
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M J - C S - 7 8 - 1 8 2

An Extensible File System for HYDRA

Guy Almes and George Robertson

Department of Computer Science

Carnegie-Mellon University

February 9, 1978

Abst rac t : An extensible file system has been designed and implemented for

Hydra , an advanced capabi l i ty-based operating system. This system demonstrates

th ree notable advances to subsystem design:

1. It prov ides a protected and efficient implementation via user- leve l

code of functions ordinarily implemented as part of a conventional

system's monolithic privi leged section,

2. It prov ides practical solutions to two protection problems, the
Modi f icat ion Problem and the Confinement Problem, for users of the
f i le system, and

3. It prov ides separation of mechanisms for data representat ion from

mechanisms for protection and synchronization, thus allowing an

extensib le family of subfile systems to evolve.

This paper treats the design and implementation of the Hydra File System and

re f l ec t s on its implications for subsystem design and implementation.

Keywords : protect ion, capability, files, confinement, data abstraction.

This work was supported by the Defense Advanced Research Projects Agency

under contract no. F44620-73-C-0074 and monitored by the Air Force Off ice of

Sc ient i f ic Research. This paper also appears in the Proceedings of the Th i rd

Internat ional Conference on Software Engineering; the IEEE holds copyright to it.

UNIVERSITY LIBRARIES
CAR1^E€ 1E-alFL10?^ UNIVERSITY

fPiuSBURGri. ftMKSYLWWlA 15213

1
Introduction

1. Introduction

Among the more important concepts in systems, languages, and programming

methodo logy dur ing the last several years are those of data type [Hoare 72], c lean

con t ro l s t ructure [Dijkstra 72, Hoare 74], and capabil ity-based addressing [Fabry 74].

These concepts are contributing to an increasingly coherent object-or iented v iew of

programming, manifested in the language developments of the Alphard and CLU groups

[Jones/L i skov 76], in the systems work of Hydra (at Carnegie-Mellon [Wulf 74, Wulf

75]) and similar systems (e.g., at the University of California [Lampson/Sturgis 76],

Cambr idge [Needham 72], IRIA/LABORIA [Ferrie 76], Plessey Telecommunications

[England 74], SRI [Robinson 75], and others at Carnegie-Mellon University [Habermann

76, Jones 77]), and in the continuing work on the Multics system [Schroeder 77]. This

pape r exp lo res the success of the Hydra system in realizing an often-c i ted claim of

such systems [Cohen/Jef ferson 75]: the ability to provide an adequately protected and

e f f i c ient implementation via user-level code of functions ordinarily implemented as part

of a convent ional system's monolithic privileged section. Specifically, it exp lores the

des ign and implementation of an extensible file system using only the protect ion

mechanisms available to the ordinary users of Hydra.

Sect ion 2 descr ibes the goals for a file system for Hydra. Sect ion 3
p rov i des a detai led descript ion of the design and implementation of this file system,
emphas iz ing its use of the Hydra protection mechanisms. Section 4 c loses the
pape r w i th a critical evaluation of the system in light of the claims made in
[Cohen/ Je f f e r son 75] and the goals cited in Section 2.

Goals for a Hydra File System
2

2. Goals for a Hydra File System

The pr imary goals for the file system were (1) implementation without specia l

p r iv i l eges , (2) practical solutions to two protection problems, and (3) separat ion

b e t w e e n representat ion and protection to allow extensibility. Each of these goals is

d i s cussed in the fo l lowing sections.

2.1. Implementation without Privilege

The pr incipal goal of the project was to produce a usable file system without

us ing pr iv i leges denied to ordinary system users. The practicality of bui lding

subsys tems in this way was recognized by Fabry in the context of a Directory System;

he v i ewed a capabi l i ty mechanism as a crucial tool:

Computer systems which do not allow processor- independent

interpretat ions for references to the set of objects to which a d i rectory

name might correspond do not allow virtual-computer processing devices

to represent a directory as a data structure. Such systems, if d irector ies

are to be available at all, must represent the directory as a data structure

h idden away within the operating system...

With l ist-structured addressing using capabilities, a d irectory can be

rep resen ted very simply as a table of names and a table of capabil it ies

wh ich cor respond to the names. [Fabry 71, p. 105]

The basic technique for accomplishing this in Hydra is outl ined in

[Cohen/ Je f f e r son 75] and is reviewed in Section 3.1. This ability is shared by

seve ra l other capabi l i ty-based systems, notably CAL [Lampson/Sturgis 76] and the

P l e s sey System 250 [England 74].

2.2. The Modification and Confinement Problems

A second project goal was to allow practical solution of two protect ion problems

des c r i b ed in [Cohen/Jef ferson 75]:

1. The Modif icat ion Problem. Suppose a user wants to access a file in a read-on ly
fashion. Suppose further that he wants to restrict the file system f rom

modifying the file in any way. Hydra allows a capability for such a file to be

passed to the file system Procedures with this constraint sat is f ied.

[Cohen/Jef ferson 75, Section 3.2]

2. The Confinement Problem. Conversely, suppose a user has a sensit ive fi le and
wants to insure that, while accessing the file through the file system, no

3
Goals for a Hydra File System

information from the file will be transmitted to the outside wor ld . Hydra

al lows the file system to be called in a confined mode, in which only the

parameters explicitly passed and the objects local to the Procedure

invocat ion can be modified. [Cohen/Jefferson 75, Section 3.5]

The Confinement Problem was first posed in [Lampson 73]; very few systems
e v e n attempt solutions to it. The only such systems known to the authors assign a
sens i t i v i ty - leve l , from a partially ordered set of levels, to each datum and insure that
in format ion f lows only in ways determined by this partial ordering [Lipner 76, Denning
76] . This scheme models the military security system and thus represents a specia l
case of the genera l problem stated by Lampson.

2.3* Separation of Representation and Protection

Another basic goal was to separate the responsibil ity for uniform and cor rec t

synchron i za t i on and protect ion from that for efficient representation and transput.

Th is separat ion allows extensibil ity of representation. We recognized several poss ib le

f i le representat ions, each with a different intended set of uses. One file

r ep resen ta t i on might use stored line numbers to implement text files, while another

might use a simple byte stream to implement binary files. In these cases, there is a

la rge common set of operations that users will perform. In addition, file protect ion and

synchron i za t i on (e.g., mutual exclusion on file write) and file access record maintenance

are common across these different representations. It should be possible to form a

f i le sys tem that supports protection, synchronization, access record maintenance, and

the common operat ions, and leave the actual representation to sub-fi le systems. The

p rob l em of extending the file system to support new file representations is then

r edu ced to a problem of supplying one of these sub-fi le systems, which should be a

much eas ier task.

Des ign and Implementation *t

1\ Within thie - P o e t i c Names wi.. b. used to denote object,. II .hould be remembered, however, the.

the actual Name is the unique 64-bit value provided by Hydra.

3. Design and Implementation

This sect ion descr ibes the design of the File System along with some detai ls of

its implementation. Before discussing the design, we will provide a brief rev iew of

Hydra ' s protect ion mechanisms.

3.1. Review of Hydra Protection Mechanisms

The reader is urged to refer to the broad summary of Hydra in [Wulf 74] and

the more detai led paper on Hydra's protection mechanisms [Cohen/Jefferson 75]. As

no ted in these papers, a central notion in Hydra is that all resources and data

s t ruc tu res are objects. These objects are addressed only through capabil it ies, wh ich

p rov i de an addressing mechanism that is absolute and context-independent in the

sense of [Fabry 74]. Objects can contain both data and capabilities, thus al lowing

complex data structures to be built. Also, each object has a unique 64-bit Name * and

a 64-b i t Type . Each capabil ity contains two fields: the Name of the object and a set of

A c c e s s Rights. These Access Rights are in three groups: (1) the Generic Rights (e.g.,

$GetDataRts to read data from an object) control the operations applicable to objects

of any Type; (2) Un-Amplif iable Access Rights (e.g., SUnconfineRts and SModifyRts,

d i s cussed in sect ion 4.2) solve specific protection problems; and (3) the Auxi l iary

Rights (e.g., SFSCopyRts to read or copy a File object) control Type-spec i f i c

opera t ions . Each distinct object Type is supported by a different Subsystem,

compr i sed of a descr ipt ion of the Type's data format and a set of Procedures wh ich

implement Type-spec i f i c operations. Hydra itself implements several basic Types (e.g.,

T y p e , P rocedure , Process, Page, Semaphore, and Port); it can thus be regarded as a

un i fo rm capabi l i ty mechanism together with a few built-in Subsystems.

A Hydra Subsystem is implemented in two steps: the description of the format of

the ob jec ts of the new Type and the provision of Procedures that implement the

Type - spec i f i c operat ions.

The descr ipt ion of format is accomplished by the creation of a new object whose

T y p e is Type , and whose Name is T i l e " (or "Directory" or "Connection"). The static

a t t r ibutes of File objects (e.g., the number of data words and capabil it ies they can

hold) are s tored in this Type object. This Type object can then be used to create

ob jec t s whose Type is File, but whose Name is "MyTextFi le" (or "SortSource" or

"SortObject") . This method of object creation clearly identifies each object w i th a

spec i f i c T y p e and data structure.

5
Design and Implementation

The implementation of Type-specif ic operations is accomplished by the

cons t ruc t i on of a Procedure for each such operation. Each Procedure (an object of

T y p e P rocedure) in Hydra has two important constituents: (1) a set of inher i ted

capabi l i t ies for objects that belong to the Subsystem, including Pages that contain the

P ro cedu re ' s code and (2) a set of formal parameters, denoted by special capabi l i t ies,

ca l led Parameter Templates. When a Procedure is called, a new protection domain (an

ob jec t of Type LNS, for Local Name Space) is formed. The inherited capabil it ies are

c op i ed d i rect ly from the Procedure and the code Pages are made addressable. The

formal Parameter Templates are then merged with the capabilities passed by the caller

to result in actual parameter capabilities in the LNS. The nature of this merging is

cr i t ica l to the implementation of Subsystems and should be well understood. Any

Parameter Template can specify a Type and a minimal set of Access Rights that the

ca l ler ' s parameter must satisfy. Should any of the caller's parameters be of the wrong

T y p e or have insufficient Access Rights, the Procedure Call will fail. A Subsystem wi l l

normal ly make such Parameter Templates available to the entire community, for they

s imply accomplish the checking of actual parameters and, of themselves, grant no

a c c e c c

A specia l kind of Parameter Template, the Amplification Template, is der i ved
f rom the Type object and kept private to the Subsystem. In addition to Type and
A c ce s s Rights checking, an Amplification Template can turn on any of the Gener ic
A c ce s s Rights (it cannot, however, turn on the Un-Amplifiable Access Rights). Thus,
a l though users of the Subsystem will lack these Generic Rights and cannot manipulate
the representa t ion of the object directly, they can manipulate them by invocation of
Subsys tem Procedures which gain these Generic Rights over the duration of the Call.
T o exp la in this Amplif ication differently, we may say that the Amplif ication Template
s ign i f ies the Subsystem's right to control the representation of all objects of its Type
in genera l , but does not grant access to any particular object. On the other hand, the
user ' s capabi l i ty for a particular object signifies his right to address it, to share it in a
f lex ib le way , to use it as a building block for other data structures, and to manipulate
it by invocat ion of the Type-specif ic operations implemented by Subsystem
P rocedu res .

A P rocedure can be invoked via the Call operation if the caller has a capabi l i ty
for the P rocedure to be called. Alternatively, the Typecall mechanism can be used,
wh i ch el iminates the need for the user to obtain an actual Procedure capabil ity. The
Typeca l l is identical to Call, except that the Procedure is specified, not by a P rocedure
capab i l i ty , but by (1) a capability for an object, called a Type Representative, of the
Subsystem's Type and (2) an integer Index. When the Typecal l is invoked, Hydra
locates the Type object that corresponds to the Type Representative and uses the
Index to locate a capabil ity in this Type object, which must be a Procedure capabi l i ty.
Th is P rocedu re is then Called.

Final ly, Hydra provides a Port System for inter-Process communication. Using
this Subsystem, a Process can send and receive messages from Port to Port along
es tab l i shed connections. Like objects, these messages can contain both d a t i and
capabi l i t ies. The Port System itself handles the necessary synchronizat ion and
queue ing associated with sending and receiving the messages.

Des ign and Implementation
6

3.2. File System Design

A basic goal of the File System is the separation of responsibi l i ty for

synchron i za t ion and protection from responsibility for efficient representat ion and

t ransput . The former responsibil it ies are handled by one fixed File System; the latter

by severa l SubFi le Systems *\ The File System defines and supports the new Type

ca l led Fi le. Each SubFile System defines and supports a new SubFile Type. A user 's

f i le is an object of Type File, and all accesses to it are initiated through Typecal ls to

the F i le System. The File object has a capability for a SubFile object, which contains

the actual data stored in the file. The File System handles activities common to all

SubF i le Systems, and passes representation-specific requests on to the appropr iate

SubF i le System via Typecal ls on the SubFile object.

The re is a fundamental convention that only the File System and the support ing

SubF i le System ever have capabilities for SubFile objects. The File System and all

SubF i le Systems respect this convention; it allows the SubFile Systems to know they

are ca l led only by the File System, which will have satisfied protect ion and

synchron i za t i on requirements.

The File System makes effective use of both the Typecall and Port mechanisms

of Hydra to accomplish transput. Typecalls, using a File object as a T ype

Representa t ive , are used to Create new Files, to Open or Close them, and to Copy ,

Que ry , Compare, or Edit them. These Calls will be described in more detail later. In

normal transput, however, the only necessary Calls are Open and Close. Each SubFi le

Sys tem prov ides a Monitor Process with which the user communicates via messages

sent through the Port System. The Open Call to the File System evokes an Open Call

to the SubFi le System, which establishes the SubFile as an opened SubFi le and

connec ts the user's Port to the SubFile System Monitor's Port. All transput is then

accompl ished through messages to this Port. Using these messages in a manner similar

to the classical technique of "double buffering", processing concurrency be tween the

user p rocess and the SubFile Monitor is achieved. When the transput is completed, the

C lose Call d isconnects the user's Port from the SubFile Monitor's Port.

2\AHhou,h there may be many different SubFile Sy 8 tem., each supporting i t . own Type,

obieet will always use a particular SubFile System specified upon F.le creat.on. Thus, in the '••« «

paper! w i Z L refer to the SubFile System, me.nin, the SubFile System thst support, the sobf... of

the File under discussion

7
Design and Implementation

3.2.1 F i le System: Protection and Synchronization

A Fi le is an object of Type File and is effectively manipulable only through the
F i le System Procedures via Typecalls. Its representation contains both capabil it ies and
data. One capabi l i ty addresses a Semaphore used for exclusive access to the File
ob jec t . Another addresses the current SubFile (i.e., the SubFile object that represents
the current vers ion of the File). The data contain record access maintenance
in format ion such as the print name for the File, creation date, last access date, and last
modi f icat ion date.

Al l user manipulations of files are initiated via one of the fol lowing Typecal ls to
the Fi le System: Create, Open, Close, Copy, Query, Compare, and Edit. We wil l br ie f ly
de s c r i be each.

The Create Call takes a File as a parameter. It creates a new object of T ype

Fi le and init ial izes the File's maintenance information (e.g., print name and creat ion

date). Using the current SubFile of the File parameter, a SubFile Create Typeca l l is

made to create a new SubFile object. Capabilities for that new SubFile and for a new

Semaphore are then placed in the new File. Finally, the new File is returned to the

user w i th all Auxi l iary Rights, all Un-Amplifiable Access Rights, but no Generic Rights.

The Open Call takes a File, a Port, and a Job object (used to access the system

Schedu le r) as parameters. If the file is being Opened for writing', then appropr iate

synchron i za t i on is done and a new SubFile is created and opened; otherwise the

cu r ren t SubFi le is opened. This scheme allows many readers and one wr i te r

s imultaneous access to the File. The appropriate SubFile System is noti f ied, via

SubF i le Open Typecal l , that the SubFile is being opened. The Job object is passed to

the SubFi le System for its use. The SubFile Open returns its Monitor's Port, wh ich is

then connec ted to the user's Port. Finally, an object of Type OpenFile (containing

in format ion needed by Close) is created and returned to the user.

The Close Call takes an OpenFile object as a parameter. It performs a SubFi le
C lose Typeca l l , wh ich notifies the SubFile Monitor. If the file had been 'opened for
wr i t i ng ' , then SubFi le Close returns the new SubFile which is then made the current
SubF i le . The user 's Port is then disconnected from the SubFile Monitor's Port. Final ly,
some maintenance information is updated in the File (e.g., latest access date).

The C o p y Call takes a File and produces a physical copy of it (data and
capabi l i t ies) , which is returned to the caller. However, the SubFile is not physica l ly
c op i ed s ince the SubFile of a File can be read and replaced, but never modified.

The Query Call provides a means for the user to interrogate the maintenance
in format ion s tored in the File. It also provides an open-ended way of obtaining
in format ion about the SubFile. The user specifies which field he wishes to see; any
f ie ld unknown to the File System will yield a request to the SubFile System (via
SubF i le Query Typecal l).

Des ign and Implementation
8

The Compare Call takes two File objects and returns information result ing f rom

compar ing their respect ive SubFiles. No SubFile Compare operation is needed. The

in format ion returned indicates whether the SubFiles are identical and whether they are

of the same SubFi le Type.

Final ly, the Edit Call provides an entry into the editor most appropriate for the

SubF i le (via SubFi le Edit Typecall). The SubFile Editor may replace the SubFile in the

F i le by per forming a NewSub Typecall on the File. The NewSub Typecal l requires as. a

parameter a capabi l i ty for the original SubFile to insure that only the SubFi le System

can make such a modification.

In each of these Calls, the File System does appropriate rights checking using

the Parameter Template mechanism provided by the Hydra Call mechanism. It also

p rov i des the common kinds of synchronization found in most file systems. For

example, a Fi le 'opened for writ ing' by one user cannot be simultaneously ed i ted by

another. In sum, the File System is responsible for all things that SubFile Systems

have in common, leaving only representational issues to the SubFile Systems.

3.2.2 SubFi le System: Transput and Representation

A SubFi le System is the only system which ever has direct access to the data

s t o r ed in a SubFi le object. It has sole responsibility for data representat ion and

access. Each SubFi le System is built around a particular SubFile Type and prov ides

P r o cedu re s (called from the File System via Typecalls) for Create, Open, Close, Query,

and Edit. It also provides a Monitor Process, which cooperates with the SubFi le Open

and SubFi le Close to establish Port System connections with users for transput.

The SubFi le Create Procedure creates an empty SubFile in whatever form is

su i tab le for its representat ion. The SubFile Query Procedure responds to information

reques t s that are representation-specif ic (e.g., what is the length of the file?). The

SubF i le Edit P rocedure invokes the editor most appropriate for its representat ion (e.g.,

l i ne-o r i en ted editor or character-oriented editor).

The SubFi le Open, SubFile Close, and SubFile Monitor Procedures cooperate w i th

each other to establ ish Port System connections with users for transput. Once a Fi le

is opened , all transput is handled by messages between the user and the SubFi le

Mon i tor . The formats used for these messages are very general and open-ended. The

f i rst w o r d of the message contains a pointer to the message header, which may be in

the message text or in a Page object passed along with the message. The message

header has the transput opcode and a word for error return from the SubFile Monitor.

The most common message format has two descriptors following the message header:

one for the text being transput, and one for an optional key (e.g., line number or by te

index into file). Each descriptor contains a pointer to the text (key), which may be

e i ther in the message or in the Page object. It also contains requested and actual

lengths for the text (key). The semantics of a key are SubFile Type specif ic, whi le the

syntax is f ixed for all SubFile Types. The set of transput opcodes is also open-ended ,

w i t h some SubFi le Monitors implementing different subsets of the available opcodes.

9
Design and Implementation

The most common opcodes are FileRead, FileWrite, Fi leRewind, F i leToEnd,
F i leReadGiv ingKey, FileSeek, and FileSeekRead. The last three deal with keys (e.g.,
F i leReadGiv ingKey in a line oriented SubFile returns the next line with its line number).

It is important to note that in the above discussion no restrictions were p laced

on the representat ion of a SubFile object. Although the most obvious implementation

r ep re sen t s the SubFile as a list of capabilities for Page objects, there is no

requ i rement to do so. In fact, three SubFile Systems have been considered that use

o ther representat ions. The first, which has already been implemented, is a line pr inter

Spoo le r SubFi le System. Another is a Terminal SubFile System which provides access

to a user 's terminal, al lowing uniform access to files or terminals. The third example is

an A R P A Network SubFile System, which makes file transfer between di f ferent

Ne two rk Hosts very straightforward. The point all these examples is that the

representa t iona l issues are left entirely to the various SubFile Systems, whi le the

p ro tec t i on and synchronizat ion issues are handled by the File System.

3.3. File System Implementation

The File System and two SubFile Systems (one l ine-oriented, the other a line

p r in te r spoo ler) have been operational since early fall of 1976. A third SubFi le

Sys tem (simple byte stream) has been implemented to explore the Conf inement

P rob lem. The design of these systems took place during May and June of 1976 and

i nvo l ved six peop le for a total of about fourteen man-days. The implementation of

ea ch of these systems took less that one man-month. Each was wri t ten in BLISS 11, a

P D P U dialect of BLISS [Wulf 71], and has approximately three-thousand machine

instruct ions. Coding, compiling, and most of the testing of the File System and var ious

SubF i le Systems were done independently. The only testing that required coordinat ion

b e t w e e n two implementors occurred when communication between the File System and

a SubF i le System was in question. This amounted to only a few man-days in each case.

In order to simplify maintenance, each SubFile System produces crash dumps
wheneve r unexpected failures occur. This has made most of the errors very easy to
detec t and correct . A few obscure errors have required installing special vers ions of a
SubF i le System with a debugging system. Once an error has been cor rec ted in a
SubF i le System Procedure, the Typecall mechanism has made it extremely easy to
instal l new vers ions. The SubFile System maintainer merely has to replace capabi l i t ies
for the changed Procedures in the SubFile Type object. All such maintenance activit ies
are done without special privileges.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

Eva luat ion
10

4. Evaluation

We have descr ibed a set of goals for an extensible file system for Hydra and

deta i ls of a des ign and implementation of a file system to meet those goals. The des ign

cr i t i ca l ly depends on the capabil ity-based protection mechanisms of Hydra and makes

heavy use of Hydra's Type, Subsystem, and Port mechanisms. This sect ion prov ides a

more expl ic it evaluation of our design with respect to the goals of [Cohen/Je f ferson

75] and Sect ion 2.

4.1. Implementation without Privileges

The most important goal of our work was the implementation of a practical Fi le

Sys tem without special privileges. The Hydra protection mechanisms al lowed us to

insure the integrity of the data structure and Type-specif ic operations of the Fi le

Sys tem. Furthermore, these same mechanisms encouraged a modular decomposit ion of

the system; this decomposit ion, together with the use of the BLISS11 language great ly

e a sed the design, implementation, and maintenance efforts.

Whi le the Hydra file system design is functionally very nice, it is s lower than it

wou l d be we re it part of the Hydra Kernel. This is a natural result of using

mechanisms as general and powerful as the Hydra Protection Mechanisms as

ex tens ive ly as we did. One dominant example of this is the implementation of the

P r o cedu r e Call mechanism. During a series of traced calls to the File System, the

average amount of computation within the File System was 49 msec and the average

cost of Call overhead was 51 msec (i.e., about half the total time). Thus, whi le the

domain cross ings did make our protection and software engineering results poss ib le,

w e f ind that they are very expensive on Hydra, since it implements the capabi l i ty

mechanisms via sof tware.

4.2. The Modification and Confinement Problems

A second result was the implementation of a useful Subsystem able to solve the

t w o chief protect ion problems discussed in [Cohen/Jefferson 75].

The Modif icat ion Problem was the simpler of the two. When a user passes a Fi le

parameter lacking flModifyRts, Hydra prevents the File System from modifying the Fi le

or any object accessed through capabilities in the File. Whenever a File System

ope ra t i on has no intrinsic need to modify the File, it detects when the passed Fi le

parameter lacks JModi fyRts and functions correctly without modifying the File in any

way . Thus in the case of the 'open for reading' operation, the implementing P rocedure

re f ra ins from modifying the date of last access field in the File object when the

capab i l i ty lacks SModifyRts. A more subtle constraint involves the Semaphore that

cont ro l s exclus ive access to the File object during Open and Close operat ions. A n

11 Evaluat ion

ana lys is of the 'open for reading' Procedure reveals that the only indivisible operat ion
o n the Fi le object necessary during the Open is the copying of a capabil ity for the
cu r ren t SubFi le object. Due to the capability mechanism of Hydra, this operat ion is
ind iv is ib le, so no explicit locking is necessary and SModifyRts is not needed. Were it
ne ces sa ry to determine the current SubFile by means of access to a mult i-word data
s t ruc tu re in the File object, on the other hand, some locking, and thus $ModifyRts,
w o u l d be needed.

The second, more difficult, and more interesting of the two problems is that of
Conf inement . A conf ined Procedure Call is performed whenever the capabil ity for the
P r o c edu r e object of a Call (or Type Representative of a Typecall) lacks SUnconfineRts.
In this case, Hydra removes JUnconfineRts and SModifyRts from each capabi l i ty
i nher i ted f rom the Procedure. This very simple mechanism insures that the only
ob jec t s that may be modified in the Call are (1) the actual parameters passed expl ic i t ly
b y the cal ler and (2) objects local to the Procedure invocation. Furthermore, this
mechanism is transit ive, since only Procedure capabilities or Type Representat ives
pa s sed as actual parameters can possibly have JUnconfineRts. Although it was not
d i f f icu l t to implement the File System under this constraint, it was difficult to construct
con f inab le SubFi le Systems. In the case of the Spooler SubFile System, there js the
intr ins ic need to modify a particular inherited object, the line printer device. In other
cases , the need to modify is not intrinsic, but technological, and stems from the
mult ip lex ing of a single monitor Process to handle the transput for all its open
SubF i les . Given this eff ic iency-oriented shared monitor concept, confinement is
imposs ib le .

One particular SubFile System was constructed, however, to exp lore the

feas ib i l i ty of a Confinable SubFile System. The Open Procedure of the Conf inable

SubF i le System spins off a special monitor Process for each open SubFile. Due to the

conf inement constraint, the initial LNS of this monitor Process will be conf ined and may

on ly modify the parameters of the Open Call. One detail of this should be pointed out,

howeve r , fo be perfect ly clear. As noted above, the propagation of confinement may

be b r oken by the explicit passing of a Type Representative, having SUnconfineRts, by

the cal ler. If the caller trusts the Subsystem identified by this Type Representat ive,

then this is an appropr iate way for him to limit the Confinement intended and is

fa i thfu l to Lampson's first confinement criterion: "Transitivity: If a conf ined program

cal ls another program which is no[trusted, the called program must also be con f ined"

[Lampson 73, p. 614, emphasis added]. In the case of the Confinable SubFile System,

an expl ic i t Type Representative for a Job object is needed to allow the Calls on the

P r o c e s s Scheduler (called the Policy Module in Hydra [Levin 75]) that are necessary to

sp in off the conf ined monitor; the Scheduler, for intrinsic reasons, cannot operate

con f ined . Note, however, that this relaxation of confinement for the Scheduler is the

on ly except ion. It is done above-board, for the Type Representative is p a s sed '

exp l ic i t ly , and allows unconfined Calls only on the Scheduler (which would be within

the pr iv i l eged port ion of a conventional system). Apart from the Scheduler, moreover,

Hyd ra itself enforces the confinement of the File System, the SubFile System, and any

o ther Subsystems they may invoke through inherited capabilities.

A point can now be made about the importance of the Modification Problem. The
most obv ious motivation, that given in [Cohen/Jefferson 75], is that a user should be

Eva luat ion
12

ab le to attempt a read-only access to a File without any risk of its corrupt ion, as in

the case when a user suspects a File System bug. This is not a forceful motivation,

howeve r , for such a situation would occur very rarely in such a critical Subsystem. A

more convinc ing motivation stems from the desire to make a solution to the

Conf inement Prob lem a practical reality. A user can call a Subsystem conf ined, but

that Cal l wil l fail unless the Subsystem can effectively get its work done without

$Mod i fyRts and flllnconfineRts for its inherited capabilities. If, for example, a

Subsys tem needs to read a File (or look up a read-only item in a Directory) and if the

F i le (or D i rectory) System did not solve the Modification Problem (it might fail b y

ins ist ing on being able to update a date of last access field), then it wou ld be

impract ica l or impossible for the Subsystem to function confined. Thus, any Subsystem

that intends to solve the Confinement Problem in a practical way must also solve the

Mod i f i ca t ion Prob lem.

4.3. Separation of Representation and Protection

Another interesting result came from the separation of representat ion and

p ro tec t i on issues. The distinction between the File System and SubFile Systems has

made the File System highly extensible. This kind of extensibility is ve ry important in

exper imenta l computing environments, like Hydra, where representational issues are

open -ended .

In .urn an extensible file system has been constructed for Hydra. It is usable

and w R e n t e d /. ,ow eo/wi.hou. spec* priviteges ^

pro tec t i on , Type , Subsystem, and Port mechanisms were all critical to the success

this project .

W e Ssowish to thank our patient colleagues who commented on drafts of this paper,

w i t h spec ia l thanks to Roy Levin and Lee Schiller.

13
References

5. References

Cohen / J e f f e r s on 75: E. Cohen and D. Jefferson, "Protection in the Hydra Operat ing
System", Proc. 5th Symposium on Operating Systems Principles, Aust in,
November 1975.

Denn ing 76: D. Denning, "A Lattice Model of Secure Information Flow", Comm. ACM ,
(May 1976) 19 5.

D i jkstra 72: E. Dijkstra, "Notes on Structured Programming", in Dahl, Dijkstra, and

Hoare, Structured Programming, 1972, Academic Press, New York.

Eng land 74: D. M. England, "Capability Concept Mechanisms and Structure in System
250", Proc. IRIA Workshop on Protection in Operating Systems. Rocquencourt,
August 1974.

F a b r y 71: R. Fabry, List-Structured Addressing. Ph.D. Thesis, University of Chicago,
March 1971.

F a b r y 74: R. Fabry, "Capabi l i ty-Based Addressing", Comm. ACM, (July 1974) 17 7.

F e r r i e 76: J. Ferr ie, C. Kaiser, D. Lauciaux, and B. Martin, "An Extensible Structure for
P ro tec ted Systems' Design", Computer Journal, (November 1976) 19 4.

Habermann 76: A. N. Habermann, L. Flon, and L. Cooprider, "Modularization and
Hierarchy in a Family of Operating Systems", Comm. ACM, (May 1976) 19 5.

Hoare 72: C.A.R. Hoare, "Notes on Data Structuring", in Dahl, Dijkstra, and Hoare,
St ruc tured Programming, 1972, Academic Press, New York.

Hoare 74: C.A.R. Hoare, "Monitors: An Operating System Structuring Concept", Comm.
A C M , (October 1974) 17 10.

Jones /L i skov 76: A. Jones and B. Liskov, "A Language Extension for Control l ing Access
to Shared Data", IEEE Transactions on Software Engineering, (December 1976)
SE-2 4.

J ones 77: A. Jones, R. Chansler, I. Durham, P. Feiler, and K. Schwans, "Sof tware
Management of CM*, a Distributed Multiprocessor", Proc. National Computer
Con fe rence , Dallas, June 1977.

Lampson 73: B. Lampson, "A Note of the Confinement Problem", Comm. ACM, (October
1973) 16 10.

Lampson/Sturg is 76: B. Lampson and H. Sturgis, "Reflections on an Operating System
Design", Comm. ACM, (May 1976) J_9 5.

Re fe rences
14

Lev i n 75: R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, "Pol icy/Mechanism

Separat ion in Hydra", Proc. 5th Symposium on Operating Systems Pr inc ip les.

Aust in , November 1975.

L ipner 75: S. Lipner, "A Comment on the Confinement Problem", Proc. 5th Symposium

on Operat ing Systems Principles, Austin, November 1975.

Needham 72: R. Needham, "Protection Systems and Protection Implementation", P roc .

Fall Joint Computer Conference, Anaheim, December 1972.

Rob inson 75: L. Robinson, K. Levitt, P. Neumann, and A. Saxena, "On Attaining Rel iable

So f tware for a Secure Operating System", Proc. International Conference on

Rel iable Software, Los Angeles, April 1975.

Schroeder 77: M. Schroeder, D. Clark, and J. Saltzer, "The Multics Kernel Design

Project" , Proc. 6th Symposium on Operating Systems Principles, West Lafayette,

November 1977.

Wul f 71 : W. Wulf, "BLISS: A Language for Systems Programming", Comm. ACM ,

(December 1971) 14 12.

Wul f 74: W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack,

"HYDRA: The Kernel of a Multiprocessor Operating System", Comm. ACM, (June

1974) 17 6.

Wul f 75: W. Wulf, R. Levin, and C. Pierson, "Overview of the Hydra Operating System

Development", Proc. 5th Symposium on Operating Systems Principles, Aust in,

November 1975.

