
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CMU-CS-78-133 

TAHTAN 

Language Design for the Ironman Requirement: 
Reference Manual 

Mary Shaw 
Paul Hilfinger 
Wm. A. Wulf 

Computer Science Department 
Carnegie-Mellon University 

Pittsburgh, Pa. 15213 

June, 1373 

Abstract: Tartan is an experiment in language design. The goal was to determine whether 
a "simple" language could meet substantially all of the Ironman requirement for a common 
high-order programming language. 

We undertook this experiment because we believed that all the designs done in the first 
phase of the COO effort were too large and too compiex. We saw that complexity as a 
serious failure of the designs; excess complexity in a programming language can interfere with 
its useT even to the extent that any beneficial properties are of little consequence. We wanted 
to find out whether the requirements inherently lead to such complexity or whether a 
substantially simpler language would suffice 

Three ground rules drove the experiment First, no more than two months — April 1 to 
May 31 — would be devoted to the project Second, the language would meet ail the 
Ironman requirements except for a few points at which it would anticipate Steelman 
requirements. Further, the language would contain no extra features unless they resulted in a 
simpler language. Third, simplicity would be the overriding objective. 

The resulting language, Tartan, is based on ail available information, including the designs 
already produced. The language definition is presented here; a companion report provides an 
overview of the language, a number of examples, and more expository explanations of some of 
the language features. 

We believe that Tartan is a substantial improvement over the earlier designs, particularly in 
its simplicity. There is, of course, no objective measure of simplicity, but the syntax, the size 
of the definition, and the number of concepts r^quirnd are ail smaller in Tartan 

Moreover, Tartan substantially meets ail of the Ironman requirement (The exceptions lie in a 
few places where we anticipated Steelman requirements and where details are still missing 
from this report) Thus, we believe that a simple language can meet the Ironman requirement 
Tartan is an existence proof of that 

We must emphasize again that this effort is an experiment, not an attempt to compete with 
DCO contractors. Tartan is, however, an open challenge to the Phase II contractors; The 
language can be at least this simple! Can you do better? 
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1. Basic Concepts and Philosophy 

A program is a piece of text that describes a sequence of actions intended to effect a computation. 
The process of "executing a program" to obtain this effect is called elaboration of the text. 1 

Programming languages are used for communicating programs, both between people and between 
people and machines. Although the program text is static, the concepts being communicated are 
dynamic. This dynamic nature of a computation can make it difficult to communicate the ideas 
underlying a program, and especially to communicate these ideas between people. To expedite the 
communication, we impose structure on the way languages are used. Although this structure restricts 
what can be written, it results in regular patterns for expressing decisions. The human reader benefits 
from this by developing expectations about how these ideas will be expressed. 

Programming languages encourage the imposition of structure by providing notations for the 
•structures whose use their designers wish to promote. During the process of language design, our 
beliefs about programming methodology and the state of language processing technology lead us to 
formulate concepts and structural rules. We then select syntactic forms and structuring features to 
emphasize these concepts. We expect that this will simplify the task of describing programs with the 
attributes we view as "good structure" and that programmers will, as a result, be encouraged to 
organize their programs this way. 

W e distinguish three dominant structures in Tartan programs: (1) the lexical structure, which 
organizes the static program text, (2) the control structure, which organizes the dynamic execution, and 
(3) the data structure, which organizes the information on which computations are performed 

- Lexical structure is a property of the program text Programs are divided hierarchically into 
sections, called lexical scopes, that share information about data. Scope determines the 
interpretation of identifiers, so ail the text in a given lexical scope shares the same 
vocabulary — definitions, variables, etc. Scope rules permit some identifiers to be used with 
the same interpretation in several lexical scopes. 

- The control structure of the program determines the order in which its statements are 
executed 

- The structure imposed on data involves the concepts of type, values, and variables. 
Ultimately, computations are performed on values; we take that notion to be primitive: values 
exist, and each has exactly one type, which determines the legal operations on the value. 
Values are stored in variables, which are objects produced by elaborating type definitions. 
Variables, too, have types; these types determine the sets of values that may legally be 
stored in the variables. 

These fundamental structures interact in a number of ways. Two major interactions appear as the 
concepts of extent and binding. The control and lexical structures interact to determine extent. The 
extent of a variable is its lifetime — the time during which it affects or is affected by the elaboration 
of the program. Binding rules are invoked by both lexical and control structures; they associate 
identifiers with program entities (objects, modules, routines, types, labels, and exceptions). 

In Tartan, programs are composed of definitions, declarations, and executable statements. A 
definition binds an identifier to a module, routine (procedure, function, or process), type, or exception; 
it is processed during translation. A declaration binds an identifier to an object (i.e., a variable or 
value); it is processed at run time, usually to allocate storage Executable statements are elaborated at 
run time to effect actual computations — manipulation of values. 

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical 
scopes. These scopes may be nested arbitrarily. Both constructs may use identifiers defined in other 
scopes; both may define identifiers that can be used in other scopes. Blocks and modules differ only 

l W e use the word "elaboration", in preference to "execution", to connote actions taken during 
translation as well as during execution. Elaboration may be thought of as an idealized, direct execution 
of the textual version of the program. 
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in their scope rules and In their effects on the extent of variables. Tartan has two scope rules: 

- An open scope inherits (imports automatically) all the Identifiers that are defined in its 
enclosing scope. It may not export any identifiers. Blocks are open scopes except when 
used as routine bodies. 

- A closed scope inherits all identifiers that are defined in its enclosing scope except those for 
labels and nonmanifest objects. 1 It may explicitly import identifiers for objects, provided they 
have global extent. All modules are closed scopes, as are blocks when they are used as 
routine bodies. A closed scope that is a module may export identifiers that name variables, 
modules, routines, types, or exceptions. 

Identifiers that are exported from an inner scope or imported from an outer scope have the status of 
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted; however, 
this does not prohibit overloading of routine names. In addition, the same identifier may be imported 
with different meanings from two different scopes. Such identifiers are qualified with the names of the 
"modules in which they were defined; thus they are not duplicate definitions. Similarly, literals and 
constructors are qualified with their types to prevent ambiguity. In either case, the module or type 
qualifier may be omitted if no ambiguity arises. 

In Tartan, extent is controlled exclusively by blocks. Only instantiated objects (variables, constants) 
have extent. Variables are instantiated by the elaboration of declarations (for named variables) and by 
explicit construction of variables having dynamic types (dynamically created variables). Named 
variables have extent coincident with the surrounding block. Dynamically created variables have extent 
coincident with the block containing the definitions of their dynamic types. Formal parameters of 
routines are considered to have extent coincident with the routine body. 

Tartan provides a facility for making generic definitions of routines and modules. This allows the 
programmer to write a single textual definition that serves as an abbreviation for many closely-related 
specific definitions. The definitions may accept parameters; the parameters are completely processed 
during translation. The effect of using a generic definition is that of lexically substituting the definition 
in the program at the point of use. 

The syntactic definition of Tartan uses conventional BIMF with the following additions and 

conventions: 

- Key words (reserved words) and symbols are denoted with boldface. 

- Metasymbols are denoted by lower-case letters enclosed in angular brackets, e.g., "<stmt>". 

- The symbols { and } (not in boldface) are meta-brackets and are used to group constructs in 
the meta-notation. 

- Three superscript characters, possibly in combination with a subscript character, are used to 
denote the repetition of a construct (or a group of constructs enclosed in {}): 

"*" denotes "zero or more repetitions of" 
"+" denotes "one or more repetitions of" 
"*" denotes "precisely zero or one instance of". 

Since it is often convenient to denote lists of things that are separated by some single 
punctuation mark, we denote this by placing the punctuation mark directly below the 
repetition character. 

The semantics of the language are described in English. In the interest of a compact and regular 
syntax, we have allowed syntactic constructs that are disallowed on semantic grounds. This is 
consistent with standard practice with respect to, for example, undeclared identifiers. 

^Literals and identifiers for variables that are declared manifest are manifest objects; hence 
they are inherited. 



Tartan Reference Manual - 3 -

2 . Basic Structures 

2.1. Primitive Expressions 

<const> <digit>+ { . <digit>+ }* | true | falsa J nil j closed | open | mint | empty 
| <constructor> | <id> | <qual id> ' <const> j <type> ' <const> | <expr> 

<constructor> ( <expr>* ) | ( { <option> -> <expr> }t* ) I " <char>* " 

Some examples are: 

123.456 
Co I o r ' g r e e n 
true; 
Person* ("Sam",21.male) 
'•efg'1 

( 1 . . 2 - > 0 . 1 . 3 . .4 ->8 .5 , others->1.3) 

Primitive expressions form the basis for the recursive defintion of expressions. They are the 
elements referred to as constants, literals, and constructors In programming languages and as 
generators in algebras. 

Constants and literals denote values. The type of a constant is determined by its declaration. The 
types of literals are determined as follows: 

- A sequence of digits containing no decimal point is of type Int. Type Int is defined in terms 
of type fixed for each machine as described in Appendix 1.1. 

- A sequence of digits containing a decimal point is of type Real. Type Real is defined in 
terms of type float for each machine as described in Appendix 1.1. 

- If a sequence of digits, with or without a decimal point, is qualified by a fixed or float type 
or by a defined type that is ultimately defined in terms of fixed or float, the type of the 
literal is determined by the qualifier. 

- True and false denote boolean values. Nil denotes the null value for any dynamic type. Open 
and closed denote values for latches. Empty denotes the empty set Mint denotes an 
activation of any process in mint state. 

- A character string containing one character is a literal of type char. Any other character 
string is a constructor of type string. 

Literals and manifest expressions are evaluated during translation with the same algorithms and 
accuracy as are used during execution. 

If an <id> is to be a <const>, it must have been declared const or be a member of an enumerated 
type. If an <expr> is to be a <const>, it must be a manifest expression. 

The type of a constructor may be indicated by a prefixed qualifier. If the qualifier is omitted, the 
constructor is assumed to give the value of an array indexed with integers beginning at 1. 
Constructors are provided for composite and dynamic types. 

- If the constructor has a record type, the <expr>s in parentheses give the field values in the 
order of their declaration 

- If the constructor has an array type, the parenthesized list gives the element values. If the 
constructor is a simple expression list, it gives the values in order from lowest index to 
highest. If the constructor uses the form with options, the expressions in the <option>s 
indicate the array position to which each value corresponds. The special constant others may 
appear as the last <option>; it will match any constant that is not included in any other 
<option>. The constructor form with options is legal only for arrays and for types ultimately 
defined in terms of arrays; the expressions in the <option>s must be manifest 

- If the constructor has a variant type, the first expression in the parenthesized list is the tag 
and the remainder of the list is a constructor for the corresponding variant. 
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- If the constructor has dynamic type, the result is a pointer to a new variable having the 
attributes supplied in the type qualifier and the value given by the parenthesized list. 

A constructor containing no <expr> provides an uninitialized instance of the indicated type. 

2.2. Identifiers 

<var id> <qual id> | <var id> ( <actuais> ) | <var id> . <id> | <var id> ( <range> ) | Rap' <id> 

<range> <expr> . . <expr> | <type> 
<option> { <const> | <range> } * 
<qual id> { <id> '}* <id> 
<id> <tetter> <letter or _ or digit>* 

Some examples are: 

An i ma I ' C a t 
V (3 ) 
V ( 1 . . N ) 
Sam.Age 
I dent_ut th jnark 

Identifiers have no inherent meanings. They are associated with objects, routines, modules, types, 
statements, and exceptions. Declarations and definitions establish the meanings of identifiers within 
particular scopes. 

Identifiers may be simple, or they may be qualified with module or type names in order to resolve 
ambiguity among names exported from several modules. 

Identifiers that name objects are <var id>s. They may be simple identifiers, they may be qualified 
to indicate where they were defined^ or they may name elements or substructures of composite 
structures. 

- Simple <var id>s (i.e., <qual id>s used as <var id>s) are identifiers declared in variable 
declarations or by the <formals> in a routine header. 

- The form <var id>{<actuais>), where <var id> denotes an array, denotes the element of that 
array indexed by the <actual>s. The types of the actuals must match the index types for the 
array. 1 

- The form <var id>{<actuals>), where <var id> denotes a variable of a variant type and the 
<actual>s consist of a single <expr>, indicates that the tag field of the <var id> must be 
<expr> and denotes the value of that option of the variant type. On the left side of an 
assignment, this form has the effect of setting the tag field; the expression on the right side 
of the assignment must be of compatible type. 

- The form <var id>(<range>) denotes a subarray. The <var id> must denote an array and the 
limits of the <range> must match the declared type of the array's index set and be a 
subrange of the declared range. The subarray consists of the indicated elements of the <var 
id>, in the same order as they appear in the <var id>. If the index type of the array is fixed 
or defined in terms of fixed, the subarray is indexed by integers beginning with 1; otherwise 
it is indexed from the minimum value of the index set of the array. 

- If <var id> denotes a record object, the form <var id>.<id> denotes the field named <id> in 
that record object If <var id> denotes an object of dynamic type, then <var id>.<id> denotes 
the field named <id> in the record object pointed to by the value of <var id>; <var id> must 
not have the value nil. This form is also used to access the value of a variant tag or the 
attributes associated with the type of a value or variable. In addition, if T is a variable of 
dynamic type, T.all is the complete value (all components) of the object associated with T. 

iNote that the index types include range restrictions. 
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- The form Rep'<id> is used in the same scope as the definition of the <id>'s type to indicate 
that the <id> is to be regarding as having the underlying type. This permits operations on 
the underlying type to be used for defining operations on the new type. 

Identifiers that refer to definitions (e.g., of routines, types, or modules) are <qual id>s. 

When an identifier is exported from a module, in the scope to which it is exported it is referred to 
by a <qual id> or <var id> constructed by prefixing the identifier with the name of the module from 
which it is exported: The qualifier is separated from the identifier with an apostrophe. Qualifiers may 
be omitted if no ambiguity results. 

A <type> used as a range must be fixed, an enumerated type, or a defined type that is ultimately 
defined in terms of fixed or an enumeration. 

2.3. Lexical Considerations 

Spaces may be inserted freely between lexemes without altering the meaning of the program. An 
end-of - l ine is equivalent to a space and may not be part of a lexeme. At least one space must 
appear between any two adjacent lexemes composed of letters, digits, under bar, and decimal points. In 
identifiers, ail characters are significant, but alphabetic case is not 

Comments are introduced by the character V and terminated by the next following end-of-line. 
T h e y have no effect on the elaboration of the program. 

Although the language as presented in this report takes advantage of characters that are not in the 
64-character ASCII subset, simple substitution to map programs into that alphabet are defined in 
Appendix I. 
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3 . Expressions 
<expr> <unop>* <var id> | <unop>* <const> j <unop>* <func call> 

| <unop>* ( <expr> ) | { <expr> ) . <id> | <expr> <binop> <expr> 

<unop> : :» - | -
<b»nop> ::« * j / | • | - | < | < | > | > | « | i | A | cand } v j cor j T 
<func cail> ::~ <quaJ id> ( <actuals> ) 
<actuals> <expr>f* 

Some examples are: 

x + y 
s \ n (x ) 
- (x*y + z*u) 
( R o o t . P t r ) .ail 

Expressions describe computations that yield values. The elaboration of an expression produces an 
object containing the value of the expression. The type of the object is determined by the following 
rules: 

- The type of an <expr> that is a <var id>, <const>, <func cail>, or selection of a field from a 
computed composite value is determined by the appropriate declaration (or rule for literals). 

- The type of a parenthesized expression is the type of the expression inside the parentheses. 

- The type of a binary infix expression or a unary expression is determined by the definition 
of the appropriate binary or unary operator definition. These operators represent 
invocations of functions that may be overloaded. The appropriate operator definition must 
therefore be determined on the basis of the types of the operands. 

The usual operations are associated with the operators +, *, /, T, A, V, cand, cor, < , < » > , > , = , 
and A The programmer may overload these function names, but the added definitions must be unary 
or binary to conform to the established syntax. Precedence rules for the unary and binary operators 
are given by the following table, in which operators on a single line have the same precedence and 
operators higher in the table bind more tightly than operators lower in the table. Unary operators 
have the highest precedence. 

t 
* / 
+ -
< S > > « * 
A cand 
v cor 

Within precedence levels, associativity is left-to-right. 
Por all operators except cand and cor, elaboration of an expression proceeds as if the expression 

were written in functional form (see section 3.1). Por cand and cor, the left operand is elaborated first 
and the right operand is elaborated only if necessary. 

A manifest expression is a literal, a value of an enumeration type, an identifier declared with 
manifest binding, a generic parameter, a manifest type attribute, a constructor involving only manifest 
expressions, or any expression involving only these expressions and language-defined operations. The 
value of a manifest expression is known during translation 
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3*1. Invocations 

Some examples are: 

F ( 5 ) 
Sequence*Inser t (S .5 ) 
P O 

An invocation causes the elaboration of a procedure or function body with the elements of the 
<formals> list of the routine bound to the elements of the <actuals> list provided by the Invocation. If 
a routine name is overloaded, the definition whose formal parameter types match the types of the 
actual parameters is selected. Procedure and function invocations (<proc call> and <func call>) differ in 
that procedure invocations are statements, whereas function invocations are expressions having values. 
An invocation consists of the following steps: 

- Elaborate each of the <actuals> in an unspecified order, yielding a sequence of objects. 

- For each result formal, create a variable having the same type and attributes as the 
corresponding actual. Bind the result formals to these variables. 

- For each const or manifest formal, create an object of the specified type with the same 
attributes as the corresponding actual. Copy the value of the actual into the new object. 1 

- Bind each var formal to the corresponding actual, which must be a variable (i.e., a <var id>). 
Thus var formals are passed by reference. 

- With the bindings established, elaborate the body of the routine 

- For each result formal, copy the final value of the variable bound to that formal back into 
the corresponding actual, which must be a variable (i.e., a <var id>). Note that this actual is 
determined before the elaboration of the routine (i.e., for the actual A(i), it is the initial and 
not the final value of i that determines the variable that receives the result). 

T h e result of a function is treated as a result parameter instantiated at the call site with extent as 
described above and passed as an implicit parameter to the function. During the elaboration of the 
function, its value is developed in this result parameter. 

During elaboration of a function, assignment to a variable that is not local to the function body (or to 
the body of a routine it invokes, directly or indirectly) is permitted only if the function is never 
invoked in a scope where such a change is made to a variable or component that is directly 
accessible by the caller. 

Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on 
type, binding and aliasing. 

- The type of an actual parameter is acceptable if its <type name> exactly matches the <type 
name> of the corresponding formal parameter. Type attributes (instantiation parameters of a 
type) play no role in type checking. Chapter 5 gives rules for determining <type name>s. 

- The binding of the actual parameter is acceptable if it matches the <binding> of the 
. corresponding formal parameter according to the following rules: 

- Finally, the set of actual parameters must satisfy the following nonaliasing restriction: A 
variable may not be used in more than one var or result position of a single procedure or 

If the formal parameter is then the actual parameter may be 
var 
const 
manifest 
result 

<var id> declared var 
<expr> 
any manifest <expr> 
<var id> 

iNote that for dynamic types, this is a pointer copy. 
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process call. For the purpose of testing this restriction, imported variables are considered to 
be actual parameters bound as specified in the import list. 

3.2. Dynamic Allocation 

Each use of the constructor for a dynamic type creates a distinct element of the type. Each such 
element remains allocated as long as there is an access path to it 

Attributes of the dynamic type are provided when the constructor is used. Thus it is possible to 
associate objects with different attributes with the same dynamic variable at different times. 
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4 . Statements 

<stmt> <proc cail> j <id> : <stmt> \ <empty> | <block> 
| <var id> t* <expr> 
| if <expr> than <stmt>.* { aiif <«xpr> than <stmt>.* }* { alsa <stmt>.* }* fi 
j casa <expr> { on <op(ion> -> <stmt>.* } + asac 
| whiia <expr> do <stmt>;* od | for <io!> in <range> do <stmt>.* od 
| goto <id> 
j signal <qual id> | rasignai | assart <expr> 
| <stmt> { { on <id> + -> <stmt>.* }• | 
| craata <var id> ( <actuals> ) 

<proc call> <qual id> ( <actuals> ) 
<block> <code body> 
<code body> bagin { <def-decl> ; J* <stmt>.* and 

Statements designate actions to be performed Their elaboration results in changes in the execution 
state of the program. The <empty> statement has no effect Labels are used by goto statements in 
altering the flow of control in a program. A label is accessible only within the <stmt> it labels and 
within a compound statement (sequence of <stmt>s separated by semicolons) of which it is a <stmt>. 

4.1. Blocks 

Some examples are: 

bagin var x : boolaan; x : - trua and 
bagin x : » y ; y : « z; and 

Blocks control extent. A <block> is elaborated when control flows into it, either because the <block> 
is the body of a routine that has been invoked or because the elaboration of another <stmt> has 
transferred control to it. First, all declarations and the texts of all module definitions are elaborated, in 
lexical order. Next, the <stmt>s are elaborated as described elsewhere in this chapter. Finally, the 
<block> is exited or terminated. If it is exited, control waits for all activations declared in this <block> 
to become dead or mint, then the extent defined by the <block> is closed and all nondynamic variables 
instantiated in the <block> are deallocated If the <block> is terminated, ail activations declared in the 
<block> are forcibly terminated, and then the <block> is exited The choice between exiting and 
terminating the block depends* on how control arrived at the end of the block. If the block came to 
an end because a handler completed or an enclosing process was terminated, the block is terminated. 
Otherwise, it is exited. 

A <biock> is not permitted to export identifiers. Except when used as a routine body, it is an open 
scope and has no need to import any. 

4.2. Sequenced Statements 

Some examples are: 

x l j y 2; 2 : « 3 
SumSq 8; for i in 1.. 18 do SuwSq SumSq • V ( i ) t 2 od 

Sequenced statements are elaborated in the order given, except when that order is interrupted by a 
goto or an exception. 

4.3. Assignment Statement 

Some examples are: 

V(5) .Sum 3 
x (3 + u) * y 

The assignment statement "V :• E* is a procedure call on an appropriate assignment operator, 
defined 
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proc , , : = r " (var LHS : T , const RHS: T) 

for arbitrary type T. The value of the second parameter is assigned to the object named by the first 
parameter. The parameters are of the same type, and the normal type-checking rules apply. 

Assignment operators are defined for all primitive types. Assignment operators are defined for 
arrays, records, variants, and programmer-defined types if and only if they have no components that 
are declared const or are nonassignable by virtue of this rule. An assignment operator that copies the 
whole value is automatically supplied for each user-defined type. For dynamic types this is a pointer 
copy. Although assignment may be invoked with any variable and value of the type, it requires that 
the attributes of its left and right operands be identical, and signals the BadAssign exception if they 
are not. The BadAssign exception is also signalled if an assignment involving mismatched array, string, 
or set sizes or an activation not in mint state is attempted 

4.4. Conditional Statements 

Some examples are: 

if A < 3 then x : * y fi 
if x 8 cand y/x > 8 then z :* ut(y/x) tise ui 1.3; q ; * y/x fi 
case T i n t 

on fuchs ia -> Hue :* coo l ; Descr ipt ion : « "Purp l i sh - red" 
on puce -> Hue : » warm; Descr ipt ion : » "Brownish-purple" 
esac 

In the statement "if B then SI else S2 fiw, B must have type boolean. First, B is elaborated. If the 
resulting value is true, S I is elaborated; otherwise S2 is elaborated. In the absence of an else clause, 
S2 is taken to be the empty statement, which has no effect 

The expression 

if 81 then SI eiif B2 then 52 . . . eJif Bn then Sn else S* fi 

is equivalent to 

if 61 then SI else 
if 82 then 32 eise 

if Bn then Sn else S>v fi 

fi 
fi 

In the statement 

case E3 
on E l l E lk -> SI 
on E 2 1 , . . . , E 2 l -> S2 

on E n l . . . . , E n m -> Sn 
on others -> S* 
esac 

The E's must all be expressions of the same type, and all except EO must be manifest The type of 
the ITs must be fixed, an enumerated type, or a defined type that is ultimately defined in terms of 
fixed or an enumeration. Any of the E's except EO may be a <range>; such an Eij is treated as the 
sequence of values in the range. First, EO is elaborated The Eij are elaborated and the results are 
compared to EO (in unspecified order). If EO is equal to some Eij, the corresponding Si is elaborated. 
If all comparisons yield false, S* is elaborated Exactly one Si is elaborated for each correct 
elaboration of the case statement If the special constant others does not appear as the last <option> 
and no match is found, an exception (CaseFailed) is signalled 
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4.5. Loop Statements 

Some examples are: 

while x < 2.5 do x i « F ( y , x ) ; y G (y , x ) od 
for I In 1. .18 do V ( i ) i od 
for hue in c o l o r do T in t (hue) hue od 

T h e loop while E do S od repeatedly elaborates if E then S fi until E becomes false. If E is 
initially false, the loop has no effect (other than the possible hidden effects or exceptions caused by 
the elaboration of E.) 

The for statement for i in R do S od repeats the steps 

- Bind i (as a constant) to a value in the range R. 

- Elaborate S. 

once for each element of the range R, in order. If R has no elements, the loop has no effect The 
scope of the loop constant is restricted to the loop. 

4.6* Unconditional Control Transfer 

An example is: 

goto L 

The effect of a goto statement is to force control to the beginning of the statement with the given 
label. Since the scope rules prevent inheritance of labels across closed scope boundaries and 
importation of labels, a goto can not be used to transfer out of a routine or module. 

4.7. Exceptions 

Some examples are: 

signal TooB i g 
assart x < 8 

r e a d < f i l e . x ) { on EOF -> goto E x i t } 
x ; « x+1 { on Overf low -> x : - 8 } 

Exceptions are processed by handier clauses associated with individual statements. Each handier 
clause associates processing code with given exceptions. The special identifier others may appear as 
the last <id> list of a handler clause; it matches any exception that is not named in some other 
exception <id> list of the same clause. 

When an exception is signalled, control is transferred to the nearest dynamically enclosing handler 
clause that handles the exception, either explicitly or through an others clause; the elaboration of the 
handler replaces the elaboration of the remainder of the statement If this handler is not in the 
currently-executing block, all intervening blocks will be terminated. If a handler is not found within 
the currently-executing routine, that routine is terminated and the exception is resignalled at the point 
of call of the routine. If a handler is not found within the currently-executing process, that process is 
terminated and the exception is resignalled at the end of the block in which the process activation 
was declared after waiting for control to reach that point and for ail other activations declared in that 
block to terminate. If no handler is found in the scope of the exception name, a default handler will 
be supplied to terminate that block. 

Exiting a handler causes termination of the <stmt> with which it is associated. If the handler 
resignals the same exception or raises a new one, the normal rules for exception processing apply. 

The resignal command may be used in any handler body to resend the signal that caused that 
handler to be invoked. 
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The assert statement raises the assertion exception if the <expr> is false. It is exactly equivalent 
to the statement "if - <expr> then signal assertion fi". 

There is one exception to the rule that an exception must be handled by the block in which it is 
signalled or by a caller of that block: the Notify operation on activations or actnames. The effect of a 
Notify is as if the Terminate exception were signalled in the currently-executing statement of the 
activation named by the Notify command. 

4.8. Parallel Process Control 

Some examples are: 

create P(S) 
a c t i v a t e ( P l ) 
if I sB locked (PI ) then . . . 

The create command instantiates a process, P, as an object of type activation-of-P. The <var id> 
in a create must name an object of type activation-of-P that is in mint state. If a process takes any 
var parameters, the corresponding actual parameters must have extent at least as great as the 
activation variable. The effect of the create is to instantiate an activation of P, bind the actuals of the 
create to the formals of P, and set the activation in suspended state. 

Each activation has a unique identifying token value of type aciname, and it may be named by one 
or more objects of type actname. Except for create, all operations that control parallelism are special 
routines that operate on either actnames or activations. These routines control the processes and 
parallelism by changing and interrogating the states of individual activations; they are described in 
Appendix 1.2. 

Note that the extent rules require an activation to be dead or mint before the block in which it is 
declared can be exited. This provides an implicit join operation. A fork can be obtained with a 
series of creates and activates. 
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5. Types 

<type> fixed( <actuals> ) I float( <actuals> ) j boolean I latch | char I file, <actuals> ) 
| enum[ <id> * J | enum( { " <char> " ] * ] | <expr> . . <expr> 
I set, <actuals> ) I string( <actuals> ) 
j array ( <range> f

+ ) of <type> | record [ <declaration> + ] 
| variant <dedaration> [ { on <option> -> <type> } + ] 
| dynamic <type> J activation of <quai id> | actname 
| <type name> { ( <actuals> ) }* 

<type name> fixed ( float | boolean | latch | char | file | set | string 
| enum( <id> + ] I enum( { " <char> " } * ] 
| array [ <type name^* j of <type name> | record [ { <id> * : <type name> )+ ] 
| variant [ <type name> { on <option> •> <type name> }* ]* 
| dynamic <type name> | activation [ <qual id> ] | actname 
j <qual id> { £ <qual id> 4 ] J* 

In Tartan, a <type name> may be either a simple identifier or an identifier inflected with additional 
type names. The <type name> so formed captures ail the information needed for type checking. 

- The <type name>s for the primitive scalar and simple nonscalar types are the keywords used 
to declare them: fixed, float, boolean, latch, char, set, string, actname, file. 

- The <type name> for an array declared "array<a.b) of 0" is "array^D]", where I is the <type 
name> of a and b. 

- The <type name> for an enumeration declared enum(Ll,L2.,..Ln] is enum(Li,L2....,Ln]. 

- The <type name> for an activation declared activation of P is activation[P]. 

- The <type name> for a dynamic type declared dynamic T is dynamic T. 

- The <type name> for a record type is based on the sequence of field names and <type 
name>9 in its declaration. For a record declared "recordfFl.Tl, F2.T2, Fn:Tn]" the <type 
name> is "recordfFl .TNl, F2:TN2, Fn:TNn]" where the Fi are lists of field names, the Ti 
are types, and the TNi are type names. Bindings in the declaration do not appear in the 
type name. 

- The <type name> for a variant is "variant(TT,Tl->\/l,T2->V2.>^,Tn->\/n]w
l where TT is the 

<type name> of the tag, Ti is the i*h value of the tag type, and Vi is the <type name> that 
corresponds to the ith value of the tag type As a result, two variant <type>s are the same if 
they specify the same <type>s for all values of the tag. 

- The <type name> for a defined type is the name given in the type definition. 

5.1. Scalar Types 

Some examples are: 

Real 
1. .18 
enumCfuchsia, ochre, puce, saffron] 

Built-in scalar types include fixed, float, boolean, latch, and character. Integer and real must be 
constructed as special cases of fixed and float Ordered scalar enumerated types are defined by 
providing an ordered list of values. 

Types fixed and float require <actuals> lists to provide range, scale, and precision when they are 
used in declarations. These are attributes and do not affect the type. Although bindings for attributes 
may in general be const or manifest, the specifications of fixed and float require manifest attributes. 

To define a type, the <expr>s in an explicit range must be const or manifest 

5.2. Composite Structures 

Some examples are: 
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5.3. Dynamic Types 

Some examples are: 

dynamic Real 
dynamic record [Data: I n t . Next: L i s t E l t , const Index: Int : « JO 

Values of a dynamic type are pointers to variables whose structure corresponds to the type 
definition. They are initialized to nil. The extent of these variables covers the entire scope of the 
type definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable 
distinct from ail others. The constructor supplies the attributes for this variable; they are not supplied 
in the declaration of the named variable of the dynamic type Thus a named variable of dynamic type 
may at different times point to, several different variables having different attributes. 

5.4. Process Control Types 

Some examples are: 

activation of P 
actname 

Parallel processes are controlled with data of two types — activations of processes and actnames, 
or names of activations. Activations are instantiations of a given process; an activation may contain at 
most one process activation during its lifetime and then only of the process given in its <type>. An 
actname value is a pointer to an activation, Actname variables may contain pointers to activations of 
any processes; an actname variable may refer to different instantiations of different processes from 
time to time. 

An activation is used to control parallel or pseudo-parallel execution of a process. At any time it 
may be in one of four states: mint, active, suspended, and dead The extent of an activation variable 
coincides with its scope. The immediately enclosing block cannot be exited until all activations declared 
within it are dead or mint. An activation is associated with exactly one process, which must be named 
by the <qual id>. 

An actname may refer to any instantiated process. A newly-declared actname or activation variable 
is initialized to mint 

5.5. Defined Types 

Some examples are: 

T ( n ) 
Sequence ( i n t ] (58) 

Programmers may define new types. See section 6.5 on Type Definitions. 

a r r a y d . .18) of Co lor 
array (Co I or ) of Real 
string (10) 
record [Name:str ing(35) , Age:Int3 
variant b: boolean Con true -> Int on faise -> char) 

Nonscalar data structures may be built up in three ways: with arrays (homogeneous indexed linear 
structure), with records (nonhomogeneous structures with named fields), and with variants (structures 
whose substructure may vary with time). In addition, the nonscalar types set, string, and file are 
defined. 

Legal bindings for fields of records and variants are var, const, and manifest. If a <binding> is 
empty, it is taken to be var. 

A variant type must have exactly one tag field. The special constant others may appear as the last 
<option> of a <variant type>; it matches any constant that does not appear in any other <option>. 

The syntax for arrays provides an abbreviation for a set of types pre-defined as 
"array[IxType,EltType](r)M where IxType is the index type, EltType is the element type, and r is a 
(sub)range of IxType. Thus Harray(1..10) of float" means "array(int,float](1..10T. Its type name, 
"array[int,float]'\ is written "arraypnt] of float*. As for any type, when an <array type> is used as a 
formal parameter, the attributes are not supplied. The type "array(A,B) of T* is an abbreviation for 
"array(A) of array(B) of T". Similarly, the array accessor "V(ij)" »s an abbreviation for "V(i)CT. 
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6. Definitions and Declarations 
<def-dec!> *• <dectaration> | <mod def> 1 <routine def> | <type def> | generic def> I <emotv> 

| Imports <qual id> • | exports <quai id> • | exception <id> + 1 disable <id> • 
I prag <proc cail>.+ ;* garp ' ' 

<decfaration> 
<mod def> 

<binding> { <id> • { : <type> }• ( :* <expr> }• } * | <b«nding> { <id> • : <type name> },* 
moduie <id> <mod text> 

<mod text> 1 ; <code body> | <remote inst> 
<routine def> proc <id> <proc text> | func <id> <func text> | process <id> <proc text> 

I func " { <unop> j <binop> } " <func text> 
<func text> ( <formals> ) <id> : <type> ; <block> | <remote inst> 
<proc text> ::- ( <formals> ); <block> | <remote inst> 
<type def> Hm type <type name> { ( <formals> ) }• « <type> 
<generic def> 

<remote inst> 

generic module <id> [ <forma!s> ] <mod text> | generic func <id> [ <formais> ] <func text> 
| generic proc <«d> [ <formals> ] <proc text> j generic process <id> [ <formais> ] <proc text> 
is <quai id> [ <actuais> ] | is assumed ( <id> ) 

<formais> { <b»nding> <id> * : <type name> } * 
<binding> <empty> | var | const | manifest | result 

6.1. Dec Jar ati ons 

Some examples are: 

var x : Real 
const y : * true 
var H u e l . Hue2. Hue3: Color 
var T i n t :* enumCsaffron, puce, fuchsia, ochreJ 
var V: array<5. .7) of Int 
v a r . r i l : r1ark(S) , n2:Hark(7) 
manifest P I : Real 3.14 

The syntax for declarations allows three kinds of abbreviations. If the initialization expression 
appears, the type of the variable is evident from the <expr> and the ":<type>" may be omitted. In 
addition, lists of <id>s with the same types or bindings may be condensed. These abbreviations are 
illustrated by the following five declarations, ail of which have the same effect: 

var x , y :* 8 
var x , y : I n t : • 8 
var x : « 8, y : • 8 
var x : I n t : » 8. y . I n t : » 8 
var x : I n t :* 8; var y : I n t :* 8 

Elaboration of a declaration causes instantiation of an object which is the variable. Each variable 
has a type and a value. The type is determined when it is instantiated, but the value may be changed 
by further elaboration of the program. A variable may be restricted to be const (value fixed at block 
entry) or manifest (value fixed during translation). 

Elaboration of a declaration proceeds as follows: 

- Evaluate the <expr>, if present. It must be present in manifest or const declarations. It must 
be manifest in manifest declarations. 

- If the <binding> is manifest, bind the value of the <expr> to the identifier(s). 

- If the <binding> is const or var, elaborate any <actual>s in the <type> and instantiate a new 
variable with the indicated type and attributes for each identifier. If there was an <expr>, 
assign its value to each of the new variables. 

When the type is dynamic, the declaration supplies the <type name> only (no attributes). In this case, 
only the pointer is allocated at block entry; the attributes are supplied when the dynamic type is 
actually (dynamically) allocated. 
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6.2. Modules 

An example is: 

module CounterQef ; 
begin 
exports Counter , Reset. I nc r , Value; 
type Counter - I n t ; 
proc Reset (result C :Counter ) ; begin C : » 8 end; 
proc I n c r (var C :Counter ) ; begin C :• C + 1 end; 
func Value (const C:Counter) x :Counter; begin x C end 
end 

The elaboration of a module takes place during the elaboration of declarations for the block in 
which the module is defined This elaboration consists of elaborating the declarations of the module in 
lexical order, then elaborating the statements of the module 

A module or routine inherits identifiers for definitions (modules, routines, exceptions, and types) from 
its enclosing scope. It may explicitly import identifiers of objects from that scope, provided the 
objects have global extent. A module, but not a routine, may export definition and object identifiers to 
its enclosing scope. Types, named routines, field accessors for records, and variables are exported by 
including their names in the exports list of the module. The right to apply infix operators, 
constructors, subscripts, ".air, or the create command for a type T are exported by including the 
special names Tinfix, Tconstr, Psubscr, Tail , and Tcreate, respectively, in the exports list. Literals 
of enumerated types are exported automatically if the types are exported 

5.3. Routines 

Some examples are: 

proc F (var x : I n t ) ; begin x :* - x; end 
proc G is GenG C53 
func I sNi I (x :0ynT) y : boolean; begin y (x « nil) end 
func ( a , b : g o r p ) c : g o r p ; 

begin 
imports B i a s ; 
c :* gorp ' (a . l e f t+b . Ief t+Bias . a . r ight+b. r ight+Bias) 
end 

A routine is a closed scope whose body is a block. Thus its body controls extent for local 
declarations, but does not inherit identifiers for (non-manifest) objects or labels. The <formais> list 
declares the identifiers for parameters. 

A routine may be a function (func), which returns a vaiue and has no visible side effects; it may be 
a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a 
process, which is a potentially-parallel procedure. Special type-specific routines are described in 
Appendix 1.2. 

Routine names may be overloaded by binding the same identifier to several definitions with different 
numbers or types of parameters. The functions for which special infix notation is provided are 
obvious candidates for overloading. 

If a <binding> in a routine header is omitted, it is assumed to be const The result binding may be 
used only in procedures. No duplication of identifiers within the <formals> list is permitted, and 
parameter names may not conflict with declarations or imports in the routine body. 

6.4. Exceptions 

Some examples are: 

exception TooBig, TooSmall. Late, Singular 
disable TooBig, TooSmall 
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The scope of an exception name is the block in which it is declared. A disable declaration in an 
inner block suppresses detection of the exceptions it names. A handler clause associates recovery 
code with a statement that may generate an exception (see section 4.7). 

The disable declaration permits exceptions to be individually suppressed within a given scope. 
Should an exception occur when its detection is suppressed, the consequences are not defined. An 
exception must not be signalled or redeciared in a scope in which it is suppressed. Note that 
suppression of an exception is not an assertion that the condition that gives rise to the exception will 
not occur. 

Standard exceptions will be declared in the global extent 

6.5* Type Definitions 

Some examples are: 

type Counter » I n t 
type f lat r i x in: I n t ) • array (1. . n , l . .n) of Real 

A user may introduce a new type into his program with a type definition. The type definition itself 
merely introduces the <type name> and defines the representation of the type. Operations are 
introduced by writing routines whose formal parameters are of the newly-defined type. Scope 
boundaries, particularly module boundaries, play no role in the definition of the type. There is, as a 
consequence, no notion of the complete set of operations on a type. 

A type definition may be parameterized. The bindings in the formal parameter list must be const or 
manifest. If a <binding> is omitted, it will be assumed to be const The names of the formal parameters 
of the type are available throughout the elaboration of the program as constants, called attributes. 
They are accessed by treating the <var ident> as a record and the type attribute as a field. 
Attributes for primitive types are given as part of the type definitions. 

Within the scope in which the type is defined, the qualifier Rep may be used to indicate that the 
object named by the identifier Rep qualifies is to be treated as if it had the underlying type. This 
allows operations on the new type to be written using operations on its representation. When no 
ambiguity arises, the Rep qualification may be omitted. 

6.6. Generic Definitions 

Some examples are: 

generic proc Reset CT: type] (var x : T ) ; begin x x'min and 
proc ResetCo lor is Reset [Color] 
proc ResetX is Rese t tSamp I e] 
module Stack is assumed(StackOef) 

generic module R i ngOe f (K; I n t J ; 
begin 
exports Ring, Next ; 
type Ring - f i x e d d , 8 . B . K - 1 ) ; 
func Next (R: R ing)N. fixed U . 8 , 8 , K - l ) ; begin N nod(R+l,K)| end 
end 

module R5 is RingOefCS] 
module R3 is R i n g O e f O ] 

A generic definition is syntactically like the corresponding specific definition except that it is 
prefixed by the word generic and it may have a set of generic parameters (enclosed in square 
brackets) after the definition name. For generic definitions, type is acceptable as a formal <type name>. 

The actual parameters supplied in an instantiation of a generic definition may be any defined 
identifiers, including those for variables, functions, types, or modules, or any expression. When the 
generic definition is instantiated, the text of the actual parameters replaces the identifiers that 
represent the formal parameters. The substitution is done on a lexical, rather than a strictly textual, 
basis. That is, the identifiers in the generic definition are renamed as necessary to avoid conflicts 
with the identifiers in the actual parameters. 
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Both generic definitions and remotely-defined modules or routines may be incorporated in a program 
as remote instances. A remote instance may be an instantiation of a generic definition or a reference 
to a definition given elsewhere. 

A module or routine that is used by the program but whose definition is given elsewhere (e.g., in a 
library) is incorporated by writing is assumed(<id>) as the body of a module or routine definition. The 
<id> is used by a pragmat to locate the remote definition. 

A generic definition is instantiated by referring to it as the body of a module or routine definition. 
The effect of the instantiation is as if the generic definition were lexically substituted in place of the 
reference to it. That is, the body of the module or routine being defined becomes a copy of the 
generic definition. 

An instantiation of a generic definition may be used as the body of a specific module or routine. The 
usual restrictions on defining new identifiers apply to the module or routine being defined in terms of a 
generic. 

Generic type definitions arise from generic modules. They are instantiated when the module is 
instantiated. Thereafter, they may be used in declarations or definitions. 

If the generic definition has generic parameters, the actual parameters supplied with the 
instantiation must have correponding types and be syntactically suitable for substitution. 

If a generic definition is instantiated more than once in a scope, ambiguous names may be 
introduced. The usual rules for resolving such ambiguities apply. 

6.7. Translation Issues 

An example is: 

prag O p t i m i z e ( s p a c e ) ; L i s t ing (Off) garp 

A program is a <block>. The extent defined by the outer block of the program is the global extent. 

The translator may be guided by <pragmat>s. Pragmats have the same syntax as procedure calls. 
The set of pragmat names and the interpretations of the arguments are determined by each translator. 
Translators will ignore pragmats whose names they do not recognize. 

A program may be broken into separately defined segments. This decomposition must take place in 
the global extent. The units of separate definition are modules and routines. The definition 

module Q is assumed ( I ) 

in a segment has the effect of making the semantics of the segment the same as if the (separately 
defined) text of Q had been substituted for "is assumed(I)". The identifier I refers to a file, library, or 
other facility for storing separately defined segments. The relation between the identifier I and that 
storage facility may be established by a pragmat 

It is a matter of optimization whether the separate definition is included as text or separately 
translated and linked in. In order to perform independent translation of a separately defined component, 
it is necessary to embed the module or routine being translated in an environment that supplies 
definitions for all the names it inherits or imports. This environment must form a complete program. 
It is assumed that the translation system provides commands for selecting which components of such a 
translation to save and for determining where and in what form they are to be saved. 
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1.1. System-Dependent Characteristics 

The translator for each system is assumed to provide a module in the global extent that defines 
appropriate system constants. Such constants are assumed at various points in the language definition-
these and certain others are summarized here in the form of a skeleton module. 

module Sys ; 
begin 

exports . . . 

type I n t - fixed(. 

type Real - float(. 

const . . . 

proc . . . 

exceptions . . . 

end 

exports a l l de f in i t i ons below 

appropriate to the machine 
Note Int .Min and Int.Max give range 

appropriate to the machine 
A t t r ibu tes give range, p rec i s ion , scale 

constants that descibe propert ies of the 
object machine 

procedures for accessing f a c i l i t i e s of the 
operating and f i l e systems 

System-defined exceptions such as Asser t ion , BadAssign. 

1.2. Properties of Types 

All types have assignment operators and routines for conversion to appropriate other types. In 
particular, the scalar types have routines for converting to and from character strings. AH nonscalar 
types have constructors. The sections below sketch some important properties of the built-in types. 

L2.1. Fixed 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

digit strings 
Min, Max, Precision, Scale 
Arithmetic and relational 
rounding, truncation 

1.2.2. Float 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

digit strings with decimal point 
Min, Max, Radix, Precison, MinExp, MaxExp 
Arithmetic and relational 
rounding, truncation 

1.2.3* Enumerations 

o rder e n U m e r a t i ° n S ° r d e r e d ^ l i , e r a l s a r e »° in the declaration in increasing 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

As given in definition 
Min, Max 
Relational 
succ. pred 

UN1VERS ST* ^ 
CARNEGl t -*" 5 •V^SITY 

r i lTSBURGH, Ft?<r.vic»*<*iA 15213 
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1.2.4. Boolean 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

1.2.5. Characters 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

true, false 
none 
logical 
none 

Quoted characters 
Min, Max 
none 
as for enumerations 

L2.S. Latches 

A latch is a simple spinlock for mutual exclusion, If the latch is open, it is available for siezure; if it 
is closed, a Lock command will wait on it 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

open, closed 
none 
none 
Lock, IfLock, Unlock 

1.2-7. Arrays 

Literals: 
Attributes: 
Infix operations: 
Special operations: 

none 
Range, EltType 
none 
subscript, subarray, catenation, upper bound, lower bound 

1.2.8. Sets 
"Sets" are boolean vectors on which some additional operations are defined 

Literals: 
Attributes: 
Infix operations: 
Special operations: 

1.2.9. Dynamic Types 

empty 
EltType, MaxSize 
logical 
subscript 

Literals: 
Attributes: 

Infix operations: 
Special operations: 

Special routines: 

1.2.10. Records 

Literals: 
Attributes: 
Infix operations: 
Special operations: 
Special routines: 

The named variable does not itself have attributes, but the dynamic 
variable that it references may. 
none . . 
.all denotes whole value of dynamic object, as distinguished from 
the reference. A dynamic constructor allocates a new dynamic object 
none 

none 
individually defined with record type 
none 
field selection, constructors 
none 
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none 
individually defined with variant type 
none 
variant must be designated to reference contents 
none 

1.2.12. Strings 

Literals: 
Attributes: 
Infix operations: 
Special operations: 

Quoted strings 
Length 
none 
subscript, substring, catenation 

1.2.13. Activations 

Literals: mint 
Attributes: none 
Infix operations: none 
Special operations: create 
Special routines: To change state: Activate(A), Suspend(A), UnlockAndSuspend(A,L), 

UnlockAndActivate(A,L), LockAndSuspend(A,L)f LockAndActivate(A,L), 
Terminated) 

To query state: lsMint(A), IsAct(A), IsSusp(A), IsTerm(A) 
To obtain actname: NameOf(A), Me() 
To sent exception: Notify(A) 
Other: Prionty(A), SetPriority(A), Time(A) 

where A is an activation or actname and L is a latch 

Assignment causes the BadAssign exception if either the value or the variable to which it is being 
assigned is in a state other than mint 

1.2*14. Act names 

Literals: 
Attributes: 
Infix operations: 
Special operations: 
Special routines: 

mint 
none 
none 
none 
Same as for activations 

1.2.15. Files 

A minimal input-output facility will be provided 

1.3. Alphabets 

For the publication character: 
lower case a.z 

> 

A 
V 

Substitute the ASCII string: 
upper case A..Z 
<m 

>u 

<> 
and 
or 
« 
» 
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Tartan Reference Manual 

I I . Collected Syntax 

<const> 

<constructor> 
<var id> 
<range> 
<option> 
<qual id> 
<id> 
<expr> 

<unop> 
<binop> 
<func cail> 
<actuais> 
<stmt> 

<proc cail> 
<biocK> 
<code body> 
<type> 

<type name> 

<def-deci> 

<declaration> 
<mod def> 
<mod text> 
<routine def> 

<func text> 
<proc text> 
<type def> 
<generic def> 

<remote inst> 
<formals> 
<binding> 

» <digtt>+ { . <digit>+ }• | true | false | nil j closed | open | mint | empty 
j <constructor> | <id> | <qual id> 1 <const> | <type> ' <const> j <expr> 

• < <expr>* ) | ( { <option> -> <expr> }* ) | " <char>* " 
• <qual id> | <var id> ( <actuais> ) | <var id> . <id> { <var id> ( <range> ) | Rep' <id> 

• <expr> . . <expr> ) <type> 
• { <const> | <range> } + 

• { <id> '}* <id> 
• <!etter> <tetter or _ or digit>* 
- <unop>* <var id> j <unop>* <const> | <unop>* <func cail> 

J <unop>* ( <expr> ) | ( <expr> ) . <id> | <expr> <binop> <expr> 

- - I -
- * l / l * | - | < ! < l > l > l - i * i A | c a n d | v | c o r | t 

- <quai id> { <actuals> ) 
• <expr> * 
• <proc call> | <ld> : <stmt> | <empty> | <block> 

| <var id> :» <exor> 
| if <expr> then «stmt>.* { elif <expr> then <stmt>.* }* { else <stmt>;* }• fi 
j case <expr> { on <opiion> -> <stmt>.* }+ esac 
| while <expr> do <stmt>.* od | for <id> in <range> do <stmt>.* od 
j goto <id> ' ' 
| signal <qual id> [ restgnal | assert <expr> 
| <stmt> { { on <id> * -> <stmt>.» }• } 
j create <var id> ( <actuais> ) 

:« <qual id> ( <actuals> ) 
:« <code body> 

begin { <de1-de<:\> ; }* <stmt>.* end 
fixed( <actuals> ) { float( <actuais> ) ) boolean I latch j char | fiie< <actuais> ) 
| enum( <id> • ] | enum( { " <char> " } + ] | <expr> . . <expr> 
| sei( <actuals> ) I siring ( <actuals> ) ' 
| array ( <range>^ ) of <type> | record [ <declaration> • ] 
j variant <declaration> ( { on <option> -> <type> }+] 
| dynamic <type> f activation of <qual id> | actname 
j <type name> { ( <actuals> ) J» 

: « fixed | float | boolean | latch | char j file | set | string 
I enum( <id> * ] \ enum( { " <char> " } * ] 
j array [ <type name> * j of <type name> | record [ { <id>f* : <type name> }+ ] 
| variant [ <type name> { on <option> -> <type name> }* ] 
| dynamic <type name> | activation [ <qual id> ] | actname 
| <qual id> ( [ <qual id> • ] }* 
<declaration> I <mod def> I <routine def> | <type def> I <gener ic def> j <empty> 
| imports <qual id> • j exports <qual id> • J exception <id>t* | disable <id> • 
| prag <proc call>.* ;* garp 
<binding> { <»d> • ( : <type> }* { :» <expr> J* }* | <binding> { <id> + : <type name> } + 
module <id> <mod text> 
; <code body> J <remote inst> 

::• proc <id> <proc text> | func <id> <func text> | process <id> <proc text> 
| func " { <unop> | <binop> } " <func text> 
( <formals> ) <id> : <type> ; <blocK> | <remote inst> 
( <formals> ); <block> | <remote inst> 
type <type name> { ( <formals> ) }* » <type> 
generic module <id> [ <formals> ] <mod text> j generic func <id> [ <formals> ] <func text> 
| generic proc <id> [ <formals> ] <proc text> | generic process <id> [ <formals> ] <proc text 
is <qual id> [ <actuals> ] | is assumed ( <id> ) 
{ <binding> <*<i> + : <type name> )* 
<empty> | var | const j manifest | result 


