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Abstract: The Traveling Salesman Problem is solved on the Cm*, a multiprocessor system, using 

two implementations based on the branch and bound algorithm of Little, Murty, Sweeny and Karel. 

One of these implementations is synchronous and has a granularity that increases with the degree of 

parallelism, while the other is asynchronous and has a constant granularity. With increasing degree 

of parallelism, the first implementation requires increasing amount of computation to solve the 

problem, leading to a speedup that saturates at a low value. The second implementation requires 

nearly the same amount computation at all degrees of parallelism and has reasonable speedup 

characteristic. The difference between the speedup of this implementation and linear speedup is 

attributed to processors idling because of resource contention. 
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1. Introduction 
This paper presents computational results of solving the Traveling Salesman Problem on Cm*, a 

multiprocessor system of about fifty LSI-11 processors, and, based on these results, relates program 

performance in a parallel environment to some characteristics of parallel programs such as 

synchronism and granularity. Other issues in parallelization such as reliability and language 

characteristics are completely ignored. Broader computational issues get more attention than 

specific architectural features of the system. The approach is experimental and case study oriented, 

with Cm* serving as the experimental testbed and the Traveling Salesman Problem serving as the 

vehicle of exploration. 

The Traveling Salesman Problem (TSP, for short) is this: given the costs of going from one city to 

another of N cities, find a minimum cost tour (circuit) visiting each of the N cities once and only once. 

Below is a little more mathematical statement of the problem. Consider a complete graph G = (V, E), 

where V is a set of n vertices and E is the set of m edges where m = (n-1)2. If c.. is the cost associated 

with edge (i, j), [cj will be the cost matrix of the graph G; TSP is the problem of finding a Hamiltonian 

circuit of G with the minimum cost. 

TSP has been and still is widely studied [Christofides 79, Bellmore 68, Hoffman 81] because it is an 

easy to state but computationally difficult problem. It has some direct application to real-life problems 

such as vehicle routing; more significantly, however, it underlies many other optimization problems 

such as sequencing and scheduling. It is NP-complete, making it computation-intensive and a good 

subject for this study of computational speedup. 

There are several variations to the problem -- symmetric or asymmetric cost matrix, euclidean or 

non-euclidean distances as costs, and exact or approximate solution. We chose to find the exact 

solution to the asymmetric non-euclidean TSP. Asymmetric non-euclidean TSP is the most general of 

all variations. Asymmetric means that, in general, c.. does not equal c ; 7 for the given cost matrix. 

Non-euclidean means that the costs are arbitrary nonnegative numbers (integers, for us) and we can 

not expect them to obey any special property such as that of triangle inequality. Trying to find an 

exact solution rather than an approximate one helps us to focus our attention on issues of speed and 

avoid other issues such as accuracy of solution. 

Dynamic programming [Karp 62] and many variations of branch and bound are the two most 

popular techniques for solving TSP exactly. For the TSP, good branch and bound algorithms are 

more efficient than dynamic programming ones - branch and bound algorithms have the same worst-

case complexity as dynamic programming ones, but typically take much less time to solve a problem 
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because of the bounding heuristics [Nilsson 71]. We decided to use a branch and bound algorithm 

for our experiment because branch and bound algorithms are a class of algorithms of wide and 

general applicability [Lawler 66, Mitten 70]. Any general results that we can obtain about this class of 

algorithms will be of interest to the computing - both core and application - community. 

There are many branch and bound algorithms for the TSP [Little 63, Karp 70, Karp 71]. Our 

programs are based on the branch and bound algorithm of Little, Murty, Sweeny and Karel [Little 63] 

(we will refer to this algorithm as the LMSK algorithm hereafter). The LMSK algorithm is simple and 

easy to implement. (A variation of this algorithm is elaborated in [Horowitz 78].) The two programs lie 

on significantly different points in the implementation spectrum so that a comparative analysis of their 

performance will shed some light on the relation between performance and program characteristics. 

2. Computational Environment 
The experiments were conducted on the multiprocessor system Cm* [Swan 78] running the 

operating system StarOS [StarOS 81]. Cm* is a hierarchically organized multiprocessor system built 

at Carnegie-Mellon University. StarOS is a capability-based multiprocessor operating system, built to 

be a testbed for experimentation in parallel processing. 

Highlights of the Cm* system that are relevant to the study are listed here: 

>The Cm* system currently consists of five clusters of about 10 Cms each; each Cm 
consists of an LSI-11 processor with some memory. 

> Each cluster has one high performance mapping processor, called KMap, which maps 
addresses from Cm address space to global address space and handles communication 
across clusters. KMaps create a uniform address space making any individual word in 
the system accessible to all the processors. 

> Some addresses are local to a Cm and can be accessed without having to go through the 
KMap and hence without having to pay an extra access cost. Typically, accesses to the 
memory of another Cm in the same cluster costs about three times the access cost to the 
Cm's own (local) memory and accesses to remote clusters cost about twelve times [Jones 
and Gehringer 80]. 

> Accesses across clusters are achieved via the KMaps over a common bus called an 
intercluster bus (though there are two such busses, only one of them is used by the 
operating system). 

Some pertinent features of the operating system StarOS are given below: 

> Capability based addressing and protection of objects. 
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> Programs organized as modules and functions. 

> Communication between processes through shared objects or mailboxes. 

> One Object Manager per cluster; an Object Manager manages the memory in its cluster 
and fabricates objects out of it whenever a user requests. 

> A typical process consists of a few code objects, a stack and local object, and some 
shared and some private data objects. 

> A process can be made to execute on a particular Cm only, by assigning that process to 
what are known as private RunQueues. The default is for a process to run on any free 
Cm in a particular cluster. 

> It is possible to localize objects to specific Cms to improve execution times; localize here 
means forcing an object to be mapped to the local memory of a Cm resulting in faster 
access to that object by a process running on that Cm. 

> KMaps, in addition to their usual mapping functions, offer a primitive lock mechanism as 
an indivisible increment word (IncrWord) operation. 

> The system has a clock with a clock-tick equal to 2 micro-seconds. 

The programs were written in Bliss-11 [Wulf et a/. 70] and cross-compiled and linked [Levin ef a/. 
76] on a DEC-10 for execution on the Cm*. 

3. LMSK Algorithm 
The algorithm works by partitioning the set of tours into smaller and smaller subsets, finding a 

lower bound- on tour cost of each of the subsets, and using these bounds to guide further partitioning 

of the tours until we get a single tour whose tour cost is less than or equal to the lower bounds for all 

the other subsets. 

Lower bound for a tour subset with given cost matrix is computed using a matrix reduction 

operation. If a constant, hy is subtracted from any row or column of a cost matrix, there is a one to 

one correspondence between the tours under the new matrix and the tours under the old matrix, with 

the cost of the tours under the new matrix less by h; the optimal tour remains the same. A matrix with 

at least one zero in each row and one zero in each column is called a reduced matrix. If a tour had a 

cost z(t) under a given cost matrix and a cost z1 (t) under the corresponding reduced matrix and if h is 

the sum of the constants used in making the reduction, 

z(t) = h + zft). 

Assuming nonnegative costs, h is the lower bound of all tours under the original matrix. 
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Partitioning of the tours can be represented by the branching of a state space tree.The root node of 

the tree corresponds to the set of all tours. One of its children will be an include node and 

corresponds to all those tours of the parent node that included a particular edge ft, j) selected at this 

level; the other node (the exclude node) corresponds to those tours that exclude that edge. The 

include/exclude edge ft j) is selected to maximize the possibility of the best tour not being contained 

in the exclude subset; this is because inclusion of an edge reduces the size of the problem by one, 

which takes the computation one step nearer to the solution, while exclusion of an edge does hot. 

The tours that exclude the edge ft j) must include at least the sum of the costs of the smallest element 

in row / and the smallest element in column /, after excluding c... This sum will be referred to as 

theta(it j). We choose the next include/exclude edge to be the one with the largest thetaO, j). 

The cost matrix for a child node is derived from its parent node's matrix by modifying it to reflect the 

include/exclude decision made at that partitioning point. When an edge (k, I) is to be included, row k 

and column / are no longer needed and are deleted. Next the unique connected path starting at city p 

and ending at m, of which (k, I) is a part, is determined and cmp is set to infinity to avoid generating 

subtours. (A subtour is a tour over a proper subset of the given set of cities.) When an edge (k, I) is to 

be excluded, cM is simply set to infinity. 

The basic LMSK algorithm is presented below. For clarity of presentation, the program is in its 

usual single-process form. The adaptations that result in two different parallel programs will be 

discussed in section 4. 

FindTour is the main routine of the program. After some initialization, it enters the main iterative 

loop, which consists of choosing an edge to include or exclude, setting up the children using the 

parent node's matrix appropriately modified, reducing the matrices to get their lower bounds, and 

selecting the node with the least lower bound for expansion next. 



type Cost = in teger ; /• edge or tour cost •/ 
11 _ . 

M 

N • /* node in s tate space t ree •/ 
record 

Size : i n teger ; /* s ize of matrix f o r t h i s node */ 
W : Cost ; /* lower bound on tour •/ 
k : i n teger ; /* FROM node of p a r t i t i o n i n g edge •/ 
1 : i n t e g e r ; /* TO node of p a r t i t i o n i n g edge */ 
Include : boolean; /* spec i f i es whether selected edge 

(k , 1) is to be included ( t r u e ) or 
excluded ( f a l s e ) •/ 

Parent : t N ; /* pointer to parent node •/ 
L e f t C h i l d : tN ; /• pointer to l e f t c h i l d */ 
RightChi ld : t N ; /• pointer to r i g h t c h i l d •/ 

end; 
s array [ i n t e g e r ] of Cost ; /* cost matrix */ 

var Matr ix : M; 

procedure FindTour (CostMatr i x : M; ProblemSize: i n t e g e r ) ; 
begin 
var NumberOfChildren : i n t e g e r ; 

Node : t N ; 
ZO : Cost ; 

NumberOfChildren : « 2; 
ZO :• i n f i n i t y ; 
New(Node); /• Root node */ 
Nodet.Size :• ProblemSize; 
Nodet.Parent n i l ; 

repeat 
i f Matrix does not correspond to Node then 

ReconstructMatr ix (Node) ; 

ChooseEdge(Node); 

f o r I from 0 to NumberOfChildren-1 do 
SetUpChild(Node, I ) ; 

i f Nodet.Size « 2 then 
/* some tour has been found */ 
i f Nodet.W < ZO then 

begin 
ZO := Nodet.W; 
SaveTour; 
end; 

Order leaf nodes by W; 
Node := leaf node with smallest W; 

u n t i l ZO leq Nodet.W; 
end; 

The following routines are lower level routines; the reasoning behind them has been explained 
earlier in this section. The routines are presented here for the sake of completion and the casual 
reader may want to skip them. 
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procedure ChooseEdge (Node: t N ) ; 
begin 

with Nodet do 
Choose edge ( k , l ) such that 

t h e t a ( k , l ) = max ( t h e t a ( i . j ) ) f o r a l l ( i f j ) 
where t h e t a ( i , j ) = (smal lest cost in row i , 

omitt ing M a t r i x [ i , j ] ) + 
(smal lest cost in column j , omitt ing M a t r i x [ i f j ] ) 

end; 

procedure SetUpChild (Node: tN ; Ch i ld lndex : i n t e g e r ) ; 
begin 

var ChildNode : tN ; 

New(ChildNode); 
SetL inks ; /* set up the r i g h t l inks to put c h i l d node in tree*/ 
i f Ch i ld lndex s 0 then 

begin 
/* (k , 1) i s the excluded edge */ 
Chi ldNodet . Inc lude :* f a l s e ; 
Chi ldNode*.Size := Nodet .S i ze ; 
ChildNodet.W := Nodet.W + t h e t a ( k . l ) ; 
end 

else begin 
/* (k , 1) is the included edge */ 
Chi ldNodet . Inc lude : s t r u e ; 
Delete row k and column 1 in Matr i x ; 
Ch i ldNodet .S ize : » Nodet .Size - 1; 
Find p * s t a r t i n g c i t y and m s ending c i t y of the path 

containing the edge ( k , l ) among paths generated by 
the committed c i t y pa i rs of c h i l d node; 

Matr ix [m, p] * i n f i n i t y ; 
Reduce(Matr ix ) ; 
ChildNodet.W :• Nodet.W + reducing constants ; 
end; 

end; procedure ReconstructMatr ix(Node: t N ) ; 
begin 

Matr ix : - CostMatr i x ; 
Nodet.W := 0; 
Traverse t ree from Node to root doing the f o l l o w i n g : 

i f edge ( i , j ) o f an intervening node is an 
included edge then 

begin 
Nodet.W := Nodet.W + M a t r i x [ i , j ] ; 
delete row i and column j of Matr i x ; 
fo r each path inc luding the edge ( i , j ) 

f i n d s t a r t i n g c i t y p and ending c i t y m 
and set Matr ix [m.p] to i n f i n i t y ; 

end 
else /• edge ( i , j ) i s an excluded edge */ 

M a t r i x [ i , j ] := i n f i n i t y ; 
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Reduce(Matr ix) ; 
Nodet.w : = Nodet.w + reducing constants; 

end; 

4. Implementations 
An algorithm may be adapted for parallel execution primarily in two ways. Input data may be 

divided up among many processes and the results of these processes integrated into a final solution. 

This approach is clearly inapplicable to the LMSK algorithm. On the other hand, potential parallel 

paths in the control flow of the algorithm may be explicated and computed by multiple processes. 

One technique that will generally yield a large degree of parallelism is unfolding a loop and letting 

multiple processes work on different iterations of the unfolded loop. This is the approach taken here. 

The two implementations unfold different loops of the algorithm. Implementation 1 unfolds the for 

loop that sets up child nodes (see routine FindTour in section 3), while implementation 2 unfolds the 

outermost (repeat) loop. This is the basic difference between the two implementations; the other 

differences will be discussed below. 

4.1. Implementation one 

In implementation 1, only the work of setting up child nodes is done in parallel; one process sets up 

one child node. The algorithm presented in section 3 decides on the inclusion of a single edge during 

each iteration; each interior node in the state space tree has two child nodes and, hence, the 

maximum parallelism that can be realized with this approach in the present form of the algorithm is 2. 

To gain greater parallelism at this level of paralleiization, the algorithm is modified to decide on the 

inclusion of a greater number of edges in each major iteration. After this change, two processes set 

up the two child nodes corresponding to the inclusion and exclusion of a single edge, four processes 

set up nodes for two edges, and 2 N processes set up nodes for N edges (one node corresponds to 

one possible include/exclude selection of the N edges). The edges are selected with repeated 

applications of the same criterion (maximum theta) as was presented in the algorithm. 

A master process controls the general progress of computation. It sets up several slave processes 

that set up the child nodes; it controls each of the iterations of the slaves, tells them which node to set 

up, decides when they are done, and performs bookkeeping for us. 

Our decision to parallelize at the level of setting up child nodes mandates many other 
characteristics of this implementation: 

> necessity to select increasing number of edges in each major iteration with increasing 
degree of parallelism 
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> need for a process (master) that does significantly more work than others and controls 
their execution, leading to a master-slave process structure; the slaves set up child 
nodes, while the master does the rest of the computation in FindTour 

> need to wait for all child nodes to be set up before execution can continue; this leads to a 
synchronous control structure 

> since the master process strictly partitions work between the slaves, no lock is necessary 
to ensure consistency of data. 

4.2. Implementation two 

Implementation 2 achieves its parallelism at the outermost iterative loop of the LMSK algorithm. All 

the work within the repeat-until loop of FindTour, including the loop-termination check, is done by all 

the processes. Each process, during each of its iteration, decides on one more edge and sets up two 

child nodes. 

The characteristics of this program are less rigidly dictated by the parallelization scheme used. 

Some of its significant characteristics that differentiate it from implementation 1 are listed below: 

> Parallelization is realized at a higher level of program control structure. Each process 
does all the work of expanding a node, setting up child processes, putting them in a work 
list of nodes ordered by their potential for leading to the solution, and choosing the next 
node for itself to expand. 

> All the processes work asynchronously and independently. They are always busy doing 
useful computation, except for a short while in the very beginning when there are more 
processes than nodes and except when they find some global structure locked by some 
other processes for updating. 

> There is no master-slave relationship among the processes. All processes are identical 
while solving the problem. (One process is distinguished and does the bookkeeping 
chores, but this does not affect our measurements.) 

>The locking scheme is simple mutual-exclusion based on the StarOS instruction, 
IncrWord. If a structure is found locked, the process seeking to lock spins for a little 
while doing nothing and tries again. Two locks are used: one for the tree as a whole 
when setting up new child nodes into the work list and removing next node to be 
expanded from the list and another for maintaining global data such as a potential 
solution to the problem. Contention for these locks should be mild at low parallelisms 
(less than 16 here), since they are accessed at most once per iteration at random points 
in time by not too many processes for a short duration. 

> Next node to be expanded is selected differently from the other implementation, although 
the criterion for selection is exactly the same the leaf node with the least lower bound 
on tour cost. All the leaf nodes in this implementation are linked in a list ordered by their 
potential cost with the least cost node at the front of the list. In the previous 
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implementation, we did not have an explicit ordered list, but simply traversed the tree 
from the current node to the root and back down to the next node; this was possible for 
that implementation because of the more controlled way in which the processes set up 
new child nodes. 

Termination in an asynchronous algorithm has to be done carefully. When a process, P, finds that 

a terminal node (a node specifying a complete tour) has the least cost among all nodes currently 

available to it for inspection, it can not quit, nor can it decide that the problem has been completely 

solved. This is because other processes may be working on nodes that may lead to a better solution 

and these nodes are not accessible, for the moment, to process P. Implementation 2 uses a 

consensus-based termination scheme. Every process, on reaching a least-cost terminal node, 

increments a count and checks its value. If the count shows that all other processes also have come 

to the same conclusion, the problem is solved; otherwise the process waits a while and checks to see 

whether there is work to do and if there is, it decrements the count and continues to work. 

4.3. Data Structures 

The major data structures for our implementations are various cost matrices (N X N square 

matrices, where N is the size of the problem, that is, the number of cities) and a state space tree that 

records the current state of problem execution. Each process keeps a localized data object for the 

cost matrix and sets up the cost matrix corresponding to the node it is currently expanding on this 

object, when necessary. The nodes of the tree are set up in whichever memory area possible, giving 

preference, of course, to locations nearer (in the access hierarchy) to the Cm corresponding to the 

process creating a node. 

The decisions on data structures are dictated by the requirements of the problem and the system 

environment. The problem dictates the tree and matrix structures. The per process matrices are 

easily localized when we start execution; the nodes of the tree are localized to the extent dynamically 

possible in the system. One matrix object is associated with one process rather than with each node. 

One matrix for each process can be easily accommodated, but one for each node would have limited 

the size of the problem that can be solved to lower than even the present 30; if there were one matrix 

per node, some execution time that is now spent regenerating matrices from the initial cost matrix 

would have been saved, possibly leading to slightly better speedup. 
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4.4. Experiments 

The results presented here are for a problem size of 30 cities, the largest problem that could be 

solved on Cm*. Beyond size 30, the number of nodes in the state space tree required to store the 

state of the problem exceeded the system capacity. Inter-city distances were generated by a random 

number generator with uniform distribution in a convenient interval [Pascal 81, Knuth 69]. 

With implementation 1, these problems were solved with degrees of parallelization ranging from 2 

to 16. Parallelization degree of 2 corresponds to one master and two slaves working together 

deciding on one edge at each iteration. (The master process is blocked when the slaves are active; • 

so we do not count the master for degree of parallelization.) This computation, with parallelization 

degree of 2, forms the base for the performance comparisons for this implementation. Parallelization 

degree of 16 corresponds to one master and 16 slaves working on the 16 different include/ exclude 

selections of 4 edges in each iteration. Implementation 2 always decided on one edge at a time 

irrespective of parallelism; so parallelism could be any number. The experiments were conducted 

with 1 to 16 processes, with the single process results serving as the base for speed comparisons. 

Each of the processes runs in its own dedicated processor with all its code, stack and any local 

data localized to that processor. This frees one from concern for the issue of localization of program 

objects; this aspect of parallel processing has already been well studied on Cm* [Raskin 78]. 

5. Results 
In this section data for the two implementations on speedup, number of nodes in tree, and 

contention will be presented. They will be compared in section 6. Speedup is the standard measure 

of parallel performance. It is the ratio of serial execution time to parallel execution time and reflects 

the effective parallelism achieved for a given nominal parallelism. (Its definition is slightly modified for 

implementation 1 for practical reasons.) 

5.1. Implementation one 

5.1.1. Speedup 
Figure 5-1 plots speedup against parallelism for a problem size of 30 for implementation 1.1 

Speedup here is computed as 
2 * solution time for parallelism of two / solution time for given parallelism. 

1 A S exolained before the degree of parallelism for this implementation can assume only values that *e a power of 2. 

H o w ^ ^ 
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The solution time is taken to be the elapsed time for solving the problem, excluding the time spent 

creating the slave processes. The execution times vary depending on the distribution of processes 

among the clusters (this behavior will be studied separately later). To factor out this phenomenon, 

only the best times among all the different placements for which the experiments were performed 

were used. 

Q) 
Q) 

ft 1 4 

12 

10 

a 

6 

•—• Speedup of Solution Time (Actual) * 
0- Speedup Adjusted for Nodes Generated / 

Problem Size: 30 near-best solution times with • ' 
placements limited by hardware , ' 

2 4 6 8 W 12 14 16 
Parallelism 

Figu re 5-1: Speedup versus Parallelism for Implementation 1 

The dashed line shows linear speedup speedup equals parallelism and the solid line plots the 

actual speedup achieved for this implementation. The actual speedup is reasonable between 

parallelisms of 2 and 4 (speedup for parallelism 4 is 2.8). However it starts going down after a 

parallelism of about 6 and remains constant at a speedup of 2.6, after a parallelism of about 8. This is 

explained by the greater total amount of work done with greater parallelization for this implementation 

and by saturation of system bottlenecks with greater amount of simultaneous computation in the 

system. 
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The dot-dashed line in the graph is an attempt to factor out the effect of the greater amount of work 

done with greater parallelism. This would have been the speedup of this implementation, if the total 

computation for solving the problem did not increase with increasing parallelism. The primary work of 

the algorithm consists of setting up and reducing the cost matrix corresponding to the nodes of the 

state space tree. So the number of nodes generated is a measure of the total computation performed 

for solving the TSP. Assuming that total computation for solution was directly proportional to the 

number of nodes generated, 
speedup adjusted for nodes generated corresponding to parallelism N 

as 2 * solution time per unit computation with 2 processes / 
solution time per unit computation with N processes 

= 2 * (solution time with 2 processes / number of nodes generated with 2 processes) / 
(solution time with N processes / number of nodes generated with N processes) 

The curve corresponding to the adjusted speedup behaves much better; it is a lot nearer to the 

linear speedup line, does not show any signs of peaking or saturation and continues to increase 

reasonably till a parallelism of 16, which was the maximum parallelism of the experiment. The 

difference between the linear speedup line and this curve corresponds to loss owing to the 

synchronous control of the program and to contention for system resources such as the KMaps, 

various system busses, SLocals, and the Object Manager. 

5.1.2. Number of nodes 

Figure 5-2 plots the number of nodes generated against degree of parallelism for a problem of size 

30. As discussed before, this is an indicator of total amount of work done. This increases linearly 

with parallelism for our implementation, increasing our execution times at greater parallelisms, 

effectively nullifying any real speedup beyond a parallelism of about 6. In this implementation, with 

increasing parallelism, greater amount of computation is done between consecutive applications of 

heuristic bounding. This decreases the effectiveness of the heuristic and increases the search and 

the amount of computation required to solve the problem. 

The other curve shows the number of nodes expanded, which corresponds to the number of 

iterations needed to solve the problem. This number is an indicator of actual execution times, when 

the sequential components of execution times and contention for system resources are ignored. It 

decreases initially but levels off at a parallelism of 6. 
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Figure 5-2: Nodes versus Parallelism for Implementation 1 

5.1.3. Placement 

As was mentioned before, for a given parallelism the execution times vary depending on how the 

processes are distributed among the clusters of Cm*. Two opposing factors affect this variation: as 

the number of processes in a cluster increases, there is more contention for cluster resources and 

this increased contention increases execution times; but at the same time, since fewer clusters are 

used, common data generated by the processes (the nodes of the tree) get less distributed among 

clusters and this decreased distribution of common data tends to decrease average access times to 

global data and hence the execution times. 

In general, in many past multiprocessing experiments by others, execution times increase as more 
clusters are used, suggesting that remote access times dominate in those experiments. However, for 
this program, cluster contention dominates causing the execution times to decrease as the processes 
are distributed among more clusters. 
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Figu re 5-3: Solution Time versus Placement for Implementation 1 

Figure 5-3 plots solution time against placement of processes among clusters, for a problem size of 

30. The number of processes in a single cluster is plotted along the X-axis. For a given curve 

corresponding to a particular parallelism, cluster contention increases with increasing X, resulting in 

increased execution time. The execution time increases fairly linearly with the number of processes 

in a cluster, at about the same rate for all parallelisms. 

5.2. Implementation two 

5.2.1. Speedup 

Figure 5-4 plots speedup against parallelism for a problem size of 30 for implementation 2. Since 

for this implementation single process execution is possible, actual speedup is computed as 

solution time for parallelism of one / solution time for given parallelism. 

Again the solution time is taken to be the best elapsed time for solving the problem under different 
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distributions of the processes among the clusters, excluding any time spent in creating processes, 
just as for implementation 1. 
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Figu re 5 -4: Speedup versus Parallelism for Implementation 2 

Here are a few observations on the results: 

> The speedup curve looks much better than in implementation 1. It is close to the linear 
speedup line until we reach a parallelism of 6 and does not show any signs of peaking or 
saturating at higher parallelisms. It is almost identical to the speedup adjusted for nodes-
generated in implementation 1. This adjusted speedup was what the system was capable 
of achieving, if the total computation for solving the problem had remained constant with 
increasing parallelism. This near-identity of the two curves suggests that the amount of 
computation does not increase with parallelism here. The number of nodes generated 
remains nearly constant for all parallelisms, confirming this inference. 

> The absolute execution times are lower than in implementation 1 by about 25% at a 
parallelism of 2 to about 80% at a parallelism of 16. For a parallelism of 2, the nodes 
generated and nodes expanded for both implementations are the same, suggesting that 
the total amount of computation done by all processes for solving the problem is about 
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the same for both the implementations at this parallelism. So one has to look elsewhere 
for an explanation of the 25% decrease in absolute execution time at this parallelism. The 
following are possible explanations for this behavior. 

- In the previous implementation (with its synchronous program control), some time 
is wasted because of a lack of absolute work balance between the slave processes. 
In this implementation with its asynchronous control, absolute work balance 
between processes is not critical and there is no time lost because of this. 

- Because of the egalitarian control structure of this program, processes here do not 
idle waiting for more work. In implementation 1 (with its master-slave structure), 
when the master is busy deciding on which node to expand next, the slaves are idle 
except for creating a look-ahead node by calling the Object Manager. 
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Figu re 5-5: Speedup (normalized for cluster contention) 
versus Parallelism for Implementation 2 

Figure 5-5 is an attempt to factor out cluster contention effects on speedup. Here speedup is 

computed using solution times with the same number of processes in a cluster. This ensures that 

cluster contention is near about the same for all data points on a given curve. The curves hug the 
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linear speedup line closely except near a parallelism of 16 suggesting that below a parallelism of 12 

there is hardly any system level contention and most of the loss in execution time seen in the previous 

speedup figure is attributable to cluster level contention. Near a parallelism of 16, system level 

contention for the two locks in the program (one lock for controlling access to the ordered list of leaf 

nodes and another for global data) and for system resources such as the intercluster bus affects 

performance adversely to a more significant extent. 

5.2.2. Number of nodes 

With varying parallelism, number of nodes generated remained constant near 900 and the number 

of nodes expanded remained constant near 450. (These numbers are the same as for implementation 

1 at a parallelism of 2.) This is in sharp contrast to implementation 1 where the number of nodes 

generated increased considerably with increasing parallelism. This single factor contributed the most 

to the improved shape of the speedup curve in implementation 2. The constant total computation may 

be explained by the constant granularity (to be discussed later) of this implementation. 

5.2.3. Placement 

Figure 5-6 plots solution time against placement of processes among clusters for a problem size of 
30. The number of processes in a single cluster is plotted along the X-axis. 

Execution time increases, for a given parallelism, as more processes are placed in the same 

cluster, just as in implementation 1, suggesting cluster contention dominates over global access here 

too. For a parallelism of 2, there is a greater absolute increase in execution time when both 

processes are placed in the same cluster compared to the corresponding increase for implementation 

1. This may be because of the greater average parallel activity in implementation 2, especially for a 

parallelism of 2. The absolute increase in execution times is marginally less for parallelisms of 4 and 8 

and dramatically less for a parallelism of 16 compared to corresponding figures for implementation 1. 

For a parallelism of 16, this increase is about 250 clock ticks for implementation 2 and 1000 ticks for 

implementation 1. Asynchronous execution randomizes (distributes in time) cluster resource usage 

and hence reduces contention. 
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Figure 5-6: Solution Time versus Placement for Implementation 2 

6. Discussion 

6.1. Control synchronism 

One reason for the better performance of implementation 2 is its loose asynchronous control as 

compared to the tightly synchronized control of implementation 1. In implementation 1, the slave 

processes work in a lock stepped fashion under the control of the master process. This mode of 

control depends heavily on the work balance between the slaves, in order for the whole computation 

not to be pulled down by a laggard process. The slaves are fairly, but not exactly, balanced in their 

workload; but still there will be some loss in execution times because of residual imbalance. 

Asynchronous control made possible an egalitarian process structure, which allows all processes 

to do useful work all the time, except when they find a resource they need being used by some other 

process. In implementation 1, each tour-partitioning decision is made by the master process and 

during this time all the slaves are idle. 
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Further, since all processes in a loosely controlled execution proceed at their own pace, they use 

resources (such as the Object Manager) more distributed (instead of clustered together) in time, 

leading to reduced contention. The curves on the effect of placement of processes (figures 5-3 and 

5-6) suggest that at higher degrees of parallelisms the effect of contention is less severe for 

implementation 2. 

The price for looser control in implementation 2 is locked access to common data; in 

implementation 1, there are absolutely no locks since the master strictly controls the work of each 

slave. Apparently, at least for this algorithm, the other benefits of asynchronous control heavily 

outweigh the cost of locked access and the possible contention for the locks. 

A simple comparison of the number of points of synchronization between the two implementations 

is instructive. In implementation 1, every process waits once after setting up a new child node; so the 

number of synchronization points equals the number of nodes generated, which increases with 

increasing parallelism. At each synchronization point, all slave processes wait till the master process 

finds the next node to expand, reduces it if necessary, and selects the edges to use in the next 

expansion. So there is considerable synchronization cost even with the least number of processes 

and this increases with increasing parallelism. In implementation 2, on the other hand, every process 

uses two mutual-exclusion locks each time they set up two child nodes; so the number of 

synchronization points here equals the number of nodes generated, which remains constant with 

parallelism. The processes wait only when they find another process holding the lock they need; 

because of asynchronous control, the requests for locks occur distributed in time, so the number of 

points at which a delay occurs at these synchronization points will be low, at least when the number 

of processes competing is low. So the total loss in execution time owing to synchronization must be 

low for implementation 2. 

6.2. Resource contention 

While the speedup characteristic of implementation 2 is reasonably good, it is far from ideal 

especially at higher parallelisms. As the speedup curves adjusted for cluster contention show, most 

of the loss in efficiency is attributable to contention for cluster resources. Cluster contention arises 

out of the underlying hardware and software architectures. Since Kmaps play a central role in 

providing the StarOS virtual machine, considerable use of them is inevitable. Also a large number of 

small objects (the nodes of the state space tree) are created by the programs using the StarOS utility, 

the Object Manager, which is a cluster-unique subsystem. While it is possible to reduce their use by 

deliberately trying, we desisted from doing so because we wanted to concentrate on broader issues 
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that are nearer to the logic of the program rather than on issues near the architectural level. 

System-level contention for implementation 2 starts to play a more significant role after a 

parallelism of about 12. This contention must be for the locks in the program and for the intercluster 

bus. It may be possible to reduce the contention for the locks by using a locking scheme more 

complex than the present spin lock with a small wait loop. The contention for the intercluster bus 

arises from accesses to data lying in remote clusters. Algorithms based on tree search make 

considerable use of common data and seem particularly susceptible to system-level contention. 

6.3. Process granularity 

Process granularity here means nearly the same as what Kung calls module granularity [Kung 80]. 

It is the average amount of computation done by all processes between two consecutive points 

(instants) of communication among them. In the synchronous implementation 1, processes 

communicate with each other implicitly through the master process; so here the communication 

points are the points of synchronization. In implementation 2, processes communicate with each 

other indirectly through shared information in the state space tree; so here communication points are 

those when some process accesses the state space tree to update it or to choose the next node to 

expand. 

How do the granularities of the two implementations compare? For both implementations the 

amount of computation for setting up a node at the same depth in the tree is about the same; let its 

average value be W units. In implementation 1, for a parallelism of A/, between two communication 

(synchronization) points, each process computes W units and so the N processes together compute 

N*W units. While in implementation 1 the interval between communication points remains constant 

with parallelism, in implementation 2 it decreases. In implementation 2, let the interval between two 

points when a particular process accesses the state space tree be 7\ As the parallelism increases 

from 1 to A/, the average interval between two communication points (points when any process 

accesses the tree) decreases from T to T/N, taking the computation by one process between 

communication points from 2*W to 2*W/N. This keeps the total computation by N processes 

constant at 2* W. So the granularities of the two implementations are about the same for a parallelism 

of 2; however, as parallelism increases, the granularity of implementation 2 remains constant, while 

that of implementation 1 increases. 

Communication exacts a cost - an explicit cost for using some communication mechanism and an 

implicit cost owing to possible idleness of processes and to contention. Since, by definition, larger 
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granularity means more computation done between communication points, for the same total 

computation it also means fewer communication points leading to possibly reduced overhead for 

parallel execution. However in algorithms of the heuristic search variety, such as the LMSK 

algorithm, communication points correspond to points when some heuristic is applied to guide the 

search for the solution; so a larger granularity means less effective application of the heuristic and 

more search and work for solving the problem. The experimental data on the number of nodes 

generated for the two implementations support this expectation. The granularity and the number of 

nodes generated for implementation 1 increase with parallelism, while, for implementation 2, they 

remain fairly constant. For implementation 1, not only the savings from the fewer communication 

points but even additional computing power at greater parallelisms was completely nullified by the 

increase in work and the speedup is constant after some parallelism. 

6.4. Parallelization 

The better performance of implementation 2 is directly attributable to its better granularity 

characteristics, its asynchronous control, and its egalitarian process structure. These characteristics 

of implementation 2 were made possible by the parallelization scheme was adopted. Parallelization 

schemes differ in the degree of freedom that they allow a designer when making other implementation 

decisions for the algorithm. In implementation 1, for example, the tight control is a result of 

parallelizing at the level of setting up the multiple child nodes and there is no direct way to achieve 

loose control; implementation 2, however, lends itself easily to asynchronous control (as well as tight 

control, if we so choose), with each process expanding a node without being synchronized with the 

others. The parallelization scheme that one decides to adopt will have to be one that will make 

possible a wider spectrum of implementation decisions; it should permit the choice of those program 

characteristics that lead to better performance. 

6.5. Parallel search 

The paradigm of multiple processes asynchronously setting up multiple nodes of a state space tree 

through which they share global information - the paradigm of implementation 2 - seems to be a 

general parallel problem solving scheme applicable to most, if not all, tree-searching algorithms. 

On a preliminary examination of the suitability of different kinds of algorithms for adaptation to 

parallel execution, heuristic search algorithms (of which branch and bound algorithms are a special 

case) seemed less amenable for parallelization at a gross level than other kinds of algorithms, such as 

segmentation or divide and conquer. This fear arose from two general properties of such search 

algorithms. They make extensive use of global data without any predictable access pattern 
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throughout the computation, leading to a large number of expensive remote accesses and increased 

contention. Experimental data bears out this expectation. The other property is the generally serial 

nature of heuristics. Heuristics guide computation toward the solution incrementally as the 

computation progresses towards the solution. We surmised that when the computation is done in 

parallel, the heuristics become less effective in searching for the solution, leading to more total 

computation to solve the problem. As it turned out, however, the serial nature of the heuristic search 

does not seem to affect total computation significantly in implementation 2. This is in spite of LMSK 

algorithm proving to be a fairly focussed one. The above pessimistic argument has no cognizance of 

the concept of granularity, which is the key to the understanding of this behavior. 
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