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Abstract 

W e invest igate problems and applications a s soc ia ted with computing 
the empirical cumulative distribution function of N points in k-
dimensional s p a c e and employ a multidimensional d iv ide-and-conquer 
techn ique that g i ves rise to a compact data structure for geometr ic 
and stat i st ica l sea rch problems. W e are able to s how how to 
compute a large number of important statistical quantities much 
f a s te r than w a s previously possible. 
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A P R O B L E M IN MULT IVAR IATE STAT I ST I C S : 
A L G O R I T H M , DATA S T R U C T U R E AND APPL ICATIONS 

1. INTRODUCTION 

The computat ional complexity of stat i st ical p rocedures h a s jus t b e g u n to be 
I n v e s t i g a t e d [Gonza lez 7 7 ] [ S h a m o s 7 7 ] but p roves to be a rich s o u r c e o f n e w 
theo re t i ca l problems and algorithm de s i gn quest ions. In this paper w e c o n d u c t 
a n e x h a u s t i v e ana ly s i s of an important computational problem in s t a t i s t i c s 
i nvo l v ing a nove l data s t ructure that is a direct outgrowth of the d i v i d e - a n d -
c o n q u e r algorithm u s e d to s o l ve the problem. W e es tab l i sh lower b o u n d s o n 
computa t i on time, relate the problem to some search ing and combinator ia l 

• q u e s t i o n s , and p re sen t a var iety of applications. 

A mult ivar iate stat i s t ica l sample of N observat ions on e a c h of k v a r i a b l e s c a n 
be r e g a r d e d conven ient ly a s a s e t of N points in Eucl idean k - s p a c e . W e s a y 
t h a t a point X = (x- j^.^x^) dominates point Y, written X > Y, iff X j > y-. for all I. 
T h a t i s , X dominates Y iff It is g reate r than or equal to Y in all c oo rd i na te s . T h e 
dom inance relation is eas i ly s e e n to define a partial order on v e c t o r s . W e 

" a s s u m e for simplicity that all N points are distinct, but this will not a f f e c t t h e 
a s y m p t o t i c running times of our algorithms. The rank r(Z) of a point Z ( no t 
n e c e s s a r i l y a sample point) is the number of sample points dominated b y Z. T h e 
normal ized rank, r(Z)/N, which is the fraction of points dominated by Z, is b e t t e r 
k n o w n a s the empirical cumulative distribution function ( ECDF ) a n d a r i s e s in a 
h o s t of s ta t i s t i ca l applications. (The u s e of the word " r ank " in this c o n t e x t I s 
s u g g e s t i v e but is a sl ight misnomer b e c a u s e the points are not l inearly o r d e r e d . 
A d i f fe rent definition of rank is g i ven in [Yao 7 4 ] but is unrelated to the E C D F ) . 
We n o w d i s t ingu i sh two computational problems: 

1 . (All po ints E C D F ) Given N points in k-dimensional s p a c e , find the number o f 
po in t s dominated by each . 



2. ( E C D F sea rch ) Given N points in k-dimensional s pace , with p r e p r o c e s s i n g 

a l lowed, find r(Z) for a new arbitrary point Z (without adding Z to the da ta 

s t ruc tu re ) . 

The all-points ECDF problem is the crucial s tep in computing the s t a t i s t i c s 
a s s o c i a t e d with the Hoeffding, Kolmogorov-Smirnov ( K - S ) , and Cramer-Von M i s e s 
t e s t s [Hollander 7 3 ] [Hajek 6 7 ] . (These applications are d i s c u s s e d below.) It 
i nc ludes the vector maxima problem of [Kung, et al. 7 5 ] a s a spec ia l c a s e , s i n c e 
a maximum (in their parlance) is defined a s a vector that is not dominated b y 
any other. The reflection Z -Z transforms a maximum into a vec to r w h o s e 
rank is zero, s o the ECDF problem can be u sed to find maxima. 

In econometr ics , it is common to represent the yield of a combination of 

i n ve s tmen t s a s a point in multidimensional s p a c e , and one is i n te re s ted in 

s t r a t e g i e s that are not dominated by any others. By this view, one s t e p in the 

se lec t i on of an investment portfolio is an EDCF problem. 

The E C D F general izes the notion of inversions of a permutation. Cons ide r a 

two-d imens iona l s e t ( X j , y p , such that the X j are in increasing order. Project ing 

the points on the y - a x i s and reading them in increasing y -order i nduce s a 

permutat ion TT -J ,...,7TJSJ of {1,...,N}. Point i is dominated by point j iff K j ( that is, 

x j < X j ) and 7Tj<7Tj. ( S e e Figure 1). 
Points are numbered in 
order of increasing x-value. 

Point 5 dominates point 2 
because 2 precedes 5 in 
the induced y-permutation-

2 4 6 3 5 1 

Projecting the numbered points 
onto the y-axis induces a 
permutation of 1 f...,N. 
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Figure 1 : The connection between domination and invers ions. 

The number of points dominated by (Xj,yj) is the number of invers ions of ir in 
wh i ch i part ic ipates. This shows that the ECDF is fundamentally a d i s c re te 
problem and is b a s e d only on the ranks of the coordinates, not on their actua l 
v a l ue s . The generalization to higher dimensions is now clear. Let P 1 f . . . , P s be a 
col lection of permutations of 1,...,N. Two integers i,j with 1 < i,j, < N will be s a i d 
to form a s - invers ion iff I < j but I follows j in each permutation. For examp le , 
the pair ( 2 , 5 ) is a 4- invers ion in the following se t : 

4 5 3 1 2 6 5 6 1 2 4 3 6 3 1 4 5 2 5 3 1 4 6 2 
(Because 2 follows 5 in each permutation). 



Determining the number of k-inversions in which each integer is i nvo l ved i s 
equ iva lent to a ( k+1 )-dimensional ECDF problem. 

Finding the number of elements dominated by each member of a genera l part ial 
o rder must take O(N^) time in the worst c a se but the dominance relation w e 
h a v e def ined is a partial order of a special type — it is induced b y t h e 
lex icograph ic product of k linearly ordered se t s . This structure will l ead to a 
f a s t algorithm. This algebraic v iew leads to interesting combinatorial q u e s t i o n s , 
s u c h a s characteriz ing those pose t s that are isomorphic to a s e t of po ints in k-
s p a c e under the dominance ordering. 

The E C D F is, in a ve r y powerful sense , an excel lent estimator of t he 
underly ing population CDF, which we often wish to determine. In order to b e ab le 
to u s e this function we must be able to compute its value r(Z) a t an arb i t rary 
point Z. A typical application is the multivariate Kolmogorov-Smirnov p r o c e d u r e 
for te s t ing the hypothes i s that two samples have come from the s ame under ly ing 
distribution. The te s t stat ist ic K is equal to the maximum absolute d i f f e r ence 
b e t w e e n the E C D F s of the two samples. To compute K it su f f i ce s to e v a l u a t e 
the E C D F of sample A at each of the points in sample B, and v i c e - v e r s a . Th i s 
enta i l s a s e a r ch for each point of B to determine how many points in A it 
dominates. Below we d i s cu s s a number of sea rch algorithms that i l lustrate 
va r i ou s t ime- space t radeoffs and concentrate on one that runs in O ( l og^N ) time 
(in two dimensions) and requires only 0 (N log N) s p a c e and p reproces s i ng time. 

2 . E C D F A l g o r i t h m s 

It is e a s y to so lve the all-points ECDF problem in 0 ( k N 2 ) time by compar ing 
e a c h of the N points aga inst every other point to determine how many it 
dominates. While in a general partial order of N-vectors this would a l s o b e a 
trivial lower bound on the time needed to compute the number of v e c t o r s 
dominated by each, we have s e e n that the dominance ordering is of s p e c i a l 
form. In the present c a s e w e will u se this structure to improve on the n a i v e 
algorithm. 

W e employ a multidimensional divide-and-conquer scheme similar to the o n e 
d e s c r i b e d in [Bent ley 7 6 a ] and [Bentley 7 6b ] , which at each level of r e cu r s i o n 
r e d u c e s the dimension of the problem by one and the number of po ints b y a 
f ac to r of two. 

Theorem 1: The all-points ECDF problem can be so lved in 0 (N l o g k ~ 1 N ) time in 
the wor s t c a s e . 

Algorithm: 

1 . Let P be a hyperplane, normal to one of the coordinate a x e s , that d i v i d e s 
the collection of points into two sub se t s A and B, each contain ing N/2 



points. S u c h a plane can be found in 0 (N) time by choos ing P to p a s s 

through a point that has median first coordinate. 

2 . Recu r s i ve l y so lve the all-points problem on s u b s e t s A and B. That is, for 

e a c h point in A we find the number of points in A that it dominates, a n d 

similarly for B. If T(N,k) is the time required to so lve the entire problem, 

then the solution of these two subproblems can be accompl i shed in time 

2T(N/2,k ) . 

3 . Without loss of generality, let A be the se t of points who se first coord inate 

d o e s not e x c e e d that of any point of B. Note that the ECDF v a l u e s 

obta ined for s e t A in the recursive subproblem solution are the cor rect final 

v a l ue s , s i nce P w a s constructed so that no point of A can dominate a n y 

point of B. It remains only to update the B va lues to ref lect the number of 

points in A that are dominated. 

4. W e now ob se r ve that each point of B already dominates e a ch point of A in 
at l ea s t one coordinate, namely, the coordinate who se a x i s is normal to the 
dividing plane P. This coordinate can thus be removed from further 
cons iderat ion in forming the corrected solution for B. The coordinate c a n b e 
eliminated without changing any dominance relations by merely project ing all 
of the points onto P, which is a subspace of one lower dimension. Th i s 
projection can be accomplished in 0(N) time if pointers are u s e d i n s tead of 
copy ing l ists of coordinates. (Otherwise, O(kN) time would be required.) 
The projected subproblem can be solved in time T(N,k-1) . Note that t he 
" s ubp rob lem" is of a somewhat special form, a s we are only i n te re s ted in 
learning for each point of B the number of points in A that it dominates. 

5. Combining the subproblem solutions obtained in s t e p s 2 and 4 c a n b e 

accompl i shed in 0 (N) time, s o the recurrence relation for T is 

T(N,k) = 2T(N/2,k) + T(N,k-1) + 0 (N ) . 

By sort ing the points in advance on each coordinate we may make u s e of 

the f a c t that T(N,2) = 0 (N log N) [Shamos 7 7 ] to obtain 
T(N,k) = 0 (N l o g k " 1 N) + 0 ( kN log N) . 

In unusua l c i rcumstances, the number of dimensions may great ly e x c e e d the 
number of sample points, N, in which case the above recurs ion is ineff ic ient 
b e c a u s e its effort is concentrated on reducing the number of points in t he 
subprob lems. If k > N 4 , the method of [Yao 7 4 ] , which explicitly con s t r uc t s t he 
matrix of the partial order, can be used to compute the E C D F in 0 ( k N 2 / l o g N) 
time. If only the vector maxima are desired, a sl ight modification of the a b o v e 
algorithm a ch i e ve s the 0 (N l o g k " 2 N ) performance attained (for k > 2 ) in [ K u n g 
7 5 ] . It h a s been shown [Bentley 7 7 a ] [Bentley 7 7 b ] that this modified max ima 
algorithm runs in 0 (N) e xpec ted time for a very wide c l a s s of input distr ibutions. 



3 . E C D F S e a r c h i n g 

O n c e the all-points problem has been so lved, we are in a position to a r r ange 
the solution into a data structure that will make it e a s y to determine the number 
of points dominated by a new point X. The most simple algorithm requ i res no 
p r ep r o ce s s i n g at all and operates by comparing X to each of the N k-d imens ional 
samp le points. This obvious approach requires O(kN) initialization time, O(klM) 
que r y time, and O(kN) storage. It is somewhat surprising that the query time c a n 
b e s ignif icantly reduced with no asymptotic increase in the s to rage u s e d . The 
method of k-d t rees [Bentley 7 5 ] ach ieves 

0 ( k N 1 - 1 / k ) 
s e a r c h time a f te r 

0 ( k N log N) preprocess ing, but still needs only O(kN) s torage [Lee 7 7 ] . 

It is poss ib le to perform ECDF searching extremely rapidly if suff ic ient s t o r a g e 
and p rep roce s s i ng time are available. The method is b a sed on the f a c t tha t 
the re e x i s t k-dimensional rectangular parallelepipeds within which the number of 
dominated points remains constant. W e may easily s e e why this is t rue. 
Con s i de r some point Z (not in the original s e t ) for which r(Z) = 5 and imagine 
moving Z parallel to some coordinate ax i s . (Refer to Figure 2.) 
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Horizontal and vertical lines 
are drawn through each 
sample point. Within each of 
the resulting rectangles the 
number of dominated points 
(and hence the ECDF) is 
constant. 

Figure 2 : The ECDF is constant within rectangular regions. 

The va lue of r(Z) cannot change until Z p a s s e s the projection of some point of 
the original s e t on that axis. This is true of each coordinate. If w e w e r e to 
con s t r u c t hyperp lanes normal to the coordinate a x e s at each sample point ( a 
total of Nk hyperp lanes) , these would divide s p a c e into ( N + 1 ) ^ rectangu la r 
r eg i on s within e a c h of which the function r is constant. S u ch a s t ructure c a n 
readi ly be queried in 0 (k log N) time by a binary search along each coord inate, 
s o w e h a v e 

Theorem 2: E C D F searching can be performed in 0 (k log N) time, wi th 
0 ( N k + kN log N) s torage and preprocess ing time. 

The s t o r a ge u s e d by this procedure is prohibitive. W e propose a da t a 
s t ruc tu re and s e a r c h algorithm that nearly ach ieves O(log N) s e a r c h time, but 



wh i ch u s e s l e s s than quadratic storage. The data structure is " i s omorph i c " to 
the all-points ECDF algorithm in the s en se that it is a tree s t ructure hav i n g a 
b r anch corresponding to each recursive call in the algorithm. The s t o r a g e 
requ i red by the s ea r ch procedure and the time used by the all-points algorithm 
are desc r ibed by exac t l y the same recurrence relation. Furthermore, the d a t a 
s t ruc tu re for search ing can be built conveniently during the solution of t he a l l -
po in t s problem at no asymptotic increase in running time. 

Let u s first treat the two-dimensional c a s e (refer to Figure 3 ) . T h e 

dividing line L is the two-dimensional instance of the hyperplane P d e s c r i b e d in 

the all-points algorithm, and is u sed to define the first test . Let A be the s e t o f 

N/2 points to the left of line L and let B be the s e t of points to the right. G i v en 

a n e w point Z we want to determine the number of points (in both A and B) t ha t 

it dominates. In a single comparison against L we can determine whethe r Z l ies 

in A or in B. If Z lies in A (the diagram on the left in F igure 3 ) it 

c anno t poss ib ly dominate any point of B, s o we may confine our attent ion to a 

subprob lem of half the s ize of the original. The recurrence desc r ib ing th i s 

s i tuat ion is just 

T(N) = T(N/2) + 1 . 

A L B A A L B 

• ! • 
• i 

If Z lies to the left of L we need 
only find its rank in A. 

If Z lies to the right we need its rank 
in B and its y-rank in A, 

Figure 3 : The two c a s e s of ECDF searching in the plane. 

If w e learn from the first comparison that Z lies in B then the problem is on ly 
s l ight ly more complicated (the right diagram in Figure 3 ) . W e must f ind the 
number of points in B that are dominated by Z, which can be done in time T ( N / 2 ) . 
W e then add to that the number of points in A dominated by Z. S ince , h o w e v e r , 
the x -coord inate of Z is known to be greater than that of point of A, this number 
i s merely the number of points of A that lie below Z. If w e project the po in t s o f 
A onto L and sort them in advance (a s part of the preprocess ing) w e will b e ab le 
to locate Z in this ordering in 0(log N) time by binary sea r ch . T h u s t he 
r ecu r rence that results when Z is in B is 

T(N) = T(N/2) + O(log N) . 



It is immediate that T(N) = 0 ( l o g 2 N ) , even if the s e c o n d c a s e a r i ses after e a c h 
compar i son . 

The general ization to k dimensions is completely straightforward. The line L is 
r e p l a c e d by a hyperplane and the sorted list by a ( k - 1 )-dimensional E C D F 
s e a r c h s t ructure. The sea rch time is given by the recurrence 

T(N,k) = T(N/2,k) + T(N,k-1), T(N,1) = O(log N), 
o f wh i ch the solution is T(N,k) = 0 ( I o g k N) . The s to rage requirement of th i s 
algor ithm is e a s y to analyze in v iew of its recurs ive structure. In two d imens ions 
w e n e e d to store two data structures on N/2 points and one linear list of l eng th 
N/2. Thu s , S (N,2 ) = 2S (N/2,2 ) + 0(N) = 0 (N log N). In k dimensions, w e h a v e 

S(N,k) = 2S(N/2,k) + S (N/2,k -1 ) = 0 (N l o g k ~ 1 N) . 
T h e p rep roce s s i n g time is descr ibed by precisely the same relation, giving 

Theorem 3: ECDF searching can be accomplished in 0 ( I o g k N ) time, u s i ng 
0 ( N l o g k " 1 N ) s torage and 0 (N l o g k " 1 N ) time for preprocess ing. 

4 . A p p l i c a t i o n s 

W e now will present some new applications of the ECDF algorithms a n d 
e l abo ra te on some of those presented in the introduction. 

4 . 1 R a n g e Que r i e s 

An inconvenient but common type of geometric s e a r ch problem is the r ange  
q u e r y [Knuth 7 3 ] , Given a se t of N points in the plane, with p r ep roce s s i n g 
a l l owed, how many lie in the rectangle defined by a < x < b and c < y < d ? 
With in the framework of the ECDF problem, range search ing b e c o m e s 
e lementary . In two dimensions, ( s ee Figure 4 ) we may find the 
number of points lying in rectangle ABCD by computing 

ECDF(A) - [ ECDF(B) + ECDF(C ) ] + ECDF(D) . 
Th i s is a simple application of the combinatorial principle of inc lus ion-exc lus ion. 
W e are thus able to respond to a range query by evaluating the distribution 
funct ion at four points. 

In k d imensions w e need to evaluate the ECDF at 2 k points, but this still only 
r equ i r e s 0 ( l o g k N > time and 0 (N l o g k " 1 N ) Storage (or, 0 ( 2 k l o g N) time and 0 ( N k ) 
s t o r a g e . ) The range query example provides a link be tween the empirical 
d istr ibut ion function and the empirical density function. The fraction of a s e t 
c o n t a i n e d in a plane region F is a consistent estimator of the probability con ten t 
o f tha t reg ion (the probability density integrated over F) [ Lo f t sgaa rden 6 5 ] . 
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Figure 4: Range searching a s an ECDF problem. 

4 . 2 K o l m o g o r o v - S m i r n o v S tat i s t i c 

B e c a u s e of its intimate relation to the ECDF, we point out an anomaly b e t w e e n 
the K - S o n e - and two-sample te s t s . The K-S one-sample s tat i s t i c is t he 
maximum deviation between the ECDF of a finite point s e t and a g i v en 
hypothet ica l CDF (which we assume can be evaluated at;: a . s ing le point in 
con s tan t time). A linear-time one-sample K-S algorithm in one dimension h a s 
b e e n g iven by [Gonzalez 7 7 ] ; it makes use of the fact that any CDF must b e a 
monotonic function. While the situation in higher dimensions is unclear, the E C D F 
algorithm of this paper can be u sed to compute the K-S stat ist ic in 0 ( N l o g k ~ 1 N ) 
time. The K -S two-sample statist ic is the maximum deviation b e t w e e n the 
E C D F s of two g iven finite point s e t s . 

Theorem 4: The Kolmogorov two-sample statistic must take 0 (N log N) time to 

compute, in the worst c a se . 

Proof: The K-S two-sample statist ic is zero iff the point s e t s are ident ical . 

S e t equality is shown to require 0(N log N) comparisons in [Reingold 7 2 ] . 
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Summary 

W e s e e that the empirical cumulative distribution function, a ub iqu i tous 



quant i ty in stat ist ical analysis, can be computed quickly at the g i ven samp le 
po ints and c an be evaluated quickly at other points. The data s t ruc tu re for 
E C D F s ea r ch i ng w a s arrived at directly from the ECDF algorithm itself. The 
problems w e have considered impinge on many others in different appl icat ions 
a r e a s , all of which may be so lved by the techniques deve loped here. 
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