each instruction to the machine, no matter how

complex, is simply a way of naming a behavior. Thus, a machine cannot produce more distinct

behaviors than it can have distinct instructions. Let the number of possible instructions be K. The

number of behaviors is the number of input-ouput functions; so if there are M possible inputs and N

possible outputs, then the number of behaviors is N M (ie, the assignment of one of the N possible

T h e internal domains must have enough elements to permit discrimination of the elements of the external domains, a

condition which Ashby (1956) called the Law of requisite variety.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PJTTSBURGH. PENNSYLVANIA 152

PAGE18

outputs for each of the M inputs). Thus, K instructions must label N M behaviors. If K, M and N are all

in the same range, then N M is going to be very much bigger than K. Now, as time is permitted to

extend indefinitely into the future, all three possibilities (K, M and N) will grow to become countably

infinite. But, though K (the number of instructions) grows to be countably infinite, N M (the number of

functions to be labeled) grows much faster to become uncountably infinite. In sum, there simply are

not enough possible instructions to cover all the functions that must be named.

If all possible functions cannot be attained, then some way must be found to describe which can

and which cannot. Therein lies a further difficulty. Suppose a descriptive scheme of some sort is

used, in order to say that a given machine can realize functions of certain descriptions and not

functions of other descriptions. What do we know then about the functions that are not describable

by the given scheme? We have confounded the properties of the descriptive scheme with the

properties of the machine. Indeed, the suspicion might arise that a connection exists between

descriptive schemes and machines, so that this difficulty is part and parcel of the main problem itself.

The solution has been to take the notion of a machine itself as the keystone. Direct description of

behavior is abandoned, and in its place is put the behavior produced by such and such a machine.

For any class of machines, defined by some way of describing its operational structure, a machine of

that class is defined to be universal if it can behave like any machine of the class. This puts simulation

at the center of the stage; for to show a given input-output behavior is to simulate a machine that

shows that input-output behavior. The instructional input to the machine must now be some means of

describing any arbitrary machine of the given class. The machine whose universality is being

demonstrated must take that input and behave identically to the machine described by its input, ie, it

must simulate the given machine.

The notion of universality thus arrived at is relative, referring only to the given class of machines.

Universal machines could exist for classes of machines, all right, but the input-output functions

ecompassed by the whole class could still be very limited. Such a universal machine would be a big

frog in a small pond of functions.

The next step is to attempt to formulate very large classes of machines, by means of general

notions of mechanism, in order to encompass as wide a range of input-output functions as possible.

(The input and output domains are always taken to be intertranslatable, so the relevant issue is the

functional dependence of output on input, not the character of the inputs and outputs taken

separately.) Another important chapter in the theory of computing (Minsky, 1967, Brainerd &

Landweber, 1974) has shown that all attempts to do this lead to classes of machines that are

equivalent in that they encompass in toto exactly the same set of input-output functions. In effect,

there is a single large frog pond of functions no matter what species of frogs (types of machines) is

PAGE19

used. But the frog pond is just a pond; it is not the whole ocean of all possible functions.

That there exists a most general formulation of machine and that it leads to a unique set of

input-output functions has come to be called Church's thesis, after Alonzo Church , the logician who

first put forth this claim with respect to one specific formulation (recursive functions) (Church, 1936).

Church's statement is called a thesis, because it is not susceptible to formal proof, only to the

accumulation of evidence. For the claim is about ways to formalize something about the real world,

ie, the notion of machine or determinate physical mechanism. Self evidently, formal proof applies only

after formalization. The most striking evidence has been the existence of different maximal classes of

machines, derived from quite different formulations of the notion of machine or procedure, each of

which turns out to be capable of producing exactly this same maximal set of functions.

A large zoo of different formulations of maximal classes of machines is known by now -- Turing

machines, recursive functions, Post canonical systems, Markov algorithms, all varieties of general

purpose digital computers, most programming languages (viewed as specifications for a machine).

As a single neutral name, these classes are interchangebly called the effectively computable

procedures and the functions that can be attained by the machines are called the computable

functions.

These maximal classes contain universal machines, ie, machines that, if properly instructed

through part of their input, can behave like any other machine in the maximal class. But then they can

produce all the input-output functions that can be produced by any machine, however defined (ie, in

any other maximal class). It is these machines that that are usually referred to as universal machines.

From now on this is what we shall mean by universal. The proofs of the existence of these universal

machines are also part of this early great chapter in the theory of logic and computers.

SS, our paradigmatic symbol system, is universal. Thus, it has as much flexibility as it is possible to

obtain. It is useful to show that SS is universal. It is easy to do and its demonstration will make the

notion transparent and keep it from accruing any mystery. Having the demonstration will also provide

us with an example of a program in SS, which will clarify any confusing points in its definition. We will

also be able to use this demonstration to support several points about general symbol systems, when

we examine them in the next section.

To show S S is universal all we need to show is that it can simulate any member of a class of

machines already known to be a maximal class. Let us choose the class of Turing machines: It is

simple, classical, and everyone knows that it is a formulation of a maximal class.

At the top, Figure 3-1 shows a classical one-tape Turing machine. There is a single unending tape,

with each cell holding a 0 or a 1. There is a control, which has a single reading head at a given cell of

PAGE20

the tape. The control is in one of a finite set of states, Q1, Q2, Q n . For the control to be in a

particular state implies it will do the following things:

• It will read the symbol on the tape, ie, detect whether it is 0 or 1.

• It will write a symbol on the tape, either a 0 or 1 (as determined by the state and the
symbol read).

• It will move the tape head one square, either to the left or the right (as determined by the
state and the symbol read).

• It will change itself to be in a new state (as determined by the state and the symbol read).

• Instead of going to a new state, the machine may come to a halt.

Nothing is said about what sorts of physical arrangements are used to create the set of states for a

given Turing machine and make it behave in the way specified. But we can write down for each state

what it will do, and we have done this in Figure 3-1 for a couple of states (Q1, Q2, etc.). For each state

we have two entries, depending on whether the tape cell has a 0 or a 1: the symbol to be written on

the tape (either a 0 or a 1); whether to move left or right; and the state to go to. If a special next state,

halt, is given, the machine halts.

Any machine built to behave this way is a Turing machine. Turing machines differ only in the

number of states they have and in what happens at each state, within the limits described above.

However, the class of all Turing machines is very large - by using enough states (and it may take a

very large number) the input-output behavior of any physical mechanism can be approximated as

closely as required. It is one of these maximal class of machines, even though a Turing machine's

moment by moment behavior seems very restricted.

The bottom of Figure 3-1 gives the program in S S that simulates an arbitrary Turing machine. T h e

Turing machine itself must be represented. This is done entirely within the memory of SS, rather than

in terms of the external input and ouput interfaces of SS. For any reasonable input and b e h a v e

operators this extra translation would be straightforward. The representation uses three types of

symbol structures, one for the tape cell and the other two for the state of the Turing machine control.

The tape cell has three roles: content holds the tape-symbol, either 0 or 1;. left holds the symbol for

the tape cell to the left; and right holds the symbol for the tape cell to the right.. T h e Turing machine

state has two roles: if-0 to hold the specifications for what to do if the tape cell.holds 0; and /7-7 for

what to do if the tape holds 1. Each specification (the third symbol structure type) has three roles:

content holds the tape-symbol to be written, either 0 or 1; move holds the direction to move the tape,

either left or right; and next holds the symbol for the next state to go to.

There is a single program expression, called T M , which accomplishes the simulation. T M consists

PAGE21

Vi I o 1 o 11 | o o | 1 1 1 1 1 |oR>

Q 1 and 0: <0 Left Q3>
Q 1 and 1: <1 Left Q7>
Q2 and 0: <1 Right Q1 >
Q2 and 1: <0 Left Q8>
Q3and 0: <1 Left Q9>
Q3and 1: <0 Right Q2>

T 3 : [c o n t e n t : 0 l e f t : T 2 r i g h t : T 4]

0 2 : [i f - 0 : [c o n t e n t : 1 m o v e : r i g h t n e x t : Q l]
i f - l : [c o n t e n t : 0 m o v e r l e f t n e x t : Q 8]]

TM: [d o

[d o [r e a d c o n t e n t T] [c o n t i n u e - i f 0] [a s s i g n A [r e a d i f - 0 S]]]

[d o [r e a d c o n t e n t T] [c o n t i n u e - i f 1] [a s s i g n A [r e a d i f - 1 S]]]

[w r i t e Î c o n t e n t [r e a d c o n t e n t A]]

[a s s i g n T [r e a d [r e a d move A] T]]

[a s s i g n S [r e a d n e x t A]]

TM]

F î g u r e 3-1 : Simulation of arbitrary Turing machine by SS ,

PAGE22

of do ing a sequence of six subprograms, each of which accomplishes one step of the basic

definition. There is a symbol T for the current tape cell under the head, a symbol S for the current

state of the Turing machine control, and a symbol A, for the actions specified by the state (which will

be different depending on the tape symbol). The program is shown as a single nested expression with

many subexpressions. This is simply for convenience of reading; it does not indicate any additional

properties of SS. Complex subexpressions are constructed entirely through the use of assignment.

In each case what occurs in an expression is a symbol, which is assigned to the subexpression. Thus,

the actual representation of T M is:

T M : [do TM1 TM2 TM3 TM4 TM5 TM]

T M 1 : [d o T M 1 1 TM12TM13J

TM11: [r e a d content T]

TM12: [c o n t i n u e - i f 0]«

TM13: [a s s i g n A TM131]

T M 1 3 1 : [r e a d i f - 0 S]

TM2: . . .

And so on through the whole expression.

Let us take up the steps of TM in order.

1. The first step reads the symbol on the tape and if it is 0 assigns the symbol A to be the
actions specified in case 0 occurs, ie, the substructure at if-0.

2. The second step similarly assigns A to be the actions specified at if-1, if 1 is the tape
symbol. (Only one of the two possible assignments to A will occur, since they are
mutually exclusive.)

3. The third step writes the symbol specified via A into the tape-cell. This is a simple transfer
of a symbol; it even occupies the same role in both structures, ie, content.

4. The fourth step moves the tape left or right by using the symbol specified via A as the role
symbol to extract the left or right link from the tape-cell.

5. The fifth step is to assign S to be the next state as specified via A.

6. The sixth and final step is to do T M again, which repeats the entire interpretation, now on
the changed values of T and S.

This demonstration of universality is transparent, because the universality of some given system

(here, Turing machines) has already been established, and the system itself (here, SS) has reasonable

PAGE23

properties as a programming system.

Of course, it is necessary that the program be correct. In fact, two bugs exist in the present version.

One arises because we didn't take care of halting. This requires more conventions: The Turing

machine halts if the symbol halt occurs for the next state; then T M should exit and return to whatever

program executed it, with the current tape cell (T) as output. The other bug arises because the tape

for a Turing machine is of indefinite extent, while the representation of the tape in SS necessarily

consists of only a finite number of symbol structures, one for each cell. It is necessary for the

simulation to extend the tape in either direction, if it runs off an end. Again, by convention, the symbol

tape-end occurring in a tape cell at either left or right will indicate the end of the tape.

Just for completeness, a correct version of the program appears in Figure 3-2. To correct the first

bug, a top level program TM-Exec is defined, which simply executes T M and, when it is done, outputs

T. Correspondingly, T M now tests if the new S is halt and exits if it is. For the other bug, T M senses

whether the next tape cell is the symbol tape-end and, if so, extends the tape. This occurs en passant

within the expression for moving the tape, [a s s i g n T [read [read move A] T]] , by performing the

regular operation within a do-sequence where it can continue if tape-end is found. It then creates a

new tape cell (calling it New-T) and links it up in the several ways necessary. It ends by handing the

new cell (as New-T) to the a s s i g n operator, just as if that cell had been found initially.

PAGE24

J M - E x e c : [d o TM T]

TM: [d o

[d o [r e a d c o n t e n t T] [c o n t i n u e - i f 0] [a s s i g n A [r e a d i f - 0 S]]]

[d o [r e a d c o n t e n t T] [c o n t i n u é - i f 1] [a s s i g n A [r e a d i f - 1 S]]]

[w r i t e T c o n t e n t [r e a d c o n t e n t A]]

[a s s i g n T [d o [r e a d [r e a d move A] T]

[c o n t i n u e - i f t a p e - e n d]

[a s s i g n New-T [c o p y T]]

[w r i t e New-T c o n t e n t 0 [r e a d [r e a d move A] o t h e r] T]

[w r i t e T [r e a d move A] N e w - T]

N e w - T]]

[a s s i g n S [r e a d n e x t A]]

[e x i t - i f h a l t]

TM]

o t h e r : [r i g h t : 1 e f t 1 e f t : r i g h t]

F i g u r e 3 - 2 : Correct simulation of arbitrary Turing machine by SS .

PAGE25

4. GENERAL SYMBOL SYSTEMS
We can now describe the essential nature of a (physical) symbol system. We start with a definition:

Symbol systems are the same as universal machines.

It may seem strange to define symbol systems to be universal machines. One would think that

symbol systems should be defined to be that class of systems that has symbols according to some

abstract characterization. Then it would be a fundamental theoretical result that symbol systems were

universal. However this way is not open to us, without a certain amount of scientific legerdemain. The

fact is we do not have an independent notion of a symbol system that is precise enough to

counterpoise to a universal machine, and thus subsequently to prove their equivalence. Instead, we

have discovered that universal machines always contain within them a particular notion of symbols

and symbolic behavior, and that this notion provides us for the first time with an adequate abstract

characterization of what a symbol system should be. Thus, tautalogically, this notion of symbol

system, which we have here called physical symbol system, is universal.

Does not SS, the machine we have just defined, provide a paradigmatic example that could be

suitably generalized to define the class of symbol systems? True, SS was put together precisely to

bring out the essential properties of symbols. Alas (for such an enterprise), SS and all its kindred have

emerged simply as reformulations of the concept of universal machines. Historically, we are genuinely

in the position of discovers, not inventers. For analytic purposes we can certaintly now propose

axiomatic formulations of symbol systems and prove their equivalence to universal machines. But I

prefer an exposition that emphasizes the dependence, rather than the independence, of the notion of

(physical) symbol system on the notion of universal machines.

Thus , our situation is one of defining a symbol system to be a universal machine, and then taking as

a hypothesis that this notion of symbol system will prove adequate to all of the symbolic activity this

physical universe of ours can exhibit, and in particular a jUhe symbolic activities of the human mind.

In regard to our list of constraints of mind in Figure 1-1, two seemingly separate constraints

(universality and using symbols) have been satisfied by a single class of systems.

We can now proceed to the essential nature of symbols and symbolic behavior in universal

systems, and to their generality. Note, however, that universal machines provide a peculiar situation

with respect to what is essential. Every universal machine exhibits in some form all the properties of

any universal machine. T o be sure, differences exist between universal machines - in primitive

structure, in processing times, in sensitivities, and in processing reliabilities. Though important -

even critical - for some aspects of the phenomena of mind, these differences are not critical for the

nature of symbols. Thus, when we focus on certain properties, we are providing an emphasis, rather

than separating what cannot in truth be separated.

PAGE26

We start with a discussion of designation and interpretation. Then we go through the operators of

SS. Though defined as specific operators for a specific machine, each corresponds to a.general

functional capability. Each operator thus raises the question of the necessity of this functional

capability to a symbol system and also of the forms that it can take in alternative implementations

while still accomplishing the essential function.

4.1. D e s i g n a t i o n .

The most fundamental concept for a symbol system is that which gives symbols their symbolic

character, ie, which lets them stand for some entity. We call this concept designation, though we

might have used any of several other terms, eg, reference, denotation, naming, standing for,

aboutness, or even symbolization or meaning. The variations in these terms, in either their common

or philosophic usage, is not critical for us. Our concept is wholly defined within the structure of a

symbol system. This one notion (in the context of the rest of a symbol system) must ultimately do

service for the full range of symbolic functioning.

. Let us have a definition:

Designation: An entity X designates an entity Y relative to a process P, if, when P
takes X as input, its behavior depends on Y .

There are two keys to this definition. First, the concept is grounded in the behavior of a process.

Thus, the implications of designation will depend on the nature of this process. Second, there is

action at a distance: the process behaves as if inputs remote from those it in fact has effect it. This is

the symbolic aspect, that having X (the symbol) is tantamount to having Y (the thing designated).

The symbols in SS satisfy this definition of designation. There are a set of processes (the operators

and the control) to which symbols can be input, and when so input the processes behave as a

function, not of the symbols themselves, but of what the symbols have been assigned to, what,

therefore, they designate.

The question of what symbolization implies in SS can only be worked out by understanding the

nature of these processes, which can now be called symbolic processes. That these processes taken

together are sufficient for attaining universality states the biggest implication. That this universality is

attained only because of the existence of symbols provides the conceptual knot that makes the notion

deep.

In SS , the second aspect of the definition is provided by the mechanism of access, which is part of

the primitive structure of SS. It provides remote connections of specific character, as spelled out in

describing a s s i g n . This specification is generated by enumerating for each of the ten operators plus

the control the precise access needed to carry out their specified operations. Exactly these and no

PAGE27

other forms of access are needed. This access is needed to exactly three types of entities: symbol

structures, operators and roles in symbol structures. Thus, access is no homunculus, providing that

this finite set of primitive properties can be realized in physical mechanisms. We already know,

through our experience with digital computers, that this is not only possible but eminently practical.

The great magic comes because this limited capability for accessing supports a general capability

for designation. The set of processes must be expanded to include programs, and their inputs must

be taken to include expressions. Then , for any entity (whether in the external world or in the memory),

if an expression can be created at time T that is dependent on the entity in some way, processes can

exist in the symbol system that, at some later time T\ take that expression as input and, behaving

according to the recorded structure, behave in a way dependent on the entity. Hence these

expressions designate the entity.

An important transitive law is illustrated in this, in which if X designates Y and Y designates Z, then

X designates Z. In the case in point, there is first the acquisition which, through access to the actual

external structure, creates a structure in the memory of the system that depends on this external

entity; then the preservation of that memory structure through time yields a memory structure at some

later time that still depends on the object; finally, the access associated with the internal symbol

makes that structure available to a process, which then behaves accordingly, impressing it on still

another entity and instantiating the relation of designation.

Because of the universality of symbol systems, the scope of this capability for designation is wide

open and hardly yet explored. T o repeat an earlier remark, the power of a designatory capability

depends entirely on the symbolic processes to which it is coupled. If these processes are restricted

enough, the total system may be able to accomplish little; if they are universal, then the total system

may be able to do all that is required in human symbolization.

This general symbolic capability that extends out into the external world depends on the capability

for acquiring expressions in the memory that record features of the external- world. This in turn

depends on the input and b e h a v e operators, whose details have not been described, but which limit

access to the external world in some fashion. Such limits do not affect the capability of the symbol

system to designate arbitrary entities, though they might limit the extent to which such capabilities

could be utilized by a given system.

Designation is at the heart of universality. For one machine to behave as an arbitrary other

machine, it must have symbols that designate that other. O n c e the input of the to-be-universal

machine is separated into two parts, one of which is an instruction about something outside the

machine (to wit, the other machine), there is no way out from generating some symbolic capability.

That this symbolic capability should be general enough to encompass all notions of symbolic action

PAGE28

derives (if indeed it is true) from the scope of what was to be symbolized, namely any input-output

function. But the kernel of the notion of symbols arrived by the single act of getting a machine to act

like something other than it is.

A distinctive feature of SS is taking the general capability for symbols and access as central. Most

formalizations of the notion of universal machine (all but those such as Lisp that stem from the work in

artificial intelligence) take as central a more primitive capability for accessing, reflecting an interest in

showing how universality can be built up by a machine. For instance, the Turing machine has

symbols for the states of the control. These have the property of access, but are fixed and

unchangeable - - symbols cannot be created or re-assigned. They do not provide the indefinitely

extendable symbol system that is required for universality, but only some of the machinery for it. The

indefinitely extendable symbol system is constructed as an addressing scheme on the (indefinitely

extendable) tape. The construction is made possible by the tape movement operators, which provide

the primitive accessing capability.

The underlying physical mechanism for obtaining access is some sort of switching mechanism,

that opens up a path between the process and the thing accessed. There are a wide variety of such

switching mechanisms, but they are closely related to search. If the medium is recalcitrant, eg, the

Turing machine tape, the symbol system is implemented through a linear search of the tape and a

match of a finite set of tape-symbols that serves to address the expression accessed. In more

perspicuous media, eg, a preorganized addressing switch for a random access memory, the

implementation takes features from the symbol token (the address) and uses them to construct a

direct path to the requisite location.

The usual formulations of universal machines also tend to use the term symbol for the alphabet of

distinctive patterns that can occur in the memory medium (eg, the 0 and 1 tape symbols for our Turing

machine). As defined, these entities are not symbols in the sense of our symbol system. They satisfy

only part of the requirements for a symbol, namely that of being the tokens in expressions. It is of

course possible to give them full symbolic character, by programming an accessing mechanism that

gets from them to some data structure. Table-look up mechanisms provide one scheme. Actually, the

alphabet of such symbols is usually quite small (eg, only two for our version of a Turing machine), so

they operate more like letters, ie, the elements out of which a genuine set of symbols can be

constructed.

4 .2 . I n t e r p r e t a t i o n

The term interpretation is taken here in the narrow sense it has acquired in computer science:

P A G E 2 9

Interpretation: The act of accepting as input an expression that designates a process
and then performing that process.

All of the behavioral flexibility of universal machines comes from their ability to create expressions

for their own behavior and then produce that behavior. Interpretation is the necessary basic

mechanism to make this possible. The general designatory capabilities of symbol systems underly the

ability to create the designating expressions in the first place. Although little can be said about exact

boundaries, some interior milieu must exist within which the symbol system can freely and

successfully interpret expressions. Given this, obtaining other performances according to

specification can be compromised in various ways, eg, by error, by indirect and shared control or

whatever.

The symbols that designate operators are absolutely essential and no quantity of symbols for

expressions or roles can substitute for them. These are the symbols that have an external semantics

wired into them - which finally solve Tolman's problem of how his rats, lost in thought in their

cognitive maps, could ever behave. The number of such symbols can be shrunk by various

encodings and parametrizations, but it cannot vanish. Equally (and more likely for real systems), the

number can be much larger and the decomposition can be radically different than for SS.

The control exhibits a basic tripartite decomposition of the total processes of the machine, which

can be indicated by (control + (operators + data)). Behavior is composed by one part, the control,

continually bringing together two other parts, the operators and the data, to produces a sequence of

behavior increments (ie, the operation formed by the application of the operator to the data). This will

be recognized as familiar from every computer, programming language and mathematical system. 3

This structure can be taken as an essential organizational feature of all symbolic systems.

This organization implies a requirement for working memory in the control to hold the symbols for

the operator and data as they are selected and brought together. O u r description of SS in Figure 2-1

shows only the place for the active symbol and for the input and output symbols for the operators.

This is the tip of the iceberg; perusal of Figure 2-3 shows that additional working memory is needed.

What memory will vary with the type of universal machine, but some is always implied by the act of

decomposition. Thus working memory is an invariant feature of symbol systems.

However, many things about the control of SS are not invariant at all over different types of

universal symbol systems. O n e must be careful to treat SS as a frame for describing functional

capabilities, abstracting away from many of its structural features. Three examples of this are:

3

Mathematics exhibits the application of operator to data, ie, function to argument, while leaving the control indeterminate,
ie, in the hands of the mathematician.

PAGE30

• SS's control requires an unbounded amount of memory (essentially a pushdown stack)
because the nesting of programs can be indefinitely extended. This is inessential, though
it makes for simplicity. Normally control is a fixed machine with fixed memory; and
regular memory (which is unbounded) is used according to some memory management
strategy to handle excessive embedding.

• SS has a serial control, ie, a single control stream. This is inessential, though it also
makes for simplicity. There may be multiple control streams of all sorts. The input and
b e h a v e operators may both be evoked and operate in parallel. There may be multiple
controls, a few or many, functionally specialized or all equivalent, and interconnected in a
variety of ways. The parallel units may themselves be universal machines, or limited
controllers, or only operators. Under some conditions the resulting processing aggregate
is not universal, under many it is.

• SS is a totally reliable system, nothing in its organization reflecting that its operators,
control or memory could be errorful. This is inessential, though it again makes for
simplicity. As was noted earlier, universality is always relative to physical limits, of which
reliability is one. Once fundamental components are taken as having probabilities of
failure, then ultimate performance is necessarily probabilistic. If failure probabilities are
significant, the system organization can include counteracting features, such as
checking, redundant processing and redundant memory codes. Up to a point universality
can be maintained as a practical matter; at some point it is lost.

All of these complexities are important in themselves, and some of them lie behind other

constraints in Figure 1-1. They do not seem of the essence in understanding the nature of symbolic

capability.

4 .3 . A s s i g n : T h e c r e a t i o n of d e s i g n a t i o n s

The function of the a s s i g n operator is to create a relation of access, hence of designation,

between a symbol and an entity. It is, of course, limited to the access relations supported by the

underlying machinery of SS : between SS's symbols and SS's expressions, roles and operators.

A s s i g n implies several important properties:

At any time, a symbol designates a single entity.
Many symbols can designate the same entity.
A symbol may be used to designate any entity.

SS provides absolute and uniform adherence to these properties, but this is not necessary. For

instance, from SS's simulation of a Turing machine, it can be seen that the requirements for multiple

assignment and for reassignment of a symbol to an arbitrary entity are needed only for the small set of

working symbols used in the T M program (T, S and A). All the other symbols (content, do , TM,...) can

have fixed assignments. From this, the more general capability can be built up - which is what

programming the simulation demonstrates.

PAGE31

The situation here generally applies. Small amounts of the requisite capabilities can be parlayed

into the full fledged capability. The minimal conditions are rarely interesting from a theoretical view,

though successful elimination of an entire functional capability can be revealing. Minimal basic

capabilities often imply gross inefficiencies and unreliabilities. Typical is the additional level of

interpretation if simulation is used to recover the additional capabilities (as in our example). Thus ,

symbol systems that satisfy additional constraints of Figure 1-1 are likely to satisfy pervasively such

properties as those above.

it is often observed that the symbols of formal systems are totally abstract, whereas symbols as

used by humans often have information encoded into the symbol itself, ie, that it is not arbitrary what a

symbol is used for. The word for not being happy is "unhappy" , in which some knowledge about what

the word designates is available from an analysis of the word itself. In plane geometry small letters (a,

b, ...) are sides of triangles and capital letters (A, B, ...) are their opposite angles. In general, the use

(and usefulness) of encoded names has no bearing on the basic nature of symbol systems. Encoded

names can be taken as to be abstract symbols with bound expressions that provide the information in

the encoded name. Thus, one expression has been granted a preferred access status. Though the

assignment of symbols to entities has been limited, this will have an effect only if no freely assignable

symbols remain as part of the system.

4 .4 . C o p y : T h e c r e a t i o n of n e w m e m o r y

By applying c o p y whenever needed, SS obtains both an unbounded supply of expressions (hence

of memory) and of symbols. That c o p y creates a copy is unessential, though by doing so it

accomplishes a sequence of reads and wr i tes . The essential aspect is obtaining the new expression

and the new symbol. Neither can be dispensed with.

One of the few necessary conditions known for universal machines is:

A universal machine must have an unbounded memory.

The classical machine hierarchy of finite state machines, pushdown automata, linear bounded

automata and Turing machines, expresses the gradation of capability with limitations in memory

(Hopcroft & Ullman, 1969). Though essential, the condition of unboundedness is of little import, since

what counts is the structure of the system. In all cases, the structure of the unbounded memory must

eventually become uniform. Eg, ultimately SS has just a supply of undifferentiated stuff out of which to

build expressions; the Turing machine has just a supply of undifferentiated tape cells. Thus, for every

machine with unbounded memory, there are machines with identical structure, but bounded memory,

that behave in an identical fashion on all environments (or problems) below a certain size or

complexity.

PAGE32

The unimportance of actual unboundedness should not be taken to imply the unimportance of

large memory. The experience in Al is everlastingly for larger effective memories (ie, memories with

adequately rapid access). A key element in list processing was the creation of dynamic memory,

which effectively removed the memory limit problem from the operation of the system, while, of

course, not removing it absolutely (ie, available space eventually runs out). It is no accident that

humans appear to have unbounded long term memory. Thus, rather than talk about memory being

actually unbounded, we will talk about it being open, which is to say, available up to some point,

which then bounds the system's performance, both qualitatively and quantitatively. Limited, in

opposition to open, will imply that the limit is not only finite, but small enough to force concern .

Correspondingly, universal can be taken to require only sufficiently open memory, not unbounded

memory.

Symbols themselves are not memory; only expressions are. Though in S S symbols and expressions

come into existence together, they are independent and could have separate c r e a t e operators.

Many symbols may be assigned to a single expression and many expressions may have the same

symbol (over time) or may be unsymbolized and be accessible through other means. Symbols are the

patterns in the symbol structure that permit accessing mechanisms to operate. Having an open

number of symbols, but only a limited amount of memory, isn't sufficient for a universal machine. O n

the other hand, with only a limited set of symbols, but an open supply of expressions, it is possible to

create an open set of symbols. The use of a limited alphabet to create words is paradigmatic.

However, just the anatomy of alphabets and words does not reveal the key issue, which is the

construction of an accessing mechanism that makes the words behave like symbols, ie, designate.

SS actually has an open supply of expressions of each type (and exactly what types exist was not

specified). As might be expected, only a single source of openness is needed, providing it is not

peculiarly tucked away, as in a pushdown stack. Further, SS's definition does not specify whether

expressions themselves are limited or whether some of them can be open. This is again an

unessential issue, as long as at least one open source is available for construction of whatever

facilities are needed. The creation of an open structure-type, the list, out of an open set of

expressions of a limited structure-type, the pair consisting of a symbol and a link, is paradigmatic.

Though conceptually simple, such a construction was a major step in creating appropriate symbol

systems.

4 .5 . W r i t e : T h e c r e a t i o n of a r b i t r a r y e x p r e s s i o n s

Another obvious, but important, necessary capability of a universal machine is:

PAGE33

A universal machine must be able to create expressions of arbitrary character.

SS does this through a single uniform operator, w r i t e ; though there are indefinitely many complex

and indirect ways of attaining the result. To be unable to create an expression, by any means at all,

would imply a failure to be universal (eg, to simulate a machine that did produce that expressions as

an output).

In the usual way of specifying universal machines, particular representations are used for the

expressions, eg, the Turing tape or Lisp lists. Much of the idiosyncracy of such systems arises from

the need to encode all structures of interest into this fixed structure. SS has remained general on this

score, admitting only a basic capability for having expressions with distinct roles. Thus, we simply

defined a new data type for each entity we needed to discuss, eg, programs, tape cells, and machine

states.

It is unclear how to state the fundamental capability provided by expressions, though easy enough

to exhibit it in simple and paradigmatic form. It is not enough to have only symbols. Expressions

permit more than one symbol to be brought together in a way that is not determined wholly by the

symbols, but provides additional structure, hence discriminability. This is what SS has in the roles —

actually, in the association from the role symbol to its content symbol. There is an indefinite number

of ways to provide such added structure to yield symbol expressions.

In SS's scheme, the symbols for roles are relative symbols. They differ in this respect from the

symbols for expressions or operators, which are absolute. Given the symbol move, which designates

the role in the tape-cell of the Turing machine, the processes that take roles as input, namely w r i t e

and read , can access the appropriate location in any tape-cell expression. Thus, role symbols are

functions of one input (the expression), and akin to operators. These relative role symbols can be

replaced by absolute symbols that uniquely designate the locations in particular expressions, though

an additional operator is required to obtain these location symbols. This is the standard recourse in

common programming languages, which provide addresses of list cells and array cells. Thus, all

symbols can be absolute, with all context dependence relegated to a limited set of operators.

4 .6 . R e a d : O b t a i n i n g t h e s y m b o l s in e x p r e s s i o n s

R e a d is the companion process to w r i t e , each being necessary to make the other useful. R e a d

only obtains what was put into expressions by w r i t e at an earlier time; and a w r i t e operation whose

result is never read subsequently might as well not have happened. 4

4
This is too strong: the read operator is not the only process that reads expressions, control at least reads programs; and if

the expression might have been read but wasn't because of a contingency in the environment, then the write operator still
would have been useful, analogous to insurance that is never cashed.

PAGE34

The read -w rite coupling emphasises another necessary principle of symbol systems:

Memory must be stable.

Though much less investigated than the question of amount of memory, this principle is of the same

character. In so far as memory is unreliable, the ability of the symbol system to deliver a given

> input-output function is jeopardized. Such a limitation does not destroy the functional character of a

symbol system; it only modulates it. Of course, different systems behave differently under

unreliability, and systems can be designed to mitigate the effects of unreliability. Such considerations

are outside the bounds of the paper (though they show up as one of the constraints in Figure 1-1.)

In SS the reading operator was defined in the classical way, namely, a local operator whose scope

was a given expression. This provides no global access to the memory. Indeed, SS is totally

dependent on the initial data structures to provide linkages around the memory. A more global

accessing operator could also be given:

F ind the expression that matches roles (f ind R j S 1 . . .)
Produces the expression or nil

In SS , attention must be paid to constructing access links t o t h e new expressions created by c o p y ;

this is usually done by virtue of their symbols occurring in other expressions that are being built.

Given other processing organizations, such as ones with parallel activity, then a f ind operation would

be necessary, since the access links could not exist for read to suffice as a retrieval mechanism.

Such a global operator cannot as it stands replace the local one, since it identifies expressions by

content, not by role in some other expression. However, versions can be created to combine both

functions.

4 .7 . Do : T h e i n t e g r a t i o n and c o m p o s i t i o n of a c t i o n

T o be able to describe behavior in expressions, the behavior must be decomposed, whether for a

description indirectly as a machine that generates the behavior, or any other type of description. All

such decompositions involve both primitives and combining schemes. For SS, doing a sequence of

operations is the combining operation. It reflects directly a necessary requirement on decomposition:

Universal machines must be able to determine the future independent of the past.

Looked at in terms of a pre-specified input-output function, it is only necessary that the future beyond

the point of instruction be open. But if new instructional input is permitted at any time (the realistic

version of the flexibility constraint), then any commitment for the entire future can be a genuine

restriction of flexibility. Instruction following such a commitment might require its undoing.

Other forms of decomposition exist besides the pure time-slice scheme used by SS (and also by

PAGE35

existing digital computers and programming languages), in which each operator specifies completely

what happens in the next time increment, leaving complete freedom of specification beyond. For

instance, the commitments of the past could decay in some way, rather than cease abruptly; the

future action, while still free to be anything, could be taken from a different base line in some way.

Little is known about such alternative decompositions in terms of providing universal instructable

behavior.

Do as an operator can be eliminated, because its essential function is also performed by the

control. Interpreting the arguments of an operator prior to executing that operator (which

corresponds to function composition) provides the essentials of a time decomposition. Thus, the

function would still be provided, even though the do operator itself were eliminated.

4 .8 . Ex i t - i f a n d C o n t i n u e - i f : T h e c o n v e r s i o n of s y m b o l s to b e h a v i o r

One of the most characteristic features of programming languages is the existence of conditional

operators, the i f - t h e n - e l s e of Algol-like languages, the b r a n c h on z e r o of machine languages, or

the c o n d i t i o n a l e x p r e s s i o n of Lisp. These operators seem to contain the essence of making a

decision. Beside embodying the notion of data dependence in pure form, they also are unique in

embodying the conversion from symbols to behavior. They would appear to be a functional

requirement for universality. They do not seem so much deeply implicated in the concept of symbols

itself, but rather associated with the system that operates with symbols.

However, it has been known since the earliest formulations of universal machines that such

conditionals are not uniquely required. The requirement is to be able to compose all functions, and

many other primitive functions provide the essential combinative services. For example, the minimum

function is often used. It can be seen that taking the minimum of a set of elements effects a selection,

thus making a decision. But the minimum function has no special symbol-to-behavior character; it

has the same form as any other function.

Thus, conditionals are a convenience in SS. They can be dispensed with and the same work done

by a s s i g n , c o p y , w r i t e , read and do. A simple way to show this is to write the simulation of the

Turing Machines without using the conditionals. T h e universality of SS is shown by this program;

hence the universality can be attained by whatever limited means are sufficient to accomplish this

simulation. Figure 4-1 shows this simulation without the conditional. This corresponds to the

completely correct simulation of Figure 3-2, so that all places where conditionals originally occurred

are covered.

It is instructive to understand the basic device in Figure 4-1. Conditionality is the dependence of

behavior on data. The data in the simulation are symbols. Hence, each possible data symbol can be

PAGE36

T M - E x e c : [d o [a s s i g n [q u o t e N e x t - s t e p] [q u o t e T M]] TM T]

TM: [d o

[a s s i g n 0 [r e a d i f - 0 S]]

[a s s i g n 1 [r e a d i f - 1 S]]

[a s s i g n A [r e a d c o n t e n t T]]

[w r i t e T c o n t e n t [r e a d c o n t e n t A]]

[a s s i g n T [r e a d [r e a d move A] T]]

[a s s i g n S [r e a d n e x t A]]

N e x t - s t e p]

t a p e - e n d : [d o

[a s s i g n New-T [c o p y T]]

[w r i t e New-T c o n t e n t 0 [r e a d [r e a d move A] o t h e r] T]

[w r i t e T [r e a d move A] N e w - T]

N e w - T]

o t h e r : [r i g h t : l e f t l e f t : r i g h t]

h a l t : [a s s i g n [q u o t e N e x t - s t e p] n i l]

F i g u r e 4 - 1 : Elimination of conditional operators from simulation of Turing machine.

PAGE37

assigned whatever is to be the case if that data symbol is encountered. The symbol that actually

occurs and is accessed brings with it the behavior to be taken.

There are three places where conditionals must be removed. The first is taking appropriate action,

depending on 0 or 1. For this, 0 is assigned the action specifications for 0, and 1 the action

specifications for 1. Then accessing the symbol that actually occurs in the tape cell, via [read

content T] , obtains the action specification as a function of the occurring state. This is assigned to the

termporary working symbol, A, and the program can proceed as before.

The second place is sensing the end of the tape. Here, the symbol tape-end is assigned to be the

program that extends the tape. Due to the recursive interpretation of control, accessing tape-end

leads to the interpretation of this program, which then fixes up the tape en passant. Thus, the main

program, T M , never has to deal with the problems explicitly.

The third place is exiting on halt. This is a little tricky, because a symbol (halt) must be converted

to a permanent change of behavior (exiting the infinite loop of TM) . The final step of T M , which is the

recursive step to repeat T M , is made into a variable symbol, Next-step. This is assigned to be T M in

TM-Exec , so that if nothing changes this symbol, T M will be repeated, just as before. The symbol halt

is assigned to a program that assigns Next-step to be nil. Thus, if halt is encountered, this program is

executed, making T M into a straight-line program, which will then exit. It is necessary to use q u o t e in

the a s s i g n m e n t s of program symbols (Next-step and TM), or they would be executed inadvertantly.

This style of programming illustrates an important relativity of view. From the perspective of the

program there is no choice and no decision; it simply puts one foot in front of the other so to speak.

From the perspective of the outside observer, a choice is being made dependent on the data. T h e

views are reconciled when it is seen that the program is constructing its own path, laying down each

next step just in front of itself, like a stepping-stone, and then stepping onto it.

4 .9 . Q u o t e : T h e t r e a t m e n t o f p r o c e s s e s as d a t a

All universal systems contain a distinction between operators and data (ie, arguments). T o create

its own procedures, a system must distinguish some expressions as data at one time (when creating

or modifying them) and as program at another time (when interpreting them). This is a genuine

contextual effect, since the expression is to be same in either case. This is only a binary distinction,

and it can be achieved in many ways: by having a program memory as distinct from a data memory,

with a transfer operation to activate the program; by marking the program so the control won't

interpret it and then removing the mark to activate it; by having an e x e c u t e operator that only

interprets under deliberate command; or by having a quote operator that inhibits interpretation on

command. For SS, since its control cycle is to interpret everything, the q u o t e command is the natural

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

PAGE38

choice.

However, as Figure 3-1 again shows by producing the simulation without the use of quote , this

operator does not imply an additional primitive functional requirement. What Figure 3-1 actually

shows is that if a symbol system is willing to operate in indirect simulation mode, the distinctions can

be introduced by data conventions. This is because the control of the system now becomes

programmable. 5

4 .10 . B e h a v e a n d I n p u t : T h e i n t e r a c t i o n w i t h the e x t e r n a l w o r l d

B e h a v e and input have played a muted role in the exposition of S S only because the emphasis

has been on the basic functional requirements for symbolization and for universality. These

capabilities must exist in some interior system, and thus can be illustrated there, without involving the

interaction with the external world.

B e h a v e and input imply an extension of the basic access mechanism, beyond the operators, roles

and expression, as described above.. The symbols that are operands in b e h a v e must access in some

way the effector mechanisms. These symbols can be viewed simply as additional operators which

haven't been specified because there was no need to. Input , on the other hand, requires its output

symbols to reflect an invariant relation to the state of the external environment (via states of the

receptor mechanism). The invariance doesn't have to be perfect; it can even change over time

(though not too rapidly). But without some reliable transduction from external structure to symbols,

the symbol system will not be able to produce reliable functional dependence on the external

environment.

General symbol systems include unlimited elaborations on b e h a v e and input . In particular,

versions of these operators need not link to a genuine external world, but simply to other components

of the total system that provide additional computational devices. These may be integral to the actual

operation of the system in practice. Such additional facilities do not destroy the capability for

symbolic action. The only requirement is that they be symbolizable, ie, have symbols that evoke them

and symbols that reflect their behavior.

4 .11. S y m b o l s y s t e m s imply u n i v e r s a l i t y

The notion of universality has been expressed so as to reveal how it contains a notion of symbol

and symbol system. Though at the beginning of the section I claimed it was inappropriate to act as if

5 T h e quotes can likewise be removed from Figure 4-1 by rewriting the T M program so it is a non-program data structure that

is interpreted by an S S program.

PAGE39

we had an independent characterization of symbol system, it is now certainly useful to extract from

the current formulation what a symbol system might be, independent of the notion of universality. For

instance, this might lead to interesting variants, of symbol systems that are not universal in some

important way (ie, in some way other than physical limits).

Consider the following generalized characterization of the notions involved in physical symbol

systems:

• Symbols as abstract types that express the identity of multiple tokens.

• Expressions as structures containing symbol tokens.

• Designation as a relation between a symbol and the entities it symbolizes.

• Interpretation as realizing the designations of expressions.

• Operations of assigning symbols, and copying, reading and writing expressions.

These notions all seem fundamental to symbolic functioning. It is difficult to envision a notion of

symbol that does not embody some version of these capabilities, though perhaps much more besides.

These notions are too vague actually to define symbolic functioning. For instance, the statement

about designation does not describe the properties of the relation, eg, between the word "cat" and

the animal cat. The statement about interpretation leaves entirely open what symbolic activity is

actually about - it could easily hide a homunculus. Still, these might form the thematic kernel from

which to precipitate independent characterizations of symbols.

In particular, there exists an instantiation of these notions that regains the formulation of a physical

symbol system. The chief additional ingredient (abstracted away in generating the list above) is a

notion of symbolic processing. Designation is given a primitive basis primarily in the accessing of

other expressions. Interpretation is given a formulation involving only expressions that designate

symbolic processing. Assigning, copying, reading and writing are taken as specific processing

functions; in particular, reading is taken only as the ability to obtain constituent symbols. These

particularities would no doubt be included in some fashion in any instantiation of the general notion of

symbols stated above. However, the instantiation for physical symbol systems is still highly special

and much is missing: designation of external entities, wider ranges of interpretive activity, and so on.

Yet, as we have seen, this process-oriented instantiation of these notions is by itself sufficient to

produce universality. No embedding of the symbol system into a larger processing system with other

capabilities is required, though sufficient freedom from physical limitations (ie, sufficient memory,

reliability, etc.) must exist. In the preceding discussion, the operations of ex i t - i f , c o n t i n u e - i f , do,

q u o t e and f ind were shown to be collectively unnecessary to achieve universality. Thus, the

PAGE40

operations that appear inherently involved in symbolic processing (a s s i g n , c o p y , read , w r i t e and

in te rp re t) are collectively sufficient to produce universality. No augmentation with any non-symbolic

processing machinery is required. Though the argument was carried through on a particular system,

SS, it applies generally to the functional capabilities themselves.

A novel feature of physical symbol systems is the approach to symbolic function, not just by

processing, but by internal symbolic processing. The primitive symbolic capabilities are defined on

the symbolic processing system itself, not on any external processing or behaving system. The

prototype symbolic relation is that of access from a symbol to an expression, not that of naming an

external object. Thus, it is an implication of the formulation, not part of its definition, that the

appropriate designatory relations can be obtained to external objects (via chains of designation).

Because of this, the exact scope of that designatory capability is left open, implicit in the ramifications

of universality.

Thus, we are lead finally to the following hypothesis:

Any reasonable symbol system is universal (relative to physical limitations).

It is important to distinguish symbol systems that are computationally limited because of physical

constraints or limited programs and data, from symbol systems that fall short of providing universality

because of structural limitations. The hypothesis refers to the latter.

Despite this hypothesis, one might still want to formulate a notion of symbol system that was not

also universal, even though it would be limited. One general path might be to deny the process base.

But this seems unfruitful, since symbol systems must ultimately be used by processing systems, and

this path simply keeps the processing implications off stage. The addition of a processing base would

very likely simply convey universality. Another possibility is to consider systems with many symbol

systems, each ranging over severely limited domains, with limited intercommunication. These would

violate some aspects of assignment, so that genuinely limited systems might emerge. But, in general,

looking for a more limited conception of symbolic system, in order to get something conceptually

independent of universality, does not seem particularly rewarding. This seems especially the case in

trying to understand the human mind, which surely exhibits extreme flexibility, even though it must

cope with some stringent physical limitations.

PAGE41

5. THE PHYSICAL SYMBOL SYSTEM HYPOTHESIS
Having finally made clear the nature of a physical symbol system, the major hypothes iscan be

stated explicitly (Newell & Simon, 1976):

• Physical Symbol System Hypothesis: The necessary and sufficient condition for a
physical system to exhibit general intelligent action is that it be a physical symbol system.

• Necessary means that any physical system that exhibits general intelligence will be an
instance of a physical symbol system.

• Sufficient means that any physical symbol system can be organized further to exhibit
general intelligent action.

. - A

• General intelligent action means the same scope of intelligence seen in human action:
that in real situations behavior appropriate to the ends of the system and adaptive to the
demands of the environment can occur, within some physical limits.

The hypothesis takes as given the identity of symbol systems and universal systems, and asserts

their connection to rationality, a concept which did not enter into their formulation. The hypothesis

implicitly asserts that physical symbol systems cover human symbol systems, since general

intelligence includes human intelligence. It can be taken as also asserting the essential role of human

symbols in human rational behavior, if that cannot be taken for granted.

The hypothesis implies that symbol systems are the appropriate class within which to seek the

phenomena of mind. However, it does not mention mind explicitly, but rather the notion of general

intelligent action. It thereby implicitly takes general intelligence to be the key to the phenomena of

mind. Given the democracy of the constraints in Figure 1-1, this may seem a little presumptuous. If

so, it is not a presumption that makes a substantial difference in the short term. The systems that

satisfy all of the constraints will undoubtedly be a highly distinctive subclass of those that satisfy only

the three involved in the hypothesis - universality, symbols, and rationality. This distinctiveness could

well include phenomena of mind that would make the total class appear quite unmind-like. That

possibility does not affect the tactical issue of approaching the phenomena of mind via this class of

systems.

The statement of necessity is straightforward. A general intelligent system, whatever additional

structures and processes it may have, will contain a physical symbol system. It will be possible to find

what serves as symbols and as expressions; and to identify what processes provide the functions that

we have enumerated and discussed. The variability of realization discussed in the prior section may

make these structures and processes far from obvious, but they will exist.

The statement of sufficiency requires a little care. A universal system always contains the potential

for being any other system, if so instructed. Thus, a universal system can become a generally

PAGE42

intelligent system. But it need not be one. Furthermore, instructability does not imply any ability at

self instruction, so that there may be no way to transform such a system into one that is generally

intelligent, ie, no external agent with the capability to successfully instruct it need be available. Given

the nature of universality, this sufficient condition does not have much bite; it is the necessary

condition which carries the strong implications.

The notion of general intelligence can only be informally circumscribed, since it refers to an

empirical phenomenon. However, the intent is clear to cover whatever will come to be called

intelligent action as our understanding of the phenomenon increases. The term general excludes

systems that operate only in circumscribed domains. If the domain is narrow enough, considerable

intellectual power may be possible from systems that are not physical symbol systems. Thus, a

specific enumeration algorithm for chess that achieved master level, but was realized directly in

hardware in a way that avoided the full capabilities of a symbol system, would not provide a

counterexample to the hypothesis. General intelligence implies that within some broad limits anything

can become a task.j It would suffice to ask if the given narrow algorithm could also accept other novel

tasks; and on this it would, per hypothesis, fail.

All real systems are limited. T o be generally intelligent does not imply the ability to solve or even

formulate all problems. We have used the phrase physical limits to indicate the effects of underlying

limits to speed, memory size, reliability, sensitivity, etc. The existence of such limits implies the

possibility of quibbles in assessing the hypothesis, if the limits are so stringent as to deny a system any

reasonable scope for. positive performance. The formulation above does not attempt to be precise

enough to deal with such quibbles.

5.1. W h y might the H y p o t h e s i s Ho ld?

That the hypothesis refers to rationality, rather than more generally to phenomena of mind, is not

just a rhetorical preference. The hypothesis is based on the empirical evidence of the last twenty

years in artificial intelligence. That evidence specifically relates to rational goal-directed behavior,

and not to the other constraints (though some evidence exists touching one or two others). Thus, the

hypothesis really must be cast in this narrower form.

It is important to understand that the hypothesis is empirical and rests on this body of experience.

Artificial intelligence has made immense progress in developing machines that perceive, reason,

solve problems, and do symbolic tasks. Furthermore, this has involved the deliberate use of symbol

systems, as witnessed in the development and exploitation of list processing. This use of symbolic

computation distinguishes artificial intelligence from most other enterprises within computer science

(though not all). These advances far outstrip what has been accomplished by other attempts to build

intelligent mechanisms, such as the work in building robots driven directly by circuits, the work in

PAGE43

neural nets, or the engineering attempts at pattern recognition using direct circuitry and analogue

computation. 6 There is no space in this paper to review the evidence for this, which covers the

development of an entire field over almost a quarter century. Reference to the most recent textbooks

will have to suffice (Nilsson, 1980, Winston, 1977).

Given our present understanding of intelligent programs, an analysis can be made of why symbol

systems play a necessary role in general intelligent action. Again, there is no space to do more than

outline this analysis here. There seems to be three main points.

1. A general intelligent system must somehow embody aspects of what is to be attained
prior to attainment of it, ie, it must have goals. Symbols that designate the situation to be
attained (including that it is to be attained, under what conditions, etc.) appear to be the
only candidate for doing this. It might seem an alternative to build goal-orientation into
the structure of the system at design time (as is often done is programs that have a single
fixed task, such as playing a game). However, this does not suffice for a general
intelligence facing an indefinite sequence of novel and sufficiently diverse goal situations.

2. A general intelligent system must somehow consider candidate states of affairs (and
partial states) for the solutions of these goals (leading to the familiar search trees).
Symbols in a symbol system appear to be the only way to designate these, especially as
the diversity and novelty of the states and partial states increases without bound.

3. An intelligent system must fashion its responses to the demands of the task environment.
As the diversity of tasks expand, ie, as the intelligence becomes general, there would
seem to be no way to avoid a flexibility sufficient to imply universality and hence symbols..

The backbone of the above argument is: (1) rationality demands designation of potential situations;

(2) symbol systems provide it; (3) only symbol systems can provide it when sufficient novelty and

diversity of task is permitted. This latter aspect is analogous to standard arguments in linguistics

concerning the implications of generation of novel sentences.

'The term direct is used as a shorthand to indicate that the systems do not use digital computers as a major component.

PAGE44

6. REALIZATIONS AND SYSTEM LEVELS
Symbol systems, as described, are abstract. We now need to consider their realization in our

physical universe. The key to this is our experience with the construction of digital computers. That

current digital technology involves a hierarchy of levels is well known and appreciated. However, it is

part of the story of symbol systems and needs to be recounted briefly.

A standard set of levels has emerged as digital computers have developed. These levels are levels

of description, since it is always the same physical system that is being described. Each level consists

of characteristic components that can be connected together in characteristic fashion to form

systems that process a characteristic medium. The different descriptions form a sequence of levels,

because the components, connections and media of one level are defined in terms of systems at the

next lower level.

The bottom-most level starts with the description of the physical devices in electronic terms. It is

usually called the device level. Above this is the circuit level, which consists of electrical currents and

voltages, traveling in wires. Above that is the logic level, in which there occur registers containing

bits, with transfer paths between them and various logical functions occurring when bits pass through

functional units. Operation here is entirely parallel, as it is at all lower levels. The next level is the

program level which contains data structures, symbols (or variables), addresses and programs.

Operation is sequential, consisting of control streams produced by interpreters, though concurrent

control streams may exist. This is the level of the symbol system as it occurs in digital computers.

Above the programming level is the . level of gross anatomy, the so-called PMS

(Processor-Memory-Switch) level. Here there is simply a medium, called data or information, which

flows along channels called links and switches and is held and processed by units called memories,

processors, controls and transducers. It is the level at which you order a computer system from the

manufacturer.

Each of these levels provides a complete description of a system, ie, one in which the present state

of the machine plus the laws of behavior of the system (at that level) determine the entire trajectory of

the system through t ime. 7

Although apparently only a way of describing the physical world, each level in fact constitutes a

technology. That is, any description of a system can be realized physicalfy, because physical

techniques exist for creating the required components and assembling them according to the

description. Circuits of any description can be built, so also logic circuits, so also programs with any

7 T h e top level (PMS) is often an except ion, for behavioral laws are not usually formulated for it.

PAGE45

data types and routines. At the PMS level, computer configurations can be ordered with various

combinations of memory boxes, disks and terminals. And so on. (Limits do exist to the realizablility of

arbitrary descriptions, eg, the number of nested expressions in a programming language or the fanout

in a logic circuit technology; these complicate, but do not destroy, the technological character of a

level.) Thus, these levels of description do not exist just in the eye of the beholder, but have a reality in

this combinative characteristic in the real world. The levels are not arbitrary and cannot be created at

will, just by an act of analysis. O n the other hand, there is no persuasive analysis yet that says this

particular set of levels is necessary or unique, and could not be replaced by a quite different set.

From the prior discussion of symbol systems we should be prepared for the existence of an

indefinitely wide variety of symbol systems. Such variety stems from all the different forms of

operators, controls, memories and symbol-structures, that still add up to universal symbolic capability.

The logic level structure that creates a particular symbol system is called the architecture. Thus ,

there are an indefinite variety of architectures. Indeed, they are so diverse that we have no

reasonable characterizations of the class of all architectures.

What we had no right to expect is the immense variety of physical ways to realize any fixed symbol

system. What the generations of digital technology have demonstrated is that an indefinitely wide

array of physical phenomena can be used to develop a digital technology to produce a logical level of

essentially identical character. If evidence must be quoted for this, it comes in the form of the

architecture family, achieved first by IBM in the mid sixties with System/360 and now provided by

most manufacturers, whereby many implementations exist for a given architecture, trading cost for

speed and memory capacity. Programs that run on one implementation also run on the other.

Furthermore, these implementations are not all planned for in advance, but as brand new

technologies gradually come into existence at the device level, new implementations of the existing

architecture are created.

Thus the picture that emerges is a series of levels of technology, with a many-many mapping

between levels - each level giving rise to an immense diversity of systems at the next higher level, and

each system at a given level being realizable by an immense diversity of organizations at the next

lower level.

That humans are physical symbol systems implies there exists a physical architecture that supports

that symbol system. T h e relatively gross facts about the nervous system reveal some natural

candidates for the levels of organization at which technologies exist. The neural level surely

constitutes a technology. So also does the macromolecular level (in fact several technologies may

exist there). It is possible to be mistaken about the levels, given the potentiality at the macromolecular

level, as seen, for instance, in the immune system. But such uncertainty does not destroy the

PAGE46

essential picture:

J There must exist a neural organization that is an architecture, ie, that supports a symbol
I structure.

Furthermore, the immense diversity of lower level technologies that can lead to an architecture

certainly enhances the chance that a biologically based architecture could have evolved.

This is a genuine prediction on the structure of the nervous system and should ultimately inform the

attempt to understand how the nervous system functions. It does not appear to have done so, though

from time to time the suggestion has even been made directly (eg, Newell, 1962). In fact, I know of no

discussion of the issue in the neuroscience literature.

The reasons for this lack of attention by the neurosciences lie beyond the present paper. Some of

the considerations are evident in Geschwind's paper at this conference (Geschwind, 1979), where

emphasis is placed on the special purpose computational systems that seem to be available in the

organism, even to doubting that any general purpose mechanisms exist. As the present exposition

should make clear, the requirement for universal symbolic functioning is not incompatible with

extensive special purpose computational structure. It implies neither that everything must be done

through programming a small set of primitive facilities nor that the symbol system occur as an isolated

component. T o take SS (or similar examples of formally defined universal systems) as implying such

properties, fails to appreciate the actual functional requirements they express.

The levels structure of physical implementation, and our experience with it for digital technologies,

leads to understanding how one level can be sealed off from its lower level during normal operation.

This is the phenomenon of not being able to identify under normal conditions the technology in which

a computer is implemented, if access is available only to the behavior at the symbolic level. This

sealing off produces an effect in which the symbolic behavior (and essentially rational behavior)

becomes relatively independent of the underlying technology. Applied to the human organism, this

produces a physical basis for the apparent irrelevance of the neural level to intelligent behavior. T h e

neural system is not in fact irrelevant - its operation supports the symbolic level. But it does so in a

way that normally hides most of its properties, realizing instead a symbol system with properties of its

own.

The phrase under normal conditions is essential to the above characterization. Errors of all sorts

that occur at lower levels typically propagate through to higher levels (here, the symbolic level) and

produce behavior that is revealing of the underlying structures. Likewise, simply forcing a system

against the physical limits of its behavior reveals details of the underlying technologies. Given a stop

watch, the freedom to specify the tasks to be performed on a computer, and a system that is not

designed to deceive, much can be learned of the lower levels of implementation. Similarly, if the

PAGE47

system uses large subsystems of special computational character, these too may reveal themselves.

This entire story of technological system levels, and the many-many relationship of.systems on the

symbol level to architectures that support it, is an important part of the current knowledge about

symbol systems. Like the link to rational behavior (as expressed in the basic hypothesis), it is

primarily empirically based.

PAGE48

7. DISCUSSION
With the basic story now before us. a few issues can be touched on to make sure that the notion of

symbol system and the hypothesis are correctly understood.

7.1. K n o w l e d g e and R e p r e s e n t a t i o n

Two terms intimately related to symbolic behavior have not appeared in the discussion so far:

representation and knowledge. Both have rather clear meanings within the concept of physical

symbol system, especially in the practice of artificial intelligence. However, formal theories of these

concepts are relatively chaotic, with little agreement yet. Still, it is useful to indicate the sense of

these notions, albeit briefly.

Representation is simply another term to refer to a structure that designates:

X represents Y if X designates aspects of Y, ie, if there exist symbol processes that can
take X as input and behave as if they had access to some aspects of Y .

The qualification to aspects of Y , rather than just Y , simply reflects language usage in which X can be

said to represent a complex object Y without being faithful (ie, designating) all aspects of Y.

Representation is sometimes formulated in terms of a mapping from aspects of Y to aspects of

X. Implicit in this formulation is that something can be done with X, ie, that processes exist that can

detect the aspects of X that are images of aspects of Y . Hence the whole forms a designatory chain.

Representation is also sometimes formulated in terms of a data structure with its associated proper

operations. This view emphasizes the coupling of the static structure (what is often simply called the

representation) and the processing that defines what can be encoded into the structure, what can be

retrieved from it and what transformations it can undergo with defined changes in what is

represented. This view suppresses the function of the memory structure (ie, what it represents) in

favor of the essential mechanics, but it comes to exactly the same thing as the formulation in terms of

designation.

The term representation focusses attention on the image of the distal object in the symbolic

structure which represents it. The analysis of universality and symbols, as presented here, focusses

on the adequacy of constructing functions from the distal object to the behavior of the system, which

work through the representations as an intermediate structure. Such a presentation leaves

undeveloped the structure of descriptive schemes, with the corresponding questions of efficiency and

usefulness. We saw a reason for this in the initial formulation of universality, where it was important to

avoid confounding the limitations of descriptive schemes for possible functions with what functions

could actually be produced by a machine.

PAGE49

Existing work, mostly stemming from the analysis of formal logic, confirms that the class of systems

described here (ie, universal symbol systems) is also the class of systems with general powers of

representation or (equivalently) description. The representational range of all first order predicate

calculi is the same, and corresponds to universal systems (when one asks what functions can be

described in the logic). An important chapter in logic was the demonstration that set theory, perhaps

the most useful descriptive scheme developed in mathematics, was formulable in first order logic,

thus becoming simply another alternative descriptive scheme, not one capable of describing a

different range of entities and situations. Higher order logics (which progressively remove restrictions

on the domains of variables in logical formula), do not extend the expressive range. Modal notions,

such as possibility and necessity, long handled axiomatically in a way that made their relationship to

standard logic (hence universal symbol systems) obscure, now appear to have an appropriate

formulation within what is called possible world semantics (Hintikka, 1975, Kripke, 1972), which again

brings them back within standard logic. The continuous functions that naturally occur in the world *

(hence, must be represented) are produced by systems of limited energy. Hence, they must be of

limited frequency (ie, limited bandwidth) and have, by the so called sampling theorem, adequate finite

discrete representations.

The above rapid transit through some basic theoretical results on representation is meant to

indicate only two things: first, some general things are known about representation; and second,

representation is intimately tied to symbol systems. Much more is known in empirical and practical

ways about representation, especially from investigations of artificial intelligence systems. However,

no adequate theory of representation exists for questions of efficiency, efficacy and design - the level

at which most interesting issues arise.

Knowledge is the other term that has not figured as prominently in our discussion as might have

been expected. It is a competence-like notion whose nature can be indicated by the slogan formula:

Representation = Knowledge + Access.

Given a representation, making use of it requires processing to produce other symbolic expressions

(or behavior). Although it is possible for a symbolic structure to yield only a small finite number of new

expressions, in general there can be an unbounded number. Consider what can be obtained from a

chess position, or from the axioms of group theory, or from a visual scene. Further, to obtain most of

these new expressions requires varying amounts of processing. Thus, it is theoretically useful to

separate analytically the set of potential expressions that a representation can yield from the process

of extracting them, ie, the access to them. Knowledge is this abstract set of all possible derived

expressions.

This notion, which corresponds to the set of all implications of a set of propositions, has a history in

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15211

PAGE50

philosophy as a candidate for the definition of knowledge. It has seemed unsatisfactory, because a

person could hardly be said to know all the implications of a set of propositions. However, its-position •

within an explicit processing theory presents quite a different situation. Here, having knowledge is

distinguished from having it available for any particular use, and in a principled way that depends on

the details of the processing system. This formulation in fact corresponds to the actual use of the

term in artificial intelligence, where it is necessary to. talk about what is available in a data structure

that could be extracted by more or different processing.

7.2. O b s t a c l e s to C o n s i d e r a t i o n

The basic results we have been reviewing have been with us for twenty years in one guise or

another. Some attitudes about them have grown up that are obstacles to their correct interpretation.

These are worth mentioning, at least briefly:

• The Turing Tar Pit. T h e phrase is Alan Perlis's. 8 The view is that all distinctions vanish
when considering systems simply as universal machines (ie, as Turing machines), since
all systems become equivalent. Therefore, general results about universality cannot be of
interest to any real questions. O n the contrary, the question of interest here is precisely
what structure provides flexibility. The discovery that such flexibility requires symbols is a
real one. The Turing Tar Pit only traps the unwary who already live within the world of
universal symbol systems, which of course computer scientists do.

• The computer as tool kit. The universality of the digital computer means it can be used to
simulate and build models for any system of interest, from chemical processing plants to
traffic control to human cognition. Therefore, its role and significance is no different for
cognitive science than for any other science or engineering. O n the contrary, it is the
structure of the digital computer itself (and the theoretical analysis of it) that reveals the
nature of symbolic systems. When the computer, as a general purpose tool, is used to
simulate models of mind, these are models of symbol systems (though of different
architectures than that of the computer being used as tool).

• The requirement for unbounded memory. Universality implies unbounded memory. All
real systems only have bounded memory. Therefore, the property of universality cannot
be relevant to the understanding of intelligent mechanisms. O n the contrary, as we
emphasized earlier, the structural requirements for universality are not dependent on
unbounded memory, only whether the absolute maximal class of input-output functions
can be realized. Symbol systems are still required if universality is demanded over any
sufficiently large and diverse class of functions.

• The ignoring of processing time. Universality requires no restraint on processing time.
Indeed, simulations run indefinitely slower than what they simulate. But time and resource
limits are of the essence of intelligent action. Therefore, universality results are of little
interest in understanding intelligence. O n the contrary, the requirement for symbol

Some readers may be unacquainted with the famous Ta r Pits of La Brea California, which trapped and sucked d o w n
innumerable prehistoric animals, without distinction large and small, fierce and meek.

r 1

PAGE51

systems remains with the addition of physical limits, such as real time (or reliability,
sensitivity, .. .). The objection confuses necessary and sufficient conditions. The real
question is what is the subclass of symbol systems that also satisfy the real time
constraint. This is sufficiently important to the general argument of this paper that we take
it up below in more detail.

• The requirement for experimental identification. An experimental science of behavior can
only be concerned with what it can identify by experimental operations. Universal
machines (and various general representations) mimic each other and are
indistinguishable experimentally. Therefore, they are not of interest to psychology. O n the
contrary, if humans have this chameleon-like character (which it appears they do), then it
is the basic task of psychology to discover ways to discern it experimentally, however
difficult. Without downplaying these difficulties, the objection overstates the lack of
identifiability in the large (ie, in the face of sufficiently wide and diverse contexts and
varieties of measurement).

• The uniform nature of symbol systems. General symbol systems- imply a homogeneous
set of symbols, in which everything is done by uniform mechanisms. But physiology and
anatomy show clearly that the nervous system is filled with computational systems of
immense specialization (and evolution confirms that this is how it would be). Therefore,
humans (and other animals) cannot have symbol systems. O n the contrary, this objection
inducts the wrong attributes from existing computer architectures. The functional
properties we have summarized are what is important. These can be realized in an
immense diversity of schemes, including ones that are highly parallel and full of special
mechanisms.

• The discrete nature of symbols. Symbol systems are ultimately just a collection of bits - of
yes's and no's. Such a discrete representation cannot possibly do justice to the nature of
phenomenal experience, which is continuous and indefinitely rich. O n the contrary, there
is good reason not to trust the intuition about the relation of phenomenal reality and
discreteness. O n the side of constructed systems, speech and vision recognition systems
begin to show adequate ways in which continuous environments can be dealt with. O n
the side of the human, the discrete cellular nature of biological systems (and below that of
molecular structure) gives pause on the anatomical side; as does the sampled-data
character of the visual system on the behavioral side. However, nothing to speak of is
known about "continuous" symbol systems, ie, systems whose symbols have some sort
of continuous topology.

• The computer metaphor. The computer is a metaphor for the mind. Many metaphors are
always possible. In particular, new technologies always provide new ways to view man.
Therefore, this metaphor too will pass, to be replaced by a metaphor from the next
technology. On the contrary, though it is surely possible, and sometimes fruitful, to use
the computer metaphorically to think about mind, the present development is that of a
scientific theory of mind, not different in its methodological characteristics from scientific
theories in other sciences. There has been an attempt in the philosophical literature to
take metaphor as a metaphor for all theory and science (Black, 1962), a view well
represented by Lakoff (1979) at this conference. Like all metaphors, it has its kernel of
truth. But the sign is wrong. The more metaphorical the less scientific. Again, the more
metaphors the better, but the more comprehensive the theory of a single phenomenon,
the better. Computational metaphor does not seem a happy phrase, except as a
rhetorical device to distance theoretical ideas flowing from the computer and keep them

!

PAGE52

from being taken seriously as science.

7 .3. T h e Rea l - t ime C o n s t r a i n t

A brief discussion of the constraint that processing occur in real time may serve to clarify the role

of symbol systems in the total endeavor to understand the phenomena of mind.

No doubt, living in real time shapes the nature of mind, and in more ways than we can imagine at

present. For instance, it produces the existential dilemma that gives rise to search as a pervasive

feature of all intelligent activity. Limited processing resources per unit time continually must be

committed now without further ado, the opportunity to spend this now already slipping past.

Imperfect present knowledge always produces imperfect commitments, which leads to (still imperfect)

corrective action, which cascades to produce combinatorial search.

As noted earlier, such considerations do not remove the need for symbols. Intelligent activity in

real time cannot be purchased by foregoing symbols. Rather, those symbol systems that can perform

adequately in real time become the focus of interest in the search for a theory of mind. How would

one seek to discover such a class? One way - though only one - is to work within the class of symbol

systems to find architectures and algorithms that are responsive to the constraints of real time.

An example is the intensive explorations into the nature of multiprocessing systems. This is being

fueled much more generally by computer science interests, driven by the advances in technology

which provide increasingly less expensive processing power. The range of such explorations is

extremely broad currently and much of it appears remote from the interests of cognitive science. All of

it assumes the total systems will be general purpose computers (though with interesting twists of

efficiency and specialization). It will add up eventually to a thorough understanding of the space, time

and organization trade-offs that characterize computers that operate under severe time constraints.

Another example, somewhat closer to home, are the so called production systems (Waterman &

Hayes-Roth, 1978), which consist of a (possibly very large) set of condition-action rules, with

continuous parallel recognition of which rules are satisfied in the present environment and selection

of one (or a few) of the satisfied rules for action execution. There are several reasons for being

interested in such systems (Newefl, 1973, Newell, 1980). However, a prime one is that they are

responsive to the real-time constraint. The parallel recognition brings to bear, at least potentially, all

of the knowledge in the system on the present moment when a decision must be made. Such systems

f are also universal symbol systems. They would have done as well as S S for illustrating the nature of

symbols, save for the confusion engendered by their also exhibiting aspects responsive to other

constraints.) -v - •

PAGE53

The point of both examples (and others that could have been given) is not the particular

contributions they might make individually. Rather, they illustrate the ability to explore classes of •

systems that are responsive to additional constraints, by developing subclasses of architectures

within the class of universal symbol systems. That the space of all universal symbol systems contains

vast regions of systems inappropriate to some of the other conditions of mind-like systems is

irrelevant. More precisely, it is irrelevant if the larger .class is a suitable base for further analysis and

exploration - which is exactly what current experience in computer science attests.

PAGE54

8. CONCLUSION
Let us return to our general problem of discovering the nature of mind, and the decomposition of

that problem into a dozen constraints (Figure 1-1). We now have a class of systems that embodies

two of the constraints: universality and symbolic behavior. Furthermore, this is a generative class. It

is possible to construct systems which are automatically within the class. Thus this class can be used

to explore systems that satisfy yet other constraints. Indeed, that is exactly the twenty-five year

history of artificial intelligence -- an explosion of exploration, all operating from within the class of

systems that were automatically universal and symbolic. T h e generative character comes through

clearly in this history, as the initial versions of digital computers were shaped via the development of

list processing to also bring their general symbolic character to the fore.

This class of universal-symbolic systems is now tied to a third constraint, rationality. That is what

the Physical Symbol System Hypothesis says. Unfortunately, the nature of rational action is not yet

well enough understood to yield general generative formulations, to permit exploring other

constraints within a constructive framework that automatically satisfies the rationality constraint (as

well as the universality and symbolic behavior constraints). Major attempts in artificial intelligence still

start from basic symbolic capability and posit their own idiosyncratic processing organization for

attaining rational behavior. However, some parts of the puzzle are already clear, such as the notion of

goal and goal hierarchies, and the concept of heuristic (ie, knowledge controlled) search. Thus, we

may not be too far away from the emergence of an accepted generative class of systems that are

universal-symbol and also rational. The excitement that rippled through the artificial intelligence world

at the beginning of the seventies when the so-called planning languages first came on the scene

(Hewitt, 1971, Rulifson, Derksen & Waldinger, 1972), stemmed in large part because it seemed that

this step had been taken. We didn't quite make it then, but experience keeps accumulating.

This phenomenon continues: Discovering that it is possible to shape new subclasses that satisfy

additional constraints on our list. We discussed briefly the real-time constraint. We did not discuss,

but could have, progress with respect to a few of the other constraints (though by no means all), eg,

linguistics or vast knowledge - not just general progress, but progress in shaping a generative class

of systems that automatically by construction satisfies the constraint.

I end by emphasizing this evolution of generative classes of systems that satisfy successively more

constraints in our list, because it can stand as a final bit of evidence that we are on the right track -

that symbol systems provide us with the laws of qualitative structure within which we should be

working to make fundamental progress on the problem of mind. It is one more sign, coupled with the

rich web of concepts illustrated in the prior pages, of the scientific fruitfulness of the notion of a

physical symbol system.

^1

PAGE55

Francis Crick, in his Danz lectures, Of Molecules and Men (1966, p7), discusses the problem of how

life could have arisen:

[This] really is the major problem in biology. How did this complexity arise?

The great news is that we know the answer to this question, at least in outline. I call it news
because it is regrettably possible in very many parts of the world to spend three years at a
university and take a university degree and still be largely ignorant of the answer to this,
our most fundamental problem. The answer was given over a hundred years ago by
Charles Darwin and also by A. R. Wallace. Natural selection, Darwin argued, provides an
'automatic' mechanism by which a complex organism can survive and increase in both
number and complexity.

For us in Cognitive Science, the major problem is how is it possible for mjnd ja^x i s t inihi&physical

universe. The great news, I say, is that we know, at least in outlin^, how this might be, I call it news

because, though the answer has been with us for over twenty years, it seems to me riot to be widely

recognized. True, the answer was discovered indirectly while developing a technological instrument;

and key steps in its evolution occurred while pursuing other scientific goals. Still, there remains no

reason not to face this discovery, which has happened to us collectively.

P A G E 5 6

9. REFERENCES

Allport, D. A. Consc ious and unconscious cognit ion: A computational metaphor for the mechanism of
attention and integration. In Niisson, L ,G . (Ed.) , Perspectives on Memory Research, Hillsdale,
N.J . : Er lbaum, 1979.

Ashby , W. R. Introduction to Cybernetics. New York: .Wiley 1956.

Black, M. Metaphors and Models. Ithaca, N.Y.: Cornel l University 1962.

Brainerd, W. S. & Land weber , L. H. Theory of Computation. New York: Wiley 1974.

C h u r c h , A. An unsolvable problem of elementary number theory. The American Journal of
Mathematics, 1936, 58, 345-363.

Clark, H. & Clark, E. The Psychologybf Language: An introduction to psycholinguistics. New York:
Harcourt Brace Jovanov ich 1977.

Cr ick, F. Of Molecules and Men. Seattle, Washington: University of Washington Press 1966.

Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures in Physics. New York: Addison
Wesley 1963.

Geschwind , N. Neurological knowledge and complex behaviors. In Norman, D. A. (Ed.) , La Jolla
Conference on Cognitive Science, Program in Cognit ive Sc ience, U C S D , 1979.

Hewitt, C . Description and Theoretical Analysis (using Schemata) of Planner: A language for proving
theorems and manipulating models in a robot. PhD thesis, MIT, January , 1971.

Hintikka, J . The Intentions of Intentionality and other New Models for Modality. Dordrecht, Hol land:
Reidel1975.

Hopcroft , J . E. & Ullman, J . D. Formal Languages and their Relation to Automata. Reading, MA:
Addison-Wesley 1969.

Kripke, S. Semantical analysis of modal logic II. In Addision, J . W., Henkin, L. & Tarski , A . (Ed.) , The
Theory of Models, Amsterdam: North Hol land, 1972.

Lachman, R., Lachman, J . L. & Butterfield, E. C . Cognitive Psychology and Information Processing: An
introduction. Hillsdale, N.J . : Er lbaum 1979.

Lakoff, G . Toward an experientialist phi losophy: T h e case from literal metaphor. In Norman, D. A.
(Ed.) , La Jolla Conference on Cognitive Science, Program in Cognit ive Science, U C S D , 1979.

Lindsay, P. & Norman, D. Human Information Processing: An introduction to psychology, 2nd ed.
New York: Academic 1977.

Minsky, M. Computation: Finite and infinite machines. Eng lewood Cliffs, N.J . : Prentice-Hall 1967.

Neisser, U. Cognition and Reality. San Francisco: Freeman 1976.

Newell , A. & Simon, H. A. Human Problem Solving. Eng lewood Cliffs: Prentice-Hall 1972.

PAGE57

Newell, A. & Simon, H. A. Computer science as empirical inquiry: Symbols and search. S
Communications of the ACM, 1976,19(3), 113-126.

Newell, A. Discussion of the session on integration in information in the nervous system. In
Proceedings of the International Union of Physiological Sciences, III, International Union of
Physiological Sciences, 1962.

Newell, A. Production systems: Models of control structures. In Chase, W. C. (Ed.) , Visual Information
Processing, New York: Academic Press, 1973.

Newell, A. Harpy, production systems and human cognition. In Cole, R. (Ed.) , Perception and
Production of Fluent Speech, Hillsdale, N.J. : Erlbaum, 1980.

Nilsson, N. Principles of Artificial Intelligence. Palo Alto, CA : T ioga 1980.

Palmer, S. E. Fundamental aspects of cognitive representation. In Rosch, E. & Lloyd, B. B. (Ed.) ,
Cognition and Categorization, Hillsdale, N.J. : Erlbaum, 1978.

Rulifson, J . F., Derksen, J . A. & Waldinger, R. J . QA4: A Procedural Calculus for Intuitive Reasoning.
Technical Report 73, Artificial Intelligence Center, Stanford Research Institute, 1972.

Rumelhart, D. E. Introduction to Human Information Processing. New York: Wiley 1977.

Waterman, D. A. & Hayes-Roth, F., (Eds.) . Pattern Directed Inference Systems. New York: Academic
Press 1978.

Whitehead. Symbolism: Its meaning and effect. New York: McMillan 1927.

Wilson, E. O . Sociobiology: The new synthesis. Cambridge, Mass.: Harvard University Press 1975.

Winston, P. Artificial Intelligence. Reading, MA: Addison-Wesley 1977.

Yovits, M. C. & Cameron, S. (eds.). Self Organizing Systems. New York: Pergamon 1960.

Yovits, M. C , Jacobi , G . T . & Goldstein, G . D. (eds.). Self Organizing Systems 1962. Washington,
D.C.: Spartan 1962.

