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Abstract 

When classical statisticians define a statistic they study it from many viewpoints, including 

its bias, power, robustness, and many other aspects. One facet of a statistic, however, has 

often been ignored by the classical statistician: the computational difficulty of computing the 

statistic. The field of computational statistics studies precisely this probelm. In this paper 

we adopt the viewpoint of computational statistics and study the problems of multivariate 

nonparametrics in this light. After examining one problem in detail, we survey a number of 

computational problems and then a set of computational structures for solving them. 
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1. Introduction 

Many are the problems facing the practitioner of statistical computing. These include 

problem specification, collection and integrity of data, choosing statistical packages and 

programming languages, and producing and maintaining correct programs. Another problem 

which arises in statistical computing is that of reducing the computational resources (time and 

space) used by various programs. One must certainly keep the problem of efficiency in 

perspective with the other problems (to ensure that the programming costs involved with a 

faster program do not exceed the corresponding savings, for example), but it is a sad fact 

that many computer programs currently require enormous amounts of time and space. 

There is a field of computer science, called algorithm design and analysis, that studies 

precisely the issues of computational efficiency. The application of the methods of this field 

to the problems of statistics is the domain of the hybrid discipline of computational statistics. 

Shamos [1976, 1978, 1979] has laid the foundations of computational statistics by identifying 

and studying a number of fundamental computational problems that arise in statistics. This 

study is of both practical and theoretical interest: on the practical side it reveals reductions 

in the costs of many computations, and theoretically one can gain a new perspective on 

statistics as well as a host of problems fascinating for computer scientists. 

One shortcoming of computational statistics to date has been that it has studied primarily 

univariate and bivariate problems. In this paper we will survey how the methods of 

computational statistics can be applied to multivariate problems; we will specifically 

investigate computational problems that arise in multivariate nonparametric statistics. In 

Section 2 we will study a particular problem in some detail. Sections 3 and 4 survey a 

number of multivariate problems and the computational structures that can be used to solve 

them. In Section 5 we will study a couple of those problems in lesser detail, showing how 

each of the computational structures might be applied. Finally, directions .for further research 

and conclusions are offered in Section 6. 

2. The ECDF Problem 

An important function in mathematical statistics is the cumulative distribution function 

(abbreviated CDF) associated with a distribution. If a distribution has probability density 

function (abbreviated PDF) f, then the CDF F of the distribution is the integral of f. Since a 

distribution is essentially defined by its CDF, knowledge of that function gives great power in 

making statements about the distribution. When the data analyst given some set S of 

multivariate observations (which we view as a set of points in a multidimensional space) he 

usually makes the assumption that they are drawn independently from some underlying 
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distribution f, but he has no knowledge of what that function (or its CDF F) might be. In this 

case, however, he can approximate the CDF of the underlying distribution by the empirical 

cumulative distribution function (abbreviated ECDF) of the point set S. To define the ECDF 

we need two definitions: a point x is said to dominate point y if x is greater than y in e v e r y 

coordinate, and the rank of a point x in set S (written rank(x,S)) is the number of points in S 

dominated by x. If a point set S contains N elements then the ECDF of point x in S is 

ECDF(x,S) - rank(x,S) / N. 

These quantities defined on point sets are illustrated in the planar case in Figure 2.1. 

Rank(A,S) « 3 
A ECDF(A,S) » 3/8 

Figure 2.1. Point set S. 

Calculation of the ECDF arises in a host of statistical problems. The multivariate 

two-sample Kolmogorov-Smirnov test of hypothesis that two samples were drawn from the 

same underlying distribution uses the multivariate ECDF. Other statistical applications that 

require calculation of the ECDF, including density esitmation and Hoeffding and Cramer -von 

Mises hypothesis tests, are described by Bentley and Shamos [1977]. 

There are two computational problems associated with the mathematical definition of 

ECDFs. The first problem is ECDF searching: organize a set S of N points so that subsequent 

queries asking the rank(x,S) (where x is not necessarily in S) may be answered quickly. The 

second computational problem is the all-points ECDF problem: given a point set S, find the 

rank of each point in S. Naive algorithms for ECDF searching require O(kN) time for 

k-dimensional sets of N points, and naive all-points algorithms require O(kN^) time. In this 

section we will see algorithms due to Bentley and Shamos [1977] that solve these problems 

more efficiently. We will examine the ECDF searching problem in Section 2.1 and then the 

all -points problem in Section 2.2. Although we will restrict our attention in those sections to 

the planar (two-variate) case, the algorithms generalize to k-space (we mention this in 

Section 2.3). Throughout this section we will concentrate on the problem of computing ranks 

rather than the ECDF, but recall that after calcuiating rank a single division suffices to 

compute ECDF. 
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2.1. The ECDF Searching Problem 

In the ECDF searching problem we are to organize a set S of points such that subsequent 

queries asking the rank(x,S) may be answered quickly. If S is a one-dimensional set then we 

can answer rank queries by first sorting S and then answering queries by performing a 

binary search in S. The cost of this is 0(N Ig N) for sorting the elements, and then 0(lg N) for 

answering queries. Unfortunately, this scheme does not seem to generalize directly to the 

planar case, but we will see how the fundamental notion of binary search can be applied to 

this problem. 

We can develop a fast algorithm for planar ECDF searching based on the fact that for any 

g iven point set S there exists a set of rectangles within which the rank remains constant. To 

illustrate this consider holding a y-value fixed and "sliding" along the x-value. In doing so, 

the rank of a point can change only as we encounter the x-value of one of the points in the 

set. A similar observation holds for fixed x-values. It is therefore true that if we were to 

"draw" vertical arid horizontal lines through each of the N points of a set, then the rank is 

constant within each of the (IM+l)^ resulting rectangles. This situation is illustrated in Figure 

2.2—the number in each rectangle denotes the rank of any point that lies in that rectangle. 

Once we have organized the point set S in this way we can answer queries by "looking up" 

the rectangle in which the point lies, and then returning the integer associated with the 

rectangle as the rank of the point. The general method underlying this particular algorithm is 

usually called the "locus method" — notice that we solved the problem by identifying the loci 

of all points with equal ranks. 
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Figure 2.2. Rank in each cell is constant. 

The above scheme is easily implemented on a computer if both the x - and y -values are 

first "normalized" to the integers 1 to N by sorting. After this step the array of rectangles 

can be stored in a two-dimensional arrary. To answer a query we then do a binary search 
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for both coordinates to normalize them to integers, after which we perform an array lookup. 

Analysis of this method shows that O(N^) storage is required, and a query can be answered 

with two binary searches and array lookup, which require 0(lg N) time. If some care is taken 

in implementation then the data structure can be built in O(N^) operations. Thus we see that 

by paying substantial preprocessing and storage costs we can speed up the query time over 

the naive algorithm. This structure might therefore provide large savings when a very large 

number of queries are to be performed. 

2.2. The All-Points ECDF Problem 

In the previous section we examined the problem of organizing a point set so that 

subsequent ECDF queries can be answered quickly; in this section we will examine the related 

problem of calculating for each point in the set its rank in the set. This is, of course, just the 

all -points ECDF problem. For univariate data one can solve this problem by sorting the 

observations (points) and then scanning through the sorted set, reporting the number of 

points less than each point encountered. If an 0(N Ig N) sorting algorithm is used then the 

total cost of this procedure is also 0(N Ig N). Although we cannot immediately generalize 

sorting from one dimension to two, we will see that we can use the underlying idea of many 

sorting algorithms, divide-and-conquer, to create a fast algorithm for solving the planar 

all -points ECDF algorithm. 

The planar divide-and-conquer algorithm that we will describe operates in the three steps 

that are sketched in Figure 2.3. The first step of the algorithm (illustrated in part a of the 

f igure), the divide step, chooses some vertical "cut line" L that separates the given point set 

S into two subsets A and B of equal size (that is, N/2). The second {recur) step of the 

algorithm recursively finds for each point in A its rank among the points in A, and for each 

point in B its rank among the points in B; this is illustrated in part b of the figure. Note that 

at this stage we have found the correct rank of each point in A: since the x-coordinate of 

each point in A is less than the x-coordinate of any point in B, no point in A can dominate any 

point of B. All that remains to be done therefore is to find for each point in B the number of 

points in A that it dominates. The above observation that all points in A have lesser x values 

than all points in B means that all we have left to do is calculate for each point in B the 

number of points in A with lesser y-value. The third step (marry step) of our algorithm is 

therefore to project all points in both A and B onto the line L (remembering whether each 

was in A or B), and then scan through the resulting list keeping track of the number of A's 30 

far observed. As each B is encountered we add the count of A's to its correct rank among 

the B's, which gives its correct rank in the entire set. This third step is illustrated in part c 

of the figure. 
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a.) 

2+2-4 

0+2-2 

0+1-1 

b.) c) 

Figure 2.3. Operation of ECDF2. 

We will now describe more formally the algorithm that we sketched above. We call it 

Algorithm ECDF2, and it is a recursive procedure that is initially passed a set S of N points. 

L [Divide.] If S contains just one element then return its rank as 0; otherwise 
proceed. Choose a cut line L perpendicular to the x-axis such that N/2 points of 
S have x-value less than L's (call this set A) and the remainder have greater 
x -value (call this B). 

2. [Recur.] Recursively call ECDF2(A) and ECDF2(B). After this step we know the 
true rank of all points in A. 

3. [Marry . ] We must now find for each point in B the number of points in A it 
dominates (i.e., that have lesser y-value) and add that number to its partial rank. 
To do this, pool the points of A and B and sort them by y-value. Scan through 
this sorted list in increasing y-value, keeping track in ACOUNT of the number of 
A's so fa observed. Each time a B is encountered, add the current value of 
ACOUNT to its partial rank. 
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The correctness of this algorithm can be established by induction on the problem size, N. 

To analyze the time requirements of the above algorithm we will let its running time on a 

set of N elements be denoted by T(N). Step 1 can be accomplished in 0(N) time by the use of 

a fast median algorithm. Step 2, which solves two subproblems of the same form each of size 

N/2, requires 2T(N/2) time by the induction hypothesis. If careful bookkeeping is used, the 

sort of Step 3 can be avoided, and therefore the step can be accomplished in 0(N) time. Thus 

the algorithm as a whole obeys the recurrence 

T(N) = 2T(N/2) + 0(N) 

which has solution T(N) * 0(N Ig N). This algorithm (and many extensions) are described in 

detail by Bentley [1978]. 

2.3. Summary of the ECDF Problem 

The algorithms that we have seen in the previous two sections for bivariate problems 

(which we viewed as points in the plane) can be generalized to algorithms for k-variate 

problems (which we view as point sets in k-space). The searching algorithm of Section 2.1 

generalizes to a method that requires O(N^) preprocessing time and storage; subsequent 

queries can then be answered in 0((lg N)^) time. The divide-and-conquer method of Section 

2.2 can be generalized to k-space and yields an algorithm with 0(N (Ig N) k~*) running time. 

Although we see that the algorithms are faster asymptotically than their naive competitors, 

we might wonder what gains they offer in practice. As an example, consider the problem of 

solving a one-million-element all-points ECDF problem on a one-microsecond computer. In 

this example the O(N^) naive algorithm would require some twelve days, while the 0(N Ig N) 

divide-and-conquer algorithm would require just twenty seconds. This asymptotic analysis of 

algorithms will become more and more important as data sets in practice are becoming larger 

and larger; this trend will continue as online data collection systems become more 

commonplace. 

At this point we have spent considerable effort on a single computational problem, and we 

might wonder what all this work has gained us. On the most basic level we have seen two 

particular algorithms for solving the two computational problems originally posed. More 

general ly , we have seen two algorithmic techniques which can be used for a var iety of 

problems: the locus method and multidimensional divide-and-conquer. Finally, we have 

achieved a whole new, algorithmic, view of a well known statistical problem. 
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3. A Survey of Problems 

In the last section we saw how a number of problems in statistical computing can be solved 

by reduction to a single geometry problem: calculating the rank of a given point in a set of N 

points. In this section we will describe a number of problems in computational geometry that 

arise in statistical problems. The interest of all these problems is that N k-variable 

observations can be viewed as N points in k-space. A feature that most of the problems we 

will see share with the ECDF problem is that there are two varieties of each problem: the 

searching version and the all-points version. 

The first few problems that we will investigate are defined in terms of point domination 

(recall that point x dominates y iff x is greater than y in all k coordinates). The first problem 

we mentioned was the ECDF problem, which asked for each point the number of points it 

dominates (its rank). We saw that the ECDF problem arises in such statistical applications as 

hypothesis testing and multivariate density estimation. A related problem is the maxima 

problem, which asks if a given point is dominated. This problem appears in both the 

all-points and searching forms and arises in econometrics and outlier detect ion. A final 

problem that can be phrased in terms of domination is range searching^ which asks for all 

points dominated by y and dominating x (that is, for ail points in some rectilinearly oriented 

rectangle). This problem occurs in both data analysis and multivariate density estimation. 

A related set of problems are defined in terms of point closeness. Perhaps the simplest 

such problem is the nearest neighbor problem, which calls for finding the closest point in the 

set to a given point. This can be cast in both the all-points and searching frameworks. This 

problem arises in a host of statistical applications, including classification, clustering, density 

estimation, and hypothesis testing. A problem related to the "pure" nearest neighbor problem 

is the fixed-radius near neighbors problem: we now ask for all points within some fixed 

distance d of the given point. This problem arises in many of the same applications as the 

"pure" nearest neighbor algorithm. A final closeness problem is the minimal spanning tree 

problem, which asks for a set of N - l edges connecting the N points with minimal total edge 

length (this problem is only an all-points problem; it has no searching analog). This problem 

occurs in single linkage clustering, as well as many other data analysis procedures. 

4. A Survey of Structures 

In Section 2 we saw two general schemes that yielded particular algorithms: 

multidimensional divide-and-conquer and the locus method. In this section we will mention a 

number of other algorithmic paradigms that can be used to solve a host of computational 

problems. For each method we will describe it in general terms and then mention how it 

^ I l looU^H.PtHHSYLVAulA 15*U 
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might be used to solve the fixed-radius near neighbor searching problems. More detail on 

these structures can be found in Bentley and Friedman [1978b]. 

The simplest scheme for solving multidimensional problems is brute force by simply holding 

the points in some structure such as an array. To solve the fixed-radius near neighbor 

problem wih his method we just hold the poins in an array and answer each query by 

scanning through the entire array. A more sophisticated approach is the projection method. 

which stores the points by projecting them onto one of the coordinate axes. A near neighbor 

algorithm based on this method sorts the points by one coordinate and can then use that 

information to decrease query time. Another multidimensional paradigm is the cell method 

which calls for partitioning space into cubes and placing each point in its cube. In a near 

neighbor method based on this technique only points* in cells near a query point would be 

examined during a search. 

The fourth multidimensional paradigm in common use is recursive paritioning. which chooses 

a plane dividing the set in half and builds two substructures recursively. Applying this 

method to the near neighbor problem gives a multidimensional binary search tree. The 

remaining two structures we have seen applied to the ECDF problem. Multdimensional  

divide-and-conquer solves a problem of N points in k-space by solving two subproblems each 

of N/2 points in k-space% and one subproblem of N points in (k-l)-space. Finally, the locus  

method calls for identifying the locus of all points sharing the same response to a query. 

5. Examples 

In Section 3 we saw a number of computational problems in multidimensional geometry and 

in Section 4 we glimpsed a number of structures useful in solving many different 

computational geometry problems. In this section we will see a marriage of the material in 

the two sections by showing how the the structures can be used to solve some of the 

problems. 

The first problem we will examine is the all-nearest neighbors problems, that is, given N 

points in K-space find the nearest neighbor of each point. A brute force algorithm for this 

problem yields O(N^) performance. Friedman, Baskett and Shustek [1975] have shown how 

projection can be used to give an 0(N^ " algorithm. Bentley, Weide^and Yao [1978] used 

the cell technique to give a linear expected time algorithm for all nearest neighbors, but their 

result holds only for point sets drawn from "smooth" underlying distributions. The idea of 

recursive partioning was used by Friedman, Bentley and Finkel [1977] to give an algorithm 

with expected 0(N Ig N) performance for a wide class of input distribuions. Finally, 

multidimensional divide-and-conquer was used by Bentley [1976] to give an algorithm with 
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provable 0(N (Ig N)^" 1 ) worst-case running time. Of all the algorithms mentioned above, only 

brute force, projection, and cells seem to be easily implementable and robust enough to merit 

practical application. To compare the merit of those three algorithms we can give their 

running times in Fortran implementations solving a 16,000 point problem in 4-space. Brute 

force requires some 20 minutes of IBM 370/168 CPU time, projection requires approximately 

7 minutes, and recursive partitioning requires just 50 seconds. Thus we see that these 

methods can be used to yield substantial time savings for realistic problem sizes. 

As a final example we mention the minimal spanning tree problem. Brute force yields an 

O(N^) algorithm and Bentley and Friedman [1978a] describe how recursive partitioning can 

give an 0(N Ig N) algorithm. For point sets of 16,000 points in 2-space the brute force 

algorithm requires 45 minutes of IBM 370/168 time, while the recursive partitioning algorithm 

requires just 45 seconds. 

6. Conclusions 

In this paper we have been able to scratch the surface of the study of algorithms for 

multivariate nonparametrics. The primary object of our investigation has been a set of 

computational problems motivated by mathematical functions needed for nonparametric 

statistics. Our investigation has led us to study both particular algorithms and data structures 

as well as a collection of techniques suitable for solving a large class of problems. The 

algorithms we saw in Section 2 are both theoretically elegant (both algorithms can be proved 

optimal under a reasonable model) and practical for some applications. 

Our study of mulivariate nonparametrics has been typical of most efforts in computational 

statistics in many ways. From a wide number of statistical tests and procedures we have 

isolated a kernel of computations often performed. We then developed a set of techniques 

capable of solving many problems in that kernel, rather than solving particular problems with 

ad hoc techniques. The fruits of this study include both a set of algorithms (theoretically 

elegant and occasionally practical), and a new algorithmic understanding of some statistical 

problems. 
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