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Abstract

We investigate problems and applications associated with computing

the empirical cumulative distribution function of N points in k-

dimensional space and employ a multidimensional divide-and-conquer

technique that gives rise to a compact data structure for geometric

and statistical search problems. We are able to show how to

com;:iute a large number of important statistical quantities much
" faster than was previously possible. '
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A PROBLEM IN MULTIVARIATE STATISTICS:
ALGORITHM, DATA STRUCTURE AND APPLICATIONS

1. INTRODUCTION

The computationai complexity of statistical procedures has just begun to be
- Investigated [Gonzalez 77] [Shamos 77] but proves to be a rich source of new
. theoretical problems and algorithm design questions. in this paper we conduct
- an exhaustive analysis of an important computational pr’ob!_em in statistics
Involving a novel data structure that is a direct outgrowth of the divide-and-
conquer algorithm used to solve the problem. We establish lower bounds on
. computation time, relate the problem to some searching ' and combinatoriai
- questions, and present a variety of applications.

A multivariate étatistical sample of N observations on each of k variables can
be regarded conveniently as a set of N points in Euclidean k-space. We say
that a point X = (xi,...,xk) dominates point Y, written X > Y, iff x; 2 y; for all i.
That is, X dominates Y iff it is greater than or equal fo Y in all coordinates. The
dominance relation is easily seen to define a _partial order on vectors. We
h assume for simplicity that aif N points are distinct. but this will not affect the
-asymptotic running times of our algorithms. The rank r(Z) of a point Z (not
necessarily a sample point) is the number of sampie points dominated by Z. The
normalized rank, r(Z)/N, which is the fraction of points dominated by Z, is better
known as the empirical cumulative distribution function (ECDF) and arises in a
host of statistical applications. (The use of the word “rank" in this context is
suggestive but is a slight misnomer because the points are not linearly ordered.
A different definition of rank is given in [Yao 74] but is unrelated to the ECDF).
We now distinguish two computational problems: '

1. (Al points ECDF) Given N points in k-dimensionat space, find the number of
‘Points dominated by each. :



2. (ECDF search) Given N points in k-dimensional space, with preprocessing
allowed, find r(Z) for a new arbitrary point Z (without adding Z to the data
structure).

The all-points ECDF problem Is the crucial step in computir‘n'g the statistics
associated with the Hoeffding, Kolmogorov-Smirnov (K-8), and Cramer-Von Mises
tests [Hollander 73] [Hajek 67]. (These applications are discussed below.) It
includes the vector maxima problem of [Kung, et al. 75] as a special case, since
a maximum (in their parlance) is defined as a vector that is not dominated by
any other. The reflection Z ~ -Z transforms a maximum into a vector whose
rank is zero, so the ECDF problem can be used to find maxima.

In econometrics, it is common to represent the yield of a combination of
investments as a point in multidimensionat space, and one is interested in
strategies that are not dominated by any others. By this view, one step in the
selection of an investment portfolio is an EDCF problem. :

The ECDF generalizes the notion of inversions of a permufation. Consider a
two-dimensional set (x;,y;), such that the X; are in increasing order. Projecting
the points on the y-axis and reading them in increasing y-order induces a
permutation m4,..,7y of {1,..,N}. Point | is dominated by point j iff i¢j (that is,
x,(xj) and m<m;. (See Figure 1).
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Figure 1: The connection between domination and inversions.

The number of points dominated by (xi,yi) is the number of inversions of 7 in
which i participates. This shows that the ECDF is fundamentally a discrete
probiem and is based oniy on the ranks of the coordinates, not on their actual
values. The geherallzation to higher dimensions is- now clear. Let P1,...,Ps be a
collection of permutations of 1,..,.N. Two Integers i,j with 1 £i,j, £ N wili be said
to form a s-inversion iff | <} but i follows } in each permutation. For example,
the pair (2,5) is a 4-inversion in the following set: '
453126 561243 631452 531462
(Because 2 follows 5 in each permutation).



Determining the number of k-inversions in which each integer is involved is
equivailent to a (k+1)-dimensional ECDF probiem.

Finding the number of elements dominated by each member of a general partial
order must take 0(N2) time in the worst case but the dominance relation we
have defined is a partial order of a special type -- it is induced by the
lexicographic product of k linearly ordered sets. This structure will tead to a
fast algorithm. This algebraic view leads to interesting combinatorial questions,
such as characterizing those posets that are isomorphic to a set of points in k-
space under the dominance ordering. '

The ECDF is, in a very powerful sense, an excellent estimator of the
"~ underlying population CDF, which we often wish to determine. In order to be abie
to use this function we must be able to compute its value r(Z) at an arbitrary
point Z. A typical application is the multivariate Kolmogorov-Smirnov procedure
for testing the hypothesis that two samples have come from the same underlying
distribution. The test statistic K is equal to the maximum absolute difference
between the ECDFs of the two samples. To compute K it suffices to evaluate
the ECDF of sample A at each of the points in sample B, and vice-versa. This
entails a search for each point of B to determine how many points in A it
dominates. Below we discuss a number of search algorithms that illustrate
various time-space tradeoffs and concentrate on one that runs in O(log<N) time
(in two dimensions) and requires only O(N log N) space and preprocessing time.

2. ECDF Algorithms

It is easy to solve the all-points ECDF problem in 0(kN2) time by comparing
~each of the N points against every other point to determine how many it
-dominates. While in a general partial order of N-vectors this would also be a
© trivial lower bound on the time needed to compute the number of wvectors
dominated by each, we have seen that the dominance ordering is of special
form. In the present case we will use this structure to improve on the naive
algorithm.

We employ a multidimensional divide-and-canquer scheme similar to the one
described in [Bentley 76a] and [Bentley 76b], which at each ievel of recursion

reduces the dimension of the problem by one and the number of points by a
factor of two.

Theorem 1: The all-points ECDF problem can be solved in O(N iogk'TN) time in
the worst_case.

Aigorithm:

1. Let P be a hyperplane, normal to one of the coofdinate axes, that divides
the collection of points into two subsets A and B, each containing N/2



points. Such a plane can be found in O{N) time by choosing P to pass
through a point that has median first coordinate. '

2. Recursively solve the all-points problem on subsets A and B. That Is, for

- each point in A we find the number of points in A that it dominates, and
similarly for B. If T(N,k) is the time required to solve the entire problem,
then the solution of these two subproblems cdn be accomplished in time
2T(N/2,k). '

3. Without loss of generality, let A be the set of points whose first coordinate
does not exceed that of any point of B. Note that the ECDF values
- obtained for set A in the recursive subproblem solution are the correct final
values, since P was constructed so that no point of A can dominate any
point of B. It remains only to update the B valiues to refiect the number of
points in A that are dominated. '

4. We now observe that each point of B already dominates each point of A El_
at least one coordinate, namely, the coordinate whose axis is normal to the
dividing plane P. This coordinate can thus be removed from further
consideration in forming the corrected solution for B. The coordinate can be
eliminated without changing any dominance reiations by merely projecting ali
of the points onto P, which is a subspace of one lower dimension. This
projection can be accomplished in O(N) time if pointers are used instead of
copying lists of coordinates. (Otherwise, O(kN) time would be required.)
The projected subproblem can be solved in time T{N,k-1). Note that the
rsubproblem" is of a somewhat special form, as we are oniy interested in
learning for each point of B the number of points in A that it dominates.

5. Cohbining the subproblem solutions obtained In steps 2 and 4 can be
accomplished in O(N) time, so the recurrence relation for T is
' T(N,k) = 2T(N/2,k) + T(N,k=1) + O(N)
By sorting the points in advance on each coordinate we may make use of
the fact that T(N,2) = O(N log N) [Shamos 77] to obtain - '
| T(N,K) = O(N logK=TN) + O(kN log N)

~-in 'fufn(_lsua! circumstances, the number of dimensions may greatly exceed the
nqmbe_r of sample points, N, in which case the above recursion is inefficient
because its effort is concentrated on reducing the number of points in the
. 'éubproblém's.‘ if k > N4, the method of [Yao 74], which explicitly constructs the
"matrix of the partial .order, can be used to compute the ECDF in O(kN2/log N)
~ time. f only the vector maxima are desired, a slight modification of the above
algorith’m achieves the O(N logk’zN) performance attained (for k>2) in [Kung
75]. 1t has been shown [Bentley 77a] [Bentley 77b] that this modified maxima
aigorithm runs in O(N) expected time for a very wide class of input distributions.



3. ECDF Searching

- Once the all-points problem has been soived, we are in a position to arrange
the solution into a data structure that will make it easy to determine the number
of points dominated by a new point X. The most simpie algorithm requires no
Preprocessing at all and operates by comparing X to each of the N k-dimensional
sampte points. This obvious approach requires O(kN) initialization time, O(kN)
query time, and O(kN) storage. it is somewhat surprising that the query time can
be significantly reduced with no asymptotic increase in the storage used. The
method of k-d trees [Bentley 75] achieves O(kN1-1/K) search time after
O(kN log N) Preprocessing, but still needs only O(kN) storage [Lee 77].

It is possible to perform ECDF searching extremely rapidly if sufficient storage
and preproceSsing time are available. The method is based on the fact that
there exist k-dimensionali rectangular parallelepipeds within which the number of
dominated points remains constant. We may easily see why this is true.
Consider some point Z (not in the original set) for which r(Z) = 5 and imagine
moving Z parallel to some coordinate axis. (Refer to Figure 2.)
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Figure 2: The ECDF is constant within rectangular regions,

The value of r(Z) cannot change until Z passes the projection of some point of
the original set on that axis. This is true of each coordinate. If we were to
construc'_t hyperpianes normal to the coordinate axes at each sample point (a
total of Nk hyperplanes), these would divide space into (N+1)K rectangular
regions within each of which the function r is constant. Such a structure can

readily be queried in O(k log N) time by a binary search along each coordinate,
50 we have

Theorem 2: ECDF searching can be performed in O(k log N) time, with
O(NK + kN iog N) storage and preprocessing time, -

The storage used by this procedure is prohibitive. We propose a data
structure and search algorithm that nearly achieves O(log N) search time, but



which uses less than quadratic storage. The data structure is Misomorphic" to
the all-points ECDF algorithm in the sense that it is a tree structure having a
branch corresponding to each recursive call in the algorithm. The storage
required by the search procedure and the time used by the all-points algorithm
are described by exactly the same recurrence relation. Furthermore, the data
structure for searching can be built conveniently during the solution of the all-
points problem at no asymptotic increase in running time.

Let - us first treat the two-dimensional case (refer to Figure 3). The
“dividing line L is the two-dimensional instance of the hyperplane P described in
the all-points algorithm, and is used to define the first test. Let A be the set of
N/2 points to the ieft of line L and let B be the set of points to the right. Given
a new point Z we want to determine the number of points (in both A and B) that
it dominates. in a single comparison against L we can determine whether Z lies
in A or in B. If Z lies in A (the diagram on the left in Figure 3) It
cannot possibly dominate any point of B, so we may confine our attention to a
subproblem of half the size of the original. The recurrence describing this
situation is just

T(N) = T(N/2) + 1
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only find its rank in A. in B and its y-rank in A.

Figure 3: ' The two cases of ECDF searching in the plane,

If we learn from the first comparison that Z lies in B then the problem is only
slightly more complicated (the right diagram in Figure 3). We must find the
number of points in B that are dominated by Z, which can be ‘done in time T(N/2).
We then add to that the number of points in A dominated by Z. Since, however,
the x-coordinate of Z is known to be greater than that of point of A, this number
is merely the number of points of A that lie below Z. If we project the points of
A onto L and sort them in advance (as part of the preprocessing) we will be able
to locate Z in this ordering in O(log N) time by binary search. Thus the
recurrence that results when Z is in B is

T(N) = T(N/2) + O(log N} .



It is immediate that T(N) = O(IogzN), even if the second case arises after each
comparison.

The generalization to k dimensions is completely straightforward. The line L is
repltaced by a hyperplane and the sorted list by a (k-1)-dimensional ECDF
search structure. The search time is given by the recurrence

T(Nk) = T(N/2,k) + T(N,k-1 ), T(N,1) = O(iag N),
of which the soiution is T(Nk) = O(IogkN). The storage requirement of this
ailgorithm is easy to analyze in view of Its recursive structure. In two dimensions
we need to store two data structures on N/2 points and one linear list of length
N/2. Thus, S(N,2) = 28(N/2,2) + O(N) = O(N log N). In k dimensions, we have
' S(Nk) = 25(N/2,k) + S(N/2k-1) = O(N logk-TN) .
The preprocessing time is described by precisely the same relation, giving

Theorem 3: ECDF searching can be accompliished in O(IogkN) time, using
O(N logk'1N) storage and O(N 1ogk'1N) time for preprocessing.

4. Applications

We now will present some new applications of the ECDF algorithms and
elaborate on some of those presented in the introduction. :

4.1 Range Queries

An inconvenient but common type of geometric search problem is the range
query [Knuth 73], Given a set of N points in the plane, with preprocessing
atllowed, how many lie in the rectangle defined by a<x<b and ¢ < y<d 7
Within the framework of the ECDF probiem, range searching becomes
elementary., in  two dimensions, (see Figure 4) we may find the
number of points lying in rectangie ABCD by computing

, ~ ECDF(A) - [ ECDF(B) + ECDF(C) ] + ECDF(D) .
This is a simple application of the combinatorial principie of inclusion-exciusion.
We are thus able to respond to a range query by evaluating the distribution
function at four points.

In k dimensions we need to evaluate the ECDF at 2K points, but this still only
requires O_(Iogkr_N__)' time and O(N Iogk'1N) storage (or, O(Zkiog N) time and O(NK)
storage.) The range query example provides a link between the empirical
distribution function and the empiricai densitz function. The fraction of a set
contained in a plane region F is a consistent estimator of the probability content
of that region (the probability density integrated over F) [Loftsgaarden 65].
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Figure 4: Range searching as an ECDF problem.

4.2 Koimogorov-Smirnov Statistic

Because of its intimate relation to the ECDF, we point out an anomaly between
the K-S one- and two-sample tests. The K-S one-sampte statistic is the
maximum deviation between the ECDF of a finite point set and a given
hypothetical CDF (which we assume can be evaluated atl.a single point in
constant time). A linear-time one-sample K-S algorithm in one cdimension has
been given by [Gonzalez 77]; it makes use of the fact that any CDF must be a
monotonic function. While the situation in higher dimensions is unciear, the ECDF
algorithm of this paper can be used to compute the K-S statistic in O(N If:)gk )
time. The K-S two- sample statistic is the maximum deviation between the
ECDFs of two given finite point sets.

Theorem 4: The Kolmogorov two-sample statistic must take O(N log N) time to
compute, in the worst case.

Proof: The K-S two -sampie statistlc is zero iff the point sets are identicai.
Set equality is shown to require O(N log N) comparisons in [Reingoid ?2]
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Summary

'We‘ s.ee that the empirical cumuiative distribution function, a ubiquitous



quantity in statistical analysis, can be computed quickly at the given sample
points and can be evaluated quickly at other points. The data structure for
ECDF searching was arrived at directly from the ECDF algorithm itself. The
problems we have considered impinge on many others in different applications
areas, all of which may be solved by the techniques developed here.
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