NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-78-112

THE B TREE SEARCH ALGORITHM:
A BEST-FIRST PROOF PROCEDURE

Hans J. Ber|irer

April, 1978

Cov suter Science Department
Carncgie-Mellon University
Pittsourgh, Pa. 15213

This work was supporled by the Advanced Research Projects Agency of the Office of

the Secretary of Defense (Contract F44620-73-¢-0074) and is monitored by the Air
Force Office of Scientific Research.

ABSTRACT

In this paper we present a new aigorithm for searching trees. The algorithm, which
we have named B#, finds a proof that an arc at the root of a search tree is betier
than any other. H does this by ailempting to find both the best arc at the root and
the simplest proof, in best-tirst fashion. This strategy determines the order of node
expansion. Any node thal is expanded is assigned lwo values: an upper {(or
optimistic) bound and a lower {or pessimistic) bound. During the course of a
search, these bounds at a node tend to converge, producing natural termination
of the search. As long as all nodal bounds in a sub-tree are valid, Bt will select the
best arc at the root of that sub-tree, We present experimental and analytic evidence
that B#% is much more effective than present methods of searching adversary
trees.

The B+ method assigns a greater responsibility for guiding the search to the
evaluation functions that compute the bounds than has been done before. In this
way knowledge, rather than a set of arbitrary predefined limits can be used to
terminate the search itself. It is interesting to note that the evaluation functions
may measure any properties of the domain, thus resuiting in selecting the arc that
leads to the greatest ' quantity of whatever is being measured. We conjecture that
this method is that used by chess masters in analyzing chess trees.

& University Librasies
Carnegie Mallan Univorsiy
Pittsbursh, Peppavivams 157!

L. Introduction

Tree searching permeates ail of Artificial Intelligence and much of what is
computation. Searches are conducted whenever selection cannot be done
effectively by computing a function of some state description of the competing
alternatives. The problem with tree searching is thal the search $pace grows as BU,
where B (branching factor) is the average breadth of alternatives and D the depth
to which the search must penelrate. ' : :
]

We find it useful to dislinguish between searches that continue untii they have
reached a goal, and those that attempt to solve a probiem by iteration; the nth
iteration being® assumed fo 1ake the solving process closer to the solution {which in
most cases will never be seen by the search) than the n-1st iteration did. Searches .
that look for a goal must either succeed or faii. However, searches that work by
iteration are expected to produce a meaningful answer at each iteration, for
better or for worse. '

If a problem has a very large search space and can be solved by iteration (uniike
theorem proving which cannot), there is usually no alternative to using the iterative
approach. Here, there is a serious problem in bounding the effort so that the
search is tractable. For this reason, the search is usually limited in some way (.e.g.
number of nodes 1o be expanded, or maximum depth to which it may go). Since it is
not expected that a goal node will be encountered, an evaluation function must
be invoked to decide the approximate closeness to the goal of a given node at the
periphery of the search. This or a similar function can aiso be used for deciding which
tip node to sprout from next in a best-first search. Thus evaluation functions and
effort limits appear to be necessary for finding a solution by iteration. However,
such conditions on the search appear to cause other problems such as the horizon
effect [Berliner, 1973} ‘

It is desirable to have a search proceed in best-first fashion for several reasons. If
we can specity a certain degree of closeness to a goal as a terminating condition,
this reduces the degree of arbitrariness: in slopping when no goal is encountered.
Therefore, Harris [Harris, 1974] advanced the notion of a bandwidth. A reference level
together with a bandwidth heuristic would guarantee a solution of value no greater
than the bandwidth away from the reference ievel, providing the search terminated.
However, this method resuits in lerminating the search under the artificial condition
of posing an a priori reference level and bandwidth. For a complex game like chess,
an expectation level of (say) maintaining the status quo, is reasonable. If the error
bounds are as large as a pawn, the search will continue until it finds that one side
must win or lose a pawn. This may be an infinite search, if this condition cannot be
met. For smaller bandwidlhs, spurious fluctuations in the evaluation, which are
inevitable as different aspects appear, look promising, and are then- ultimately
decided upon, can cause the bandwidth condition to be satisfied when it is not at all
clear that it should be.

" Best-first searches tend to put the searching effort into those sub-trees that
seem most promising (i.e. have the most likelihood of containing Qhe soiution).
However, best-first searches require a great deal of bookkeeping for! keeping track

3

of all competing nodes, contrary to the great efficiencies possible in depth-first
searches. ‘

Depth-first searches, on the other hand, tend to be forced to stop at inappropriate
moments thus giving rise to the horizon effect. They also tend to investigate huge
trees, large parts of which have nothing to do with any sofution (since every
polential arc of the losing side must be refuted). However, these large trees
sometimes turn up something that the evaluation functions would not have found were
they guiding the search. This method of discovery has become quite popular of late,
since new efficiencies in managing the search have been found [Slate & Atkin,
1977) At the moment the efficiencies and discovery potential of the
depth-first methods appear to outweigh what best-first methods have to offer.

IL. The Bx Aigorithm | | .

In present methods for doing iterative searches, there is no natural way to stop the
search. Further, for any given effort limit, the aigorithm’s idea of what is best at the
root, may change so that each new effort increment could produce a radical change in
the algorithm’s idea of what is correct. To prevent this and to.provide for natural
termination, the B# search provides that each node has two evaluations: an optimistic
one and a pessimistic one. Together, these provide a range on the values that are
(likely) to be found in the node’s sub-tree. Intuilively, these bounds delimit the
area of uncertainty in the evaluation. If the evaiuations are valid bounds, they do
define a range. If not, some simple corrective processes are possible, and we discuss
these later in this paper. In eilher case, the vaiues in a given sub-tree will tend to
be within the range of the root of the sub-tree. As new nodes in the sub-tree
are expanded and this information is backed up, this will force a gradual reduction
of the range of the root node of any sub-tree until, if necessary, it converges on
a single value. This fealure of our method augurs weli for the tractability of searches.
In fact, a simple best-first search in the two valued system would converge;
however, as we shall show, a Bs search converges more rapidly.

The domain of B# is both 1-person (optimality) searches and 2-person (adversary)
searches. We shall explain the B+ algorithm using adversary searches, where one
player tries to maximize a given function while the other {ries to minimize it. In the
canonical case where nodes have a single value [Nilsson, 1971}, MAX is assumed to be
on move af the rool, and the arc chosen al the root has a backed-up minimax value
that is no worse than that of any other arc at the root. In the two valued sysiem
that we introduced above, this condition is slightly refaxed: MAX need only show that
the pessimistic value of an arc at the root is no worse than the optimistic value of any
of the other arés at the root. This is the terminal condition for finding the best arc.

[30,15) [22,8] (19,10]

Figure 1 - Start of a B+ search

We show the basic siluation at the start of a ternary search tree in Figure 1. The
optimistic and pessimistic values associated with any node are shown next to it in
brackets, the optimistic value being the lefmost of the pair. These values will be
updaled as the search progresses. In Figure 1, it appears that the leftmost arc has
the greatest potential for being the best. It should be noted that if this search
were with singie (optimistic) valued nodes and this were maximum depth, the search
would terminate here without exploring the question of the uncertainty in the
evaluation. In the case of Bx, there are no terminating conditions other than. the one
previously enunciated. Thus the search at this point may pursue one of two
strategies: :

1) It may try to show that the lower bound of the .Iéfimos-:tu'ﬂ_é.de._‘ is. nNo -worse
than the upper bound of the other nodes at this depth. We 'will‘ call this the
PROVEBEST stralegy. ' : ‘ ’

2) It may try to show that the upper bounds of ali the other nodeé at depth 1
are no better than the lower bound of the ieftmost nade. We will call this
the DISPROVEBEST strategy.

In either case, the strategy will have to create a proof tree to demonstrate that it
has succeeded. We show the simplest cases of the alternate strategies in Figures 2
and 3. In the figures, the numbers inside the node symbols indicate the order of node
expansion, and backed up values are shown above the bracketed values they replace.
In the case of adversary trees, we insist that one node of every descendant set have
a bound equal to thal of its parent.

25,22
1) [34;15] [22.8] [19,10]

22 -
2] [15,2¢] [3][19,29] [22,20]

[26,22) ([z5,22)

Figure 2 - The PROVEBEST Strategy

14

[28,18] @ Plz,a] ®@[19,10]

Ols,15] [12,14]

Figure 3 - The DISPROVEREST Strategy

From Figures 2 and 3 it can be seen that, if conditions are right, the seemingly more
cumbersome DISPROVEBEST strategy can involve less effort than the PROVEBEST
strategy. Further, there is no guarantee that the node with the original best optimistic
value will be the ultimate best node. Thus it can be seen that the selection of a
method to establish which arc is best at the root will not be a trivial problem.

The B+ algorithm addresses itself to this task by doing a best-first proving search. In
this search, backing up will occur whenever one of the following conditions is true at a
node:

1) The Optimistic and Pessimistic values converge to be equal thus defining
the value of that node,

2} There is a more oplimistic branch to pursue for either side.

3) The optimistic or pessimistic value achieved is sulficient to be a proof about
the sub-tree that it is in. '

The combination of these rules assures that the best branch for both sides is always
pursued in the search, but only until it has reached a value sufficient to prove
the stated aim of the search. A small economy is also possible in the generation of
descendanis. Since any descendant may provide a sufficient condition for causing
backup, they may be generaled and tested, one at a time, thus saving the cost of
doing a complete successor generation at nodes where backup is possible. It should
be noted that in cases 2 and 3 above, search may be terminated at a node only
temporarity.

In backing up, the best optimistic value of the set of descendants of a node becomes
its pessimistic value, and the best pessimistic value of the set of descendants
becomes its optimistic value. For MAX, optimistic values are larger than
pessimistc, while for MIN optimistic values are smailer than pessimistic. Backing up is
applied iteratively as long as there are new values to back up. As backed up values
become available, it may be that cerfain nodes will become logically eliminated from
the search. These may be delefed or ignored; it is only a maiter af convenience
in bookkeepmg, as they can not influence the resuH

|t
Two fealures distinguish a Bx search from a simple best-first search:

1) While a best-first search only backs up to always sprout from the best
minimaxed node, the Bx search also backs up whenever one of the
bounds of the current branch is sufficient for a proof that the arc at the
root which gave rise to this sub-tree is better (worse) than a given
reference value. There is a subtle point involved here. It is senseiess to
extend a branch, the value of which is good enough to be part of a proof;
improving its value will not change the status of the proof. However, a
pure best-first search would not understand this.

2) The Bt search can choose a strategy whenever it is at the root of the tree.
This allows directing the search effort in such a way that the most
meaningful contribution to the proof of which arc is best can be made in the
most inexpensive way.

The algorithm requires several reference values for its operation:

1) The optimistic and pessimistic values at each node delimit the range of

values that can still be achieved by optimal selection of arcs in its
sub-tree. These values are updated as the search progresses,

2) Al each depth there is kep! the value (which we call BESTALT) of the best
allernative in the search to this point for the side on move at that depth.
These values are updated as the search progresses from the root, by
bringing down the value from 2-ply earlier in the tree and updating it if the
value of the bes! allernalive at this depth is better. This provides the
necessary information for the search to back up when a better
allernalive is available somewhere,

3) The search may be pursuing the PROVEBEST strategy or the
DISPROVEREST stralegy, and this must be known .throughout the tree
since certain decisions depend upon i, .

‘ i t

4) Whenever the search departs from the root, there is defined a reference
value called ASPIR. This value is what the proof is about; PROVEBEST trying
to prove this sub-iree to be better than the .value, while
DISPROVEREST tries to prove iis sub-tree worse than the value.

The following five decision rules define when the search backs up:

Rule I - If the oplimistic and pessimistic value at a node are identical then
the value of this node is known and the search backs up permanently from
this node.

Rules 2 & 4 - When the optimistic value of the node being searched becomes
worse than the BESTALT value at that deplh, the search backs up to
search the alternative. This assures that the search backiracks
whenever there is a more optimistic alternative for either side at some
earlier node (as in a best-first search),

Rules 3 & 5 - When doing a PROVEBEST search, if the pessimistic value of a MAX
node is no worse than ASPIR, or when the optimistic value of a MIN node is
no better than ASPIR, this demonslrates that the value of this branch is
sufficient to prove thal the sub-iree rooted at the root is no worse than
ASPIR. A complementary set of tests exists for the DISPROVEREST strategy.

The combination of these rules assures that only nodes where no more optimistic
alternative exists for either side, nor where this branch is not clearly already
sufficient for a proof are expanded. The first action is something that depth-first
searches cannot do, while the second is something that best-first searches are not
aware of,

We now present the Bs aigorithm. It ulilizes the variable CURNODE to keep track of
the current node, DEPTH to remember the distance of CURNODE from the root,
MAXOPTIM to keep track of the most optimistic value of all successors to CURNODE
MAXPESS to keep track of the best pessimistic value of all successors to CURNODE,
and the vector BESTALT to keep track of the value of the side-on-move’s best

alternative up to that depth. There are several tests in the algorithm, and ail
are presented from MAX's point of view. We introduce the operator "*" to
indicate that a quantity should be complemented to get MIN’s point of view; ie. >
becomes <, MAXPESS” becomes MAXOPTIM, etc. '

1) DEPTH + 0; CURNOQDE « 0; BESTALT[-2] + 0;
2) if DEPTH < 0 then EXIT.

3) if CURNODE has not been expanded yet then generate, name, and evaluate
successors, give each pointer to parent,

A4) BESTNQODE « name of successor with best OPTIM value;
ALTERN « name of successor with second best OPTIM value;
MAXOPTIM « OPTIM[BESTNODE};

MAXPESS «~ Value of the bes!{ PESSIM value of ali successors;

5) Back up MAXOPTIM and MAXPESS and far as necessary. If a change is made to
descendants of root, then {DEPTH « 0; CURNQODE « 0; go to 4);

6) if MAXOPTIM = MAXPESS thengo to 16; ! Rule |
7) BESTALT[DEPTH] « BESTALT[DEPTH-2}; ! Bring down BESTALT
8).if DEPTH = O then decide STRATEGY.

it STRATEGY = DISPROVEREST then

(ASPIR « MAXPESS; BESTALT{0] « MAXPESS; BESTALT[-1] « OPTIM[ALTERN])

if STRATEGY = PROVEBEST then .

(ASPIR « OPTIM[ALTERN]; BESTALT[-1] « MAXPESS; BESTALT[O] « OPTIM[ALTERN])
9) if MAXPESS >° BESTALT[DEPTH-1] then goto 16; ! Rule 2: MIN can do-better

10) if STRATEGY = PROVEBEST then
if MAXPESS® 2° ASPIR then goto 16; ! Rule 3: PROVEBEST proof achieved

11) if MAXOPTIM <’ BESTALT[DEPTH] then goto 16; ! Rule 4: MAX can do better

12) if STRATEGY = DISPROVEREST then
if MAXOPTIM® £* ASPIR then goto 16; ! Rule 5: Leg of DISPROVEREST proof

13) if DEPTH # O then
if OPTIM[ALTERN] >* BESTALT{DEPTH] then BESTALT[BEPTH] « OPTIM{ALTERN];

14) if {DEPTH = 0) and (STRATEGY = DISPROVEREST) then CURNODRE « ALTERN
else CURNODE « BESTNODE;

15) DEPTH « DEPTH+1; go to 3.

16) DEPTH « DEPTH-1; if DEPTH < O then ANSWER « BESTNODE
else (CURNODE « PARENT[CURNODE]; go to 2)

It should be noted that there is never any point to invoking the DISPROVEREST
strategy unless PESSIM[BESTNODE] = MAXPESS. This is because there will be at
least one node in the alternative set, the value of which cannot be lowered below

10

MAXPESS. As long as this value is grealer than PESSIM[BESTNODE], then this proof
canno! succeed. Also, if two or more successors are tied for the, best, OPTIM value,
BESTNODE is the one with the smallest range.

I1I. Tests of the Bx Algorilhm

We have simulated the conduct of searches with several versions of the Bx
algorithm. In the simulalion, adversary trees of constant width were generated,
with the range of admissible values at the root and the width of. the tree varying
over sels of runs. As explained in Appendix A, it is possible to generate such
trees so that any node in the tree will have its initial bounds determined as a function
of its position in the tree and the run number, regardless of when the node is
searched. This quarantees that each algorithm searches the same trees.

In assigning each descendant ils bounds, we invoked the provisa that at !least one
descendant must have an optimistic value equal to that of the parent, and one must
" have a pessimistic value equal {o that of the parent. It was possible in this process,
for a descendant to have the same values as its parent.

Searches were performed according lo the following scheme. A run consisted of 1600
tree searches. In these there were two principal variables, the range and the width of
the free.

1} The range (the number of discrete wvalues) of the evaluation function
was varied from 100 to 6400 by factors of four.

2) The width of branching was varied from 3 to 10 in increments of 1.
Thus there were B0 tree searches for each variable pair. For each such run a
different search algorithm was lested. Any search lhat penetraled beyond depth
100, or which put more than 30,000 nodes into its nodes dictionary was declared
intractabie and aborled.

Several observations could be made from the data. In general, tree size grew with
width, Range, on the other hand, turned out to be a non-manctonic function. Searches
wilh the smallest and largest ranges required the least effort in general.. Searches
of range 400 were hardly ever the largest for any given width and algorithm,
while searches of width 1600 were hardly ever the smallest for any given width
and algorithm. We cannot interpret this result beyond it indicating that there
seems 10 be a range value for which searches will require most effort and that
ranges above and below this will require less.

As we tested the basic B+ algorithm presented earlier, potentially useful variations
sugpested themselves. Earlier, we indicaled that the search would prove a given arc
best using PROVEBEST, or an arc worse than the best arc using DISPROVEREST.
This involves setling ASPIR, the value that must be achieved in the proof, at
the optimistic value of the best alternative at the root for PROVEBEST, and at the
pessimistic value of the best arc at the root for DISPROVEREST {see step 8 of
algorithm), However, this can create wasted effort if, for instance, the range of

i1

the sub-lree being worked on is considerably narrower than the sub- tree that would
be ‘searched under the other sirategy. By setting ASPIR somewhere between the
above values, some proving of each lype could occur, creating an overall saving of
effort. This did, in facl, prove to be the case.

We lested several distinct variations of the Bs algorithm. These related to where
ASPIR was set and the criteria for selecting the strategy at the root. The
variations were:

1) Number of alternalives considered when making strategy decision at root.

2 - Best plus one allernative.

3 - Best plus two aliernatives.

A - All alternatives.

T - Only when alternative(s) were tied with Best.

2) Criterion applied o decide sirategy.

D - If the sum of the squares of the depths from which came the .
knowledge of the optimistic bounds of the allernatives .was less than
the square of the depth from which knowledge of. the best arc came,
then the bes! allernative was chosen, else the best arc. This favors

exploring sub-trees which have not yet been explored deeply.

R - Criterion information ("D" above or unity) was divided,by the range
of the node {thus favoring the searching of nodes with larger ranges).

3) Value ASPIR was sel to:
L - At the limit for each sirategy.
M - in the middle belween the limits for both strategies.

These alpha-numeric keys are used to label column headings in Table I to show which
algorithm is being tested. BF indicates the resuits of running a best-first search on
the same data, and these are used as a base for comparison,

The categories on the leff are based upon how the best-first search did on a given
tree. A given tree is in the intractable category, if any of the algorithms tested
found it intractable. The entries in the fable indicale the ratio of effort, in terms of
nodes visited, compared to how the best-first search did on the set; e.g. .50 means

that half the efforl was required. The last row indicates the number of intractable
searches for each version.

12

TABLE]
Effort Compared to Best-First for Various Implementations. of B#
S12LN ALG BF 1R 20L 2DRL 20H 20RN k) N 3o RON 2DRMX
<50 1.08 .95 .82 .83 .82 .81 .83 .83 . 84 .84
<200 1.08 .89 .B5 .65 .65 .62 .64 .62 .64 .71
<1080 1.08 .88 .60 .55 .61 .56 .51 +48 .47 .64
>1000 1.0 .72 .50 .48 .51 .48 .36 .35 .32 .56
Intractabie 1.88 .77 W71 .57 .78 .54 .82 .59 .52 .68

Ne. Intract. 226 112 106 85 1908 76 96 a3 7L 81

The data support several conclusions:

1} There is a slight but definite advantage to having ASPIR in the center of
the range. The columns with "M" generally outdo those with "L" in the same
position. We should note here that we did try some methods of varying the
exact position of ASPIR between the limits, but found the mean to be as
good as any.

2) The greater the number of parameters considered when maki'ng the
strategy decision between PROVEBEST and DISPROVEREST, the better the
result.

3) In general, the larger the tree, the more pronounced the effect ‘of a good
algorithm, '

4) The right-most column headed "2DRMX" is a test of what would happen
if the nodal bounds were not valid. Here we used algorithm "2DRM" but
allowed 57 of all nodes to have their successors have a range which
was BO7 larger than the parent; ie. 257 on either side. The net effect of
this appears to be a 5 - 107 increase in the amount of effort. Clearly, it is
possible to have more frequent aberations, but the effect here does not
seem 10 be serious. '

It can be seen that the more flexible the algorithm is in being able to assign methods
for solution, the better the results, especially for large trees. Further, it seems to
us that with additional effort on improving the strategy selection criterion, the best

- _algorithm tould become twice as good as the “ADM" algorithm. Since the method of =

- gelecting strategies and assigning limits in this experiment is essentially syntactic
 (there is no usc made of the semanlics of the domain being searched), it seems
reasonable o suppose that the availability of semantic information would allow even
" better decisions with consequent improvement in the search effort required.

We eoxamined many of the cases where intractable searches occured. These are
due to the sliringent way that values are assigned to descendants. When the
range of a node gets rather small, and there are a relatively large number of
descendants, the probability that at least one will have the same limits as its parent is
extremely high. This prevents any progress toward a solution at such a node, and if
the probability of this occuring is high enough, the probability of a string of such
‘occurences can be quite high too. This was borne out when we did a run of the best
aigorithm with the additional proviso that any node for which the range was

13

reduced lo 2 or less arbilrarily received a value cqual to the mean of its optimistic
and pessimistic value. For this change, the number of intractable searches went from
71 fo 4, and each of these was due 1o overflow of the nodes dictionary rather
than exceeding the maximum depth. This method is somewhat reminiscent of Samuel’s
idea [Samuel, 1959] of terminating search at a node when Alpha, and Beta are very
ciose together. '

To get another benchmark for comparing Bf, we ran a debth-first alpha-beta
search on lhe same dala. Here, we allowed the forward prune pardigm, since the
bounds on any node were assumed valid. In a search without the, {wo-value system,
each node expansion could bring a value any distance from the value of its parent.
Since this cannot happen under the two-value scheme it is logical to not search any
node lhe range of which indicates it cannot influence the solution. In order to
prevent the search from running away in depth, we used the iterative deepening
approach [Slate & Atkin, 1977] which goes fo depth N, then to depth N+i, etc,
until it finds a solution or becomes intractable. Searches were: started with N=1,
The results showed that depth-first typically expands three to seven times as
many nodes as the best-first algorithm. Although it did manage te do a few problems
in fower nodes than the best Bx algorithm, it was unable to soive any problem of
depth greater than 19, and became intractable on aimost twice as many searches
as the best-first algorithm, In contrast, the best algorithm solved some problems as
deep as 94 piy, though no doubt shallower solutions existed.

IV. Considerations that Led fo the Discovery of the Algorithm

In the course of working on compuler chess, we have had o_ccas:ion tq' examine the
standard methods for searching adversary trees. The behavior of these algorithms
appeared more cumbersome than the searches which I, as a chess master, believed
myself capable of performing. The real issue was whether a well defined algorithm
existed for doing such searches. '

1) Our initial motivation came from the fact that all searches that were not expected

" to reach a goal required effort limits. Such effort limits, in turn, appeared to bring
on undesirable consequences such as the horizon effect. While there are
patches to ameliorate such ideosyncracies of the search, the feeling that these
were not "natural” algorithms persisted. -

2) There are two meaningful proposals to overcame the effort limit problem. Harris
[Harris, 1973] proposed a bandwidth condition for terminating the search.
.However, this shifls the limiting quantity from a physical search effort limit, to a
error in measurement limit which, as indicated earlier, has other problems.
Another aitempt 1o avoid these problems was to use a set of maximum depths
in a depth-first search for terminating searches which qualified moves for other
searches [Adelson-Velskij, et. al,, 1975 This is, in effect, a fail-soft approach to
effort limits. When there are a number of effort limils, the hope is that everything
of importance will somehow be covered. There are no reports of how this
approach worked out, but it would appear lo have the same essential limitations
as all the other effort limiled searches. This is borne out by the fact that the
authors have now implemented ancther method of searching for their chess

3)

14

prog'ramb KAISSA, In none of the existing tractable search procedures is
there a natural terminating condition without any parameters which specify
under what conditions o half.

We have noted that standard searches may at times investigate a very large
number of nodes that have no apparent relevance to a solution. , Consider the
following situation: If there is only one legal successor, to the root node, any
iterative solution technique can easily check for this condition and indicate this
is the best successor without further analysis. However, ifi there is only one
sensible arc, a depth-first program will still insist on refuting all. other arcs at
the root to the prescribed depih, while a best-first program may investigate
the one goed arc ad infinitum. Usually, it is possible to determine that the one
sensible arc is best without going at all deep in the search. .It appears that some
essential ingredient is missing. We have felt for some time that the notion of
level of aspiration (as first put forward in [Newell, 1955]) was the Key to the
proper construclion. The Alpha-beta search procedure appears to have such a

_ level of aspiration scheme. However, this scheme has an aspiralion level for each

side, and that only serves 1o bound those branches that can be a part of the
solution. To us, a level of aspiration is a focal point that each side tries to push a
litlle in the favorable direction. We attempted this construction in the search
scheme of CAPS-II [Berliner, 1974], which relied heavily on notions of
optimism, pessimism and aspiration. These are the type of semantic or
domain-dependent notions that should control a search, However, we performed
depth limited depth-first searches in CAPS. Without the best-first requirement
there was no need to keep frack of best aiternatives, nor to maintain the
oplimistic and pessimistic values at each node.

4) We have always liked the way the search could be iermiﬁated at the root node,

5)

when the backed up (sure) value of one alternative is beﬁtte,r,— than the optimistic
values of ail the allernatives. This is the forward prune paradigm, and while it
can be used to keep the search from investigating branches that appear useless at
any depth, it only terminates the search if applicabie at the root. However, when
a global ASPIR and local optimistic and pessimistic values exist, it is possible to
decide that a particular sub-tree at any depth cannot affect a given proof attempt.
This is like a forward prune, only the search may return to this node at a later
stage for another proof attempt.

Protocols of chess masters analyzing chess positions [De Groot, 1965] show a
phenomenon known as progressive deepening. Roughly, this appears to be the
investigaling of a line of play, abandonment of the investigation of this line, and
the subsequent return {o the investigalion of the line, but with the analysis

"being followed ta a grealer depth in the tree. The deepening process may occur

several times during the analysis. Since humans invesligate very sparse trees and
chess masters play chess very well, it was thought that this procedure
(whatever it consisted of) should be an effective way of managing the search.
The real question was whether there was an actual search algorithm, or
whether the deepening was the resuit of ad hoc procedures. I have held to the
former view, :

15

In facl, De Groot came very close to discovering our algorithm. In "Thought
and Choice in Chess” [De Groot, 1965], {(pp. 28-32), he outlines a proof
procedure involving the basic siralegies for demonstrating that a move is
better than its nearest compelitor, and shows that this seems to be at the core
of many of the protocols he collecled. However, he fails to relate it to a tree
searching procedure, and in fact speculates that the subjects are only using
this scheme as a basis for their investigations (which may be correct).

V. Evaluation Functions and Meaningful Bounds

During the course of our investigations, we have attempted to apply the Bx algorithm
to some optimization problems, notably the 8-puzzle [Nilsson, 1971). During this
effort, we succeeded in crealing lower bounding functions which were monotonic
and several times more sensifive than any previously published for this particular
problem. However, we could not devise a really useful upper bounding function. Such
a2 function shouid form a reasonable range together with the lower bounding
function and shouid be monotonic. The most difficult 8-puzzle configurations can be
" solved in 30 steps [Schofield, 1967} Our best upper bounding function “"grabbed” at
about 8 ply from a solufion. Thus problems of depth 12 or so could be solved easily
by B=, but for deeper problems the upper bounding function was not able to
contribute to the solution. Ot

We have speculated about why the construction of the upper bounding function was
so difficult. It appears that, since the function to be optimized:is the cost of the
solution path, it is always possible to get good estimates of the lawer bound since it
involves estimating the elements required for a hypothetical, but frequently
unattainable path. No similar notion pertains for upper bounds, since longest paths,
while forming an upper bound and being monotonic, are too far. removed from the
“value of an ultimate solution to be a useful bound. However, for relatively short
paths {or nearby sub-goals) it is possible that useful upper bounding functions can
be constructed. The guiding principle for those that we were able to construct is
to use a paltern-based approach; ie. a certain paltern was recognized as being
embedded al a node and requiring at most N steps for a solution. We feel
that this distinction in the way effeclive bounding functions can be constructed is
extremely important, and could very well account for why humans do such a
good job at sub-optimizing tasks.

Actuaily, the noltion of an oplimal path to a goal impiies that the search procedure
traverse such a path. Such a procedure could not be iterative, else it could stop
‘short of a goal. Thus it seems thal optimality tasks are just not well - suited to
B+’s capabililies. Finding an oplimal path is approximately equivaient to finding the
shortest mate in a game of chess, and this is seldom relevant to making the best
move. An iteralive algorithm prefers to find a good start on a path, which may be
optimal, but in any case meels a satisficing criterion, and can. be found with a
reasonable or mimimal effort (few nodes). Optimization problems just do nat fit well
into such a mold. On the other hand, adversary situations are apparently much easier
to handle, since one person’s optimistic function is the other’s pessimistic one.

We consider the basic issue here to be what constitutes a solution. If (as is almost

16

always the case) 1-person problems deal with optimizing the, cost of some path
function, then there appears to be littie hope for applying B* to such problems
unless belter upper bounding funclions can be tound. Howeyer, when iterative
solutions are desired or are the only ones thal are tractable, the B+ algorithm can be
used to find a series of first steps in the right direction. '

The Bx search can easily be structured to fit a given task. For instance, in chess an
ASPIR and evalualion functions can be chosen to support the search to determine
whether a given set of non-terminal goals is achievable. Further, and De Groot
presents some evidence 1o this poinl, humans probably change the aspiration level
(and goals) at times when relurning 1o the root. There is good evidence that the
evaluation functions may be changing oo [Berliner, 1977a).

Applying these ideas to the solution of l-person problems leads,us to believe that
certain problems for which optimizing the cost is not the correct, formulation may be
solved by B+. Such a problem could exist when, for instance, it is most important to
get a solulion for minimal computational resources {nodes visited in the search). This
would be the way humans would solve many such tasks. In an incomplete
information environment, this could be a reasonable enterprise. We propose two
examples:

1) Not analyzing which of several plausible replies an opponent would make
in a game of chess, when all the moves to that point are clearly best.

2) In a robot navigation environment, not trying to pilan a cbmplete path when .
the whole ferrain cannot be viewed at the time a first solution is
attempted.

V1. Discussion and Summary |

There are two things that distinguish the Bt algorithm from other known tree search
procedures: _ .

1} The optimistic and pessimistic value system allows for termination of a search
without encountering a goal node, and without any effort limit.

2} The option to exercise either of twa search strategies allows the search to
spread its effort through the shallowest portion of a tree where it is least
expensive, instead of being forced to pursue the best alternative to great
depths, or pursue all allernatives to the same depth.

In pursuit of the latier, it is best to have the aspiration level somewhere between the
best pessimistic value at the root and the optimistic value of the best alternative.
This allows both searchs slrategies to be employed effectively. Use of the depth
from which the current evaluation has come, and the present range of a node also are
useful in delermining the best stralegy, as no doubt,, would be the
domain-dependent knowledge associated with an evaluation {(not merely its magnitude).

It is interesting to compare the basic features of B with those of well ‘known search

17

algorithms. Consider the A search algorithm [Niisson, 19711 It could easily operate
under the two value system in a mode that is satisfied to find the best arc at the
root, and the cost of the path withoul finding the complete path itself. This
algorithm would be equivalent to Bx using only the PROVEBEST strategy, and being
able to halt search on a branch only when a goal was reached or if the upper and
lower bounds on the branch became equal; ie. the cost of the path is known,
Another slep in ihe direction of iteration would be 1o only use the PROVEBEST
strategy and allow the search to halt when a best node at the root had been
identified. In this mode lhe exact cosl of the path would not be known. This
produces the best-first algorithm used for the column headed BF in Table L
Finally, the full-fledged Bt algorithm working with both strategies discovers the besi
node without the exact cost of the path. However, it does enough shallow searching
so that it explores considerably fewer nodes than any of the algorithms
described above.

Having the two strategies without the two value system has no meaning at all, since
there is no way of pronouncing one node at the root better than any ather without
having an effort limit. Just using a depth-first iterative deepening procedure,
although it spreads the search over the shallower portions of the search tree,
invesligaies too many non-pertinent nodes. '

Today’s search algorithms rely on assigning a singie value o a node, under the
assurnption that each node expansion will bring in new and useful jnformation that can
be backed up and used to produce a more informed opinion about the node’s
sub-tree. However, this ignores the variability about the estimate that is made
‘by the terminal evaluation function. It is precisely for this reason that chess
programs indulge in quiescence searches when the variability;at a terminal node is
considered too high. Our method can thus be considered to carry a specification of
variability of the evaluation for every node in the tree. Thus any posed issue (as
represented by its variability) cannot be abandoned until it can be shown to be
irrelevant to determining the best solution.)

The advantage of the two-value system is that it provides a method for naturally
terminating a search. It also allows the critical test which will pronounce one arc at
the root better than all the rest. However, it clearly requires good estimating
functions for its success. In difficull adversary domains such as chess this appears
doable, and we have constructed reasonable functions of this type for chess factics.
The key is thalt in such situalions, one side’s optimism is the other’s pessimism.
For domains in which oplimalily searches are usually done, it is difficult to find
‘useful upper bounding functions for path costs involving long paths. Therefore, Bx
can probably only be used for such searches, when some other criterion of
success such as a reasonable solution at low computational cost is desired.
This is probably close to the crilerion humans use in approaching such problems,
since they do not have the facilities to deal with the combinatorics of even mildly
difficult problems. ;

Clearly, evaluation funclions are very important, The B: search transfers the
responsibility for determining how much effort to spend (which has previously been
the responsibilily of the search parameters, i. .e. depth ' limit, effort limil,

18

efe.) to the evaluation functions which now delermine the effort limit due to their.
crispness and ability to narrow the range between oplimistic and pessimistic. In
the final analysis, the B#* search is a conversation between an evaluation
function and ‘a conlrol procedure whith terminates when enough has been
discovered in the search lo justify a seleclion at the root.. If the evaluation
function estimates do not validly bound the actual value of . a-node, then errors in
arc selection can occur. However, there is no reason why these should be more
severe than.errors produced by any estimating function which is not applied at
domain defined terminal nodes. Unforfunately, very little appears lo ‘have been done
toward making a science of the construction of sensitive evaluation functions,
since the highly significanl work of Samuels [Samuels, 1959 and 1969]). We have
been investigating how such evaluation functions can be constructed of many layers of
increasingly more complex primilives in connection with the 8-puzzle and backgammon
(Berliner, 1977b] In the latter great amounts of knowledge reed to be brought to
bear, since search is not very practical.

The proof schemas cited in De Groot, some of the protocoi analysis (particularly pp.
213-217}, and the fact that humans search very smail, narrow trees lead us to
believe that the B# secarch is, in fact, whal is being called progressive deepening.
In performing a search, the B+ algorithm may go down a branch, several times, each
- fime looking 1o see whether a value sufficient for a proof can be found The search
“owill abandon a branch when. . .) '

1) The br-anchlis no longer best.
2) The proof is established.

In the first case, the deepening stops only 1o be resumed at the now best branch,
possibly several ply nearer the root. In the secand case, the deepening stops and
the search reverts to the root to determine whether the proof is complete (it may
not be if ASPIR is in the middle, as explained in seclion III). Such phenomena
could easily give rise to the notion of a best-first search with progressive
deepening since the jumping around is observed at the level of the protocol, without
the underiying logic being apparent. Thus the Bz algorithm [fulfills ali the basic
condilions.

19

BIBLIOGRAPHY

Adeison-Velskiy, G. M., Arlasarov, V. L., and Daonskoy, M. V. (1975),' "Some Methods of
Conlrolling the Tree Search in Chess Programs”, Artificial Intelligence,
Vol, 6, No, 4, 1975.

Berliner, H.J (1973), "Some Neccessary Conditions for a Master Chess Program™
Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, pp. 77-85, August 1973.

Berfiner, H. J. (1974), Chess as Problem Solving: The Development of a Tactics
Analyzer, Ph. D. Dissertation, Computer Science Department,
Carnegie-Mellon University, March 1974,

Berliner, H.J. {1977a), "On the Use of Domain-Dependent Descriptions in Tree

Searching”, in Perspectives on Computer Science, A, K. Jones (Ed.), Academic
Press, 1877.

Berliner, H. J. (1977b), "BKG -- A Program that Plays Backgammon®, Computer Science
Dept., Carnegie-Mcllon University, 1977.

De Groot, AD. {(1965), Thought and Choice in Chess, Mouton and Co., 1965.

Marris, L. (1974), “The Heuristic Search Under Condilions of Error®, Artificial
Intelligence, Vol. 5, No. 3, pp. 217-234, 1974,

Newell, A. (1955), "The Chess Machine: An Exampile of Dealing with a Compiex Task
by Adaptation”, Proceedings Western Joint Computer Conference, pp.
101-108, 1955. ,

Nilsson, N. J. (1971), Problem-Solving Methods in Artificial Intelligence,
' McGraw-Hill, 1971.

Samuel, A. L. (1959), "Some Studies in Machine Learning Using the Game of
Checkers”, IBM Journal of Research and Development, Vol. 3, No. 3,
1958, pp. 210-229.

Samuel, A. L. (1969), "Some Studies in Machine Learning Using the Game of
Checkers, I - Recent Progress”, [BM Journal of Research and
Development, Nov. 1967, pp. 601-617.

Schofield, P. D. A. (1967), "Complete Solution of the 'Eight-Puzzie’™, in Machine
Intelligence 1, N. L. Collins & D. Michie (Eds.), American Elsevier Publishing
Co., 1967. ’ ' '

Slate, D. 4. and Atkin, L. R. (1977}, “CHESS 45 -~ The Northwestern University Chess
Program”, in Chess Skill in Man and Machine, P. Frey (Ed,}, Springer-Verlag,
1977.

20

APPENDIX A - How lo Generate Canonical Trees of Uniform Width

We here show how to generate canonical trees which are independent of the order of --
scarch. We note that a free can receive a unique name by specifying the range of
values al its rool, the widlh {number of immediate successors at each node), and the
iteration number for a tree of this type. To find a unigue name for each node in
such a tree, we note that if we assign lhe name "0" to the root, and have the
immediate descendants of any node be named .

{parentnameswidth+1),(parentnameswidth+2), -- {(parentnameswidth+width)

3 .

then this provides a unique naming scheme. Now it is self-evident that the bounds
on a node that has nol yel been sprouted from must be a function of its position in
the tree (name) and the name of the tree. Thus, if we initialize jthe random number
generalor that assigns values to the immediate descandants of a,node as a function
of its original bounds, its name, the width, and the iteration number, then the
descendants of node "X" will look the same for all trees with the same initial
parameters, regardless of the order of search or whether a node is actually ever
expanded. The actual function we use lo initialize the random, number
generator is {Pareniname+width)«(iterationnumber+range). This avoids
initializing at zero since widlh and range are never zero. The bounds of the
parent node serve as bounds on the range of wvalues that the random number
generator is aliowed {o preduce.

