NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78-133

TARTAN

Language Design for the lronman Requirement:
Reference Manual

Mary Shaw
Paui Hiifinger
wm A, Wuif

Computer Scienca Department
Carnegie~Mellan University
Pitisburgh, Pa. 15213

June, 1978

Abstract: Tartan is an experiment in language design, The goal was lo delermine whether
@ "simple” language could meet substanliaily all of the Iromman requirement for a camman
high-order programming janguage.

We undertook this experiment because we beiieved ‘*hal ail the designs done in the first
phase of the CCO effort were loo large and too cormpiex. We saw that complexity as a
serfous failure of the dasigns; sxcess camplexily in a programming language can interfere with
its use, even to the extent that any beneficial oroperties are of little consecuence, We wanted
to find out whether the resuirements inherently lead to such compiexity or whether 3
substantiaily simpler language wouid suffics,

Three ground rules drove the experiment First, no more {han twa manths -- Aprit 1 to
May 31 -- would be devoted to the project Second, the language would meet all the
[ranman raguirements excspt for a few painls at which i@ wouid anticipate Stesiman
recquirements. Further, the ianguage woud centain no extra features untess they resuited in a
simpler ianguage. Third, simplicily wouid be the overriding objective.

The resulting language, Tartan, is based on ail avaiiable information, incluging 'he desians
already produced. The languags definition is presentad hers; & companion repart provices an
cverview of the language, a rumber of exampies, and more expository expianations of somae of
ihe language features.

We believe that Tartan is a substantial imorsvement over ‘he earlier designs, particuiartly in
its simplicity. There is, of course, no objective measure of simplicity, but the syntax, the size
of the defimition, and the number of concepls required are all smaller in Tartan

Moreover, Tartan substantially meets all of the Ironman recuirement. {The exceplions lie in a
tew piaces where we anficipated Stesiman requirements and where delails are still missing
from this report.) Thus, we baiieve ‘hat 3 simple language can mee! the [ronman requirement.
Tartan is an exislence proof of that,

We must emphasize again thal this effort is an experiment, not an attempt to compete with
DOO comtracters. Tartan is, however, an open challenga to the Phase [] contractors: The
language can be at least this simple! Can you do better?

This work was supported by the Cefense Agvanced Resaarch Projects Agancy under contract
Fa43620~73-C-C074 (monitored by the Air Forca QOffica ¢f Scientific Resaarch).

UNWERSITY [IBRAR:TC
CARNEGIE-MELLON UNiVEe s
PITIZBURGM. SENNSYLYANIA 1523

file:///b2ii

Tartan Reference Manual

1. Basic Concepts and Philesaphy
2. Basic Structures

2.1. Primitive Expressions
2.2. ldentifiers
2.3. Lexical Cansiderations

3. Expressions

3.1. Invocations
3.2. Dynamic Allocation

4, Statements

4.1. Blecks

4.2, Sequenced Statements

4.3. Assignment Statement

4.4, Conditional Statements

4.5. Loop Statements

4.6. Unconditional Controb Transfer
4.7. Exceptions

4.8. Parallel Process Control

5. Types

5.1, Scalar Types

5.2 Composite Structures
5.3. Dynamic Types

5.4. Process Control Types
5 5. Defined Types

8. Definitions and Declarations

§.1. Declarations

6.2. Maodules

Routires
Exceptions

. Type Definitions

. Generic Definitions
. Transtation Issues

o dOdRHO
Nouew

1. Standard Dafinitions

Ll System-Dependent Characleristics
1.2. Properties of Types
1.2.1. Fixed
1.2.2. Float
1.2.3. Enumerations
1.2 4. Beolean
1.2.5. Characters
1.2.6. Latches
1.2.7. Arrays
1.2.8. Sets .
[.2.9. Dynamic Types
1.2.10. Records
1.211. Variants
1.2.12. Strings
1.2.13. Activations
1.2.14, Actnames
1.2.18. Files
1.3. Alphabets

I1. Collected Syniax

Tartan Reference Manual -1-

1. Basic Concepts and Philesophy

A program is a piece of texi that describes 3 sequence of actions intended to effect a computation.
The process of "executing a program” to cbtain this effect is called elaboralion of the text.!

Programming languages are used for communicating programs, both between people and between
people and machines. Although the program text is slatic, the concepts being communicated are
dynamic. This dynamic nature of a compulation can make it difficuit to communicate the ideas
undertying a program, and especially to communicate these idess between people. To expedita the
communication, we impose structure on the way languages are used. Although this structure restricts
what can be written, it results in regular patlerns for expressing decisions. The human reader banefits
from this by developing expectations about how thesa ideas will be expressed

Programming languages encourage the imposition of structure by providing notations for the
structures whose use their designers wish to promote. During the process of Janguage design, our
beliefs about programming melhodoiogy and the state of ‘anguage processing technology lead us to
formulate concepts and structural rules. We then select syntactic farms and structuring leatures to
emphasize these concepts. We expect that this wiii simplify the task of describing programs with the
attributes we view as "good structure” and that programmers will, as a result, be encouraged io
organize their programs lhis way. :

We distinguish three dominant siructures in Tartan programs: (1) the lexical structure, which
arganizes the static program text, (2) the control struclure, which organizes the dynamic execution, and
(3) the data structure, which organizes the information on which computations are performed.

- Lexical structure is a property of the program text Programs are divided hierarchicaily into
sections, called lexical scopes, thal share information about daia. Scope determines the
interpretation of identifiers, so all the text in 2 given lexical scope shares lhe same
vocabulary -~ definitions, variables, etc. Scopa rules permit soma identifiers to be used with
the same interpretation in several lexical scopes,

- The control structurs of the program determines the order in which its statements are
axecuted. ‘

- The structure imposad on data invoives the concepls of type, values, and variabies.
Ultimatlely, computations are performed on values: we taka that notion to be primitive: values
exist, and each has exactly one type, which dastermines the fegal operations on the vaive.
Values are stored in variables, which are objects produced by elaborating type definitions.
Variables, too, have types; thesas types determine the sets of vaiues that may legally be
stored in the varisbies,

These fundamental structures interact in a number of ways. Two major interactions appear as the
concepts of extent and binding. The conlroi and lexical struchures interact to determine extent. The
extent of a variable is ils lifetime -- the time during which it affects or is affected by the elaboration
of the program. Binding rules are invoked by both lexicat and contral structures: they associate
identifiers with program entities (objects, modutes, routines, types, iabels, and exceptions).

In Tartan, programs are composed of definitions, declarations, and executabie statements. A
definition binds an identifier to a module, routine (procedure, function, or process), type, or exception;
it is processed during transiation. A declaration binds an identifier to an object {ie, a variable or
vaiue): it is processed at run time, usually to allocate storage. Executable statements are elaborated at
run time to effect actual computations -- manipulation of values.

Lexical structure is imposed on Tartan programs by blacks and modules, which delimit lexical
scopes. These scopes may be nested arbitrarily. Bath constructs may use identifiers defined in other
" scopes; both may define identifiers that can be used in other scopes. Blocks and moduies ditfer oniy

Iwe use the word “elaboration”®, in preference to “execution®, ta conncte acticns takaen during
translation as well as during executien. Elaboration may be thought of as an idealized, direct execution
of the textual version of the program

Tartan Reference Manuai -2~

in their scope rules and in their effects on the extent of variables. Tartan has two scope rules:

- An open scope inherits (imports automatically) all the identitiers that are defined in its
enclosing sccpe. It may net export any identifiers. Blacks are open scapes except when
used as routine bodies.

- A closed scope inherits all identifiers that are defined in its enclosing scope except those for
labels and nonmanifest objecls.l It may explicitly impor! identitiers for objects, provided they
have giobal extent. All modules are closed scopes, as are blocks when they are used as
routine bodies. A closed scope that is @ moduie may export identifiers that name variables,
modules, routines, types, or exceptions.

Identifiers that are exporied from an inner scope or imported from an outer scope have the status of
identifiers defined in the scope. Redefinitien of identifiers within a scope is not permitled. however,
this does not prohibit overioading of routine names. In addition, the same identifier may be impaorted
with different meanings from two diiferent scopes. Such identifiers are qualified with the names of the
modules in which they were defined; thus they are not duplicate definitions. Similarly, fiterals and
construclors are qualified with their types ta prevent ambiguily. In either case, the moduie or type
qualifier may be omitted it no ambiguity arises.

In Tartan, extent is controlled exclusively by biccks. Oniy instantiated objects (variables, constants)
nwave extent Variables are insianliated by the elaboration af declarations (for named variables) and by
expiicit construction of variables having dynamic types (dynamicaily created variables). Named
variables have extent coincident with the surrounding block. Dynamically created variables have extent
coincident with the biock containing the definilions of their dynamic lypes. Formal parameters of
routines are considered 'o have extent coincident with the routine bedy.

Tartan provides a tacilily for making generic definitions of roulines 2nd modules. This allows the
programmer to write a single textual definition that serves as an abbreviation for many closely-retated
specific definitions. The definitions may accept paramelers; the paramelers are completely processed
during translation. The eifect of using a generic definition is that of lexically substituting the definitien
in the program at the peint of use.

The syntactic definition of Tartan uses conventional BNF with the following additions and
canventions:

Key words (reserved words) and symbols are denoted with boldtace.

Metasymbols are denoted by fower-case letters enclosed in angutar brackets, e.g,, "<stml>".

The symbais { and } {nal in boidface)} are meta-brackets and are usad to group constructs in
the meta-notation.

Three superscript characters, possibly in combinalicn with a subscript characler, are used to

denote the repetition of a construct {or 2 group of constructs enclosed in {}):

" denctes "zero or more repelitions of”

4" denctes "one or more repetitions of”

*s" denoles "precisely zero or one instance of”.
Since it is often convenient to denote fists of things that are separated by some single
punctuation mark, we denote this by placing the punctuation mark directly below the

repetition character.

The semantics of the language are described in English. In the interast of a compact and regular
syntax, we have ailowed syntactic constructs that are disaliowed on semantic grounds. This is
consistent with standard practice with respect to, for example, undeclared identifiers.

1L iterals and identifiers for variables that are declared manifesl are manifest cbjecls; hence
they are inherited.

Tartan Referenca Manual _ 3=

2. Basic Structures

2.1. Primilive Expressions

“const> w= <digit>* { | <digit>* }* | true | false | nil | closed | open | mint | amply
| <constructor> | <id> | <qual id> ' <consi> | <type> ' <const> [<expr>

<constructor> = (<expr>*)| [{ <option> => <expr> LE 117 <charss ”
Some examples are:
123.456

Calor’graen

trua

Farsgon’ ("Sam",21,maie)

..Efg"

(1..2-»8.1, 3..4->8.5, others->1.0)

Primitive expressions form the basis for lhe recursive defintion of expressions. They are the
elements referred to as constants, literals, and constructers in programming languages and as
‘generators in algebras,

Constants and literals denote values. The type of a conetant is determined by its declarationn The
types of literals are determined as follows:

- A sequence of digits containing no decimal point is of type Int. Type Int is defined in terms
of type fixed for each machine as described in Appendix 1.

- A sequence of digits containing 2 decimal paint is of type Real. Type Real is defined in
terms of type float for each machine as described in Appendix 1.

- If a sequence of digits, with or without 3 decimal paint, is qualified by a fixed or float type
or by a defined type that is ultimately defined in terms of fixed or Hoat, the type of the
literal is determined by the gualifier.

- True and false denote boolean values. Nil denotes the null vaive for any dynmamic type. Open
and closed denote values for lalches. Emply denotes the emply st Mint denotes an
activation of any process in mint state.

= A character string containing one character is a literal of type char. Any other character
string is a constructor of type string.

Literals and manifest expressions are evaluated during transiation with the same algorithms and
accuracy as are used during execution

If an <id> is to be a <const>, it must have been declared cons! or be a member af an enumerated
type. [f an <expr> is to be a <const>, it must be a manifest expression

The tvpe of a constructor may be indicated by a prefixed quaiifier. If the qualifier is omitled, the
constructor is assumed to give the value of an array indexed with integers beginning at 1.
Constructors are provided for composite and dynamic types.

= If the constructor has a record type, the <exprss in parentheses give the field values in the
order of their declaration

- If the constructor has an array type, he parenthesized list gives the element vaiues. If the
constructor is a simple expression list, it gives the values in order from lowes! index to
highest. If the constructor uses the form wilh options, the expressions in the <aption>s
indicate the array pesition to which each value corresponds. The special constant others may
appear as the last <option>; it will match any canstant that is not inciuded in any cther
<option>. The constructer form with options is legal anly for arrays and for types uitimately
defined in terms of arrays: the expressions in the <optian>s must be manifest.

- If the constructor has a variant lype, !he first expression in the parenthesized list is the tag
and the remainder of the list is a constructor for the corresponding variant.

Tartan Reference Manual -8~

- If the constructor has dynamic type, the result is a‘painter to a new variable having the
attributes supplied in the type qualifier and lhe vaive given by the parenthesized list. '
A constructor containing no <expr> provides an uninitialized instance of the indicated type.

2.2. ldentifiers

<var id> ne <gual id> | <var id> { <actuals> } | <var id> . <d> | <var id> { <range>) | Rep' <id>
“range> um <axpr> .. <expr> | <type>

<option> uw | <conmst> | <range> }*

<quai id> um | <id> "}¥ <id>

<ig> se <letter> <latter or _ or digit>*

Some examples are:

Animat'Cat

¥ (3)

Vil..N)

Sam.Age
ldent_uith_mark

ldentifiers have no inherent meanings. They are associated with objects, routines, modules, types,
statements, and exceplions. Declarations and definitions establish the meanings of identifiers within
particular scopes.

Identifiers may be simple, or they may be qualified with madule or type names in arder to resoclve
ambiguity among names exported from several modules.

Identifiers that name aobjecls are <var id>s. They may be simple identifiers, they may be qualified
to indicate where they were defined, or they may name elements or substructures of composite
structures.

- Simple <var idss (e, <gual id>s used as evar id»s} are idenlifiers dectared in variable
declarations or by the <formals> in a routine heacer. .

- The form <var id»{<actuais>), where <var id> denates an array, denctes the element of that
array indexed by the <actual>s. The types of the actuals must match the index types for the
array.

- The form <var id>{<actuais>), where <var id> denctes a variable of a variant type and the
<actual>s consist of a single <expr>, indicates that the tag fleld of the <var id> must be
<expr> and denotes the value of that option of the varianl type. On the left side of an
assignment, this form has the etfect of selting the tag fieid; the expression on the right side
of the assignment must be of compatible type.

- The form <var id>(<range>) denoltes a subarray. The <var id> must denote an array and the
limits of the <range> must match the declared type of the array’s index set and be a
subrange of the declared range. The subarray consists of the indicated elements of the <var
id>, in the same order as they appear in the <var id>. If the index type of the array is fixed
or defined in terms of fixed, the subarray is indexed by integers beginning with 1: otherwise
it is indexed from the minimum value of the index se!l of the array.

- If <var id> denotes a record object, the form <var id>.<id> denotes the field named <id= in
tihat record object 1f <var id> denotes an object of dynamic type, then <var id>.<id> denctes
the field named <id> in the record object pointed to by the value of <var id>; <var id> must
not have the value nil. This form is also used to access the value of a variant tag or the

aitributes associated with the type of a value or variable. In addition, if T is a variable of
dynamic lype, T.all is the complete value {all compenents) of the object assaciated with T.

INcte that the index types include range restrictions.

Tartan Reference Manual) -5-

- The form Rep’<id> is used in the same scope as the definilion of the <id>'s type te indicate
that the <id> is to be regarding as having the underlying type. This permits operations on
the underlying type to be used for defining operations on the new lype.

Identifiers that refer to definitions {e.g., of routines, types, or modules) are <qual id>s.

When an identifier is exported from a module, in the scope to which it is exported it is referred to
by a <qual id> or <var id> constructed by prefixing the idenlifier with the name of the module from
which it is exported. The qualifier is separated from the identifier with an apositrophe. Qualifiers may
be omitted if no ambiguity results.

A <type> used as a range must be fixed, an enumeraled lype, ar a defined type that is uitimately
defined in terms of fixed or an enumeration

2.3. Lexical Considerations

Spaces may be inserted freely between lexemes withaut altering the meening of the program. An
end-of-line is equivalent to a space and may not be part of a lexeme. Al least one space must
appear belween any ‘wo adjacent lexemes composed of lelters, digits, underbar, and decimal points. In
identifiers, all characters are significant, bul alphabelic case is not

Comments are introduced by the character *I" and lerminated by the next follcwmg end-of-line,
They have neo effect on the elaboration of the program.

Aithough the language as presented in this report takes advantage of characters that are not in the
B4-character ASCIl subset, simple substitulion lo map programs inle that diphabel are defined in
Appendix I

Tartan Reference Manual -6-

3. Expressions

“expr> nw <unop>® <var id> | <unop>® <const> | <unop>® <funmc cail>
| <unop>* { <expr>) | { <expr> } . <id> | <axpr> <hinop> <expr>
<unop> um e |-
<binop> wa k| fhedol <ozl ialcand]v]cor|t
<func cail> = <qual id> [<actuals>)
<actuals> i= <gxpr>*

Some examples are:

x

x + Yy

sin(x}

=ty + Zvew)
(Root.Ptr). ail

Expressions describe computations that yield values. The elaboration of an expression produces an
object containing the vaiue of the expression The type of the abject is determined by the following
rules:

- The type of an <expr> that is @ <var id>, <const>, <func call>, or selection of a field from a
computed compaosite value is determined by the appropriate declaration (or rule for lilerals).

- The type of a parenthesized expression is the type of the expression inside the parentheses.

- The type of a binary infix axpression or a unary expresston is determined by the definition
of the appropriate binary or unary operator definition. These operaters represent
invocations of functions that may be overicaded. The sppropriate operator definition must
therefore be determined on the basis of the types of the operands.

The usual operations are associated with the operators +, -, s, /, T, = A Vv, cand, cor, <, £, 2, > =
and £ The programmer may overioad these function names, but the added definitions must be unary
or binary to conform to the established syntax. Precedence rules for the unary and binary operators
are given by the following table, in which operators on a single line have the same precedence and
operators higher in the table bind more tightly than operators lower in the table. Unary operaters

have the highest precedenca.

+
s /

= -

< £ 2 >» = ¥
A cand

v cor

Within orecedence levels, associalivily is left-to~right.

For ail operators except cand and cor, slaboration of an expression proceeds as it the expression
were written in funclional form (see section 3.1). For cand and cor, the left operand is elabaralted first
and the right operand is elaborated only if necessary.

A manifest expression is a literal, a vaiue of an enumeralion type, an identifier dectared with
manifest binding, a generic parameter, a manifest type attrioute, a consiructor involving only manifest
expressions, or any expression involving only these expressions and language-delined operations. The
value of a manifest expression is known during translation.

Tartan Reference Manual -7-

3.1. Invocations

Some examples are:

F (5}
Sequence’ insert(5,5)
£{)

An invecation causes the elaboration of a procedure or function body with the elements of the
<formais> list of the routine bound to the elements of the <actuais> list provided by the invacation. If
a routine name is overioaded, the dafinilion whose formal parameter types match lhe types of the
actual parameters is selected. Procedure and function invegations (<proc call> amd <fune call>) differ in
that procedure invocalions are statements, whereas function invocations are expressions having values,
An invocation consists of the following steps:

- Elaborate sach of the <actuals> in an unspecified order, yielding a sequence of objects.

- For each resuit formal, create a variable having the same lype and ailributes as the
corresponding actual. Bind the resuit formals le these variabies.

- Far each const or manifest formal, create an object of the specified type with the same
attributes as the corresponding actual. Copy the value of the actual into the new abject. |

- Bind each var formal to ihe corresponding aciual, which must be a variable {i.e,, a <var id>).
Thus var formais are passed by reference.

- With the bindings established, elaborale the body of the routine

- For each resuit formal, copy the final vaiue of the variable bound to that formal back into
the corresponding actual, which must be a variable (i.e., 2 <var id>). Note that this actual is
determined before the elabaration of the routine (i.e., for the actual Ali), it is the initial and
not the final value of i that determines the variable hat receives the resull).

The resuit of a function is treated as a resull parameter instantiated at the call site with exient as
described above and passed as an implicit parameter to the function. During the elaboration of the
function, its vaiue is developed in this resuit parameter.

During elaboration of a function, assignment to a variabla that is not focal to the function body (or o
the body of a routine it invokes, directly or indirectly) is permilled only if the funclion is never
invoked in a scope where such a change is made to a variable or compaonent that is directly
accessible by the caller,

Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on
type, binding and aliasing.

-~ The type of an actual parameter is acceplable if its <ltype name> exactly matches the <lype
name> of the corresponding formal parameter. Type attribules {instantiation parameters of a
type) play no role in type checking. Chapler 5 gives rules for determining <type namess.

- The binding of the actual parameter is acceptable if it matches the <binding> of the
corresponding formal parameler according to the foilowing rules:

If the formal parameter is then the actuai parameter may be
var evar id> declared var
const ’ <expr>
manifest any manifest <expr>
resuit <var id>

- Finally, the set of actual parameters must satisty the follewing nmonaliasing restriction: A
variable may not be used in more than one var or resuit posilion of a single procedure or

INote that for dynamic types, this is a painter copy.

Tartan Reference Manual ~8-

process call. For the purpose of testing this restriction, imported variables are considered to
be actual paramelers bound as specified in the import list.

3.2. Dynamic Allocation
Each use of the constructor for a dynamic type .creates a distinct element of the type. Each such
element remains allccated as long as there is an access path to it

Attributes of the dynamic type are provided when the constructor is used. Thus it is poessible to
associate objects with different attributes with the same dynamic variable at different limes.

Tartan Reference Manuai . -9-

4. Statements

<stmt> e <proc call> | <id> ¢ <simt> | <emply> | <block>
| <var id> = <expr>
| if <expr> then <stmt>.® { eiif <expr> then <simt>* }* { alse <stmt>* 1
| case <expr> | on <oplion> = <simt>.* 1+ ssnc
| while <expr> da <stmit>* od | for <id> in <range> do <stmt>.* od
| gata <id> '
| signal <qual id> | resignai | assert <expr>
| <stmt> { { on <id>* => <simt>* }* |
| ereate <var id> (<actuais> }
<proc¢ cali> um <qual id> (<actuais>)
<block> = <code body>

<code body> = begin { <def-decl> ; }* <stmt>.* end

Statements designate actions to be performed Their elaboration resuits in changes in the execution
state of the program. The <emply> statement has no effect. Labels are used by gote statements in
altering the flow of conirol in a program. A label is accessible only within the <stmi> it labels and
within a compound statement (sequenca of <simi>s saparated by semicolons) of which it is a <stmi>,

4.1, Blocks

Some examples are:

begin var x: booiean; x := frue end
begin x := ys y := I; end

Blocks control extent. A <block> is elaberated when control flows inta it, either because the <block>
is the body of a routine that has been inveked or because the etaboration of another <stmt> has
transferred controi to it. First, all deciarations and the lexts of all medule definitiens are elaborsted, in
fexical order. Next, the <stmt>s are elaborated as described sisewhers in this chapter. Finally, the
<blaock> is exited or terminated. If it is exited, control waits for all aclivations declared in this <block>
to become dead or mint, then the extent defined by the <block> is closed and all nondynamic variables
instantiated in the <block> are deallocaled. if the <block> is terminaled, all aclivations declared in the
<block> are forcibly terminated, and then the <block> is exiled The choics belween exiting and
terminating the block depends on how controt arrived at the end of the block. [f the block came to
an end because a handler compleled or an enclosing process was terminated, the block is terminated.
Qtherwise, it is exited.

A <block> is nol permitted to axport identifiers. Except when used as a routine body, it is an open
scope and has no need to import any,
4,2. Sequenced Statemenis
Some examples are:
x 1= 13y w23 2 1e 3
SumSag = B:; for i in 1..18 do SumSqg := SumSq + V(il*2 od

Sequernced statemenis are elaborated in the order given, except when that erder is interrupted by a
goto or an exception.
4.3. Assignment Slatement

Some examples are:

Y{S5}.Sum := B
» 1= {3+ ul wy

The assignment statement "V = E” is a procedure call on an approprisle assignment cperator,
defined

Tartan Referenca Manual -10-

proc "1=" (var LHS:T, const AHS: T}

for arbitrary type T. The value of the second parameter is assigred o the object named by the first
parameter. The paramelers are of the same type, and the normal type-checking ruies apply.

Assignment operators are defined for all primitive lypes. Assignment operators are defined fer
arrays, racords, variants, and programmer-defined types if and only if they have ne companents that
are declared const or are nonassignabie by virtue of this rule. An assignment operator that copies the
whole value is automatically supplied for each user-defined type. For dynamic types this is a pointer
copy. Although assignment may be invoked with any variable and value of the type, it requires that
the attributes of its left and right operands be identical, and signals lhe BadAssign exception if they
are not. The BadAssign exception is also signalled if an assignment involving mismatched array, siring,
or set sizes or an activation not in mint state is attempted.

4.4, Conditienal Statements

Some exampies are:

ifAcSthnnx:-g!i'

it « = @ cand y/x > B then z := wtiy/x) else u i= 1,83 q 1= /= fi

case Tint
on fuchsia -» Hue := cool; Description ;= "Purplisn-red"
on puce -> Hue t= warm: Deacription := "Brownish-purple”
#sac

In the statement “it B then S1 else S2 i, B must have type boolean. First, B is elaborated. If the
resulting value is true, 51 is elaborated; otherwise 52 is eiaborated. in the absence of an eise clausse,
$2 is taken to be the empty statement, which has no effect

The expression

if B1 then S1 eiif B2 then 52 ... elit Bn then Sn sise Sv fi

is eguivalent to

if Bl than 51 eise
if B2 then S2 elss

if 8n then Sn else S fi

fi

In the statement

case 3
on E11,...,Eix -> 51
on £E21,...,E21 -» 52

on Enl,....Emm -> Sn
on others -> Sy
sic

The E’s must all be expressions of the same type, and all except EO must be manitest. The type of
the E's must be fixed, an enumerated type, or a defined type thal is ultimately defined in terms of
fixed ar an enumeraticn. Any of the E's except ED may be 2 <range>; such an Eij is treated as the
sequence of values in the range. First, £O is elzborated. The Eij are eiaborated and the resulls are
compared to E£O (in unspecified order). 1f EQ is equal to some Eij, the corresponding Si is elaborated.
If ail comparisons yield false, Se is elaborated Exacily one Si is elaborated for each correct
elaboration of the case statement. If the special constant others does not appear as the last <opticn>
and no match is found, an exception (Casefailed) is signalled

Tartan Reference Manual ' «11-

4.5. Loop Statements

Some examples are:

while x < 2.5 do x 1= Fly,x}; y 1= Gly,x} ed
for | in 1..18 do Y{i) :a i od
far hue in color do Tint(hue) :e hue od

The loop while E do S od repeatedly elaborates if £ then S fi untii E becomes false. 1f E is
initiaily false, the ioop has no effect (other than the possible hidden effects or exceptions caused by
the elaboration of E)

The for statement for i in R do § od repeats the steps

- Bind i {as a constant) to a vaiue in the range R.

~ Elaborate S.

once for each element of the range R, in order. If R has no elemenls, the loop has no effect The
scope of the loop constant is restricted to the loop.

4.8. Unconditional Control Transfer

An exampie is:

sofo L

The effect of a golo statement is to force control to the beginning of the statement with the given
label. Since the scope rules prevent inheritance of labels across closed scope boundaries and
impartation of labels, a golo can not be used to transfer out of a rouline or module.

4.7. Excaplions

Same exampies are:

signal TooBig
assert x < @

read{file,x} | on EOF -> goto Exit }
t= %+l { on Overflow -» x 1= @}

Exceptions are processed by handier clauses associated with individual statements. Fach handler
clause assaciates procassing code with given exceptions, The special identifier others may appear as
the last <id> list of a handler clause; it malches any exception that is not named in some other
exception <id> list of the same clause.

When an exception is signalled, controi is transferred to the nearest dynamicaily enclosing handler
clause that handles the exception, either explicitly or through an others clause; the elaboration of the
handier replaces the elaboration of the remainder of the statement. If this handler is not in the
currently-executing block, al! intervening blocks will be terminated. if a handler is not found within
the currently-executing routine, that routine is terminated and the exception is resignalled at the point
of call of the routine. [f a handler is not found within the currently-execuling process, that process is
terminated and the exceptlion is resignalled at the end of the bicck in which the process activation
was declared after waiting for control to reach that peint and for ail other activations declared in that
block to terminate. [f no handler is found in the scope of the exception name, a default handler will
be supplied to terminate that biock

Exiting a handler causes termination of the <stmt> with which it is associated [f the handler
resignals the same exceplion or raises a new one, the normal rules for exceplion processing apply.

The resignal command may be used in any handler bady lo resend the signal that caused that
handler to be invoked.

Tartan Reference Manual -i2-

The assert statement raises the assertion exception if the <expr> is talse. It is exactly equivalent
to the statement "if -~ <expr> then signal asserlion fi".

There is one exception to the ruie that an exception must ke handled by the block in which it is
signalled or by a caller of that block: the Notify operation on aclivations ar actnames. The effect of a
Motify is as if the Terminate exceplion were signalled in the currently-executing statement of the
activation named by the Notify command.

4.8. Paraile! Process Control

Some examples are:

craala P (5}
activata(Pl}
it [aBlocked(Pl) then . .

The creale command instanliates a process, P, as an object of type aclivation-of~P. The <var >
in a create must name an object of lype activation-of-P that is in mint state. [f a process takes any
var parameters, the corresponding actuai parameters must have extent at least as great as the
sctivation variable. The effect of the create is to instantiate an activation of P, bind the actuals of the
create to the formals of P, and sel the activation in suspended state.

Cach activation has a unigue identifying token vaiue of type aciname, and it may be named by one
or more objects of type aciname. Except for create, all operations that control parallelism are special
routinres that operate on either actnames or activalions. These routines controi the procasses and
parallelism by changing and interrogating the states of indivicual aclivations; they are described in
Appendix 1.2,

Note that the extent rules reguire an activation to be dead or mint before the black in which it is
declared can be exited This provides an implicit join operation. A fork can be cbtained with a
series of creates and activates.

Tartan Reference Manuai -13-

5. Types

<typa> w= fixed{ <actuals>) [float(<actuals>) | boolean | laich | char | file{ <actuals>)
' | anum{ <id>*]| enum({ = <char> " 3,7 11 <expr> .. <axpe>

| smtl <actuyais> } | string(<actuais>)
| array [<range>+) of <type> | racard | <dectaration> *]
| variant <deciaralion> [{ on <option> =3 <type> "
| dymamic <type> | sclivation of <qual id> | actname
| <type mame> { { <actuais>) j»

<type name> = fixad | float | booiesn | latch | char | file | sut | string
{ @num{ <id> *]| enumf { " <char> =]+
| array { <type name> *] of <type name> | record [[<id> * : <type name> },‘ 1
| variant [<type name> { on <option> =» <type name> }*
| dynamic <type name> | activation [<qual id>] | actname
| <quat id> { [<qual id>*] }#

In Tartan, a <type name> may be aither a simple identlifier or an identifier inflected with additional
type names. The <type name> so formed captures all the information nesdad for type checking.

~ The <type names>s for the primitive scalar and simple nanscalar lypes are the keywords used
to declare them: fixed, float, boolean, lateh, char, sat, string, actname, file.

- The <type name> for an array declared "array{a.b) of D" is "array(1,0]", where [is the <type
name> of a and b.

- The <type name> for an enumeration declared enum(L{L2,.Ln]is enum{L1,L2..Ln] _
- The <type name> for an activation declared activation of P is aclivation{P].
- The <type name> for a dynamic type declared dynamic T is dynamic T.

- The <type name> for a record type is based an the sequence of field names and <lype
name>s in its declaration. For a record deciared “record[F1:T1, F2.T2, .., FnTaT" the <type
name> is “record[F1:TN1, F2TN2, ., Fr:TNnJ", where tha Fi are lists of field names, the Ti
are types, and the TNi are type names. Bindings in the declaration do not appear in the
{ype name.

- The <type name> for a variant s “variant{TT,T1->V1,T2-5V2,.,Tn->Vn]", where TT is the
<type name> of the tag, Ti is the ith value of the tag type, and Vi is the <lype name> that
corresponds to the ith value of the tag type. As a result, two variant <type>s are the same if
they specify the same <type>s for all vaiues of the tag.

- The <type name> for a defined type is the name given in the type definilion

5.1. Scalar Types

Some axamples are:

Rea!
1..18
enum (fuchsia, ochre, puce, saffron]

Buiit-in scalar types inciude fixed, float, boolean, fatch, and character. Integer and real must be
constructed as special cases of fixed and floal Ordered scalar enumerated types are defined by
providing an ordered list of values.

Types fixed and float require cactuaiss lists to provide range, scale, and precision when they are
used in declarations. These are attributes and do not affect the type. Although bindings for attributes
may in general be consl or manifest, the specifications of fixed and Hoat require manifest attributes.

To define a type, the <expr>s in an explicit range must be const or manifest.

5.2. Composite Siruciures

Some examples are:

Tartan Reference Manual =14~

array(1..18) ot Color
array (Color) of Real

string (1081
record [Name: string(35), Age:int)

variant b:boolean (on irve -> Int on false -> char)

Nanscalar data structures may be built up in three ways: with arrays (homogenecus indexed linear
structure), with records {nonhomogeneous structures with named fields), and with variants (structures
whose substructure may vary with time). [n addition, the nonscalar types sel, siring, and file are
defined.

Legal bindings for fields of records and varianls are var, const, and manifest. If a <binding> is
empty, it is taken to be var.

A variant type must have exactly one tag fieid. The special constant others may appear 2s the last
<option> of a <variant type>: it matches any constant that dees not appear in any other <option>,

The syntax for arrays provides an sbbreviation for a set of types pre-defined as
“array(IxType,EltType]r)” where IxType is the index type, EltType is the element type, and r is a
(sub)range of IxType. Thus "array(1.10) of float™ means “array[int,float](1..10)". Its type name,
“array[int,fleat]”, is written "array[int] of Hoal”. As for any type, when an <array type> is used as a
formai parameter, the attributes are not supplied. The type “array(A,B) of T" is an abbreviation for
"array(A) of array(B) of T". Similarly, the array accessor "V(i,j)* is an abbreviation far “V(i)(j)".

5.3. Dynamic Types

Some exampies are:

dynamic Real
dynamic record (Data: Int, Next: LiatElt, const Index: [nt := K1

Values of a dynamic type are pointers to variables whose structure corresponds to the type
definition. They are initialized to nil. The extent of these variables cavers the entire scape of the
type definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable
distinct from all others. The constructor supplies the attributes for this variabie; they are net supplied
in the declaration of the named variabie of the dynamic type. Thus & named variable of dynamic type
may at different times peint to, several different variables having different attributes.

5.4. Procass Control Types

Some examples are:

activation of P
aciname

Parallel processes are controlled with data of twa types -- aclivations of processes and acinames,
or names of activations. Activalions are instantiations of a given process; an activation may contain at
most one process activalion during its lifetime and then only of the process given in ils <type>. An
actname value is a pointer to an aclivation Actname variables may contain pointers to activations of

any processes; an actname variable may refer to dilferent instantiations of different processes from
time to time.

An aclivation is used to control paraile! or pseudo-paraliel execution of a process. At any time it
may be in one of four stales: mini, aclive, suspended, and dead. The extent of an activation variable
coincides with its scope. The immediately enclosing block cannot be exited until all activations declared
within it are dead or minf. An activation is assecialed with exactly one process, which must be named
by the <qual id>. '

An actname may refer to any instantiated process. A newly-declared aciname or aclivalion variable
is initialized to mint.
5.5. Defined Types

Some exampies are:

Tirm)
Sequence (int] (58}

Programmers may define new types. See section 6.5 an Type Definitions.

Tartan Reference Manual -15-

6. Definitions and Declarations

<def-daci> u= <declaration> | <mod def> | <rouline det> | <type daf> | <gereric def> | <emoly>
| imperts <gual id> * | exports <quai |d>" | excaption <'rd>l" | disable <ig> *
{ prag <proc cali>* ;* garp

<deciaration> = <binding> { <id>* [: <type> |* [= <expr> |* Lt | <binding> { <id>* t <type name> }+
<mod def> 1= module <id> <mod text>
<mod text> = 1 <¢code body> | <remale insi>

<routine def> = prec <id> <proc lext> | fune <id> <fync text> | process <id> <proc text>
} fune ™ { <unop> | <binep> | " <fync lext>

<func text> ww { <tormals>) <id> : <type> ; <block> | <remota inst>
<proc taxt>» = { <formals> J; <block> | <remote inst>
<type def> = type <type name> { (<formais>) }* 2 <type>

<generic def> = genweric module <id> [<tormafs>] <mod text> | genaric func <id> [<formais> 1 <tunc text>

i generic proc <id> [<formals>] <proc texi> | genaric procass <id> [<formais>] <proc text>
<remate inst> u= is <qual id> [<actuals>] | is assumed [<id>)
<formais> = { <binding> <id> * : <type name> |

<binding> = <emply> | var | const | manifest | resuit

6.1. Declaralions

Some examples are:

var w=: Real

const y:= true

var Huel, Hue2, Hue3: Color

var - Tint :a enum(saffron, puce, fuchsia, ochee]
var Vi array (5..7} of [nt

var . Ml:Mark (S}, M2:Marki{7}

manifest Pl: Real :a 3.14

The syntax for declaraticns allows three kinda of abbreviations. [f the initialization expression
appears, the type of the variable is evident from lhe <expr> and the “i<type>" may be omitted. [n
addition, lists of <id>s with the same types or bindings may be condensed. Thess abbreviations are
Hlustrated by the following five declarations, all of which have the same effect:

var x,y := @

var x,yslnt 1= 9

var x 1= B, y te @

var x:lnt 1= @, yiint :2 B
var x:ipt 1= B; var yrint := @

Elaboration of a declaration causes instantiation of an object which is the variable. Each variable
has a type and a value. The type is datermined when it is instantiated, but the value may be changed
by further elaboration of the program. A variable may be restricted to be const (value fixed at black
entry) cr manifest {value fixed during transiation).

Elaboration of a declaration proceeds as follows:

~ Evaiuate the <exprs, if presenl. It must be present in manifest or const deciarations. [t must
be manifest in manifest declarations.

- If the <binding> is manifesl, bind the value of the <expr> to the identifier(s).

= If the <binding> is const or var, elaborate any <actual>s in the <type> and instantiate a new
variable with the indicated type and attributes for each identifier. If there was an <expr>,
assign ils value to each of the new variables.

When the type is dynamic, the declaration supplies the <type name> only (no attributes). In this case,
only the pointer is allacated at block entry; the attributes are supplied when the dynamic type is
actuaily {dynamicaliy) allocated

Tartan Referenca Manual -16-

§.2. Moduies

An exampte is:

modula Counterlef;
bagin
axports Counter, Reset, [ner, Yalue;
type Counter = Int;
proc Reset (resuit C:Counter); begin C:= @ ends
proc Incr (var C:Counter); begin C:=C + 1 end;
fune Value (const C:Counterix:Counter; begin x := C end
and

The elaboration of a module takes place during the elaboration of declarations for the block in
which the module is defined. This elaboration consists of elaborating the deciarations of the module in
lexical order, then elaborating the statements of the moduie.

A medule ar routine inherits identifiers for definitions (modules, routines, exceptions, and types) from
its enclasing scope. It may expiicitly import identifiers of objects frem that scope, provided the
objects have global extent. A module, but not a routine, may export definition and objest identifiers ta
its enciosing scope. Types, named routines, field accessors for records, and variables are exporied by
including their names in the exports list of the module. The right to aoply infix operatcrs,
constructors, subscripts, "all", or the create command lor 3 type T are exported by including the
special names Tinfix, T'constr, Tsubser, T all, and Tcreale, respectively, in the exports list. Litlerals
of enumerated types are exported automatically if the types are exported

£.3. Roulines

Some examples are:

proc Flvar x:lnt}; begin x 1= - x} and
proe G is GenG (5]
fune [sNi1éx:DynTly: boolean; begin y := {x = nil) eand
fune "+ la,b:gorplcigorps
bagin
imports Bias;
c := gorp’ {a.left+b,ieft+Bias, a.right+b.right+Bias}
end

A routine is a closed scope whose body is 8 block. Thus its body controls extent for local
deciarations, but dces not inherit identifiers for {non-manifest) cbjects or labels. The <formais> list
declares the identifiers for parameters.

A routine may be a function (tune), which returns a vatue and has no visible side effects: it may be
a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a
process, which is a potentiaily-parailel procecure. Special type-specific routines are described in
Appendix 1.2. :

Routine names may be overloaded by binding the same identifier to several definitions with different
numbers or types of parameters. The functions for which special infix notation is provided are
cbvious candidates for averlcading.

If a <binding> in a routine header is omitted, it is assumed to be consl The resuit binding may be
used only in procadures. No duplication of identifiers within the <formals> list is permitted, and
parameter names may not conflict with declarations or imporis in the routine body.

6.4, Exceptions

Same examples are:

wxcaption TooBig, TooSmail, Late, Singular
gisable TooBig, TooSmail

Tartan Reference Manual -17-

The scope of an exception name is the block in which it is declared. A disable declaration in an
irner block suppresses detection of the exceplions it names. A handler clause asscciates recovery
code with a statement that may generate an exception {see section 4.7).

The disable declaration permits exceplions to be indivically suppressed within a given scope.
Should an exception occur when its delection is suppressed, the consequences are not defined. An
exception must nal be signailled or redeclared in a scope in which it is suppressed. Note that
suppression of an exception is not an assertion that the condition that gives rise to the exception wili
nat occur.

Standard exceptions will be declared in the gicbai extent

6.5. Type Definitions

Same examples are:

typs Counter = [nt
type Matrix(n:Int} = array{l..n,l..n) of Real

A user may introduce a new type inta his program with a type definition. The type definition itself
merely introduces the <type name> and defines the representation of the type. Operalions are
introchiced by writing routines whose formal paramelers are of the newly-defined type. Scope
boundaries, particularly module boundaries, play no role in the definition of the type. Thera is, as a
consequence, na notion of the complele set of operations on a type.

A type definition may be paramelerized. The bindings in the formal parameter list must be const or
manifest. If a <binding> is omilted, it will be assumed to be consl. The names of the formai parameters
of the type are available throughout the elaboration of the program as constants, called attribules.
They are accessed by treating the <var ident> as a record and ihe type attribute as a field.
Attributes for primitive types are given as part of the type definitions.

Within the scope in which the type is defired, the qualifier Rep may be used to indicate that the
object named by the identifier Rep qualifies is lo be lreated as if it had the underlying type. This
2llows operations on the new type !o be written using operations on its representation. When no
ambiguily arises, the Rep qualification may be omitted

6.5. Generic Definitions

Some exampies are:

generic proc Reset [T:tupe] (var »:T}; begin x t= x'min end
proc ResetColor is Reset [Cofor]

proc ResetX is Reset[Sampie)

moduie Stack is assumedi(StackDet)

generic module Ringlef(K: Intl;
begin
axports Ring, Next;
type Ring = fixed(1,8,B,K-1}:
fumc Next (R:RingIN:fixed{l,8,8,K-1); begin N := mod(R+1,K); end
end
modute RS it RingDef (5]
moduie R3 is RingDef (3]

A generic definition is syntactically like the corresponding specific definition except that it is
prefixed by the word generic and it may have a set of generic paramelers (enclosed in square
brackets) after the definition name. For generie definilions, type is acceptable as a formal <type names>.

The actual parameters supplied in an instantiation of a generic definition may be any defined
identifiers, including those for variables, functions, types, or modules, or any expression. When the
generic definition is instantiated, the text of the actual parameters replaces the identifiers that
represent the formal parameters. The substitution is done on a lexical, rather than a strictly textual,
basis. That is, the identifiers in the generic definition are renamed as necassary o avoid conflicts
with the identifiers in lhe aclual parameters.

Tartan Reference Manual -18-

Both generic definitions and remotely-defined modules or routines may be incerporated in a program
as remote instances. A remote instance may be an instantiation of a generic definition ar a reference
to a definition given elsewhere.

A module or routine that is used by the program but whase definiticn is given elsewhere (e.g, in a
library) is incorporated by writing is assumed(<id>) as the bedy of a medule or rautine definition. The
<id> is used by a pragmat to locate the remote definition.

A generic definition is instantiated by referring to it as the bedy of a3 medule or routine definition.
The effect aof the instantiation is as if the generic definition were lexically substituted in place of the
reference to it. That is, the bedy of the moduie or routine being defined becomes a copy of the
generic definition

An instantiation of a generic definition may be used as the body of a specific module or routine. The
usual restrictions on defining new identifiers apply to the medule or routine being defined in terms of a
generic.

Generic type definitians arise from generic mocules. They are instantiated when the module is
instantiated. Thereafter, they may be used in declarations ar definitions.

¢ the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correponding types and he syntactically suitable for substitution.

It a generic definition is instantiated more than once in a scope, ambiguous names may be
introduced. The usual rules for resalving such ambiguities appiy.

6.7. Translalion Issues

An example is:

prag Cptimizelspaceld: Listing{Q¢f) garp

A program is a <biock> The extent defined by the outer biock of the program is the global extent

The translator may be guided by <pragmat>s. Pragmats have the same syntax as procecure calls.
The set of pragmal names and the interpretations of the arguments are determined by each lransiator.
Translators will ignore pragmats whese names they do not recognize.

A program may be broken into separately defined segments. This decomposition must take place in
the giobal extent. The units of separate definition are modules and routines. The definitian

moduia O is assumed(i]

in a segment has the effect of making the semantics of the segment the same as if the (separately
defined) text of Q had been substituted for s assumed(l)”. The idenlifier [refers to a file, library, or
other facility for storing separately defined segments. The relation tetween the identifier | and that
storage facility may be established by a pragmat.

It is a matter of optimization whether the separate definition is included as text or separately
transiated and linked in. In order to perform independent \ransiation of a separately defined companent,
it is necessary to embed the module or routine being lranslated in an environment that supplies
definitions for all the names it inkerits or imparts. This environment mus! form a complele program.
It is assumed that the translation system provides commands for selecting which components of such a
transiation ta save and for delermining where and in what form they are to be saved.

Tartan Reference Manual ~-18-

[. Standard Definitions

I.1. System-Dependent Characteristics

The transiator for each system is assumed to provide 3 module in the global extent thal defines
appropriate system constants. Such constants are assumed at various points in the language definition:
these and certain others are summarized here in the form of a skeleton moduie.

module Sys;
bagin
exports . . . ! exports all definitions belou

type [nt = fixed(, ., .} ' appropriate to the machine

Note int.Min and Int.Max give range

type Reai = flgat{. , .) ! appropriate to the machine
! Attributes give range, precision, scaile

const , , , I constants that descibe properties of the
! object machine

proc . . ! procaduras for accessing facilitias of the

! operating and file systems
exceptions , . . ! System-defined exceptions such as Assertion, BadAssign....
end '

L.2. Properties of Types

All types have assignment operators and routines for conversion o appropriste other types. In
particuiar, the scalar types have routines for converling to and from character strings. All nonscalar
types have consiructors. The sections below skelch some impertant properties of the built-in types.

1.2.1. Fixed
Literais: digit strings
Attributes: Min, Max, Precision, Scale
Infix operations: Arithmetic and relational
Special routines: rounding, truncation
L.2.2. Float
Literals: digit strings with decimal peint
Attributes: Min, Max, Radix, Precison, MinExp, MaxExp
Infix operaticns: Arithmetic and relational
Special routines: rounding, truncation

1.2.3. Enumerations

All enumerations are ordered The literais are assumed to appear in the declaration in increasing
order.

Literals: As given in definition
Attributes: Min, Max

Infix operations: Relational

Special routines: suce, pred

e

UNIVERS T -
CARNEGILKT R AA
FIITSBURGH, Fiiiurov~ruiA 15213

Tartan Reference Manual _ ~20-

1.2.4. Boolean

Literals: true, faise
Attributes: none
Infix operations: logical
Special routines: nane

1.2.5. Characlers

Literais: Quoted characters
Attributes: Min, Max

Infix cperations: none

Special routines: as for enumerations

1.2.6. Latches

A latch is a simple spiniock for mutual exclusion It the lalch is open, it is available for siezure; if it
is closed, a Lack command will wait on it,

Literais: open, closed
Attributes: none

Infix operations: none

Special routines: Lack, IfLock, Unlock

1.2.7. Arrays

Literais: nane
Attributes: Range, CitType
Infix operations: none

Special operations: subscript, subarray, catenalion, upper bound, lower bound

1.2.8. Sets

"Sets” are boolean vectors on which some additional operations are defined,

Literals: emply
Afttributes: EitType, ManSize
Infix cperations: logical

Special operations: subscript

1.2.8. Dynamic Types

Literals: nil
Attributes: The named variable does not ilself have attributes, but the dynamic
variable that it references may.
Infix operations: none
Special operations: .all denotes whole value of dynamic object, as distinguished from
the reference. A dynamic constructer allocates a new dynamic object
Special routines: none

1.2.10. Records

Literals: nane
Attributes: individually defined with record type
infix operations: nene

Special operations: field selection, constructors
Special routines: none

Tartan Reference Manual

L2.11. Variants

Literals:
Attributes:
Infix operaticns:

Special operaticns:

Special routines:

1.2.12. Strings

Literais:
Attributes:
infix operations:

Special operalions:

1.2.13. Activations

Literais:
Attributas:
Infix operations:

Special operations:

Seecial routines:

-21~

none
individually defined with variant lype

none

variant must be designated to reference contents
none

Quoted strings

Length

none

subscript, substring, catenation

mint

none

none

create

To change state: Activate(A), Suspend(A), Unieck AndSuspend(A,L),
UniockAndActivate(A,L}, LockAndSuspend{A,L), LackAndActivate(A,L),
Terminate(A)

To query state: IsMint{A), IsAct(A), 1sSusp(A), IsTerm{A)

To obtain actname: NameQf(A), Me()

To sent exception: Notify(A)

Other: Priority(A), SetPriority(A), Time{A)

where A is an activation or actname and L is a latch

Assignment causes the BadAssign exception if either the value or the variable to which it is being

assigned is in a state other than mint

L2.14. Acinames

Literais:
Altributes:

Infix operations:
Special operations:
Special routines:

I.2.15. Files

mint
none
none
none
Same as for aclivations

A minimal input-output facility will be provided.

1.3. Alphabets

The fellowing context-fres substilitions reduce the alphabet used in this report to the standard
E4-character ASCI] subsst Note that some identifiers are pre-empted as a3 resuit.

For the publication character:
lower case a.z

e S LIV IA

Substitute the ASCI string:

upper cass A7

<m

>m

<>

and

T4

<<

>>

http://L2.il

Tartan Reference Manual

II. Collected Syntax

<const> nw <digit>* { . <digit>* }* | true | false | nil | ciosed | opan | mint | smply
| <comstructor> | <id> | <qual id> ' <canst> | <type> ’ <const> | <expr>

zcomstructor> = (<expr>®)| ([<option> <> <expr> ARG Al <ghar>® ®

<var id> am <qual id> | <var id> { <actuals> } | <var id> . <ig> | <var id> { <range>) | Rap' <id>
<range> nw <expr> .. <expr> | <typs>
<option> u= { <const> | <range> }“‘
=qual id> e [<id> 'J* <id>
<id> sm <lettar> <letter or _ or digit>*
<axpr> ue <unop>® <var id> | <unop>* <consi> | <unop>* <func call>
| <unap>® (<expr> } | (<expr>). <id> | <axpr> <binop> <expr>
<unop> um |-
<binop> am [fLe]=1€1E12 2 aiFA|candiv]corl?
<fync cail> ne <quai id> { <actuals>)
<actuais> u= <expr>*
<stmit> uw <proc call> | <id> 1 <simi> | <emply> | <block>

| <var id> = <expr>

| it <axpr> then <stmt>* { olif <expr> then <stmt>* ¥ { alca <stmt>.® }* fi
j case <expr> { an <oplion> <> <stmi>* }* esae '

| while <expr> do <stmt>* od | for <id> in <range> da <stmt>* od

| golo <id> .

| signal <qual id> | rasignal | assart <expr>

| <stmit> { { on <id>* <> <stmt>? "

| create <var id> { <actuais> }

<proc cal> xm <qual id> { <actuals>)

<block> w <codse body>

<code body> = bagin [<dei-decl>; }* <stmt>* and

<type> sw fixed{ <actuals> } | flcat{ <actuals>) | boolean | latch | char | filad <actuais> }

| snumf <ig>*]| enum{ { * <ghar> “] *]| <expr> . . <expr>
| sal(<actuais>) | siring{ <actuats>)

| array (<range>*) ot <type> | record [<deciaration> *]

| variant <declaration> [{ on <option> => <type> }*]

| dynamic <type> | sctivalion of <qual id> | actname

| <type name> { (<actuats>) |®

<type nama> = fixed | float | boglesa | |stch | char | file | st | string
b enum{ <id>*] | enum{ {* <char> ™ 1%}
{ array [<type name> *] of <type name> | record [{ <id>* : type name> L]
| variant [<type name> { on <oplion> => <type name> }*]
| dynamic <type name> | sctivation [<qual id>] | aciname
b <qual id> | [<qual ig>*] 1*
<def-decl> 4= <deciaration> | <mod def> | croutine def> | <type def> | <generic def> | <empty>
| imports <qual idg> * | exports <qual ig> * | xception <id>+ | disable <id>*
| prag <proc czib;* ¥ garp
<declaration> = <binding> { <id>* [1 <lype> 1% (= <expr> |® | * | <binding> { <ig>* : <type name> 1t
<mod def> 1w module <id> <mod text>
“mod text> u= 3 <code bady> | <remofe insi>

<routine def> == proe <id> <proc text> | func <id> <tunc text> | process <id> <prac lext>

| fune = { <unop> | <binop> } " <func text>
<funec text> we { <formals>) <id> : <lype> ; <block> | <remota inst>
<proc texi> ww (<formais>)3 <block> | <remote inst>
<type def> == type <type name> [[<formals> } I® = <type>

<generic def> := generic module <id> [<formals>] <mod text> | generic fune <id> { <formals>] <func text>

| generic proc <id> [<formals>] <proc text> | genaric procass <id> [<formals>] <proc text>
<remate inst> a= s <quai id> [<actuals>]| is assumed { <id>)
<formals> uw { <binding> <ig>* : <lype name> 1
<tinding> = <empty> | var | const | manifest | resuit

