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ABSTRACT 

Parallel computing structures consist of many processors operating simultaneously. If a concurrent 

structure is regular, as in the case of a systolic array, it may be convenient to think of all processors as 

operating in lock step. This synchronized view, for example, often makes the definition of the structure and its 

correctness relatively easy to follow. However, large, totally synchronized systems controlled by central clocks 

are difficult to implement because of the inevitable problem of clock skews and delays. An alternative means 

of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased 

design complexity and hardware cost Realizing that different circumstances call for different synchronization 

methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each 

model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization 

schemes for systolic arrays are proposed. In general, this paper represents a first step towards a systematic 

study of synchronization problems for large systolic arrays. 

One set of models is based on assumptions that allow the use of a pipelined clocking scheme, where more 

than one clock event is propagated at a time. In this case, it is shown that even assuming that physical 

variations along clock lines can produce skews between wires of the same length, any one-dimensional systolic 

array can be correctly synchronized by a global pipelined clock while enjoying desirable properties such as 

modularity, expandability and robustness in the synchronization scheme. This result cannot be extended to 

two-dimensional arrays, however—the paper shows that underthis assumption, it is impossible to run a clock 

such that the maximum clock skew between two communicating cells will be bounded by a constant as 

systems grow. For such cases or where pipelined clocking is unworkable, a synchronization scheme 

incorporating both clocked and "asynchronous" elements is proposed. 
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1. Introduction 

Parallel computing structures consist of many processors, or cells in the terminology of this paper, 

operating simultaneously. If a concurrent structure is regular, as in the case of a systolic array [3], it may be 

convenient to think of all cells as operating in lock step. This synchronized view, for example, often makes the 

definition of the structure and its correctness relatively easy to follow—indeed, synchronized, moving 

transparencies are typically used in talks to illustrate systolic arrays. Perhaps the simplest means of 

synchronizing an ensemble of cells is the use of broadcast clocks. A clocked system in general consists of a 

collection of functional units whose communication is synchronized by external clock signals. A variety of 

clocking schemes are possible; the essential point is that by referring to the global time standard represented 

by the clock, communicating cells can agree on when a cell's outputs should be held constant and when a cell 

should be sensitive to its input wires. When different cells receive clock signals by different paths, they may 

not receive clocking events at the same time, potentially causing synchronization failure. These 

synchronization errors due to clock skews can be avoided by lowering clock rates and/or adding delay to 

circuits, thereby slowing the computation. The usual clocking schemes are also limited in performance by the 

time needed to drive clock lines, which will grow as circuit feature size shrinks relative to total circuit size. 

Therefore, unless operating at possibly unacceptable speeds, very large systems controlled by global clocks are 

difficult to implement because of the inevitable problem of clock skews and delays. 

An alternative approach is self-timing [7], in which cells synchronize their communication locally with 

some variety of "handshaking" protocols. It is easy to convince oneself that any synchronized parallel system 

where processors operate in lock step can be converted into a corresponding asynchronous system of this type 

that computes the same output—the asynchronous system is obtained by simply letting each processor start 

computing as soon as its inputs become available from other processors. The self-timed, asynchronous 

scheme can be costly in terms of extra hardware and delay in each cell, but it has the advantage that the time 

required for a communication event between two cells is independent of the size of the entire processor array. 

A serious disadvantage of fully self-timed systems is that they are difficult and expensive to design and test 

An advantage that self-timed systems often enjoy, in addition to the absence of clock skew problems, is a 
performance advantage that results from each cell being able to start computing as soon as its inputs are ready 
and to make its outputs available as soon as it is finished computing. This allows a machine to take advantage 
of variations in component speed or data-dependent conditions allowing faster computation. This advantage 
will seldom exist in systolic systems, however, for two reasons: 

• Usually, each cell in a systolic array performs the same kind of computation as every other cell; 
thus there is little opportunity for speed variation. 

• In cases where variations do exist, the throughput of computation along a path in an array is 
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limited by the slowest computation on that path. The probability that a worst-case computation 
will appear on a path with k cells is 1 — />* where p is the probability that any given cell will not be 
performing a worst-case computation. This quantity approaches unity as k grows, so large arrays 
will usually be forced to operate at worst-case speeds. 

The result of these considerations is that clocking is generally preferable to self-timing in the 

synchronization of systolic arrays. The techniques described below use clock-based approaches, sometimes 

with a self-timed assist, to allow convenient synchronization of large arrays. 

2. Basic Assumptions 
The basic model that we will use for considering synchronization of systolic arrays is as follows: 

(Al) Inter-cell data communications in an ideally synchronized systolic array, in which all processors 
operate in lock step, are defined by a directed graph COMM, which is laid out in the plane. Each 
node of COMM, also called a cell represents a cell of the systolic array, and each directed edge of 
COMM, called a communication edge, represents a wire capable of sending a data item from the 
source cell.to the target cell in every cycle of the system. Any two cells connecting by a 
communication edge are called communicating cells. 

(A2) A cell occupies unit area. 
(A3) A communication edge has unit width. 

We now add assumptions which provide the basis for clocked implementations of ideally synchronized 

arrays. 
(A4) A clock for a clocked systolic array is distributed by a rooted binary tree CLK, which is also laid 

out in the plane. A cell of COMM can be clocked if the cell is also a node of CLK. 
(A5) A clocked system may be driven with clock period 8 + A + r, where 5 is the maximum clock skew 

between any two communicating cells, A is the maximum time for a cell's outputs to be computed 
and propagated, and r is the time to distribute a clocking event on CLK. 

This assumption can be justified by appeal to a more detailed model which deals with the periods of time in 
which cells hold their output edges invariant or are sensitive to the values on their input edges. The 
constraints between clock events, which are enforced in implementation by the pattern of the clock signals 
and circuit delays, may be adjusted so that any communicating pair is properly synchronized with a clock 
period 5 + A + r. Induction on the size of an array then shows that the clocked system correctly implements 
the ideally synchronized array. 

Note that if we adopt the usual convention that the clock tree is brought to an equipotential state before a 

new clock event is transmitted, eliminating clock skew can lead only to a constant factor increase in 

performance, since it must always be true that 8 < r. In particular, speed of light considerations impose the 

following condition: 
(A6) The time r required to distribute a clocking event on a clock tree CLK in a particular layout is 

bounded below by a-P, where a > 0 is a constant and P is the (physical) length of a longest 
root-to-leaf path in CLK. 
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Thus, since the clock tree must reach each cell in the array, large arrays which are synchronized by 

equipotential clocking must have clock periods at least proportional to their layouts' diameters. Note that in 

the remainder of this paper, we will relate transmission delays to wire length; delays are caused by other 

factors, of course, but we choose to treat them together as a "distance" metric. 

In the case where an array grows too big for its clock tree to be driven at the desired speeds due to the time 

needed to bring long wires to an equipotential state, it is possible to take advantage of the propagation delay 

down a long wire by having several clock cycles in progress along its length1. The electrical problems of 

passing a clean signal in this fashion are severe, due to analog phenomena such as damping and reflections. 

We can instead simulate this behavior by replacing long wires with strings of buffers, which will restore signal 

levels and prevent backward noise propagation. These buffers are spaced a constant distance apart; a good 

candidate is that distance which will cause wire delays between buffers to be of the same size as a buffer's 

propagation delay. This allows us to replace assumption (A6) with the following: 

(A7) If CLK is a buffered clock tree, the time T, required to distribute a clocking event on a particular 
unbuffered segment of CLK is the maximum delay through a buffer and its output wire. Thus, r 
is a constant independent of the size of the array. 

To ensure that successive clock events remain correctly spaced along the clock path, we make the following 
assumption: 

(A8) The time for a signal to travel on a particular path through a buffered clock tree is invariant over 
time. 

The following section describes two models based on the above assumptions, and Sections 4 and 5 explore 
the problem of clocking under these models. Section 6 considers the case where assumption (A8) does not 
hold, and hence condition (A6) holds rather than condition (A7). 

3. Two Models of Clock Skew 

Given a basic model consisting of conditions (Al) through (A5), plus (A7) and (A8), the following sections 
consider the implications of two models of clock skew. First, in Section 4 we consider the case where clock 
skew between two cells depends on the difference in their physical distance from the root of the clock tree. 
This difference model corresponds reasonably well with the practical situation in high speed systems made of 
discrete components, where clock trees are often wired so that delay from the root is the same for all cells. 
More formally, we assume the following: 

(A9) The clock skew between two nodes of CLK, with respect to a given layout, is bounded above by 
Jld\ where / i s some monotonically increasing function and d is the positive difference between 
the (physical) lengths of the paths on CLK that connect the two nodes to the root 

* author, were told that this 
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TOs assumption is illustrated in Figure 3-1. THe two circles connected by the dashed line have clock skew 

between them which is no more than a constant times the length of the crosshatched segment This segment 

represents the difference between the cells' distances to their nearest common ancestor in the clock tree. 

Figure 3-1: Skew in the difference model. 

As systems grow, small variations in electrical characteristics along clock lines can build up unpredictably to 

produce skews even between wires of the same length. In the worst case, two wires can have propagation 

delays which differ in proportion to the sum of their lengths. Especially since it is not possible to tune the 

clock network of a system on a single chip, Section 5 considers a model in which the skew between two nodes 

depends on the distance between them along the clock tree. Formally, the summation model (so called 

because the distance between two nodes is the sum of their distances irom their nearest common ancestor, 

while the difference measure used above is the difference between those distances) uses the following upper 

and lower bound assumptions: 
(A10) The clock skew between two nodes of CLK, with respect to a given layout, is bounded 
above by g(s) where g is some monotonically increasing function and s is the (physical) length of 
the path on CLK that connects the two nodes. 
(All) The clock skew between two nodes of CLK, with respect to a given layout, is bounded 
below by fi-s where /? > 0 is some constant and s is the (physical) length of the path on CLK that 
connects the two nodes. 

Figure 3-2 illustrates these assumptions; here both the upper and lower bounds on the skew between the 

two communicating cells depend on the entire length of the path between them, which is the sum of their 

distances to their nearest common ancestor in the tree. 

The two models of clock skew introduced above can be formally derived as follows, for the case when both 

functions / and g are linear. Let hx and ft2, with hY > h2, be the distances of any two cells to their nearest 

common ancestor in the clock tree. Let m + e and m - 1 be the maximum and minimum time, respectively, to 

transmit a clock signal across a wire of unit length, where e corresponds to the variations in electrical 

characteristics along clock lines. Then the clock skew between the two cells can be as large as 

clock skew = h^m+e)— h2(m - e ) = (hx - h)m+(hx + h^t. 

Noticing that tf = Ax - s= hx + and s > d> 0, we have 
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Figure 3-2: Skew in the summation model. 

(m + e)'S > clock skew = m-d+e-s > es. 

We see that the upper and lower bounds correspond directly to assumptions (A10) and (All) used in the 
summation model, whereas the difference model corresponds to the case when terms involving e can be 
ignored 

4. Clocking under the Difference Model 

Assuming the basic model defined above along with condition (A9), which states that the skew between 

two cells is bounded by a function of the difference between their distances from the root, it is apparent that 

no clock skew will accur if we assure that all nodes in COMM are equidistant (with respect to the clock 

layout) from the root of CLK. This can be achieved for any layout for COMM of bounded aspect ratio, 

without increasing the area of the layout by more than a small constant factor, by distributing the clock 

through an H-tree [5]. This scheme is illustrated for linear, square, and hexagonal arrays in Figure 4-1, in 

which heavy lines represent clock edges and thin lines represent communication edges. 

(a) (b) (c) 

Figure 4-1: H-tree layouts for clocking (a) linear arrays, (b) square arrays, and (c) hexagonal array, 

More precisely, we have the following result 
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Lemma 1: For any given layout of bounded aspect ratio, it is possible to run a clock tree such 
that all nodes in the original layout are equidistant (with respect to the clock tree) from the root of 
the tree, and the clock tree takes an area no more than a constant times the area of the original 
layout 

By a theoretical result [1] that any rectangular grid can be embedded in a square grid by stretching the 

edges and the area of the source grid by at most a constant factor, we have the following theorem: 
Theorem 2: Under the difference model of clock skew, any ideally synchronized systolic array 

with computation and communication delay A bounded by a constant can be simulated by a 
corresponding clocked system operating with a clock period independent of the size of the array, 
with no more than a constant factor increase in layout area. 

5. Clocking under the Summation Model 
This section relaxes the assumption of the previous section by using the summation model rather than the 

difference model for clock skews. The clock skew between two nodes of CLK, with respect to a given layout, 

is related to the (physical) length of the path on CLK that connects the two nodes. Note that because the 

summation model is weaker than the difference model, any clocking scheme working under the summation 

model must also work under the difference model. The reverse of the statement is not true, however. For 

example, the clocking scheme illustrated in Figure 4-1(a) for linear arrays may not work under the summation 

model, since two communicating cells (such as the two middle cells on the left side of the layout) could be 

connected by a path on CLK whose length can be arbitrarily large as the size of the array grows. In the 

following we give another clocking scheme for linear arrays that works even under the summation model for 

clock skew; in addition, we show that it is impossible, under this model, to clock a two-dimensional array in 

time independent of its size. In this sense, linear arrays are especially, suitable for clocked implementation. 

5.1. Clocking one-dimensional systolic arrays 

Given any ideally synchronized one-dimensional systolic array (Figure 5-1 (a)), we propose a 

corresponding clocked array (Figure 5-1 (b)) obtained by running a clock wire along the length of the one-

dimensional array. By (A10) the maximum clock skew between any two neighbors is bounded above by a 

constant g(s\ where s is the center-to-center distance between neighboring cells. Thus we have the following 

result* 
Theorem 3: Under the summation model of clock skew, any ideally synchronized one-

dimensional systolic array with computation and communication delay A bounded by a constant 
can be simulated by a corresponding clocked system, as illustrated in Figure 5-1, operating at a 
clock period independent of the size of the array. 

Skew between the host and the ends of the array can be handled similarly by folding the array in the 

middle (Figure 5-2), and the array can be laid out with any desired aspect ratio by using a comb-shaped layout 

(Figure 5-3). 



(a) data 

(b) 

Figure 5-1: (a) Ideally synchronized one-dimensional systolic array and (b) corresponding clocked array. 

With the clocking schemes illustrated, we see that the clock period for any one-dimensional systolic array 
can be made independent of the size of the array. As a result, the clocked array may be extended to contain 
any number of cells using the same clocked cell design. Therefore, we can say that these clocked schemes are 
most suitable for synchronizing one-dimensional arrays due to their simplicity, modularity and expandability. 
Note that one-dimensional arrays are especially important in practice because of their wide applicabilities and 
their bounded I/O requirements [3]. 

host host cloc host cloc k host host 

Figure 5-2: Array folded to bound skew with host 

5.2. A lower bound result on clock skew 

We show here that the result of Theorem 3 for the one-dimensional array cannot be extended to two-
dimensional structures. Consider any layout of an nXn array and a global clock tree CLK whose nodes 
include all cells of the array. Let 5 be the maximum clock skew between two communicating cells of the 
array. We want to prove that 8 can not be bounded above by any constant independent of n. We use the 
following well known result [4]: 

Lemma 4: To bisect an nxn mesh-connected graph at least on edges have to be removed, 
where c>0 is a constant independent of n. 

Bisecting a graph means partitioning the graph into two subgraphs, each containing about half of the nodes of 
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host 

Figure 5-3: Comb layout 

the original graph. Here for the nxn mesh-connected graph we assume that none of the subgraphs contain 

more than (23/30)-A*2 nodes. We also use the following trivial but useful lemma without giving a proof. 

Lemma 5: For any subset M of nodes of a binary tree, there exists an edge of the tree such that 
its removal from the tree will result in two disjoint subtrees, each having no more than two-thirds 

of the nodes in M. 

The /z2 cells of the nxn array form a subset of nodes of CLK. By Lemma 5 we know that by removing a single 

edge, CLK can be partitioned into two disjoint subtrees such that each subtree has no more than (2/3>n2 

cells. Denote by A and B the sets of cells in the two subtrees. Let u be the root of the subtree that contains 

cells in A. Consider the circle centered at u and with radius 5//J, where fi is defined in (All). If there are > 

(1/10> H 2 cells inside the circle, then by (A2) 

m{8/py>rt/lQ, o r 5 = Q ( n ) , 

and thus 5 cannot be bounded above by any constant independent of n. Suppose now that there are < 

(1/10>/I* cells inside the circle. Note that any of those cells in A which are outside the circle cannot reach any 

cell in B by a path on CLK with (physical) length < 8/fi. Thus these cells cannot have any communicating 

cells in B (with respect to the nxn array), since by (All) the clock, skew between these cells and any cell in B 
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is >p8/f3 = 5 and the clock skew between any two neighboring cells is assumed to be < 5. These sets are 
illustrated in Figure 5-4(a). Let A be the union of A and the set of cells in the circle, and B be B minus the set 
of cells in the circle. See Figure 5-4(b). Then A and B form a partition of the nxn array, and each of them 
has no more than (l/10)-/22 + (2/3>/z2 = (23/30)-n2 cells. From Figure 5-4(b), we see that any edge in the 
nxn array connecting a cell in A and a cell in B must cross the boundary of the circle. Since the length of the 
boundary is 2*8/$, by (A3) A and B are connected by no more than 2m&/fi edges. By Lemma 4 we have 
2ir8/fi >c-n, or 

8 = Q(n). 

Therefore as n increases, 8 grows at least at the rate of n\ we see that it is impossible to run a global clock for 
the nxn array such that the maximum clock skew 5 between communicating cells will be bounded above by a 
constant, independent of n. 

(a) (b) 

Figure 5-4: (a) original partition and (b) new partition of the communication graph. 

The above proof for two-dimensional mesh graphs can be generalized to deal with other classes of graphs. 
For the generalization, we need to define the minimum bisection width of a graph [8], which is the number of 
edge cuts needed to bisect the graph. For example, by Lemma 4 the minimum bisection width of an nxn 
mesh-connected graph is 0(«) . We have the following general result: 

Theorem 6: Suppose that the minimum bisection width of an N-node graph is Q(W(N)) and W{N) = 0{\TN ). Then 

5 = Q(W(N)). 
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Since under the summation model of dock skew two-dimensional nxn systolic arrays cannot be efficiently 

ta"Cc,ocked c o n , * meir I m p — should be assisted b, some s e i z e d scheme as 

discussed in the next section. 

6. Hybrid Synchronization 
In the absence of the invariance condition (A8), provisions must be made to ensure that a clock event does 

not "catch up with" a previous event This requires that each clock buffer refrain from passing on an event 

until the processing of the previous event has been acknowledged. In order to implement this constraint, we 

can essentially replace the buffers of the previous sections with a handshaking network which operates on 

clock events. 

In this approach, we break up the layout into bounded-size segments, and provide each segment with a 

local clock distribution node. The clock distribution nodes employ a handshaking protocol to pass clock 

events among themselves. Given assumptions about the maximum delay of a computation node and its wires 

and the maximum delay for a handshake transaction in the clock distribution network, we can clock the cells 

in each neighborhood in constant time. As before, we balance the delay within each element with the wire 

delays between elements. This structure is illustrated in Figure 6-1, in which the heavy lines and black boxes 

represent the self-timed synchronization network, and the narrow lines represent local clock distribution to 

the cells near each synchronizing element 

r r a l o r a era. 

DrO 

"OrO D T O 

era era 

ok: era. 

§£ 
D T O 
era 

QrOTDra Q T U 
Q ! Oera era 

b r U 
era 

Figure 6-1: Hybrid synchronization scheme. 

This provides the performance of a self-timed system by making all synchronization paths local, while 

isolating the self-timed logic to a small subsystem and allowing the computational elements to be designed as 

if the entire system were globally clocked. The hybrid approach has the additional advantage that a single 

synchronization design can be used for many different structures. This simplification of the usual self-timed 
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scheme is made possible by the fact that we are willing to assume a maximum delay for the computational 
elements; this is the same assumption made in ordinary clocked schemes. Note that we are willing to let the 
entire array operate at worst-case cell speed, since even a fully self-timed array would usually wind up 
operating at that speed regardless. 

7. Concluding Remarks 

We have described a series of models in which synchronization schemes can be studied, and have indicated 
some of the implications of these models. Future work should include refinement of the models and some 
quantification of when they apply to real systems, as well as further work on their implications. This paper 
has concentrated on the interaction of clock skew models with the communication structure of arrays with 
bounded communication delay; future work should also examine cases where asymptotically growing delays 
occur. 

One interesting such case is that where the communication graph COMM, neglecting edge directions, is a 
binary tree. It has been shown that a planar layout of a tree with TV nodes of unit area must have an edge of 
length Q(V77~ / log AO [6]. Under the summation model of Section 5, then, if we make the additional 
assumption that communication delays are proportional to path length, a tree may be clocked at no loss in 
asymptotic performance simply by distributing clock events along the data paths. 

Furthermore, if COMM is acyclic, as in the tree machine algorithms described in a paper by Bentley and 
Kung [2], and the ratio between lengths (in the layout) of any two edges at the same level in the graph is 
bounded, pipeline registers can be added on the long edges, with the same number of registers on all of the 
edges in a given level. This makes all wires have bounded length, thus causing the time needed for a cell to 
operate and pass on its results to be independent of the size of the tree. Adding the registers increases the 
layout area by at most a constant factor, since they in effect just make wires thicker. For example, an H-tree 
layout has this property, and allows a tree machine of N nodes to be laid out in area O(N) with delay through 
the tree of 0(y/W ) and constant pipeline interval. 
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