
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

cnu-cs-78-iii

Evaluation of the Bitstring Algorithm

Peter H. Feiler

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213

12 April 1978

Abstract

A resource allocation technique based on an alternative data representation to the list

structure, i.e. the bitvector, is discussed in this paper. The data structure provides for implicit

collapsing of available resources, and the algorithm, called Bitstring, can be applied to any

t ype of resource without performance loss. An optimized implementation of Bitstring is

compared with a corresponding list structure algorithm (Firstfit). Two bitvector algorithms

for special resource allocation environments, Exactstring and QuicKstring, are presented. The

implementation of Bitstring in microcode on a PDP-11/40E and the resulting performance

improvement relative to the assembly code implementation are discussed.

x T h i s work was supported by the Defense Advance Research Projects Agency under
contract F44620-73-C-0074, monitored by the Air Force Office of Scientific Research.

1. Introduction
2. Bitstring Algorithm

2.1. The Bitvector
2.2. Basic Algorithm
2.3. The Search Algorithm
2.4. Hardware Influences

3. Evaluation Of Bitstring

3.1. Execution Cost Of The Bitstring Algorithm
3.1.1. Basic Algorithm
3.1.2. Scan From Right
3.1.3. Two-Dimensional Array
3.1.4. Finite vs. Infinite Loop
3.1.5. Rotating Pointer
3.1.6. Rightmost Bit in Word

3.2. Comparison with List Structure Representation
3.2.1. Classification
3.2.2. Measures
3.2.3. Simulation
3.2.4. Results

4. QuicKstring Algorithm

4.1. Exactstring

4.2. Quickstring

5. Bitstring in Microcode

5.1. Improvements of the Implementation
5.2. Micro Processor Usage
5.3. Comparison of Assembly Code and Microcode

6. Conclusions
7. References
8. Programs

8.1. Simple Bitstring
8.2. Modified Bitstring
8.3. Exactstring
8.4. Quickstring
8.5. PDP-11/40E Data Path Diagram

EVALUATION OF THE BITSTRING ALGORITHM 1

1. I n t r o d u c t i o n

Activities on computer and programming systems change over time. Thus system resources

must be managed dynamically. Resources are generally kept in resource pools. Requests for

resources are granted by allocation of free resources from the resource pool to the

requestor. Upon release of resources by the requestor they are returned to the resource

pool. Resource management involves several kinds of resources, eg. primary memory,

secondary memory, devices.

Resources may be requested from the pool in units of one at a time, several at a time, or

several adjacent units at a time in the case of ordered resources. In the latter case a total

ordering of the resource type must exist, as with primary memory addresses or sector

? addresses of a disk. Each resource name is a unique identifier for a resource within its

resource type. A collection of resources is referred to by the set of their resource names or ,

in the case of ordered resources with adjacent allocation, by the resource name of the first

resource and the number of resources in the collection.

Various resource allocation techniques have been developed, choosing different data

representations for the resource pool and employing different strategies for allocation and

deallocation of resources. In the literature mostly allocation techniques for primary memory

are discussed. These dynamic storage allocation (DSA) techniques are based on list structured

data representation at no storage cost, because the list elements are kept in the memory

space of the free storage. The resource name of free memory blocks is identical to the

address of the list element describing the resource. For resources other than primary

memory, list elements cannot be embedded in the free resources themselves. List elements

must be maintained as separate entities in primary memory. The amount of storage required

to represent a dynamically managed resource is then relatively high, and alternative, more

compact representations can be thought of.

One such alternative, the Bitstring algorithm using a bitvector representation [Habermann],

is discussed in this paper. Chapter 2 describes the data structure and an optimized algorithm

for its manipulation. In chapter 3 its performance is analyzed and compared with

corresponding DSA techniques based on list representation. Specialized versions of the

Bitstring algorithm for certain allocation environments are given in chapter 4. Finally,

implementations of the Bitstring algorithm at different hardware levels, eg. machine code and

microcode, are evaluated in chapter 5.

EVALUATION OF THE BITSTRING ALGORITHM 2

2. Bitstring Algorithm

2.1. The Bitvector

A resource in a resource pool is identified by its resource name and an indication of

whether it is available (present) or allocated (absent). The resource pool is represented by

a bitvector^ each bit corresponding to the two-valued state variable of a resource. The length

of the bitvector is determined by the total number of resources in the pool. A resource can

be refer red to in the resource pool by a unique identifier, the resource index into the

bitvector for the bit representing the state of the resource. There exists a one - to -one

mapping from the set of unique resource names of resources in a pool onto the set of

resource indices of its bitvector.

/: resource name -> resource index.

For example, take the mapping function for the resource type primary memory, where the

resource unit is a memory block of n words. The address of the first word of a memory block

is converted into the bitvector index by

/ (word address) «• word address / n » bitvector index .

The bitvector imposes a total ordering on the indices of its resources. Two resources are

adjacent if their respective resource indices ij are adjacent i.e. they differ by one. This

ordering is maintained for the resource names if and only if the mapping function / is strictly

monotonically increasing or decreasing, and the inverse mapping function is defined

everywhere in the range of / and has the same functional properties.

A resource manager may use an instance of the bitvector to represent its resource pool. It

defines the mapping function / and its inverse, in order to perform the appropriate

conversions between the resource indices and resource names.

The information about a resource, provided by the bitvector, is often not sufficient for the

tasks of a resource manager. Resources can be allocated from the bitvector only to one

requestor at a time. Thus sharing of resources cannot be expressed by the bitvector. The

operations on the bitvector make assumptions about the proper release of allocated

resources, eg. return by the owner and no outstanding references, which must be satisfied by

the resource manager, in order to guarantee a consistent representation of the state of the

resources in the bitvector. The resource anager maintains additional information about

EVALUATION OF THE BITSTRING ALGORITHM 3

allocated resources, such as ownership of an allocated resource, number of outstanding

references to an allocated resource, and the resource requirements and allocations of

different users for deadlock avoidance. An example of .a resource manager is the primary

memory manager, who keeps segment descriptors with reference counts for allocated memory

blocks and a bitvector to represent available memory.

M adjacent resources (rn > 0) can be allocated in one operation. They are referred to by

the resource index of the first resource and the number of resources. When resources are

returned to the pool, the bitvector representation causes them to be collapsed with adjacent

available resources automatically without additional computation. The list representation does

not have this property. In order to avoid continuous splitting of sets of resources, the

algorithms on the list represenation execute a collapsing function at resource deallocation

time or upon failure to allocate requested resources.

E v e r y resource to be entered or removed from a resource pool is represented by a unique

bit in the respective bitvector. If a resource can reside in different pools, it must have, a

representative bit in each of the corresponding bitvectors. A resource then can be made

available in all pools simultaneously, which implies its removal from all pools on.an allocation,

or it can reside in one pool at a time. The total number of resources managed by a bitvector

can be changed dynamically in a restricted form. The bitvector can be extended at either end,

i.e. the added resources must be adjacent to existing resources in the pool.

2.2. Basic Algorithm

An allocation request can be made for m adjacent resources: a resource set of size m. The

request is satisfied if an available resource set of that size can be found. In terms of the

bitvector the allocation can be expressed as finding a subvector of size rn in the bitvector

with all elements present. The allocation is recorded by marking all bits of that subvector as

absent and returning the index of the first bit in the subvector. An allocated set of m

adjacent resources is returned to the resource pool by changing the bit values of the

corresponding subvector to present. For

bitvector - array [0 : poolsize-1] o/bit initialize present

we have

EVALUATION OF THE BITSTRING ALGORITHM 4

alloc (m.requestsize) returns resourceindex -
if

3 K ([0 : poolsize-1] s.t.
[k : k+m-1] c [0 : poolsize-1]

A V i * [k : k+m-1] : bitvectorfi] =* present
then

V i « [k : k+m-1] : bitvectorfi] <- absent
result «- k

else
result «- exception "request cannot be satisfied"

fi

and
free (p.resourceindex , m.requestsize) •»

precondition [p : p+m-1] c [0 : poolsize-1]
A V k ([p : p+m-1] : bitvectorfk] « absent

V k ([p : p+m-1] : bitvectorfk] «- present

2.3. The Search Algorithm

The bulk of the work in allocation of resources lies in the search for an available resource

set of the requested size m. We need a strategy to scan the bitvector for a bitpattern of m

contiguous bits present.

A subvector of the requested size - a window into the bitvector - is positioned at the left

end of the bitvector. It is tested for all present bits. If an absent bit is encountered, the

window is moved to the right of that bit and the test of the window is started over again. The

window can be scanned from the left, in which case the leftmost bit absent is detected first

and the window moved beyond it. If several bits have the value absent, each of them will be

encountered and cause the window to be moved. The scan from the left is effectively a linear

test of all bits in the bitvector from the left end up to and including the subvector satisfying

the allocation condition. The scan of a window from the left is illustrated in fig.l .a. Lb and ub

indicate the lower and upper bound of a window, the subscript i specifies the i -th window

position in a search, and cur the position of the scan head.

If we scan a window from the right, the rightmost bit with the value absent is detected and

the window moved beyond it. From the illustration in fig l.b we can observe, that bits may be

skipped without being tested, i.e. the bits to the left of the absent bit, and that part of the

window in the new position has been tested in the previous position of the window, i.e. the

EVALUATION OF THE BITSTRING ALGORITHM 5

i7

cur.

OO1OO1OO0O0010111 001001000000000111

lb. ub~

A | A A

Fig. l.a Fig. Lb

bits from to u6j. Therefore only a subwindow starting at Ibscan-^^ has to be tested in

the (i + l) - t h window position. An algorithm for the window test from right is given in A . l .

During the scan in a window test two conditions are checked on every iteration of the scan

loop: is the loop variable in the range of the scanned window and is the value of the scanned

bit equal present. The test of the loop variable can be eliminated as follows. If the bit to the

left of the scanned window is guaranteed to have the value absent, it is assured that a scan

from the right with an infinite loop, testing only the scanned bit, will terminate. The window is

successfully scanned, if the rightmost bit detected is the bit to the left of the scanned

window. In other words

for i from ub downto Ibscan do
If bitvectorfi] eql absent then

return "rightmost absent bit is i"
fi

od
return "all present bits"

can be replaced by

with

do

savbit « bitvector[lbscan-l]
i = ub

bi tvector [lbscan- l] <- absent
while bitvector[i] eql present do i «- i-1 od
bitvector [lbscan- l] «- savbit
ifi eql lbscan-1 then

return "all present bits"
else

return "rightmost absent bit is i"
fl­

it we always start the search with the first window position at the left end of the

EVALUATION OF THE BITSTRING ALGORITHM 6

bitvector , bitpatterns of values absent will tend to cluster at that end. They are skipped at

the beginning of each search. An alternative is to maintain a rotating pointer which indicates

the starting point of the search. We require that the starting point refers to the first element

of an available resource set (bitpattern present). After a successful search the pointer is

updated to refer to the right of the allocated window. Thus a new search will start at the

least recently tested position of the bitvector. An algorithm implementing the rotating pointer

is g iven in A.2.

2.4. Hardware Influences

In general machines are not equipped with mechanisms for bit addressing of memory. 8 bit

bytes and memory words are the directly addressed memory units. Machine instructions

define operations on bytes or words. For the manipulation of individual bits within a word ,

boolean masking operations, shift operations, and field extraction operations are provided.

Some machines have special instructions on individual bits such as branch on the value of the

sign bit of a byte or word, or determine the position of the rightmost bit with value 1 .

Keeping the underlying hardware in mind, we may revise the implementation of the

bitvector and the allocation and deallocation algorithm. The resource pool can be thought of

being implemented as a vector of words, and the resource index of the one-dimensional

bitvector is mapped into a two-dimensional bitarray. Tests and assignments of new values can

be performed on words (bytes) in one operation. Thus the number of iterations in loops to

test or set bit sequences is reduced. However the boundaries of bit sequences require

special treatment. Subsets of bits in a word have to be operated on.

The search algorithm must find the exact bit position of the rightmost bit in a window with

value absent. In the two-dimensional bitarray ail bits in a word are tested for presence in one

operation. If a word test fails, the position of the rightmost bit absent in that word must be

found. This may involve one hardware instruction (such as JFFO on the DEC PDP10 [PDP10])

or more elaborate processing, depending on the underlying machine. The machine of choice is

the PDP11-40/E, a 16 bit processor [PDP11] with microcode extension [Fuller]. This machine

has- by te addressing, and word and byte operations. The wordscan to find the rightmost bit is

programmed with shift and mask operations. Three search strategies are worth considering:

linear search, binary search, and computed branch. They are discussed in detail in 3.1.6.

EVALUATION OF THE BITSTRING ALGORITHM 7

3. Evaluation Of Bitstring

3.1. Execution Cost Of The Bitstring Algorithm

3.1.1. Basic Algorithm

The basic algorithm for allocation in a bitvector consists of four# parts: preprocessing,

search for a window satisfying the allocation condition, change of values in that window, and

postprocessing. The search for a valid window is described in more detail as the cost of one

window test times the number of window tests in a search. The cost of a window test

consists of the overhead for setting up the window and the number of bits to be tested in

the window. The cost of marking a window allocated or released is dependent on the size of

the window. The cost functions for the two resource allocation operations are

*Ci) ^alloc " ^'allocpre * ̂ search * ^windowset + ^allocpost »

(C2* Cfree m Cfree pre * C windowset * Cfree post »

<C3> Cwindowset " nbitsinwindow * C b U s e t

(C 4) Csearch m nwindowtest * (C w i n d o w o u € r h e a d • C w i n d o w t e s t),

(C5) Cwindowtest m ntestbitsinwindow * C b U t e s V

Nbitsinwindow is the average number of resources allocated in a request.

Ntestbitsinwindow is the average number of bits actually tested in a given window position.

This number is less than nbitsinwindow, because the remainder of the window in a window

position is not tested when an absent bit is detected. Nwindowtest is the average number of

window positions tested in one search. The product nwindowtest * ntestbitsinwindow

corresponds to the average total number of tested bits in one search.

3.1.2. Scan From Right

We have the choice of scanning a window from the left or from the right. In the scan from

the left, the number of times a window is moved is equal to the number of bits absent from

the starting point to the position of the valid window. Similarly, the total number of bits

tested is the number of bits from the starting point to the first bit of the valid window plus

the size of the window. Both statements are obvious by examining the algorithm which is a

EVALUATION OF THE BITSTRING ALGORITHM 8

linear scan of the bitvector from left through the bitvector, i.e. every bit is tested and e v e r y

time an absent bit is encountered the window is moved.

A scan of the window from the right may improve the search with respect to both the

number of window tests and the number of bits tested in a search. First we show that the

number of window tests can be reduced. Given a window position let k be the number of bits

absent in the window and p be the position of the rightmost bit absent. A scan from the left

will encounter all k bits absent and move the window k times in order to position it to the

right of bit position p. In a scan from the right the rightmost bit position p is detected first

and the window moved passed the position in one windowtest. For k • 0 both the scan from

left and from right are successful in one windowtest. For k > 0 the scan from right requires

k-1 windowtests less than scan from left in order to skip to bit position p+I.

Next we show that the number of bits tested in a search may also be reduced by a scan

from right. We know about scan from left that exactly u/*n-i bits are tested once, where w is

the first bit position of the valid window and n the windowsize. It will be shown that in a

scan from right (algorithm A . l) all bits in [0:w+n-l] will be tested at most once and that

there may exist bits in that range that are not tested. The first point is clear when recalling

that the scanned ranges of two subsequent window tests do not overlap, i.e. abj < Ihscaaj^^

In order to show that frequently some bits in the range [0:w+n-l] are not tested, it suffices

to demonstrate that in any window test some bits are possibly not tested because the

scanrange of window tests do not overlap. Given k as the number of bits absent in a window,

p as position of the rightmost bit absent, and w as windowsize, we have for p in [l:w] that

the number of bits tested equals w if k - 0, and equals u/-p+i if k > 0.

Examination of (C4) shows that a reduction of the number of window tests (nwindowtest >

and of the total number of bittests (nbitsinwindow) reduces the cost of allocation.

The scan from right corresponds to the "Fast String Searching Algorithm" [Boyer] with a

two element alphabet (present9absent) and one search pattern of all present elements of

different lengths. An analysis of that algorithm shows that the number of bits inspected is

typically less than linear and the worst case behavior is linear in w+n. Furthermore it is

shown that the number of tested bits decreases with increasing length of the search pattern.

EVALUATION OF THE BITSTRING ALGORITHM 9

3*1*3. Two-Dimensional Array

The use of a two dimensional bitarray and word operations reduce the number of bi t - test

and set operations performed in an allocation or deallocation. Given a bitsequence of length n

and a wordsize of w bits, n bit operations are replaced by n/w word operations plus

additional mask operations at the boundaries of the bitsequence. The cost functions

C windowset/ C windowtest < C 3 / C 5 > c a n b e redefined from
Cl-dlm m n * Cbitset/test
to
C2-dlm m<n'w >* Cwordset/test * 2 * Cboundary

^boundary *s o n e m a s ^ operation. The operation for bitset/test { mask operation) is s lower

than the wordset/test operation. Thus C j . ^ is greater than C2-^ j j m for n greater two for

any wordsize w. However, the cost is influenced by the available instruction set.

Bitpositions in the bitvector are given by the resource index. Manipulation of the index

consists of simple arithmetic. The bitarray requires an indexpair (x j ^) as pointer to a

specific bitposition, where X j is the wordindex and X2 is the bitindex within word x^.

Manipulation of this pointer in general requires arithmetic on both indices with overflow from

X 2 to x j . The wordsize of 16 (- 2 ^) bits on the PDP11 simplifies this operation. The pointer

manipulation in a window set/test, which is most frequently executed, only changes the

wordindex X j . The indexpair can be used in two different ways. In the first alternative the

resource index is converted to an indexpair at entry/exit of an operation and the indexpair is

manipulated in the algorithm. In the second alternative resource indices are manipulated in

the algorithm and are converted to indexpairs at access time of the bitarray. A comparison of

implementations showed that the first alternative produces more efficient code on the PDP11,

because the relatively expensive conversion from resource index to indexpair is executed

less frequently.

3.1.4. Finite vs. Infinite Loop

The scan loop in a window test can be implemented as a finite loop. The execution cost

c w i n d o w t e s t * C 5 * o r t h e b i t a r r a y) amounts to

C / m " n * < Cwordtest * Cloopvarupdate * Clocpvarcheck > •* 2 * ^boundary *

EVALUATION OF THE BITSTRING ALGORITHM 10

^bitabsent »

where n is the number of word tests. C a b s e n j is the cost of finding the'position of the absent

bit in a window test. If the window has all present bits, the cost is zero. If there exists an

absent bit, the rightmost absent bit is determined at the cost Cfj ndrightmostbit-

In the infinite loop implementation the cost of the loop body is reduced by the cost of the

loop variable check. However cost incurs from setting the bit to the left of the window, and

e v e r y window test determines the rightmost bit in a word. Its position is compared with the

bitposition to the left of the window in order to determine whether the window had all

present bits.

^inf = n * < Cwordtest * Cloopvarupdate > * ^boundary * Clefibit 4

^findrightmostbit * ^'testforsuccess
The finite loop implementation is more efficient if the following relation holds:

<n * Cloopvarcheck *' ^boundary * Cblt*bsent* < ^leftbit * C' findrightmostbl^ +

^testforsuccessA

This is the case for the BLISS 11 implementation of the algorithm as long as the, average

number of word tests in a window test is less than 5, i.e. less than 80 bits are tested.

3.1.5. Rotating Pointer

The simple Bitstring algorithm (A.1) has the characteristics of a Firstfit algorithm. It tends

to cluster allocated resources at one end of the resource pool [Knuth]. If the search is always

started at that end, the window is moved over all allocated resources. The use of a rotating

pointer in the modified Bitstring algorithm (A.2) will distribute the allocated resources

across the pool, and start the search for free resources at the least recently tested

resources. The modified Bitstring algorithm uses the same search strategy as the modified

Firstfit algorithm [WeinstockJ The number of window tests per search is drastically reduced (

see 3.2.4).

The additional cost for the rotating pointer is minimal, i.e. two words of storage for the

two-dimensional pointer, two instructions each for C a | | 0 C p r e and Ca|locpost * o r r e t r i e v a l a n c *

update of the pointer, an occasional switch to the left subvector of the search, and a pointer

update in free if the rotating pointer refers into a bitpattern present after collapsing of

adjacent sets of resources.

EVALUATION OF THE BITSTRING ALGORITHM 11

3.1.6. Rightmost Bit in Word

The PDP11 provides both word and byte operations. Thus the byte containing the

rightmost bit absent can be retrieved in one byte test and one byte swap operation. For the

search within a byte three strategies are suggested: linear search, binary search, and

computed branch.

The linear search tests the 8 bits of a byte in linear fashion from right to left. At most

seven bits are explicitly tested, because we know that at least one bit in the byte is absent.

The position of the absent bit is determined in min. 4 instructions and max. 16 instructions (

an average of 10 instructions).

Binary search divides the bitsequence into two parts. The half containing the absent bit is

selected for repetition of the process. Three repetitions are necessary to determine the

absent bit in a byte. The execution cost is min. 6 instructions and max. 11 instructions

(average of 9 instructions). However, relatively expensive ASH instructions are executed

which outweigh the gain of one instruction over linear search.

The computed branch version for finding the position of the rightmost bit in a byte uses

the fact that, given an arbitrary bitsequence X, S - X A - X results in a .bitsequence, for which

bit p has the value one and all other bits the value zero, where p is the position of the

rightmost bit one in X.

Arithmetic on the PDP11 is done in two-complement, ie. -X - hX) + /. ,

Define Y - X [0:p-l] and 2 « X / p : n - I / » W^P'1 .,ie. X - Y * Z.

Thus we get - X - (^Y <* - 2 ; * 1 - (- y * 0 1 r t " ^ i J * 1 =(- y * 10*-p-l) and

5 * x A - x - (Y • ion-P~l) A (-y « ion-p-i) « opto"-?-1.

S is used as index into a sparse array to retrieve the bit position. Only the entries with

indices 2 n are used where n is the bit position. Computed branch requires 5 instructions. This

search strategy takes the least execution time, but requires the implementation of a sparse

ar ray with 8 entries. Access cost to the sparse array is not included in the instruction count.

3.2. Comparison with List Structure Representation

EVALUATION OF THE BITSTRING ALGORITHM 12

3.2.1. Classification

A resource management technique can be characterized by the choice of data

representation for the resource pool, and by different allocation and deallocation strategies.

[Weinstock] did a study and evaluation of a collection of dynamic storage allocation (DSA)

techniques. All DSA algorithms are based on the same representation of the resource pool.

Available resources are maintained in linked list structures. For resources such as primary

memory linkfields and resource information can be maintained in the storage space of the

available resources. This scheme cannot be applied to resources without usable storage such

as devices, and storage has to be provided for the list elements by the allocator.

A model [Weinstock] describes DSA techniques along several dimensions , such as search

cr i ter ion, ordering of free resources, collapsing of adjacent resources in an ordering, splitting

of resource sets, rounding of requests. The model is powerful enough to describe all dynamic

allocation techniques that appeared in the literature. Possible search criteria are:

- first fit - use the first free set of resources larg enough to satisfy the request

- best fit - use the smallest free resource set large enough to satisfy the request

- modified first fit - first fit starting where the previous search left off

- quick fit - combination of several techniques for BLISS11 compiler [Wulf]

among others. Several orderings of free resources are considered.

- LIFO order

- random order

- order by resource name (physical address of primary memory)

- order by size of resource sets (size of free memory blocks)

Collapsing of resource sets may be done at allocation or deallocation for all resources in a

g iven ordering or only for resources previously split.

The simple bitstring algorithm can be described using this model as a resource management

technique with first-fit search strategy, ordering of resources by resource name (resource

index), and collapsing of adjacent resource sets at deallocation. No rounding is employed and

the unused part of a split resource set is returned to the free resource pool. An algorithm

•

EVALUATION OF THE BITSTRING ALGORITHM 13

with list structure representation, Firstfit with location ordering and collapsing on free

[Weinstock], matches the description of the model for the simple Bitstring because the model

does not distinguish between alternative data representations of the resource pool. We call

two algorithms equivalent in their allocation behavior if they are represented by the same

model.

The Bitstring algorithm with rotating pointer uses a different search strategy than the

simple Bitstring algorithm. The search in the pool is started where the previous search left

off. The equivalent algorithm with list structure representation is the modified Firstfit

algorithm with location ordering and collapsing at free [Weinstock].

3.2.2. Measures

Resource management techniques can be compared according to one or several measures.

Measures are expected to capture different aspects of performance, providing a basis for

comparisons. [Shore] uses a time-memory product to compare different DSA techniques. This

measure does not have an intuitive interpretation for different values on the scale.

[Weinstock] tries to circumvent this problem by evaluation of two measures, resource

utilization and execution time. Resource utilization is defined as the probability that a method

will be unable to satisfy a request. Resource utilization does not change for equivalent

algorithms.

For the comparison of the Bitstring and the Firstfit algorithms we introduce an additional

measure in order to reflect different data representations, memory space required in the

resource manager to implement the resource pool. This gives us a handle on. the space

eff iciency of the encoding of resource information. However the encoding also effects the

execut ion cost. Thus both measures are considered together in an evaluation.

3.2.3. Simulation

The evaluation of the Bitstring algorithm and its comparison with the Firstfit algorithm is

based on measurements taken from simulation experiments. The type of the simulated

environment affects the performance of a resource allocation algorithm. It is characterized by

the number of resources in the pool, the arrival rate of requests for sets of resources, the

EVALUATION OF THE BITSTRING ALGORITHM 14

size of requested resource sets, and the time span of allocation of the resource set.

Primary memory was chosen as the type of resource in the simulation environment. Few

statistics on the rate of memory requests, the size of requests, and the life time of allocated

memory are published. [Totschek] obtained statistics from the SDC timesharing system,

including distribution of jobsizes. Two reports from the University of Virginia

[Batson70,Batson74] publish data on distributions of request size and lifetime of memory

blocks from measurements of the ALG0L60 runtime system on a B5000 computer system. The

data indicate that most of the requests are for less than 50 memory words. The shape of the

lifetime curve is approximately negative exponential. [Weinstock] prpvides information on

distributions of requestsize, lifetime, and interarrival times of requests. The data were

collected from the BLISS11 compiler [Wulf} The distribution of lifetime shows similar behavior

for both the Virginia and BLISS11 data. The requestsize for the BLISS11 compiler has an

average of less tfian 10 words. The interarrival time distribution behaves approximately

negative exponentially.

For the simulation environment we chose the interarrival time and lifetime distributions

from the BLISS 11 compiler. The distribution of request size was a uniform distribution with

minimum of one and maximum of 50 memory words. The small mean value of the request size

suggests a resource pool of 3K words. A simulation run with a larger resource pool showed

that the choice of 3K words is sufficient for satisfactory simulation results. The mean value of

the lifetime of allocated memory was a variable parameter to the experiment. For evaluation

of execution cost the mean lifetime was chosen such that no measured algorithm failed for the

per iod of measurement. Simulation runs started with empty memory. Test runs starting with

partially full memory showed no significant influence on data collected from 50,000 events

(allocations and deallocations).

Statistics were collected on the number of allocated resources and the average request

size. For the list representation the length of the freelist and the number of list operations

for allocation and for deallocation were determined. For the bitstring representation the

number of window tests and the number of word tests for both the average window test and

the setting of bitsequences were measured.

3.2-4- Results

EVALUATION OF THE BITSTRING ALGORITHM 15

The execution cost of the Bitstring algorithms is calculated using the cost functions (C I)

and (C2). Analog cost functions can be defined for the Firstfit algorithm:

CFFalloc " Callocpre * ̂ vqnlistopsalloc * C U s t o p • C a l l o c p o s t

CFFfree ' Cfreepre * CLVgnUstopsfree * C U s t Q p * C c o U a p s e • C f r e e p o $ t

The measure of space requirement for the bitvector representation depends linearly on the

total number of resources in the resource pool. For the simple Bitstring algorithm we have

Spacebitstring = nresources [bits] = nresources / wordsize [words].

The freelist of the list representation requires two linkfields for the listhead and three fields

(two links and a size) for each list element representing an available set of resources. As

cost function we have

SPacefirstfit m SPacehead * ^elements * SpaceUstelernent

where the cost of a list element is zero if it can be embedded in the storage of a free

resource set. The number of list elements depends on the application environment. The

maximum number of nonadjacent sets of free resource sets possible in a resource pool is an

upper bound on the size of the freelist. The smallest resource set is of size one, and free

resource sets have to be separated by allocated resource sets. Thus the maximum freelist

length is total number of resources / 2. In general the freelist is considerable smaller.

According to Knuth's fiftypercent rule [Knuth] for Firstfit with collapsing, the number of free

resource sets is 1/2 * p # n, where n is the number of allocated resource sets and p is the

probabil i ty that all sets of free resources are bigger than the requested size. P is 1 when the

block sizes are infrequently equal to each other. In that case the number of free resource

sets is half the number of allocated resource sets.

Simulation Statistics

number of events 30000 40000 50000

number of alloc operations 15019 20020 25019
number of free operations 14981 19980 . 24982
avg. number of allocated resource sets 38 40 39
avg. number of allocated resources 1145 1157 1156

EVALUATION OF THE BITSTRING ALGORITHM 16

First -F i t

avg. number of list operations in alloc
avg. number of list operations in free
avg. freelist length

9.4
10.8
19.8

9.4
10.8
19.8

9.4
10.8
19.8

Simple Bitstring

avg. number of windowtests
avg. number of wordtests in window
avg. number of wordsets in window

21.0
0.11
0.77

21.1
0.11
0.77

21.1
0.11
0.77

Modified Bitstring

avg. number of windowtests
avg. number of wordtests in window
avg. number of wordsets in window

4.3
0.46
0.80

4.3
0.46
0.80

4.3
0.46
0.80

Execution Cost (in number of instructions \

F i rst -F i t

C al loc = 15 + 5 * nlistopsinalloc = 62
Cfree - 36 + 5 * nlistopsinfree - 90
C a v g " < C al loc + C f r e e > / 2 - 76

Simple Bitstring

C a | | o c (3 * nwordtestinwindow + 36) * nwindowtest +
3 * nwordsetinwindow + 65 » 833

C < r o „ = 3 * nwordsetinwindow + 3 0 - 3 2

C g =

Modified Bitstring

C al loc * ^ 3 * nwordtestinwindow + 37) * nwindowtest +
3 * nwordsetinwindow • 69 « 234

C < r o o « 3 * nwordsetinwindow + 3 2 - 3 4
Cavg - 1 3 4

EVALUATION OF THE BITSTRING ALGORITHM 17

Comparison of Execution Cost

Average

First -Fit/Mod. Bitstring - 7 6 / 1 3 4 - 1 : 1.76 - 0.56
First-Fit/Simple Bitstring - 76 / 434 - 1 : 5.71 - 0.17
Mod.Bitstring/Simple Bitstring - 134 / 434 =1 : 3.23 = 0.30

Alloc

First -Fit/Mod. Bitstring « 62 / 234 - 1 : 3.77 = 0.26

Free

First -Fit/Mod. Bitstring - 90 / 34 - 1 : 0.35 - 2.8

The use of the rotating pointer in the Bitstring algorithm reduces the average number of

window tests considerably (from 25 to 4). Knuth's fifty-precent rule is confirmed with an

average of 40 allocated memory blocks and 20 free memory blocks. The execution time

clearly indicates that the bitvector representation is more expensive. The best Bitstring

algorithm, the modified Bitstring, is on the average 1.76 as slow as the Firstfit algorithm. Note,

however , that the deallocation function by itself is less expensive for Bitstring. The

collapsing of adjacent free resource sets does not require any computation. This is an

inherent property of the chosen representation.

For the modified Bitstring algorithm the space requirement for 3K resources is 2 + 3 * 2^

= 194 words. The Firstfit representation requires 2 words, if the list elements are stored in

the free resources, and an average of 62 words for the simulated environment. However, the

worst case behavior of the list representation requires a maximum of 4.5K words of storage.

EVALUATION OF THE BITSTRING ALGORITHM 18

4. Quickstring Algorithm

In some resource management environments, like the dynamic memory management of the

BLISS 11 compiler, standard allocation techniques had shown to be unreasonably slow [Wulf].

In 1971 Wulf, Weinstock, and Johnsson designed and implemented the Quickfit method for the

BLISS 11 compiler, taking advantage of the observation that in certain environments allocation

requests dominate for a small set of sizes. This method has been evaluated and compared

with other DSA techniques with list representations [Weinstock] and shown to perform

super ior to them in most cases. A similar algorithm can be developed for the bitvector

representation.

4.1. Exactstring
r

Allocation requests of one size only are a special case of an allocation environment for the

Quickfit method. Resource sets of the requested size are represented by one state bit. Thus

allocation of resources consists of finding one present bit. The resource pool bltpool is

implemented as a two-dimensional array of bits. The search for an available resource consists

of finding a word in the array with at least one bit with value present. The position of one of

these bits (the rightmost one) is then to be determined and its value changed. A

specification for Exactstring is given in A.3.

The execution cost for this algorithm is considerably less than for the simple Bitstring

algorithm. The cost'depends on the number of wordtests performed i.e.

CaUoc m Cpre * ™8™<>rdtest * C w o r d t e s t * C f i n d b ^ C p o $ v

The use of a rotating pointer referring to the last tested word will keep the average number

of wordtests well below two, such that the execution time for alloc is about 28 instructions

and 7 instructions for free (average of 18 instructions).

The list representation of the resource pool requires one list element per available

resource set. The available resource sets are kept in arbitrary order and no collapsing of

adjacent resource sets is performed. An implementation of the Exactfit algorithm on the list

representation of Firstfit (doubly linked list) results in an execution cost of 14 instructions

for alloc and 9 instructions for free (average of 12 instructions). A singly linked list,

however , is sufficient to implement a resource pool for Exactfit. The pool operations can then

EVALUATION OF THE BITSTRING ALGORITHM 19

be performed in three instructions for both alloc and free.

4.2. Quickstring

The collection of resources is divided into pools containing resource sets of the prefer red

request sizes and one pool for arbitrary sized allocation. Each of the preferred size pools is

implemented as a bitpool and the general pool is represented as a bitvector. A resource

resides in exactly one pool and cannot migrate to different pools.

The search algorithm of the Quickstring method for a request of size k is as follows:

If the requested size k matches one of the sizes represented by the bitpools

- t r y to allocate from the bitpool with resource sets of size k

- if failing, t ry to allocate from the bitvector (general pool)

• - if failing, and if there exists a bitpool with larger resource set size rn then t r y
to allocate from bitpool of the size m resource sets, wasting m-k resources.

If the requested size k does not match one of the bitpools

- t r y to allocate from the bitvector

- if failing, and there exist bitpools with larger resource set size m then t ry to
allocate from bitpool of size m resource sets, wasting m-k resources.

The program for Quickstring is given in A.4.

If the resources are divided into the different pools according to the distribution of the

request sizes, a high precentage (about 807. for the BLISS 11 compiler [Weinstock]) of the

requests can be allocated by application of the Exactstring algorithm. Most of the remaining

requests are allocated from the general pool via the Bitstring algorithm. Only a small

percentage (37. for the BLISS 11 compiler) of the requests are retried on several pools. Thus

the Quickstring algorithm runs to 807. at the cost of Exactstring (average 18 instructions)

plus the overhead of pool selection, and 177. are executed at the speed of modified Bitstring

(average 134 instructions) plus the overhead of pool selection.

The Quickfit algorithm described in [Weinstock] differs from the Quickstring algorithm.

above by returning unused resources of an allocation from a preferred pool to the general

pool. The memory utilization of the Quickfit algorithm is very close to that of the Firstfit or

EVALUATION OF THE BITSTRING ALGORITHM 20

Bestfit algorithm [Weinstock]. Preferred requests of small size cause little additional internal

fragmentation to the Quickstring algorithm. In order to make the Quickstring algorithm

equivalent to the Quickfit algorithm, we extend the general pool to contain all managed

resources. This allows resources to migrate between preferred pools and the general pool.

An increase in execution cost is due to migration of unused resources to the general pool in

the allocation operation, and a check in the deallocation operation, whether a release of

resources is to a preferred pool with unused resources in the general pool.

EVALUATION OF THE BITSTRING ALGORITHM 21

5. Bitstring in Microcode

An algorithm can be implemented on different hardware or hardware levels more or less

efficiently. The DEC-PDP11 has a large instruction set with a powerful addressing mechanism,

but lacks sophisticated bit manipulation at the assembly code level. The standard model

DEC-PDP11/40 is a horizontally-encoded microprogrammable processor with microcode in

read-on ly memory for the standard instruction set. In a project at Carnegie-Mellon University

[Ful ler] , the processor hardware has been extended by additional functional units to

overcome certain deficiencies, and by a writeable micro control store to provide for

microprogramming by general programmers. For a description of this processor, the

PDP11/40E, the reader is referred to [Fuller]. A simplified data path diagram is given in A.5.

Some functional units are explained, as they are relevant to the discussion of microcoding the

Bitstring algorithm.

5.1. Improvements of the Implementation

The assembly code and the microcode instruction set each defines a virtual processor with

different characteristics. The implementations of an algorithm on the two processors are quite

distinct.

The starting point for the implementation of the Bitstring algorithm is a high level

description of the algorithm in hardware independent terms. Some optimizations, that are

inherent to the algorithm and the chosen data structures, are performed at this stage without

any knowledge of the underlying processor, eg. scan from right, rotating pointer.

The bit is the smallest data structure supported by the virtual processors, but memory and

processor registers are defined in terms of machine words, and operations are executed on

words as well as on bits. This fact is used to improve the implementation of Bitstring for both

processors, eg. bitvector represenation as two-dimensional array.

The evaluation of alternative algorithms, eg. search for rightmost bit, with respect to

execution time is strongly dependent on the underlying processor. The hardware is controlled

by means of the instruction set. The assembly processor provides for sequential flow of

control , instruction by instruction. All internal functional units complete their operation at the

end of eve ry instruction. Thus the processor represents one functional unit to the

EVALUATION OF THE BITSTRING ALGORITHM 22

programmer. The micro processor has additional internal functional units and makes all

functional units directly accessible. They can be utilized simulaneously and part ly

asynchronously. For example, the implementation of the linear search is superior to binary

search on the assembly processor, whereas for the micro processor the inverse is true.

5.2. Micro Processor Usage

The program on the micro processor is located in a fast small memory, the micro control

s tore . The access time is considerably less than access to primary memory. Furthermore, the

execution of one instruction overlaps with the fetch of the next instruction, which requires,

that a conditional branch has a delay of one instruction, i.e. the condition influencing the

branch is temporarily kept in the microcode interpreter before its effect is visible to the

program. This implicit buffer is used in the Bitstring microcode to implement access to an

array of constants (bitmasks) from several places in the program. Both the array index and

the return address are buffered in sequence as branch conditions. They are available to the

array access code in the same order.

arrayindex : « TOS 8; ! define top of stack to be var.

case arrayindex<3:0> ! index to 16 elenu array
eubc *- retadr; goto array ! store return address

retadr: <...> ! continuation of program

array: set
b «- 000001; goto 0 ! get value and return
b «- 000003; goto 0

tes

This example also shows the use of the hardware extensions: the stack as storage and

input to the mask and shift unit, the mask and shift unit for field extraction, and the n - w a y

branch (EUBC). The n-way branch accepts only constant values from the data field of a

micro instruction (eg. retadr) or values from the top of the stack, modified by the mask and

shift unit. The branch on the D-register being equal to zero is the only other generally useful

conditional branch mechanism.

Variables, that require field extraction via the mask and shift unit, can be stored

permanently on the stack, only if they adhere to strict scope rules, i.e. only the innermost

variable can be manipulated. The implementation of Bitstring is able to keep two variables on

EVALUATION OF THE BITSTRING ALGORITHM 23

the stack. All other variables are stored in the general registers, and use the top of stack

temporarily as working location for field extraction. The stack is also used as a register save

area at the entry of a microcode routine, where up to four general registers are preserved

for the duration of a Bitstring operation.

The bitvector can potentially be maintained in the micro store extension rather than in

primary memory. Unfortunately, the access mechanism is awkward to use. The number of

callsites is limited, but may be extended using a subroutine calling sequence, with the result

of slower access than primary memory access. Micro store access without subroutine call

improves the execution cost of the Bitstring algorithm by a negligible amount (37.).

Even though multiple functional units are under direct control of the microprogrammer,

their simultaneous use is limited by bottlenecks in the data flow path and hardware

constraints. Transactions on the UNIBUS require, that the input values are stable. Thus, no

wri te operation and about half of the read operations do permit parallel execution of other

instructions. Similarly, the general registers are clocked to both the RD-bus and the

DMUX-bus in one instruction. Therefore, two different general registers cannot be operated

on in one instruction (eg. ub*-d;d<-lb+b, where lb and ub are general registers). Also, the use

of both buses with access to a general register from one bus only produces side effects, such

as change of register contents (eg. tos+-d;ba<-rl) or unintentional ORing of a register onto

the RD-bus (eg. rl<r-unLbus;d*-tos+2).

5.3. Comparison of Assembly Code and Microcode

The Firstfit algorithm executes on a small number of variables with few independent

operations, i.e. it has little potential parallelism. Its microcode implementation can take little

advantage of overlapping operations in the instruction sequence. In addition, the field

extraction mechanism is not used. Most of the gain in performance, compared to the assembly

code implementation, results from the faster instruction fetch from the micro store and from

the maintenance of intermediate execution state between instructions in internal registers { D

or B register, stack). The result is a speedup factor in execution time of about 5.

The Bitstring algorithm maintains more computational state information with a high potential

of independent operations. A careful analysis of the set of independent operations and of the

restrictions on the simultaneous use of different hardware components permits a high degree

EVALUATION OF THE BITSTRING ALGORITHM 24

of operation overlap, because all functional units are used frequently. The simple Bitstring

algorithm with infinite loop and linear search for the rightmost bit was implemented on both

the assembly and the micro processor. A comparison showed a speedup of 9.5 for the

microcode, about twice the speedup achieved for Firstfit. Thus the microcode vers ion of

Bitstring is faster than the microcode version of Firstfit.

The microcode implementation of Bitstring was modified in order to make more effective

use of the field extraction mechanism in the search for the rightmost bit. The linear search

was replaced by a binary search from 16 bits to 4 bits, and indexing of the 4 bit value index

into an array (conditional branch). This implementation is compared with the assembly code

implementation with the following results, achieving a speedup of 10.3 - 10.8:

Execution Cost

Assembly (in instructions)

C a | [o c « (2 * avgnwordtestinwindow + 38) * avgnwindowtest +
3 * nwrodsetinwindow • 80

C f r e e » 3 * nwordsetinwindow + 30
Average instruction time * 2.2 microsec

Micro Code (in microseconds)

C a | j o c = (1.4 * avgnwordtestinwindow + 7.8) * avgnwindowtest +
1.3 * nwordsetinwindow + 8.8

C f r o o = 1.3 * nwordsetinwindow + 5.5

Execution Time (in microseconds \

Assembly
Mod. Bitstring
Simple Bitstring

Average

286.0
945.7

Alloc

497.2
1821

Free

74.8
70.4

Microcode
Mod. Bitstring
Simple Bitstring

26.3
92.0

46.1
177.6

6.54
6.50

EVALUATION OF THE BITSTRING ALGORITHM

Comparison of Execution Time

Microcode/Assembly
Mod. Bitstring
Simple Bitstring

EVALUATION OF THE BITSTRING ALGORITHM 26

6* Conclusions

A resource allocation technique based on the use of a bitvector as data representation,

Bitstring, has been examined. An optimized algorithm, the modified Bitstring algorithm, was

developed for general allocation of an ordered set of resources. The algorithm is compared to

resource allocation algorithms which are equivalent with respect the management of

resources, eg. search strategy, but are based on a different, list structured representation of

the resource pool. The Bitstring is shown to be inferior to the Firstfit with respect to

dynamic storage allocation in both execution time (by a factor of 1.75) and space

requirement. For resources in general, eg. devices, secondary storage, the Firstfit algorithm

has a higher worst case space requirement. For certain resource allocation environments

improved algorithms on the bitvector representation are given. An Exactstring algorithm

allocates resources of one request size only. For allocation environments with a dominating

range of request sizes the Quickstring algorithm is provided, handling those request sizes as

special cases. Its search strategy is similar to the Quickfit strategy for list representations

[Weinstock]. Implementation of the Bitstring algorithm in both machine code and microcode

are considered. The PDP11/40E, a microprogrammable modified DEC-PDP11/40, is taken as

the hardware basis. The microcode permits better exploitation of the available hardware at

the cost of higher programming complexity. The implementation of the algorithm in microcode

results in a speedup factor of about 10, executing faster than the microcode version of

Firstfit . The use of microstore as data area is considered, but the performance improvement

is negligible, due to hardware constraints.

EVALUATION OF THE BITSTRING ALGORITHM 27

7. References

[Batson70]

[Batson74]

[B o y e r]

[Ful ler]

[Habermann]

[Knuth]

[PDPIO]

[PDP11]

[Shore]

[Totschek]

[Weinstock]

[Wulf]

Batson,A.P., S.M. Ju, and D.C. Wood, "Measurements of Segment Size",

CACM, 13(3), March 1970, 155-159

Batson,A.P., and R.E. Brundage, "Measurements of the Virtual Memory

Demands of Algol-60 Programs", Department of Applied Mathematics and

Computer Science, University of Virginia, 1974

Boyer.R.S., and J.S. Moore, "A Fast String Searching Algorithm", CACM,

20(10), Oct. 1977, 762-772

Fuller, S.H., etal., "PDP-11/40E Microprogramming Reference Manual",

Carnegie-Mellon University, Technical Report, Jan. 1976

Habermann, A.N., "Introduction to Operating System Design", Science

Research Associates, Inc., 1976

Knuth, D.E., "Fundamental Algorithms", Addison Wesley, 1973

DEC PDP-10 Assembly Handbook, Digital Equipment Corporation, 1972

DEC PDP-11/40 Processor Handbook, Digital Equipment Corporation, 1973

Shore J.E., "On the External Storage Fragmentation Produced by First - f i t

and Best-fit Allocation Strategies", CACM, 18(8), Aug. 1975, 433-440

Totschek, R.A., "An Empirical Investigation into the Behavior of the SDC

Timesharing System", Report SP2191, Systems Development Corporation,

1965

Weinstock, C.B., "Dynamic Storage Allocation Techniques", Carnegie-Mellon

University, Ph.D. Thesis, April 1976

Wulf, W.A., R.K. Johnsson, C.B. Weinstock, S.O. Hobbs, and C M . Geschke,

"The Design of an Optimizing Compiler", American Elsevier, 1975

EVALUATION OF THE BITSTRING ALGORITHM 28

8. Programs

The appendix of this document only contains the algorithms for simple Bitstring, modified

Bitstring, Exactstring, and Quickstring in Type description. The actual implementation of the

diverse algorithms in BLISS11 and MICR040 are not included for space reasons. Copies of the

BLISS 11 code for the simple and modified Bitstring, Exactstring, Firstfit, and Exactfit

algorithms plus the simulation program, and the microcode implementation of the simple

Bitstring and the Firstfit algorithms are available upon request.

EVALUATION OF THE BITSTRING ALGORITHM

8.1. Simple Bitstring

type bit = (present , absent)

type bitindex - integer in range of[bitvectorsize]

type bitvector [bitvectorsize] «
array [bitvectorsize] o/ bit

op free (bitvec:fci£i/ector , bitndx:6ctmc/ea; , size:integer) =
precon bitndx+size-1 in bitindex

and
forall i in [bitndx..bitndx+size-l] sat bitvec[i] eql absent

forall i in [bitndx..bitndx+size-l] do
bitvec[i] «- present

op alloc (bitvec:6ttvector , nunits:mteger) returns bitindex »

precon nunits:bitindex

with
lb • lowerbound o/bitvec
ub » lb + nunits-1
Ibscan « lb
do

while
if ub not in bitindex then ERROR wno memory"
forsome i in -[lbscan..ub] sat bitvec[i] eql absent

do
lb <- i+1
Ibscan «- ub + 1 *
ub *> lb + nunits-1

od

forall i in [lb..ub] do
bitvec[i] «- absent

return lb

/* lower bound of window
/* upper bound of window */
/* lower bound subwindow */

EVALUATION OF THE BITSTRING ALGORITHM

8.2. Modified Bitstring

type rotbitvector [bitvectorsize] •
bv - bitvector [bitvectorsize]
rotptr » bitindex Lnit lowerbound o/bv

op free (bWvearotbituector , bWndxtbitindex , slzeiinteger) *
precon bitndx+size-1 in bitindex

and
forall i in [bitndx..bitndx+size-l] sat bitvec.bv[i] eql absent

forall i in [bitndx..bitndx+size-l] do
bitvec.bvfi] <- present

if bitndx+nunits eql bitvec.rotptr then
bitvec.rotptr «- lowerbound of bitvec.bv

fi

op alloc (bWvecirotbltvector , nunitsu/iteger) returns bitindex -

precon nunits.bitindex

with
lb - bitvec.rotptr /* lower bound of window */
ub - lb + nunits-1 /* upper bound of window */
Ibscan « lb /* lower bound scanned window */
maxsize « upperbound of bv /* upper bound of bv */
do

while
while ub gtr maxsize
do

if maxsize eql bitvec.rotptr then
return ERROR "no memory"

else
maxsize «- bitvec.rotptr-1
lb <- lowerbound of bitvec.bv
ub <- lb + nunits-1
Ibscan «- lb

fi
od

EVALUATION OF THE BITSTRING ALGORITHM

forsome i in -[ibscan..ub] sat bitvec[i] eql absent
do

lb <- i+1
Ibscan <- ub + 1
ub lb + nunits-1

od

forall i in [lb..ub] do
bitvecfi] «- absent

return lb

EVALUATION OF THE BITSTRING ALGORITHM

8.3* Exactstring

type bit • (present , absent)

type word - array [16] o/bit init (16: present)

op allabsent (wdiword) - returns boolean
return all i in range of wd sat wd[i] eql present

op findpresent { v/diword) » returns wordindex
precon not allabsent(wd)

for some i in range of wd sat wd[i] eql present do
return i

type bitpool [n] «
array [n / 16 + 1] of word

op alloc (bpibitpool) » returns bitindex

if for some i in range of bp sat
' not allabsenf(bp[i])

then
j «- findpresent (bp[i])
bp[i,j] absent
return i*16+j

else
return ERROR "no memory*

op free (bpibitpool, bpndxibitindex) »

precon bp[bpndx/16 , bpndx mod 16] eql absent

bp[bpndx/16 , bpndx mod 16] «- present

EVALUATION OF THE BITSTRING ALGORITHM

8.4. Quickstring

type quickstring [(reqsizej l . . . lreqsize n),(nresourceset^..,nresourceset n),
ngeneralresources] »

for i in [l:n] : bp: = bitpool [nresourcesetj]
syn generalpool - b p n + l " bitstring [ngeneralresources]

constant base^ = 0
for i in [l:n] : base j + j - base; + reqsizej * nresourcesetj

op alloc (qs.quickstring f size:integer) « returns resourceindex

with bitndx « bitindex do

if forsome i in [l:n] sat reqsizej eqZ size thea
if(bitndx^alloc(bpj)) neq ERROR then

return base; + reqsizej * bitndx

if (bitndx*-ailoc(generalpool,size)) neq ERROR i/jen
return b a s e n + ^ + bitndx

forall i in [l:n] sat reqsizej fltr size c/o
i/(bitndx<-alloc(bpj)) neq ERROR then

return base; + reqsizej * bitndx

return ERROR Mno memory"

op free (qs.quickstring , resndx:resourceindex , size-.integer) -

if forsome i in [l:n] sat resndx « [basej .basej + j - l] then
free (bpj , (resndx-basej)/reqsizej)

else
free (generalpool , resndx -base n + j , size)

fi

EVALUATION OF THE BITSTRING ALGORITHM 35

8.5. PDP-11/40E Data Path Diagram

t
Extensions

Standard
Processor

u
N

I

B

U

S

STK PTR

STACK

16 word*

EMUX

D

M

U

X

General
-^Registers

R[0]-R[15]

^ PSW

B f — > 1 B R E G

U

B const

BMUX

DMUX
^ 4> ft

Data

Data

Address

ALU

D REG

TJaTa"

±±

Address ~̂ ^ ^

SMUX

Shift/Mask

R

D

B

U

S

BA MUX

BA REG

Next Adr .

RAM

IK.80 bits

Micro
Instr.

EUBC
- r - >

