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Abstract

We discuss issues concerning code generation in the context of the Production Quality Compiler
Compiler (PQCQ) project.  Several important activities in code generation are cyclically
interdependent. The task of structuring an efficient production quality code generator is therefore a
challenging one. This paper reports on some uses of the principle of delayed binding in target
program synthesis by PQCC generated compilers. Through the use of this principle, we have

this paper is concerned with issues in the discovery of assignment sequences, the identification of
temporaries and the utilization of implicit computations in target machines. As these phases are
considered in the light of a Compiler-CompiIer, we describe their parameterization with respect to

source languages and target machines.



1. Introduction
The Production Quality Compiler Compiter {PQCC) project [26, 17] was an experiment in building a
collection of generators, tools that automate all aspects of compiler construction. Compilation is
comprised of a large variety of activities. They are explicitly recognized in the design of PQCC
generated compilers (PQCs). For each such activity, an expert phase was designed, parameterized by
relevant aspects of source languages and target machines (referred to as refativization throughout
this paper). The process of relativiiation is automated through corresponding generators. In the
broad picture, PQCC differé from other related efforts:
1. Target program synthesis is not an ad hoc extension of a formalized view of source
program analysis. This was the case in all the early syntax-directed compiler-compilers

[7, 13, 14] and, more recently, is true of systems based on formalisms for the definition of
semantics of programming languages [9, 22, 16}

2. Retargetability and portability of compilers is often achieved by separating the code
generation algorithm from the target machine data that drive it [10, 8, 15, 4]. ' The task of
this code generation algorithm is usually to effect instruction selection (and register
allocation in some cases). in PQCC, the correspondance between semantic primitives in
the internal program representation and target machine operations is derived from a
description of the target machine [4]. Others build this correspondence by enforcing
conventions in the choice of the internal representation and target machine specification.

3. There is a choice to be made between the uniform use of general solution processes for
solving special cases of problems and the construction of separate but specialized (and
usuaily cheaper) procedures for tackling individual problems. In PQCC, the latter
approach is used in designing the phases of PQCs, the expert system approach. In
contrast, the ECS project [2] uniformly uses global data flow analysis techniques in
implementing various program optimizations and systematically applies them at each
stage of the compilation process.

. A substantial portion of the PQCC research effort was in the discovery and design of the phase
structure of the generated PQC [20]. The BLISS-11 compiler [25] provided an initial approximation to
the desired structure of a PQC. As can be appreciated, there was a strong interplay between the
delineation of the boundaries of the phases and the design of'speciaiized generators. The design of
the generators themseives took up the rest of the research effort [18, 23, 27, 4, 21]. Figure 1-1 gives
the gross structure of PQCC. As is conventional, the PQC can be broadly divided into a Front-End
(FE) and a Back-End (BE). The FE analyses the source program and converts it into an internal
representation (IR) [3,11] depicting the abstract syntax tree. Effecting the translation and

synthesizing an efficient object program is the task of the BE.

There are over 50 phases in our BE, some of which are the subject matter of this paper. Each of

them accepts as input the IR generated by its predecessor and outputs another IR. The processing
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performed by the phase is reflected in one of several ways:
e it is a transformed version of the input, reflecting an optimization‘;

e it is an annotated version of the input, reflecting the results of the analyses performed by
the phase,

e it is a transiated version of the input, resulting in expansion of the input to reflect the
introduction of implementation detail through change of operator and leaf nodes to
represent the translation from one language to another.

Building interfaces between the BE phases that handle enrichment and changes in the IR can be

systematized [19].

To get a conceptual hold on the problem tackled by the BE, it can be viewed as a sequence of two

translation steps.

o The first stage of the translation process casts the source program in the mould of a
Virtual Machine (VM) designed by the compiler writer. Herein are implemented certain
global resource allocation policies concerning the representation of procedure linkage
mechanisms, parameter passing conventions, storage layout design for static and
dynamic user defined data structures and interface to runtime systems. In the present
version of the system, the relativization of these phases with repect to target machines is
done by hand. The automated generation of these phases is a topic of continuing
research.

¢ Given the VM program in IR, the second stage completes the transiation process by
synthesizing an equivalent target machine program. This stage is concerned with local
issues in programs, such as the basic biocks and the flow graph that describe the body of
a procedure. The bulk of computing done in a program is in its basic blocks. We expend
much effort in effecting a careful and efficient translation of these parts of source
programs,

In this paper, we are largely concerned with the latter stage of the translation process, depicted in
Figure 1-2. The activities performed in this part of the BE are:
1. Identify Temporaries: Anonymous operands in source program expressions have to be

identified so that they may be allocated storage locations or registers in the target
machine. '

2. Sequence Operations: Expression evaluation has to be sequenced such that few
temporaries are needed, registers are efficiently used, and the instruction set is well
utilized.

3. Use Implicit Computations: Effective address generation mechansims and instructions

1. . .
in the spirit of scurce-to-source transformations.



that represent expressions involving severa! operators are utilized well in the translated
program.

4. Allocate Registers: Utilize registers effectively for storing temporaries and performing
operand accesses.

8. instruction Selection: Several target machine instructions may realize the same source
language function. Choice of proper instructions so as to efficiently perform the task
described by the source program is crucial for generating quality code.

As shown in the figure, these activities are heavily interdependent. Optimal translation of some of
these aspects is known to be computationally expensive. In POCC, we have designed a linear
sequence of phases that performs the above activities efficiently and produces good quality code.
We adopt delayed binding as the general philosophy of breaking cycles of interdependence and
designing a sequence that approximates the original [25]. Application of the principle of delayed
binding has been often advocated in the program development process. Choice of data
representation and the introduction of variables in programs are typically delayed tilt an appreciation
of the operations involving them is obtained. Then, with hindsight, efficient programs can be
constructed, As this part of the BE is concerned with the issue of target program synthesis, the utility
of this principle should not come as a surprise. This philosophy is reflected in the nature of these BE
phases:

e Some activities are performed twice. The first time, a set of feasible'soiutions are
generated. At this stage of compitation, perhaps not enough is known for choosing the.
best solution. However, the set of feasible solutions may provide adequate information for

performing a part of another activity. The second time around, the best passible solution
is chosen with respect to the prevailing circumstances at that stage of compilation.

e Making conservative assumptions about a succeeding activity may resoive the cyclic
dependancy and yet allow near-optimal code to be generated.

e Appreciation of a good approximation of the effect of a succeeding cyclically dependent
phase may allow optimistic assumptions to be made to resaive it. The hindings performed
by this phase may then be made with the confidence that pessimization that may resuit in
the succeeding phase is marginal and locally contained.

With this background, a broad view of this part of BE is given in figure 1-3 as a sequence of groups of
phases, each of which, in turn, being a phase sequence in itself. A brief description of each group

follows:

o FLOW: Detect basic blocks and construct flow graphs that comprise procedure bodies in
the source program. Global data flow analysis is performed, common subexpressions are
detected, strength reduction and code motion are performed, and assertions are
propagated to strengthen the effectiveness of future phases.



¢ DELAY: The main subject of this paper, these phases delay the identification of
temporaries, discover an efficient assignment sequence to effect expression evaluation,
and sequence operand evaluation so as to minimize register requirements. To perform
these tasks, we need to discover feasible uses of the effective address generation
mechanisms of the target machine and make good use of compaosite operations in its
opcodes. An important strategy here is to algebraically restructure source expressions
with a view to simpiify, e.g., folding of constant expressions, or Wwith a view to utilize
features of the target machine, e.g., multiple arithmetic units, general registers, implicit
address alignments during operand access, etc..

o TNBIND: ldentify temporaries, analyse their lifetimes, and efficiently pack them into
registers and storage locations of the target machines.

« CODE: Choose the effective address generation mechanisms to be used far performing
individual operand accesses, order the hasic blocks to avoid explicit jumps in the
representation of the flow graph, select instructions to effectively utilize the instruction
set, and handle register spilling and short term register ailocation.

e FINAL: Perform peephole optimization.

Expectedly, the phase groups from DELAY onwards are increasingly target machine dependent. In
constructing a PQC, the programming of the algorithms of the various phases in BE is a cne time
effort. The parameters that particularize these algorithms with respect to a source language and a
target machine are obtained from respective data bases output by the PQCC generators. The data

bases are produced afresh for every generated PQC.

Now for an overview of the rest of the paper. Section 2 gives the details of ‘construction of
ALGEBRA, a phase that performs algebraic IR transformations. This phase is automatically
constructed by BONSAI, a PQCC generator that is also described. Section 3 is concerned with the
discovery of efficient assignment sequences equivalent to source expressions. To perform this task,
we consider (a} the desirability of computing resuits in user defined variables, (b} the target machine
dependent possibility of combining some unary operations with binary operations, and (c) the feasible
uses of effective address generation mechanisms. The basic reason for undertaking these activities is
to avoid making demands for temporaries. This is achieved by overloading user variables, overloading
unavoidable temporaries, and associating with each relevant source expressibn a set of feasible
effective address generation mechanisms that either compute the desired value or perform the
necessary operand access (thereby obviating the tempaorary need for a target machine resource to
store either the value or an address). Disscussion of efficient sequencing of operand evaluation
brings us to the end of this section. Finally, in Section 4, we review the presented material and point

out possible directions for further work.



2. Simplifying Algebraic Transformations

In this section we discuss ALGEBRA, an early phase of DELAY, and its generator BONSAI [27].
ALGEBRA transforms source language expressions represented in IH. The transformations use the
commutativity, associativity and distributivity properties of source language operators. Some of the
transformations are specialized to common sources of optimization that arise in subscript
expressions and addressing array elements. ALGEBRA is not a generalized algebraic simplification
system; rather, it is a simple-minded simplifier that works torwards efficient expression evaluation on
target machines. Techniques predominant in this phase are:

e canonical representation of expressions so as to detect and evaluate constant
subexpressions;

e restructuring the representation using algebraic properties of operators so as to reduce
demands on temporary storage locations;

o expanding subscript expressions which can give rise to constant subexpressions;

e restructuring expressions (that explicitly reflect operand alignment) so as to use effective
address generation mechanisms in target machines.

Of the above transfarmations, three are indirectly target machine dependent and need appropriate

relativization:

s the compile time evaluation of constant expressions requires knowiedge of the
representation of constants in the target machine and good algorithms that respect the
properties of the representation when performing the evaluation;

e the properties of IR presumed by later phases in locating operand accesses and their
transiation to effective address generation mechanisms of the target machines;

¢ the set of algebraic\transformations to be applied to the IR so0 as to reduce demands on
use of target machine resources depends on the characteristics of the target machine,
such as the availability of multiple arithmetic units, etc.
The above issues are comparatively simple. The first problem does require a suitable
parameterization of the target machine. The second is simply resolved by using uniform conventions
in the coding of the PQC phases. The last is tackled by generating different ALGEBRA phases for
different target machines, thereby providing one of the motivations for designing and implementing

BONSAI.

As can be seen, the scope of the projected transformations is limited and an efficient realization is

feasible.



In the BE, source language relativization is largely obtained through the richness of the IR. As
ALGEBRA is designed with respect to the IR, rather than a specific programming language, much of
the phase can be common to many generated PQCs; this is so because there are many operators
common to the programming languages handled by PQCC. Even so, the generation of ALGEBRA for
the DELAY part of a specific PQC is eased by BONSAI, a tree transformer generator.

We will first ook at BONSAI and then at ALGEBRA.

2.1. BONSAIl: A Tree Transformer Generator

BONSAI is a simple language for describing certain kinds of tree transformations, expressed as
{pattern, action> pairs. The action in each such pair is applied to a tree node if it satisfies the pattern.
The described transformations are those internal to phases of PQCs. Given the narrow application
domain, and a need for efficient implementation, BONSAI has several low-level aspects, the most
restrictive of which is the tight coupling between the ianguage constructs of BONSAI and the
implementation language for PQCs, currently BLISS [24].

A BONSAI program is a specification of a phase of a PQC and it consists of the following sequence

of definitions.

¢ phase name.

e sequence of routines in the implementation language which may be invoked during
pattern matching or tree transformations defined below.

e sequence of productions defined in the {pattern, action> sublanguage.

e specification of the driver that performs the overall control of the pattern matching and
tree transformation process.
Of these, only the last two are important to the discussion. The driver is specified by a string over the
alphabet {L,R,N}, respectively indicating traversals of left or right subtrees and a visit to the node.
For example, preorder, inorder and postorder traversals are given by the strings NLR, LNR and LRN
respectively. Multiple occurrences of L or R in the string denote multiple traversais of the
corresponding subtree, and multiple occurrences of N denote multipie visits to the tree node; the
interpretation of the controf string is from left to right. From this simple specification, an appropriate
driver routine that controls the phase is generated. The main part of a BONSA! program is expressed

in the <pattern, action> sublanguage elaborated below.

A pattern is either built-in or finitely constructed by the user. Some built-in patterns are any,



matching any tree node, anyseq, matching any sequence of tree nodes, k, matching any constant
leaf node, and nk, matching any non-constant node. Constructed patterns are n-tupies (providing a
prefix representation of the root node of the pattern); elements of the n-tuple may be labelled $i,
where 0, and may be n-tuples themselves, all labels occurring in a pattern being unique. The first
element of the n-tuple must be either one of the built-in patterns or a specific operator. Patterns may
optionally have predicates associated with them so as to express not only structure but also
properties of labelled nodes in the pattern. Arbitrarily complex predicates can be specified by
passing labelled nodes as parameters to routines in the implementation ianguage of PQCs. The
syntax of BONSAI| was designed to easily relate to the tree structure of IR. For the sake of simplicity of
Hlustration in this paper, we will use the normal infix notation to describe both patterns and the
transformed expressions. For example, the pattern
51:($2:k + $3:any)
describes an expression, tagged as $1 for later reference, which is a sum of a constant, the addend,
tagged as $2, and any other operand, the augend, tagged as $3. Another example of a constructed
patternis
$1:{32k + B3:(84:k + $5:nk)) | not cse($3)

a sum of a constant and an expression, which in turn is a sum of a constant and a non-constant;
additionally, the latter expression is not a common subexpression. The predicate following the bar ()
is assumed to be a boolean expression in the implementation language of PQC, and hence it is
presumed that c¢se is a user supplied boolean function of a single (tree) parameter, available to the

BONSAI program through a preceeding declaration.

Transforming actions are ways of restructuring elements that match the labelled portions of the
pattern. Built in transforming actions allow for node replacement, construction of nodes, and
construction of constant and non-constant leaf nodes. Invocation of PQC implementation language
routines in actual parameter positions of these buiit-in transforming actions is allowed. An example of
a statement in the <{pattern action> language is

$2:k + $3{P4:k + $5:nk) | notcse($3) = $5 + eval($2 + $4)
where the constructed pattern is taken from the above exampie; the transforming action invokes a
user defined PQC implementation language routine called eval which is assumed to effect folding of

constant expressions, and is accessible through the dectarations in the BONSAL program.

The BONSAI processor converts a BONSAI program into a PQC implementation language program.
The basic nature of this translation is to generate a routine for every production, and a controlling

driver program. On visiting a node, the controlling driver program invokes each production generated
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. routine, in the order of their declaration.

2.2. ALGEBRA: A Simple Algebraic Simplifier

In PQCC, exploitation of target machine features was the main motivation for choosing amongst the
jarge body of feasible compile-time optimizations. As a result, the kinds of algebraic simplifications
attempted in the generated PQCs are limited to those that aid in, or reduce, the work involved in
generating good quality code; semantics preserving source-to-source optimizations are presumed to
have already been effected. The nature of tree transformations that are attempted in the phase

ALGEBRA contribute to good use of target machine resources.

There are two groups of transformations in the present version of this phase, designed to be a part
of the BE of an ADA subset compiler to produce code for the VAX-11 system [5]. Each of these
groupé is discussed below, both with respect to the transformations performed and the ways in which
they contribute to good code generation. The transformations are presented in the order they are
applied by ALGEBRA. To simplify the description of the transformations, the following conventions

are used:

» ak denotes any constant operand;
e nak stipulates that the operand is not a constant;

o leftleaf stipulates that the left operand is a leaf of the expression tree and is either a literal,
or a simple variable;

¢ ic denctes a load-time constant, e.g., a relocatable address;

e cse stipulates that the operand is a common subexpression;

® In denotes aliteral or a name;

o isaddr checks that the expression is to evaluate to an address;

¢ eval denotes an operation that performs compile-time folding of constant expressions
and occurs in transforming actions of productions.

The above conventions are used to describe the nature of operands in patterns either in situ or as

predicates in conditions associated with patterns.
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2,2.1. Basic Transformation to Canonical Representations

In the present implementation, ALGEBRA is limited to transforming arithmetic expressions, the
largest class of expressions commonly found in programs. Generalising to other classes of
expressions should prove to be a straightforward extension of the ideas used in handling arithmetic

expressions.

There are many possible canonical representations of expressions. The representation that we
have chosen is guided by the desire to simply perform foiding of constant expressions. For our
purposes, it is enough if simple operands of infix operators, such as constants or simple variables, are
their right operands. For commutative operators, this transformation is trivial. For others, simple

algebraic equivalences suifice to provide the basis for the transformations.

The first group of transformations in this catagory deal with the simplest cases, viz,, the left
operand of an infix operator is either a constant or a simple variable.
o ($2:any + $3:any )| leftleaf($2) => ($3 + $2)
($2:ak + $3nak) =>($3 + $2) .
Commutativity of addition is used to transform simple expressions to canonical form by
applying the above two rules. Due to this transformation, simple operands are referericed

last; so the temporary storage demand that they may create will have the shortest
possible lifetime. Hence, even this simple transformation can lead to good code.

e {32k - $3nk) =>( - 53 + $2)
($2:nk - $3:k) =>($2 + eval( - $3))
These two simple rules convert subtraction to addition for the purposes of canonical
representaion. The latter rule causes the negation of the constant operand to be
performed at compile time so that the possibility of using indexing to represent addition in
target machine is created.

o ($2:k * $3ink ) =>($3 " $2)
Commutativity of multiplication is used for obtaining canonical representation.
The next group of transformations concern address arithmetic expressions. Compiex address
computations, representing component accesses of statically allocated objects, usually involve
arithmetic with load-time constants that represent relocatable addresses. In some cases, the
relocatable address is known at compile time; adding constant offsets to such addresses can then be
performed at compile time. Eise the relocatable address is known only at load time; in such cases,
adding constant offsets has to be done by the loader too. To take care of the above two cases, either
at compile time or by providing requisite information to the loader, the load-constant and the constant
offset must be paired together with an appropriate operator. The following two rules provide the

required transformations.
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$2:/c + $3:( $a:nk + $5:k )| notcse($3) => B4 + ($2 + $5)
$2:c + $3:( $4:nk — $5:k ) | not cse(P3) =>4 + ($2 - $5)

The above sort of expressions typically result from references to fields of component records of
global arrays, e.g., afe].f where ais a global array whose base is a relocatable address, and hence a
load-time constant, e is any valid non-constant array-element-access computation, and f is a constant

offset required to access a field.

For multiple general register machines, such as the VAX-11, expressions of the form (fa+ b} +c)+d
are preferable to (a + b} + {c + d} for efficient left to right evaluation. As can be seen, the lifetimes of
the intermediate values to be preserved during the computation of the expressions are short. This
leads to resuability of temporary store and good utilization of target machine registers. Also, should b
and/or d be constants, canonical representation transformations are in order. ALGEBRA has a class
of transformations of the form

$2:( $4:nk + $5:k) + $3:( $6:nk + $7:k )| not cse($2) and not cse($3)
=>($4 + $6) + eval($s + $7)

Table 2-1 summarizes all the transformations in the above class. The standard Decision Table
format is used to describe the relevant cases. in the implementation of this class of transformations,
all possible combinations of operators and conditions satisfied by the operands are explicitly
enumerated.? Similar transformations of the form

$2:($4:nk + $5:k ) + $3:un | notcse($2) => $4 + eval($3 + $5)

are generically described by the rule

$2:( $4:nk 0, $5:k ) O, $3Jn | not cse($2) =>$4 0, eval($3 O, $5)
where O, and O, are asin Table 2-1.
and O, = (0,,0,)

This completes the description of transformations to canonical representations.

2.2.2. Simplifying Subscript Expressions
The second group of transformations in ALGEBRA is specifically concerned with subscript
expressions, a common source of simple optimizations. Consider an array a declared as
vara: array[i.mk.n]of T

The reference afx,y] will usually be represented by the expression

2 . . .
In retrospect, improved pattern construction facilities in BONSAI can lead to simpler implementations of such groups of
transformations.
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Rule1 Rule2 Ruie3 Rule4 elserule

k(Tg) T T T F
k(T,) T F - -
_cse(Tz) F F F -
cse(T,) F F F
0,= 0, X X
0, = {0,,0,) X X
0, = f(0,H0,,0,)) X
(T,0,Ty) O, (T, 0,T.) _ X
(T, O, Ty O, eval(T, O,T.) X
(T,0,(T,0,THO,T, X
(T, 0, T O,T,)0, T, X
(T,0,T)O, THO,T, X
where T1 = 'I'2 01 Ta O}n OJ[L f(Om,Oﬂ)
T,=T, 02 Te + + +
Ts = TB O3 T., + - -
and 01,02,035{+,-} - + -
- - +

Tabie 2-1: Transforms for (T, O, T5) O1 (Ts O3 T?’
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a+ ((x+ i+ y+ k)l
where a is the base address of the array
x,y are arbitrary { row and column ) expressions
ik are the lower bounds of ( row and column ) index ranges
jis the number of rows, i.e.,, m~i+1
lis the size of an element of type T in terms of target machine storage units.

By distributing multiplication over addition in the above expression, constant subexpressions i*j and
k*I can be made candidates for folding. The relevant transformations, to be repeatedly applied to
such expressions from the innermaost nested subexpression outwards, are generically expressed as

$2:( $4:any O, $5:k ) * $3:k | notcse($2) => ($4 * $3) O, eval($5 * $3)
where O, e{+,~}

A common problem in dealing with array elements is address alignment. Target machines do have
some built in, preferred, data types for which efficient access mechanisms and manipulation are
provided in hardware. For instance, the VAX-11 has 4 byte words. Effective address computations
involving indexing causes the index values to be automatically scated by 4. Recognizing these special
cases can lead to fruitful uses of implicit address computations in target machine instructions. The
transformation described below sets up the convention used by succeeding phases in searching for
the presence of these special cases.

$1:($2:any + ($3:any * $4:any ) ) | isaddretx($1) => ($4 * §5) + §2

In all the above transformations, it is assumed that the invocation of eval deals with the special case

of a constant expression folding to zero.

3. Delaying the ldentification of Temporaries
Anonymity of intermediate states of computation and simplifying conventions are two common
principles in the design of higher level languages:
¢ Anonymity frees the user from identifying (naming) parts, and is usually achieved by

recursive specification of language features, e.g., operands of operators in infix
expressions are implicit in the notation and can be arbitrarily complex.

¢ A use of simplifying conventions is to obviate the need to explicity represent the nested
structure of computation. For example, the use of operator precedence obviates the need
for paranthesizing all operands, and hence leads to lexical simplicity as well as the
avoidance of over specification of sequencing of operators.
Qur interest in these principles is from the standpoint of basic blocks. For the higher level languages
of interest to PQCC, the application of these principles gives rise to a rich applicative subianguage of

expressions and a composite imperative language of assignments and sequencing. Cn the surface,
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these two aspects seem orthogonal and are often treated as separate conceptual worlds, the world of

values and the world of side effects.

Machine lanquages differ in degree with respect to the above concerns: the applicative
sublanguage here is rudimentary and is fixed in structure, as is the imperative part. However, these
two aspects are not separate orthogonal parts of such languages; every statement (instruction) in a
machine language has a bit of both. The applicative sublanguage consists of a fixed class of
subexpressions that arise in effective address computations for identification of operands, and a fixed
class of simple, typed expressions, both of whose evaluation is internal to the machine. The
imperative part is just simple assignments. All operands of the applicative and imperative parts of a
statement are explicitly identified. We refer to the applicative sublanguage of machine languages as
implicit computations in machine instructions. An example will illustrate the above delineations.
Consider the PDP-11 [6] instruction

BIC X(R1}, RO.
Expressed in the form of imperative assignments in BLISS, the equivalent statements would be®

RO
= (NOT((X + .R1)})JAND RO ;PC = .PC + 4

where NOT and AND boolean operations on 16 bit words. Hidden in this instruction is the applicative
expression .(X +.R1), and the expression of the form (NOT(A)) AND B. They are the implicit
computations performed in the execution of this instruction. The former implicit computation is typical
of contexts requiring operand access, and the latter is typical of contexts where unary operations are
combined with appropriate binary operations in contexts requiring values or denoting assignments.
The imperative aspects of the above instruction are the two assignments. The first assignment is

explicit, and the second assignment (to the program counter) is implicit in the target machine.

Due to the simple and fixed nature of the appiicative and imperative aspects of machine languages,
translation from higher level languages to machine languages is therefore seen to necessitate the
loss of anonymity of operands in source language expressions. Compiler generated temporary
names are used to denote these anonymous operands; the loss of anonymity is complete with the
introduction of explicit assignments with these temporary names as their destinations. Optimized
translation requires the minimization of the number of temporary names generated, a process that

interacts with the choice in sequencing the newly introduced assignments.

In this section, we describe the techniques we have empioyed to postpone the identification of

aThe unary contents of operator is represented by the period {) in BLISS, and denotes an access to the value of its operand.
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anonymous entities till it becomes clear that their identification cannot be avoided. lssues in
sequencing influence the design of the technigues described below. However, the finai determination

of an optimal sequence is held off till the end of the application of these techniques.

3.1. Overloading and Target Path Determination

A common programming practice in languages with restricted scoping facilitites is to use the same
variabie for different purposes in temporaly disjoint parts of a procedure. For instance, a single loop
counter variable may be used to control several non-nested loops in languages like FORTRAN and
Pascal. The same effect couid have been achieved by using separate control variables for each of the
loops. However, noting that the lifetimes of non-nested loops are disjoint permits the use of a single
variable to control alt of them. The variable has different semantics at different points in the
procedure, viz., it has overloaded semantics. This complication of the semantics of the variable is

offset by the storage optimization that results.

We expiore the possibility of applying the above principle to minimize the number of temporary
names required to identify anonymous operands of operators in basic blocks. Specifically, we look for

cases where it is feasible to overload the semantics of

e user declared variables with some anonymous operands

& some anonymous operands with other anonymous operands.

To perform the above analysis, however, requires a preliminary identification of anonymous
operands. In traditional IRs, such as quadruples, a unique temporary name is associated with the
result of every applicative expression. This view is simplistic in that it ignores the structure of implicit
computations in target machines and that good code generation entails their effective use. As we are
interested in generating production quality code, our discussion on overloading the semantics of
some temporary names has to be mixed with the issue of discovery of feasible implicit computations.

We refer to the analysis required to effect a good overloading policy as target path determination.

With respect to the two cases of overloading itemized above, the following brief observations are in

order:

o for user declared variables that are assigned a computed value in a basic block, there is a
hole in the lifetime of that variable between its last use in the basic block and the point it
is assigned its new value -- during this period, it may prove beneficial to overload this
target of the assignment with anonymous operands in the computation of the value to be
assigned to the target. We refer to this aspect of target path determination as
computation in destination.
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o for anonymous operands that are not common subexpressions, their only use in the
computation of a new (perhaps anonymous) value is their last use. Associating a
temporary name with such an operand amounts to assigning the value of the operand to
the temporary name, and leads to the situation typified by the following example: the
expression a*b + ¢*d could lead to the sequence

TT: =a*b; T2: = h*c; Ts; = T, + T2

where T, T, and T, are temporary names, and either the semantics of T, could be
overlpaded with the semantics. of T, or the semantics of T, could be overloaded with that
of T This choice is target machine dependent, as wilt be explained in a section below,
As it turns out, the decision is based on the nature of unary operations available in the
target machine, and the associated costs when these operations are combined with the
assignment operation in target machine instructions. Making good use of such
combinations is a part the discovery of use for implicit computations in target machine
instructions. We refer to this class of optimizations as wunary-complement
optimizations [25). Effecting this choice completes target path determination in basic
blocks.

A detailed discussion of the issues in computing results in the destinations of assignments and in

unary-complement optimizations follows.

3.2. Computation in Destinations

For the purposes of introduction, the above discussion of destinations of assignments only
mentioned user defined variables. Actually, aside from user declared variables, an important class of
destinations is the set of implicit variables required by the semantics of higher level languages.
Examples of such implicit variables are locations that contain value parameters, bounds of for loops,
computed addresses of with variables in-Pascal, computed expression values passed by reference in
FORTRAN, etc.. In each of the above cases, the semantics of the source language necessitates an
assignment to the implicit variable. Also, in each case, there is no prior use of the implicit variable,
and hence its semantics can be overloaded with that of some temporary names right up to the point
. where it is assigned the value it should denote. In such cases, as well as in the case of assignments to
user declared variables in the basic block under consideration, we take the conservative view that
these locations are used, if benefical, only to store anonymous operands of the expressions they
finally denote. Also, we ignore the possibility of using user variables to store common subexpressions,
as illustrated by the following example:

a:=b*; b:=b"c+a.

In this case, as b*c is a common subexpression, neither a nor b are considered as candidates for
overloading with the anonymous operand b*c. We believe that the conservative view we have taken
only affects somewhat unnatural or pathological cases and contributes to the simplicity of analysis

required by the task.
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The phase in DELAY that determines the legality and desirability of performing computation in
destinations in respective passes is called CDEST. As can be expected, legality is a target maching
independent issue. Not so obvious is the fact that computation in destinations may not be always
desirable. This value judgement is target machine dependent. Hence the need to relativize CDEST
with respect to target machines. The effect of this phase is to annotate every expression tree node of
the IR. The annotation states whether it is desirable to store the value of the computed expression in a

program specified destination, and if this is indeed the case, then it points to appropriate destination.

It is legal to compute a value in a destination if and only if the current value in it is not needed a_t a
jater point in the evaluation of the expression under consideration. To determine legality of
computation in destinations, the first pass of CDEST locates basic blocks in the IR, and then locates
the assignment nodes in the basic blocks. Each of the assignment nodes identifies as its left operand
(subtree) a possible candidate destination. A LRN traversal of the right operand is performed to
determine the legality of using the candidate destination for storing the value of the computed
subexpression represented by each node visited during the traversal. Information about the
candidate destination is passed from the root of the expression tree in the IR to its leaves. The legality
issue for each node, and the question of which operand of the aperator at the current node should be

computed in the destination, are both determined bottom-up.

The factors that determine legality are several and concern hoth the candidate destination and the

node being processed:

¢ do the candidate destination and the expression represented by the node overlap?
e |3 the expression represented by the node a common subexpression?

e Will the evaluation of the expression in the candidate destroy its original contents?

Combinations of these factors represent the legality status of a node with respect to the candidate
destination; they are encoded as states and associated with the nodes as a result of the processing.
The state of the current node is determined in terms of its descendants, whose states would have

already been determined due to the nature of the LRN traversal. These states are:

NIND not involved and not destroyed

NID not involved and destroyed

IND involved and not destroyed

ID involved and destroyed

CNI common subexpression not involving the candidate destination
Ci commaon subexpression involving the candidate destination.

A candidate is not destroyed if no new value is stored in it, e.g., leaves in the tree that represent user
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variables are just addresses in the target machine store and the unary contents of operation has to
be performed before any action takes place -- so such leaves by themselves do not destroy the

candidate destination.

To illustrate the process of setting the state of the current node in terms of the states of its
descendants, we run through a small example. Consider the VM expression {(a+.b)*(.c-.d),

assuming the destination candidate to be a.

¢ the node leading to the leaf a would have the state IND;

s the nodes leading to the leaves b, ¢, d would have the state NIND;

¢ the node for the subexpression .a would have the state (D;

« the nodes for the subexpressions .b, .¢, .d would have the state NiD;
» the node for the subexpression .a + .b would have the state 1D;

e the node for the subexpression .c - .¢ would have the state NID;

¢ and the node for the entire expression would have the state iD.

Knowing the state associated with the descendant nodes can further help in deciding which of the

descendants should be computed in the candidate destination.

Two tables are constructed, Table 3-1(a) for binary operators and Table 3-1(b) for unary operators,
for determining the state for the current node in terms of the state of its descendants and for

determining which descendant should be computed in the candidate destination. The possibilities for

the latter are:
R the right operand should be computed in the destination
L the left operand should be computed in the destination
B the current node can be computed in the destination, but it is not legal to

compute its descendants in the destination, i.e., the candidate is blocked as a
destination for the descendants.
* for the purposes of legality, it does not matter which descendant is computed
in the destination.
To use Table 3-1(a), we select the row according to the state of the left operand and the column
according to the state of the right operand. The entry in the table gives the state to be associated with
the currently visited node and also determines the descendant that should be computed in the
candidate destination. Table 3-1{b) has only one column; the row is selected according to the state of

the only descendant of the current node.



0

n POP-11

:

MOV B,A

ADDC,A

NIND
NIND NID, *
NID NID, *
IND D, L
D ID, L
CNI NID, R
cl ID, B

Table 3-1: Tables for node state determination

On DEC System 10
a,b,c in registers
MOVE A,B

ADD A,C

NID IND

NID, * iD, R
NID, * D, R
D, L iD, L
D, L iD, B
NID, R \D, R
D, B ID, B

D
ID, R
ID, R
ID, B
D, 8
ID, R

D, B

NID, L
NID, L
ID, L
ID, L
NID, B

10,8

{a) Table for binary operators

descendant node

state state

NIND NID

NID NID

IND ID

D D

CNI NID, B
{ (D, B

(b) Table for unary operators

On DEC System 10
a,b,c in store
MOVE R,B

MOVEM R,A

MOVE R,C

ADDM R,A

Table 3-2: Codesequencesfora:=b+c

1D, B
D, B
D, B
D, 8
ID, B

D, B

On DECsystem 10

avoid destination
MOVE R,B
ADDARA,C
MOVEMR,A
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At the end of the first pass, the relevant expréssion trees are annotated by state information and the
selected descendant. Now that legality of computation in destination is known, we need to analyse the
desirability of actually performing the evaluation in the destination. The reason why this analysis is
target machine dependent is that we know very little about the target machine resources that will be
assigned to represent these temporary names, i.e., we do not know whether these temporary names
will be bound to registers or locations in the target machine store. Also, we have not made any
assumptions about the target machine resource that is assigned to represent the destinations. All
these details are needed to compare the various code sequences that could be generated for the
assignment under consideration. Table 3-2 gives an example to illustrate the point. The last column
shows conditions where it is undesirable to compute in the candidate destination, even though it is

legal to do so.

To undertake the desirability analysis, the second pass has a table of target machine costs of
register-to-register, memory-to-register, register-to-memory, and memory-to-memory forms of each
node operator. Temporary names required for operands that are not to be computed in the candidate
destination are assumed to be available in registers. Reasonable assumptions, influenced by the
representations effected by the translation to VM, about the target machine resources assigned to the
candidate destination, and other variables that are operands of the expression under consideration,
are made in order to cost the sequence that will be generated if the destination is used {CYES} or
otherwise (CNO). For example, we assume that arrays and giobal or external variables are nat
available in registers, and that simpie local variables are bound to registers. If the former asshmption
proves to be false, better code will be generated by the succeeding phase collections. And if the latter
assumption proves to be false, later phase collections will ignore the recommendation being made

here, -

The second pass is a Nx traversal to the expression tree, where x stands for the chosen descedant
in the first pass. That is, the first action is to visit the node and evaluate cYEs and cNo for the node. If
CYES is greater than cNo, and x does not indicate a blocking of the candidate destination at the
current node, traversal continues by taking up the visit to the node specified by x. So long as CYES is
greater than CNO at the visited node, it is annotated by a pointer that refers to the candidate

destination.

The analysis of feasibility of overloading the semantics of the candidate destination, and the
desirability of actually doing so in light of the characteristics of the target machine is now complete.
No transformations have been effected due to this analysis. We have ignored the possibility of

profitably using implicit computations in the target machine when conducting the above analysis.
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The only effect of this simplification is that the semantics of the candidate destination may be
overloaded with the semantics of temporaries more number of times than may be necessary, for good

use of implicit computations can lead to the avoidance of some of these temporaries.

3.3. Problems in Ildentifying Implicit Computations
As noted earlier, there are two forms of implicit computations:

e those representing effective address computations in target machines. Precise
identification of opportunities for effective use of such implicit computations would
require knowledge of register allocation. However, the task of the DELAY phases is to
delay the identification of temporaries, and hence cannot presume register aliocation, At
this stage of the compilation process therefore, only feasible uses af such implicit
computations can be identified, based on assumptions about the availability and contents
of target machine registers.

s those representing combinations of unary operations with other appropriateiy typed
binary operations, mainly arithmetic and logical operations. Precise identification of such
combinations in basic blocks is again an algebraic simplification problem and does not
require any other target machine information aside from the combinations inherent in its
instruction set. Desirability of use of such target machine features depends on associated
costs.

Representing instructions as operator trees[12] -- with the root {and some 6f its immediate
descendants) as operator nodes, and fixed depth subtrees representing operand accesses -- can lead
us to the simplistic conclusion that opportunities for effective address computations can be identified
by traversing the IR of basic blacks bottom-up, and that combinations of unary and other operations
¢an be discovered duriné their top-down traversal. It turns out that the computations concerning the
above identification processes are expensive, and hence wasteful if performed separately for each of
the above problems, Consequently, an attempt is made to segment basic blocks so that only one of

the identification processes is applied to each node.

A LRN traversal of the source program tree is performed. If the visited node is expected to yield an
address, then feasible uses of target machine effective address computation mechanisms are
identified. We refer to this process as feasible access mode determination. In contexts where the
node is expected to either produce a value, or affect control flow, or result in an assignment,
identification of combination of unary operators with appropriate binary operators is perfarmed, i.e.,
unary complement optimizations are applied. The effect of this identification process is to avoid
temporaries for interior n_odes of the identified subtrees as they will be subsumed within the implicit
computations internal to the target machine hardware. Given the results of the feasibility analyses of

the CDEST phase and access mode determination, unary complement optimization leads to the
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identification of unavoidable temporaries, a precondition that allows for the completion of target path

determination.

The phase that effects unary complement optimizations is called UCOMP, and AMD is the phase
that performs feasible access mode determination analysis. From the above description, it should be
clear that neither of these phases is applied to entire basic blocks; rather, a controlling traversal

program determines which of the phases should be applied to the visited node.

3.4. Targetting and Unary Complement Optimizations

On the surface, unary complement optimizations may conjure the image of a traversal of the IR with
a view to locate certain unary operations in it, followed by a check of the neighbourhood of these
operations for appropriate binary operations that will provide uses for implicit computations in the
target machine. Such ready made cases are rare. Qur task is create opportunities for using such
implicit computations by algebraic transformations, provided that the transformation ylelds economy

in terms of quality of generated code.

The following examples will serve to illustrate the flavour of the task on hand.

e We would like to compute a - b instead of the expression -{b - a) as the latter
expression has an extra negation operation in it. This example does not necessarily lead
to use of implicit computations in the instructions of the target machine, but achieves a
simplification of the intended computation.

e The expression - a}*h - ¢ is more desirable than —(a*b + ¢) on most target machines
because addition and subtraction usually have the same costs, and because negation of
an accessed operand usually entaiis no cost.

e For some target machines, such as the PDP-11, the expression fnot a} and b is
preferable te not(a or not b) because of the nature of its instructions.

In each case, the expression is either simplified with respect to the unary complement operators in it,
or the expression is massaged so that they are suitably postioned for taking advantage of the target

machine characterisitcs.

For the purposes of discussion, we will limit ourselves to integer arithmetic. Extension of the
analysis to other arithmetic types as well as logical connectives is straightforward. With respect to the
nature of instruction sets of most target machines, the only unary operation of interest is

complementation, viz., negation of integers in our case.

The crux of the matter is in the target machine cost of evaluation of an expression or that of its
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complement. This analysis is carried out for every arithmetic operator in the source program tree. As
the analysis is performed LRN, we need to know a bit about the operands of the arithmetic operator
being analysed, e.g., will they be in registers or in the store of the target machine, are they common
subexpressions or user defined variables, do they match the intended destination of the value of the
expression being computed. These observations will obviously affect the choice of the target path
and the target machine instruction sequence that best implements the semantics of the analysed
operator. Also of consequence are assumptions about the signs of the operands, e.g., the left
operand is as expected but the complement of the right operand is available, etc.; a part of the
analysis is devoted towards discovery of the best combination of such assumptions that results in
optimal code. The outcomes of the analysis are a decision with regard to the target path in the
evaluation of the considered expression, and transformations to the expression tree that incorporate

the correct signs for operands that yields optimal target machine code.

The task of this phase is performed in two passes. The first pass determines the target path and the
assumptions about operand signs that lead to optimal code. The second pass uses the latter

information to drive the tree transformation process.

Tables 3-3(a) and 3-3(b) reflect the logic of the analyses performed in the first pass on visiting a
node with the integer + operator. Similar tables can be used to describe the analysis performed for

other operators. The significance of the entries in each column of the tables is:

1. The first column describes the temporariness of the left and right operands of the
operator being considered. An operand is considered destroyable if it is expected to be in
a register and its value is not needed after the current operation. User defined variables
are not destroyable, neither are constants and common subexpressions. If there exists a
candidate destination for this expression as identified by the phase CDEST, and the
operand matches it, then this operand can be considered as destroyable. However, such
an operand would not be normally located in a register, and hence will entail the penalty
of load and store costs in addition to the costs identified in the last column described
below. The destroyability information is usefui for deciding the target path and in the
computation of target machine dependent costs.

2. The second column describes the assumptions about the operands. i the operand is
assumed to be availabie as expected, i.e., it is positive, this condition is signified by the
entry "p". On the other hand, if the complement of the operand is assumed to be
available then the entry is "n".

3. The third column gives the target path. Given an expression E + E and that its sub
expressions £, and E are evaluated in temporary locations T, and T respectively, we
then say that the target path is LEFT if the generated code is equnvafent to

Ti=T + T,
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Destrovyability Signs Target Path Qperations
1T PP - add
i pn LEFT sub
T np RIGHT sub
T nn - preneg; sub
TF pp LEFT add
TF pn LEFT sub
TF np LEFT sub; postneg
TF nn LEFT add; postneg
FT pp RIGHT add
FT pn RIGHT sub; postneg
FT np RIGHT sub
FT nn RIGHT add; posineg
FF pp - load; add
FF pn LEFT load; sub
FF np RIGHT load; sub
FF nn - negload; sub

(a) Evaluating the + Operator

Destroyability Signs Target Path Qperationg
T pp - add; postneg
TT fely] RIGHT sub
T np LEFT sub
1T nn - add
TF ' pp LEFT add; postneg
TE pn LEFT sub; postneg
TF np LEFT sub
TF nn LEFT add
FT [+ ¢ RIGHT add; postneg
FT pn RIGHT sub
FT np RIGHT sub; posineg
FT nn RIGHT add
FF pp - negload; sub
FF pn RIGHT load; sub
FF np LEFT load; sub
FF nn - load; add

{b) Evaluating complement of +

Table 3-3: Target Path and Operation Sequence for +
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and that the target path is RIGHT if the generated code is equivatent to

Toi=T, + T,
Sometimes, it does not matter which operand lies on the target path. This condition is
signified by the entry * — ",

On visiting a node, this pass of UCOMP performs the node-operator-specific analysis using
appropriate tables as described above. The resuit of this analysis is the minimum costs of computing
both the positive value and the complement of the expected result of the computation described by
the visited node. Then it sets the destroyability status of the visited node. As either UCOMP or AMD
are applied to a node, the jast operation performed in this pass of UCOMP is to associate all simple
access modes with the current node; this operation sets the assumptions required in the feasible

access modes identification of this nodes’ ancestor,

Recalling that the visit to the current node is during a bottom-up LRN traversal, and assuming the

visted node to be a.integer +, the above tables are used as follows:

¢ Each table has four quadrants, determined by the destroyability of the node's left and
right operand. The first step is to choose the quadrant by examining thig information in
the left and right subtrees of the node,

¢ Each quadrant has four possible combinations with regard to the assumptions regarding
the signs of the node’s operands. Inspecting the minimum costs of computing the
positive value and the negative valuve of each of the operands -- recorded in the
respective subtrees below -- angd looking up the costs associated with the operation
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sequence associated with each combination in the table, provides sufficient information
for deciding which combination of assumptions leads to the minimum cost af
implementing the node. As there are two tables for each operator, one for producing the
positive value of the desired result, and the other for computing the complement,
minimum-cost sequences for both can be identified and the costs recorded as attributes
of the visited node. ltis understood that the additional costs of fetch and save operations
from the store, due to presence of CDEST created information, is incorporated in the
above exhaustive analysis.

« Also recorded is the target path to be usedin each of the identified cases above.

Some observations are in order before we consider the next pass. The completion of this pass does
not bind the rest of the compiler to the generation of the operation sequences identified by the entries
of the above tables. The transformations that refiect this analysis, and which are performed by the
next phase of UCOMP, are such that a simple code generation scheme would produce a sequence as
identified by this pass. It is quite conceivable that better code may be generated as nothing is yet
known at this stage about the actual allocation of registers and the final choice of effective address

computation mechanism to be used.

Starting with the condition that the root of the expression tree being analysed must yield a resuit of
the correct sign, an analysis of the signs of each of the operands in the expression tree is undertaken.
This analysis is obviously dependent on the minimum cost positive and negative alternatives recorded
at each node in the previous pass. This done, transformations to the nodes in the tree are effected

reflect the chosen sign of the desired result at each node.

3.5. Determination of Feasible Access Modes

The computation of the set of feasible access modes (AMs) applicable to a node in an expression
tree is undertaken whenever the node represents an address value, a fetch operation, or a leaf. This
activity is integrated with the pass 1 activity of UCOMP; hence the order of visits to nodes is LRN. As
in UCOMP, the set of feasible AMs that are applicable at the visted node are computed using the
feasible AMs of its descendants. This is done by exhaustive composition of the operator at the visited
node with each possible pair of feasible AMs of the descendants. For a target machine with a limited
number of access modes, this exhaustive analysis is not expensive. Rich architectures in this regard,
like the VAX 11 systems, have a large number of access modes for effective address generation,
partly because of many operand types, and partly due to operator / operand access separation and
systematic encoding of AMs in the instruction formats. For such architectures, an exhaustive

composition is expensive and it contributes significantly to the cost of the phase.
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in order to describe the activity of this phase, it is necessary to motivate and introduce our

terminology and classification of relevant features of target machines.

storage bases the storage resources of the target machine, broadly classified as registers,
Statically allocated store, and dynamically aliocated store.

storageclasses a description of the storage bases in terms of each type intrinsic to the instruction
set of the target machine.

AMs the set of effective address computation mechanisms in the instruction set of the
target machine. This set is parameterized by the type associated with the
Computed address, and by the context in which it occurs, viz., whether its l-value
is required, or its r-value. ‘

operand classes  a set of sets of AMs. Each operand class denotes the AMSs that may be associated
with specified operand positions in the instruction formats of the target machine,
information used by the code generater to fiiter the usable AMs from the feasible
ones identified by AMD,

In a LRN traversal of the IR tree of a basic block, we expect to find address or operand literais at the
ieaveé, and either |-values or r-values at interior operand nodes. On visiting such an interior node, its
feasible AMs are determined in terms of the fe_ea_sible AMs of its descendant(s) and the operator at the
node. To capture this notion of AM compaositon by the operator, and to initiate this process of
compaosition, we identify AMs that denote literals, basic I-values, and basic r-values:

o literal AMs: Modes that are used to obtain literals of the various operand types in target
machines. Speciat cases of literals like 0, 1, 2, 4, etc., often implicit in AMs due to address
alignment constraints in target machines, are inciuded here as separate literal AMs.

® base AMs: The set of modes that denote basic i-values -- base addresses in storage
classes. Register names and indexed modes are typical to this set. Aiso inciuded are VM
influenced addressing modes. These modes are not intrinsically different from the usual
addressing modes in the target machine. The VM usually reserves some registers of the
target machine to address source language related concepts like local variables, actual
barameters and temporaries. Uniquely named base AMs are used to identify these special
cases.

register mode, and indexed mode. These modes provide the default for operand value
accesses in the feasible AMs determination process described in this section. The default
is used whenever the feasible set of AMs for an operand node is empty, a case that arises
when the operator at the visited node cannot combine the feasible AMs of its
descendant(s) to yield an available AM in the target machine. The use of the default
presumes that a move-to-register instruction will be generated, unless the register

allocation phase assigns a register for the operand.
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«interesting AMs: A set of AMs that result from composition of feasible AMs with the
operator at the visited node.

From the above classification, it is easy to observe that several target machine AMs are found in
more than one class. This is done primarily to ease the problem of relating source language
semantics to multiple views of a target machine feature. For specific use by the AMD phase, every
described AM has a list of transformations associated with it. A transformation is a pair,

{operator, transformable modes>.
The transformable modes specify conditions to be satisfied by the operands of the operator. Fora
unary operator, there is just one set of transformable modes. For a binary operator, a set of
transformable modes is associated with its left operand and a single transformable mode is
associated with its right operand. The interpretation of a transformation is as follows: if the node
visted by AMD has the binary operator in the transformation, and if a feasible AM of its left operand is
a member of the associated transformable set described in the transformation, and if the
transformable mode associated with the right operand in the transformation is a member of the
feasible access modes of right operand of the visited node, then the described access mode is a

feasible AM of the visited node.

An example of the analysis required to discover all feasible access modes for a node will set the

stage for discussing the details of the phase. Consider the simple statement

x: = afi}
where x and i are local variables and a is a global variable. In BLISS this statement would be
express-‘.ed as

= fa +.i)
where the period represent the "contents of" operator. Assume the target machine to be PDP-11. If
the variables x and i have been allocated to registers, then instruction

Mov all), X

implements the statement. Identifying the use of the indexed mode as a feasible AM is the task of
AMD. To do so requires assumptions with regard to the disposition of the variables x, a and i, Hence
the need for a LRN traversal to determine feasible AMs applicable to a visited node. To systematically
perform the analysis, we start with visits to the leavesin the tree representation denoting the variables
x, a and i. We do not as yet know whether the interest is in the operand locations or their values. S0
we associate with each jeaf node the base AMs associated with the storage classes to which each of
the variables respectively pelong. The "contents of" operation on i allows the transformation of the

feasible AMs associated with i to appropriate molecular mades. Here, register mode would imply that
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the local variables i is allocated a register, and access to storage focation wouid imply indexed access
via the frame pointer register of the VM (an member of the base AMs). On visiting the node with the +
operator, the absolute address AM of a and the register mode of i combine to give the-indexed AM as
a feasible mode for the + node. However, the feasible indexed AM of / does not cambine with other
feasible AMs of a in any way. The "contents of" operator inherits these AMs as feasibie for its
operand and passes as feasible modes the register mode and indexed mode to its ancestor, the
assignment operator. A variety c;f code sequences that implement this statement can now be

generated, depending on the decisions of the register allocation phase.

1. If x and i are allocated to registers, then the result could be
MOV A{i), X.

2.1f x is in a register and i is located in the store then the result could be

MOV R_), R,
MoV A(Rll. X

where R_, denotes the frame pointer register.

3. The reverse of the above situation could lead to the sequence
MOV A1), X(R_)

4. Alternatively, if both x and i were located in the store, we can expect the sequence below
to be generated.

MOVI(R_), R

MOV A(R), X(R_)
To move on from a simple example to details of the phase, we need to know how to handle common
subexpressions, and nodes with operatofs that do not figure in the transformations associated AMs.
The fact that AMD has been applied to such nodes implies that these trees occur in a context
expected to'yield an address value. Even so, the computation denoted by the visited node is a
computed value rather than an address. Our strategy is to make a restricted traversal of the identified
subtree in the LRN fashion, and apply the pass 1 activity of UCOMP tg the revisited nodes. During this
traversal, we make sure to set the descriptor of the result of each node to indicate that an address is
in the making. Also, recall that UCOMP has a final operation that sets the default feasible AMs to be
the molecular AMs. The restriction on the traversal is primarily with regard to making sure that the
Subtrees represent address contexts and in avoiding the application of UCOMP to subtrees that

represent operand fetches.

Relativization of AMD with respect to the target machine necessitates the canstruction of a map
from IR operators to lists of AM transformations. The construction of this map is straightforward and is

derived directly from the description of AMs. On visiting a node, the AMD phase performs the
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following steps:

1.1f the node is a common subexpression, then a restricted application of UCOMP
described above is taken up. )

2. [ the node is a leal, then either appropriate literal AMs or base AMs are deemed to be the
feasible AMs of the node.

3, If there are no AM transformations associated with the operator of the visited node, then
too a restricted application of UCOMP to the subtree is performed.

4. Finally, if there are AM transformations associated with the operator of the visited node,
then the transformations are applied as described in the example to obtain the set of
feasible AMs for the node. If this set turns out to be empty, the molecular AMs applicable
to the storage class of the result type of the node are deemed to be its feasible AMs.

As a result of the processing in the AMD phase, a set of teasible AMs is associated with every node
in the tree. To achieve this economically, these sets are represented by bit vectors: Even so, in order
to compute the feasible AMs for a node could prove expensive either because of the transformation
computations of the last step described above, or because of repeated traversals with application of
LUCOMP to the visited nodes. The basic problem seems to be intrinsic to the issue of discovery of
implicit computations. When we are close to the machine, address computations seem to be different
and special with respect 10 computations that yield intended results. If we back off from this point and
view the computations from the source language standpoint, then again the distinctions between
addresses ()-values) and denoted values {r-values) are clear. However, in between these two very
separated stages, the problem can be segmented in many ways, thereby leading to different
identifications of the inherent implicit computations. Our solution represents an empirical trade-off

between a good identification and the cost to obtain it.

From the preceeding two sections and the above description of AMD, we see a lot of interaction
between UCOMP and AMD. A quick review of the overail contra! of these phases may help place all
these details in proper perspective.

1. An LRN traversal of the tree is commenced. Depending on the nature and context of the
visited node, either UCOMP or AMD is invoked to process the visited node.

a. UCOMP determines the destroyability of the result, determines the target path, and
assesses the cost of computing the expected and complement vaiues of the result.
This information is recorded in the node. As a value is the expected outcome of
such a node, it associates as default feasible AMs of this node the molecular AMs
of the target machines restricted to the type of the result.

b. AMD either computes through transformations the feasible AMs to be associated
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with the node, or invokes a restricted traversal of the subtree at the visited node,
applying UCOMP to the revisited nodes.

2. Now that the processes of identification are complete, the input tree is transformed to
reflect the least cost computation of the expected vaiue at the root,

3.6. Determining Evaluation Order

The completion of the UCOMP and AMD phases do not completely determine the target path.
There are some cases where it does not matter to UCOMP; either choice of the target path leads to
optimal code due to the symmetric nature of these cases. Also, target path and evaluation arder are
not synonymous; target path determines the utility of overloading whereas evaiuation order is
concerned with minimization of demand for temporaries. A good evaluation order can lead to
reduction in the number of registers needed for evaluation on general register machines, it can
reduce the number of intermediate load and store operations on singie accumulator machines, and it
can reduce stack height on stack machines. Obtaining an optimal evaluation order is known to be NP
complete. We term our resultant evaluation order to be good because, in our experience, the

deviation from the optimum is smail.

The algorithm we implement is a variation of a well known algorithm. The inputs to our algorithm
are the target path information generated in UCOMP and a flag to indicate whether it is legal to
reverse the accepted left-to-right evaluation order of operands. Rgversal is assumed to be ilegal in
the presence of side-effects in the subexpressions of an expression, or if there are common

subexpression creations that could affect the value of the expression,

An LRN traversal of the tree is performed to estiméte the number of registers required for the
evaluation. Using this estimate along with the flag for reversal, the final choice of target path is made
for the cases left undecided by UCOMP. Also, the evaluation order is determined. The register
requirement estimation process is started off by setting the number of registers required for leaves of
the tree that represent user variables to 1. Also, references to commaon subexpressions require a
register to store the copy. As can be seen, the flow of this information is bottom-up. Register
requirements for nodes at a higher level depend on those of the subtrees of the node and on the size

of the result generated by the operator at the node.

Table 3-4 characterizes the logic of this phase for binary aperators. The table is divided into two
parts to separately take care of the cases with regard to the reversibility of evaluation of operands.
The first three columns of the table provide the inputs to the decision making process. The first
column gives the target path information generated by UCOMP. The second column portrays the
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relationship between NL and N, the number of registers required éor the evaluation of the left and
right operands respectively. The third column indicates whether any of the operands are such that
they require no registers for their evaluation, e.g. constant operands. The next threé columns give
the desired order of evaluation (by specifying the first operand to be evaluated), the final target path,
and an adjustment to determine N, the number of registers required to evaluate the visited nade. The
adjustment is an increment to max(NL,NR). The last column fiags those rows of the tables that lead to
non-optimal sequences either because the order of evaluation is irreversible, or bécause the later
evaluation of the operand on the target path is preferred. The latter bias indicates the desirability of
the target path being maintained in a register. We observe the folldwing patterns in the table:
« Target path decisions are made only in those cases that are left undecided by UCOMP. In
these cases, the target path chosen is either the one that requires registers when the

other operand does not, of, if both operands need registers for their evaluation, the one
that is evaluated last.

¢ Choice of order of evaluation only exists when the order is reversible in the ariginal
expression. When registers are needed by both operands, the order of evaluation is
chosen to be the opposite of the target path. This choice is dictated by the desire to keep
the target path in a register for immediate use by the operation at the node being visited.

« The symbol B appearing in the column giving the adjustment to N is computed by the
formula

B = max(0, r(OP) - max (N, N_))

where r{OP) is the number of registers to evaluate OP, the operator at the visited node.
For most target machines and operators, r(OP) is one. Hence 8 should be zero in most

cases.

A last possibility in avoiding generation of temporaries is in the short circuit evaluation of
expressions that direct control flow. For such expressions, we are not interested in preserving this
value in store. For instance, the statement

if X>0andy<0thens] else 52
could be implemented as

if x {0 then goto efse;
if y > 0 then goto else;
s1; goto fi;
else: 82,
fi:
The algorithms to etfect such transformations are fairly standard and can be found in textbooks on

compitation {1, 12]. The phase LABEL impiements these transformations in our PQC.

At this stage of the compilation process, the intermediate tree represented can be discarded, and
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ordered lists of simple‘trees} can be produced for traversal by the register allocation and code

generation phases.

4. Review
The previcus two sections have presented much detail about a part of a compiler. Lest the overall
perspective be dimmed by this mass of detail, we sum up here the goals of the phases described, their

salient points, and their shortcomings.

The purpose of the DELAY phases is to put off translation issues till sufficient information is
gathered about the source program. Once this information is available, it is used to direct the
transiation activity such that relatively simple subsequent phases can praduce good code. Expending

more effort in later phases should lead further improvement in the quality of generated code.

There is obviously a trade-off between the number of transiation issues that are put off for later
consideration, and hence the amount of work to be done by the DELAY phases, and the quality of
code we can expect from this delayed binding. Recall that the object of our study is more to consider
the effective use of target machine features as a result of translation than to discover target machine
independent optimizations. The position of the DELAY phases in our PQC assumes that some target
machine dependent translation has has already been done by the the CWVM phases. These activities
concern the nature of the procedure linkage mechanism, the layout of source language data
structures in the virtual machine, and the interface to the run-time supports. The translation activities
that remain are those that concern the representation of the control flow, and the rebresentation of
the basic blocks in the program. The bulk of the computational activity in a program is in the basic
blocks. Accordingly, the DELAY phases are entirely devoted to the discovery of efficient mappings of
source language basic blocks, expanded to reflect the CWVM decisions, to target. machine
computations. The specific goal of the DELAY phases in our PQC is to obtain a controlted unravelling
of the intermediate stages of computation that surface because of limited applicative capabilities of

target machines.

The task of the DELAY phases is accomplished in two bt:oad steps. The first is to take cognizance
of the general structure of computational unit of the target machine, €.9., does the machine have
multiple arithmetic units, is it a general register machine, etc.. This analysis is performed by the phase
ALGEBRA. The second task is concerned with the issue of discovering a sequencing of the
computation such that intermediate stages that surface make minimal demands on target machine

resources. The phases CDEST, UCOMP, AMD, EVO and LABEL, all described in the previous section,



® Delayed binding can be applied to the tasks performed by CWVM to realise better storage
allocation and Management policies. That is, instead of a fixed policy embedded in the
CWvM phases, the issye €an be considered gn a program by program basis,
Interprocedural analysis as well as global flow analysis can be used to provide a better
basis for making the CWVM decisions.
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