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Abstract 

Let P be a simple polygon with N vertices, each assigned a weight c (0<i<N) with c€{0 , l } . We define the 

weight C of P as the added weight of its vertices, i.e., C = c 1 +. . . + c A r Making the assumption that the 

vertices of P have been sorted along some axis -which can be done in 0(Mog AO time-, we prove that it is 

possible, in O(N) time, to find two vertices a,b in P, such that the segment ab lies entirely inside the polygon P 

and partitions it into two polygons, each with a weight not exceeding 2C/3. We also give a list of problems 

which can be solved efficiently with a divide-and-conquer strategy based on that result 
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1 . Introduction 
It is a fact that fast algorithms often owe their efficiency to a handful of mathematical truths that bring to 

light unsuspected specificity - or singularity about the problem under consideration. But besides 

recognizing their mere aptitude at serving computational purposes, one may wish to add a bit of classification 

into the nature of those subservient truths. 

To ease the matter, let us take two examples: proving that a minimum convex decomposition of a polygon 

could always be found free of interior parts was a major step in deriving a polynomial algorithm for that 

problem [CH80]. Similarly, establishing the unimodality of the vertex-coordinate function of a convex 

polygon was instrumental in the setting of logarithmic intersection-algorithms for convex objects [CD80], 

There is, however, a notable difference in methodology between these two cases. Whereas the first example 

presents us with a mathematical fact which seems inherently helpful for deriving any algorithm, the latter 

brings out a compelling flavor of binary search-like technique which strongly suggests the proper algorithmic 

treatment 

Another case which witnesses both phenomena is the well-known near-neighbor problem, in which all 

nearest neighbor pairs in a given set of points are to be computed. One of the most efficient algorithms for 

this problem relies on an elegant geometric construction known as the Voronoi diagram [SH77]. Although the 

existence of this diagram was undoubtedly the keystone in the elaboration of the algorithm, it fell short of 

even suggesting an effective method, since there was no immediate evidence that constructing the Voronoi 

diagram was to be any easier than computing the neighbor pairs directly. Another mathematical fact, i.e., the 

decomposability of the Voronoi construction, was indeed needed to fire the final blow and crack the problem. 

There we should observe that although both facts are geometric in nature, the latter is combinatorial in spirit, 

as it draws its motivation from the algorithmic, all-purpose, divide-and-conquer technique. 

Lipton and Tarjan's planar separator theorem [LT77,LI77] is a notable example of a systematic technique 

for introducing a computational tool, i.e., divide-and-conquer, into a whole class of related'problems, i.e., 

planar graph problems. Drawing its inspiration from this philosophy, this paper presents a theoretical result on 

polygon decomposition which can be applied to derive a number of efficient algorithms for geometric 

problems, in particular, problems of convex decompositions, triangulation, visibility, and internal distance. 

2. The Polygon-cutting Theorem 
Let P be a simple1 polygon with vertices v r . . . ,v N in clockwise order. Let OXY be an orthogonal system of 

A polygon is said to be simple iff only adjacent edges intersect 
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reference. Wlog, we can always assume that no two vertices have the same X-coordinate. We define a partial, 

so-called vertical, order as follows: 

We say that "edge e > edge f iff their projections onto the X-axis overlap and, restricting 
ourselves to the overlapping area, e lies entirely above /(fig.l) . 

[ FIGURE 1] 

Figure 1: The partial order among the edges of P. 

Throughout this paper, we will assume that along with a description of the boundary of P, provided by a 

doubly-linked list LP, we have available both a doubly-linked list LVof all the edges in topological (vertical) 

order, and a doubly-linked list LH of all the vertices sorted by Z-coordinates [KN73]. The preprocessing 

involved in setting up these lists requires 0(Mog AO time and O(A0 space. The decomposition algorithm 

which we will describe later on runs in linear time, with this preprocessing in hand. Note that it is legitimate to 

separate both tasks, since in the applications which we will mention, the decomposition algorithm will be 

called recursively several times, while the preprocessing will be needed initially, once and for all. 

The goal of this paper is to prove the following theorem: 

Theorem 1: The Polygon-cutting Theorem. Let P be a simple polygon with N vertices v^..., 
each assigned a weight c{ (^=0,1). Let C(P) denote the total weight of P, defined as the sum 
^-K-. + c ^ and assume that C(/>)>2. With the lists LP,LH,LKin hand, it is possible to find, in 
0(N) time, a pair of vertices v.,Vj such that the segment v.v.^ lies entirely inside the polygon P and 
partitions it into two simple polygons PVP2 satisfying: 

dPJ < C(P2) < 2C(/ >)/3 

The weights of the vertices in P1 and P2 are the same as in P, except for v. and for which we will assume 

that in both Pl and P2, these weights become 0. This assumption is made only for the sake of simplicity, and 

other conventions (e.g., keeping the same weights c{9c. in both Pl and P 2 ) are indeed acceptable, if we are 

ready to add a term + 2 to 2C(P)/3 in the inequality of Theorem 1. To facilitate our task, we will first prove 

the theorem with slightly relaxed requirements. 

2 . 1 . An existence theorem 

To begin with, we will prove the existence, not of two vertices, but of two points on the boundary of P, 

satisfying the inequalities of Theorem 1. 
Theorem 2: Same assumptions as Theorem 1. There exists a pair of points A,B on the 

boundary of P, such that the segment AB is parallel to the F-axis, lies entirely in the polygon P, 
and partitions it into two simple polygons PVP2 satisfying: 

C( / \ ) < C(P2) < 2C(P)/3 
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If A and B are not vertices of P, for consistency, we assign them a 0-weighL The underlying notion of 

"equal size" decomposition expressed in the polygon-cutting theorem motivates the introduction of a distance 

function d(A,B\ defined between two points A,B on the boundary of P as the minimum path weight between 

A and B. More precisely, let v .v. + 1 (resp. v j v j + 1 ) be the edge of P containing A (resp. B). If A (resp. B) is a 

vertex of P, it is assumed to be v{ (resp. We introduce the function h, defined as follows2: 

h ( ^ 5 ) = c j + 1 + c j + 2 + . . . + c . 

from which we can define d(A,B): 

d(A,B) = min [ h(AyB), C(P) - h(A9B) ] 

Starting at the edge v ^ , we label each edge of P recursively, as follows: 

*(Vi+i> = X <Wi> + c i 

Note that this labeling gives us an alternate way of defining the distance between two boundary points A,B: 

d(A,B) = min [ | X ( v . v . + 1 ) - X ( v . v j + 1 ) | , C ( / M X ( v . v i + 1 ) - M y j + 1 ) | ] 

We are now in a position first to prove the existence of the segment AB, as defined in Theorem 2, then to 

describe an efficient method for finding i t As we will see, the first step is not superfluous; it is an essential 

ingredient in ensuring the correctness of the algorithm. 

Choose the leftmost point of P as the starting point of the left-to-right sweep of a vertical segment S = AB 

(A below B). S will always stretch vertically so as to keep its endpoints A,B in permanent contact with the 

boundary of P. It will thus be able to move continuously to the right, until it must either expand (fig.2.1) or 

split (fig.2.2). At any time during the course of the motion, S will be assigned a value A = h(/1,2?) to indicate 

how close it is to being the desired segment. We observe that initially, A = C(/>), and that as long as S moves 

continuously, A decreases monotonously by unit steps. When either situation depicted in Figure 2 arises, we 

can always write 

A = h(A,B) = hUO + h(C,5) (1) 

from which we can derive a decision procedure for redefining S. 

Starting from the leftmost vertex of P% move S from left to right, stretching or shrinking this 
segment so that it entirely lies in P, and its endpoints always lie on the boundary of P. As long as 
the motion of S is continuous, check whether A>2C(/ >)/3, in which case continue, else stop. 
When falling in either case of fig.2, reset S to AC if h(A,Q>h(C,B\ or to CB otherwise. Note that 
if S is reset to CB in the case of fig.2.1, the motion must reverse its direction. 

All arithmetic on indices is done [mod N]. 
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Relation (1) shows that every discontinuity causes A to decrease by at most half, while otherwise A 

decreases at most by unit steps, since we have assumed that no two vertices may lie on the same vertical line. 

Since A eventually vanishes and C(P)>2, it must take on some value in the interval [C(P)/3,2C(P)/3], at 

which point the procedure will stop and return the desired segment AB. This completes the proof of 

Theorem 2. • 

[FIGURE 2 ] 

Figure 2: Proving the existence of a separator S. 

2.2. A relaxed version of the polygon-cutting theorem 

Unfortunately, Theorem 2 falls short of providing an efficient algorithm for computing AB. We can, 

however, graft to it a binary search-like structure to improve the performance of a naive implementation. The 

purpose of this section is thus to prove the following result: 

Theorem 3: Same assumptions as Theorem 1. It is possible, in O(N) time, to find a pair of 
points A,B on the boundary of P, such that the segment AB lies entirely in the polygon P, and 
partitions it into two simple polygons PVP2 satisfying: 

C(P 7) < C(/>p < 2C(/>)/3 

The algorithm which we will describe in order to prove Theorem 3 is recursive; it requires 0(N) time to cut 

down the size of the problem by half, therefore its overall performance is linear. 

1. Recall that initially, we have available both the vertical topological order (LV) of the edges of P 
and the horizontal order (LH) of its vertices. The latter list permits us to determine a median 
vertical line L in O(N) time, i.e., a line parallel to the 7-axis that separates the vertices of P into 
two sets of size fC(/ >)/2] and [C(P)/2J respectively. Once again, this is always possible since no 
two vertices may have the same X-coordinate (fig.3). 

2. Compute all the intersection points of L with the boundary o f ? , and sort them by y-coordinates, 
doing all of this in O(N) time with the list LV. Next, form the intersection segments A^B^^A^B^ 
in ascending order (fig.3). 

3. If M is a point lying on an edge v i v i + 1 of Py distinct from its endpoints, by extension, we define 
X(M) as MvjV. j). Check whether any of the segments A.B{ satisfies the relation 

C(P)/3 < IMA) - \(B{)\ < 2C(/ >)/3, for i=l,...,k. 

If yes, the corresponding segment A.B. can be chosen as AB, and the procedure can stop. 
Otherwise, go to 4. 

4. Transform the list LP as follows. For every A{B. (i = l,..,k) in turn, if \\(A.) - \(B.j\ < C(P)/\ 
start at A. or B. (say, A) whichever has the smaller label \(A.) or X(/i j), and proceed to traverse 
LP in clockwise order, until B. is reached, deleting all the vertices and links visited. Finally, close 
the chain by inserting A. and /?. into LI\ setting a double link between the two points. If 
\X(A{) - X(Il)\ > 2C( /y3 , perform the same sequence of operations, now starting at the point A^ 
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or B. with the larger label \(A^ or \(B^. 

5. Using the new description LP of the pruned polygon, update the lists LVmd LH by deleting the 
edges and vertices no longer existing in LP. 

6. Apply the algorithm recursively until termination. 

[FIGURE 3 ] 

Figure 3: The recursive algorithm for computing the separator S. 

A few words of explanation may be needed to justify the algorithm. To be begin with, observe that once the 

intersection points are available in vertical order, setting up the list of segments A.B. is straightforward, since 

the list of consecutive segments formed by the intersection points alternates inside and outside P. Also, it is 

easy to verify that the deletion of edges is accompanied by the setting of links which, in particular, ensures 

that no edge is visited more than twice. It may be the case that handling a segment A.JB^ may also handle 

several others at the same time. For example, see the effect in fig.4 of handling A^B^ before A^B^ or 

vice-versa. In this figure, the dashed area is to be removed from P. Finally, we note that deletions are indeed 

permissible since any part of P cut off by A.B{ weighs at most d(A[9B^ < C(P)/3. Thus any vertical segment 

AB in that part has a distance d(A,B) < C(P)/3, and may therefore be dismissed. Since, when iterating down 

the recursion level, all the segments A.B. are being cut off and their attached part removed, there remains only 

one connected part which lies entirely on one side of the median line, and to which, therefore, P can be reset 

before calling the algorithm recursively. Of course, the labeling X remains unchanged. The correctness of the 

algorithm follows from Lemma 2 and from the fact that we remove only non-candidates. The reason for 

choosing a median line to operate the cut-offs is now apparent. Since all the vertices on one side of the line are 

bound to disappear, the recursion will be invoked on a problem of size reduced by at least half. This 

completes the proof of Theorem 3. • 

[FIGURE 4 ] 

Figure 4: Pruning the polygon P. 

2.3. Completing the proof of the polygon-cutting theorem 

We may now turn our attention back to Theorem 1. Let v.v. + 1 and be the edges of P that contain 

the points A and B of Theorem 3, respectively. To prove the desired result, one may be tempted to slide A and 

B towards the endpoints of v .v. + 1 and V j V j + 1 respectively, until one of the configurations v .V j , v . v . + 1 , v. + 1 V j , or 
vi+1 vj+1 ^ a s k e e n r e a c h e d . Unfortunately, obstacles may prevent this from ever happening (fig.5), so our next 

step will be to take a closer look at these possible obstacles. 

Since the quadrilateral v j v i + l v j v j + l v i c o n t a * n s * e s c 8 m e n t AB, it is a simple polygon, and AB partitions it 
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into two polygons Q1 = Av^+1v.BA and Q2 = ABv^^A. As a corollary of the Jordan Curve Theorem 

[HS55]3, it is easy to show that the only obstacles encountered in Ql (resp. <?2) are vertices in the set 

{v i + 1 , v i + 2 , . . . , v . } (resp. { V j + p V ^ , . . . , ^ } ) . Moreover, the segment S=AB can encounter only vertices on the 

convex hull / / x (resp. # 2 ) of the vertices of P lying inside Q1 (resp. <22) (6g-5), as is shown in following result 

Lemma 4: The segment AB intersects any edge of P (outside of A or B) if and only if it 
intersects the boundary of either ^ or HT 

Proof: Since H1 (resp. lies entirely inside Ql (resp. (?2), AB intersects any edge of P lying 
in Q iff the infinite line passing through AB does, hence iff AB lies outside of and H2. • 

The next task is to compute the convex hulls H1 and H2. We only give the details of the algorithm for Hv 

the other case being strictly similar. Since we cannot afford to use a standard 0(Mog N) algorithm to simply 

compute the convex hull of the vertices of P in Qv we must exploit the fact that these vertices lie on a 

polygonal line in order to achieve linear time. 

[FIGURE 5 ] 

Figure 5: Defining the domain of safety for AB. 

To begin with, let us give an informal description of the algorithm. The goal is, in a first stage, to produce a 

polygon which lies entirely in Qv and whose convex hull is exacdy Hy consists essentially of polygonal 

chains4 L made of consecutive edges from the set 

L = { V i + l v i + 2 ' V i+2 V i+3 Vj-lVj 1 

Each chain has the property that it lies in Ql and intersects v i + 1 V j in two points, £/k and Kk. Moreover, no 

two segments U^V^ overlap (fig.6.1). To compute these chains, we must distinguish between two types of 

edges in L. An edge v k v k + 1 is said to be entering (resp. exiting) if it intersects v . + 1 V j , and v k + 1 lies inside 

(resp. outside) Qy The algorithm proceeds as follows: 

Wlog, assume that there is at least one vertex v i + 2 from v. + 1 to Vj in clockwise order. Traverse L from 
v i + l v i + 2 t 0 v j - l v j ' s t 0 P P i n S a t entering and exiting edges and taking the following actions. If the current edge 

is entering, it may be the endpoint of a new chain Lr To decide of this, look at the next exiting edge in L; 

if it intersects v i + 1 v . in a point Vk on the segment Ukv^ we have indeed a new chain L k from C/k to Kk. 

Otherwise, not only don't we have a new chain L k, but the chain just visited may enclose previously computed 

chains, which must then be deleted. For that purpose, we use a stack to hold the pairs (U^V^ , L k), so that 

3The Jordan Curve Theorem states that a closed curve in the plane partitions the plane into two connected regions: the inside and the 
outside. 

4 W e define a polygonal chain as any connected sequence of segments such that only consecutive segments may intersect 
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deletions may be done efficiently. The algorithm is straightforward, so we may omit the details. 

Initially, the stack is empty, and the current edge e is the first 
entering edge of L. 

begin 
Let / b e the next exiting edge in L following e, and let £/, Vbe 
respectively the intersections of e and/with v i + 1 v . . 

if Flies on C/Vj 
then 

Let Lu be the chain between eand / i n L. 
Push (UV, L ) onto stack. 
Go to next entering edge e' in L, whose intersection 
with v . + 1 V j lies on Vv. ^ then iterate. 

else 
Go to next entering edge ey whose intersection IT 
with v . + x v. lies on v i + 1 K 
Pop all pairs (J7k Kk) off the stack as long as F k lies on IT v.. 
Iterate. 

end 

[FIGURE 6 ] 

Figure 6: Computing the polygon Kj 

To prove the correctness of the algorithm, we begin by observing that the intersection of L with Ql consists 

of chains whose endpoints lie on v . + 1 V j , and that consists of exacdy all the maximal chains. A chain is said 

to be maximal if it does not lie in the enclosure of any other chain with v . + 1 V j . A maximal chain is also 

characterized by the fact that the segment formed by its endpoints does not lie inside any other such 

segments. 

From the Jordan Curve Theorem [HS55], we derive the fact that a maximal chain from U to V9 in clockwise 

order, has its endpoint V lying above U (i.e., on the segment Uv). In consequence, only the chains which move 

towards v. are candidates for being part of Kv which justifies the selection criterion of the algorithm. On the 

other hand, we can also show that a non-maximal chain which moves towards v. is necessarily enclosed by 

another chain moving away from Vj. This explains the deletion rule. Finally, the last observation to make is 

that a chain from U to V which moves away from v. (i.e., U lies on Kv.) must be enclosed by a subsequent 

maximal chain, therefore since maximal chains are computed "towards" v̂ , we may skip directly to the next 

entering edge in L that intersects v. + 1 Vj at a point IT below K(i.e., IT lies on v j + 1 K ) " sec illustration of the 

various cases in fig.6.1. This completes the proof of correctness, and shows that all the chains L k may be 
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computed in sorted order along the segment v. + 1 V j , all these computations requiring O(N) time. 

The final step in computing is to connect all the chains L k together in the order in which they appear in 

the stack. To do so, we borrow segments from v i + 1 V j , as shown in fig.6.2. We may now apply any standard 

linear convex hull algorithm for simple polygons [LE80,SH77] in order to obtain in 0(N) time. 

Assuming that both H1 and H2 are available, we are now in a position to give an algorithm for finding the 

two vertices of Theorem 1. The idea is to connect the vertices of with those of # 2 , so as to triangulate the 

polygon H* defined as the area between Hl and H2 containing AB. We claim that at least one of the edges of 

the triangulation will provide the desired pair of vertices, with the property of Theorem 1. The algorithm 

proceeds as follows: 

Let A r...,Ap and £ r . . . , £ q be the vertices of and H2, respectively, as we traverse them from v. + 1 v. to 
v j v j+i' * , e" = v i + r *p = v j» vi» q̂ = v j + r ^ e m a i n t a * n t w o pointers, h on H1 and k on # 2 , moving them 

from to Ap and to k^, respectively, and computing the triangulation on the fly. Note that, at all times, the 

segment hk intersects and H2 only at its endpoints (fig.7.1). 

[FIGURE 7 ] 

Figure 7: Triangulating the domain of safety. 

The simplest way of describing the algorithm is recursively. Initially, hk is v. ] V . ; the algorithm terminates 

with hk = V j V j + r 

Let hk = htku, and consider the quadrilateral5 hh^k^^kh. We will show in Lemma 5 that at 
least one of its diagonals, A & u + 1 or kh^+v connects # x and H2 without intersecting these polygons 
outside of its endpoints, i.e., lies entirely in H . Moreover, this diagonal can be found in constant 
time. We may then determine that diagonal, add it to the triangulation, set hk to it, and iterate. 

The algorithm clearly runs in linear time. Also, the assurance that it effectively produces a triangulation of 

H* comes from the fact that it keeps only edges which lie entirely in //*, and that the pointers h and k pass a 

vertex only after a diagonal has been assigned to it. Thus there only remains to prove the following lemma: 

Lemma 5: If the segment htku connects Hl and H2 and lies entirely inside #*, so does one of 
the diagonals ^ t * u + 1 or kjii+y Moreover, this diagonal can be found in constant time. 

Proof: Consider the line passing through hk, oriented from h to k. If a point lies to the right 
(resp. left) of this line, we will say that it lies below (rcsp. above) hk. Since Hl and H2 are convex, at 

For consistency, we define /r , and A. , n as v. , and v., respectively. 
p + l Q + l J + l J 
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least one of the vertices v. or v. , lies above hk, therefore it is impossible that both k,, and k ,. 
J _J ' -*- t I -L U "T* J. 

lie below hk. Indeed this would involve the existence of at least three intersection points between a 
line and a convex boundary, leading to a contradiction. If only one segment, say h i + l lies above 
hk, it can be easily determined in constant time, and since in that case, all of H2 lies below hk, the 
diagonal \ ^k does not intersect H2 (nor Hl either) outside of its endpoints, and may thus be 
chosen as the next segment of the triangulation (fig.7.2). If, on the other hand, both A t + 1 and k ^ 
lie above hk, the quadrilateral hh{+ ^ }k is a simple polygon, therefore it contains at least one of 
its diagonals entirely (fig.7.3), and this diagonal can be found in constant time. Note that, because 
of its convexity, Hl (resp. H2) lies totally on one side of the line passing through hh^ 
(resp. kk J9 therefore the whole quadrilateral, hence the chosen diagonal, lies inside the polygon 
H , which completes the proof. • 

The purpose of triangulating the polygon H* will become apparent with the following result 

Lemma 6: There exists an edge uv in the triangulation of H* which satisfies the 
relation: C(P)/3 < h(u,v) < 2C(P)/3. 

Proof: From Theorem 3, we know that AB partitions P into two polygons with weights between 
C(P)/3 and 2C(P)/3, which gives the relations 

C(P)/3 < min (h(A,B),h(B,A)) < max( h(A,B),h(B,A)) < 2C(P)/3 

As a result any pair of vertices a, b on (resp. # 2 ) , with b following (resp. preceding) a in the 
list {hv...,h } (resp. {kv...,k}) satisfies the relation: 

h(b,a) < 2C(/ >)/3 
On the other hand, each triangle abc of the triangulation has one side ab on the boundary of 

either H1 or Hv with the two others ac, be constructed by the triangulation algorithm. Wlog, let ac 
be the segment"of the triangle constructed first (i.e., ac lies below be). We always have 

h(c,a) = h(b,a) + h(c,b) 
Now we can show that a simple upward scan through the faces of the triangulation, i.e., starting 

at the triangle adjacent to v.v. + 1 and ending at the triangle adjacent to V j v j + 1 »
 w iU inevitably lead 

to the desired segment of Theorem 1. To see that, we may obviously assume that none of the edges 
ab of Hl or H2 satisfies the relations: 

C(P)/3 < h(b,a) < 2C(P)/3, 

otherwise, we have achieved our goal. 

In that case, Relation (1) shows that for any triangle abc visited, the edge on the boundary of 
H , say ab, satisfies the stronger inequality 

h(b,a) < C(P)/3, 

which, combined with Relation (2), leads to 

h(c,Z>) > h(c,a) - C(i>)/3. 

Since h(vi,vi + 1 ) = C(/>)— c. + 1 and h(Vj + r V j ) = C j + 1 , it follows that if a1bva2b29 .» is the sequence 
of interior edges visited in the traversal of the triangulation, with the points am (resp. 6 ) on H1 

(resp. H2), the sequence h(a1,61),h(a2,Z?2),... is monotonously decreasing from C(/ ))—c + 1 to c. ^ 
by jumps of at most C(/ >)/3. In consequence, it must take on at least one value in the interval 
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[C(P)/3, 2C(P)/2>\ which can be chosen as the pair w,v. • 

The proof of Theorem 1 is now complete. Computing Hx and H2 definitely constitutes the most difficult 

part of the algorithm to implement. We may observe, however, that this overhead will often be unnecessary 

since, in practice, it may be seldom the case that the segment AB of Theorem 3 is prevented from sliding 

towards the endpoints of its supporting edges. 

3. Applications to polygon decomposition problems 
It is intuitive that the polygon-cutting theorem should lead to efficient methods for partitioning a polygon 

into convex pieces. We will examine two instances of this problem: in one, what is desired is a partition of the 

polygon into a small number of convex pieces, while in the other, only a triangulation of the polygon is 

sought, without consideration of optimality6. 

3 . 1 . Convex decompositions 

Given a simple, non-convex polygon P, find a minimum number of convex, pairwise disjoint 
polygons, whose union is P. 

This problem has been well-studied [CH80,CD79,FS81,GJ78,SC78,SV80,TO80], and several algorithms 

have been discovered for producing minimal or near-minimal decompositions. Here we consider only 

decompositions which do not introduce new points, i.e., all the vertices of the polygons are vertices of P. 

In connection with the previous section, we will assign to each vertex v. of P a weight c. = l if its adjacent 

edges form a reflex angle (in which case, v. is called a notch), and a weight c = 0 otherwise. Thus we can apply 

the polygon-cutting theorem (Theorem 1) iteratively to decompose P into smaller polygons. Note that since, 

with our convention, the endpoints of the splitting segment lose their weights, the number of notches CVC2 of 

the two parts is each bounded by 2C/3+2, where C is the number of notches in the original polygon. As a 

result, we must stop the iteration when the algorithm ceases to reduce the number of notches, i.e., when all the 

parts have a number of notches satisfying: C<2C/3+2, i.e., C<6. Finally, to resolve the remaining reflex 

angles, we consider each of them in turn, proceeding as follows: 

Let Q be the polygon (with at most 6 reflex angles), and v be the notch exhibiting the reflex 
angle to be resolved. Let L (resp. R) denote the ray (i.e., semi-infinite line) starting at v in the 
direction of the edge ending (resp. starting) at v (fig.8). Compute the intersection(s) of L (resp. R) 

Applying a quality criterion to the triangulation of a polygon is common practice in numerical analysis, where an area distribution or 
a shape function is often to be optimized. There are many good reasons, however, for making the availability of any triangulation 
desirable. See [CI 182], for example. 
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with the boundary of (?, and keep only the intersection point A (resp. B) closest to v. If A and B lie 
on different edges, there exists at least one vertex on the part of the boundary of P between A and 
B which can be joined to v, so as to resolve the reflex angle at v (fig.8.1). For example, we can 
choose the vertex w between A and B that minimizes the angle (vB,vw), while keeping it positive. 
If, on the other hand, A and B lie on the same edge vAvB (fig.8.2), we compute the vertex a of the 
list (v,...,v^), given in clockwise order, which lies in the triangle vAvA and minimizes the angle 
(vA,va). Similarly, we compute the vertex b which lies in vBvB and minimizes the angle (vb,vB). 
Both of these operations can be executed in linear time. Note that minimizing the angles ensures 
that both va and vb lie entirely in Q. It is also easy to show that the combination of these two 
segments resolves the reflex angle at v by splitting Q into 3 polygons (note that in most cases, a and 
b will be vA and respectively). 

[FIGURE 8 ] 

Figure 8: Completing the convex decomposition of P. 

The decomposition algorithm thus consists of a recursive "cutting" phase which relies on the algorithm 

given for the polygon-cutting theorem. The recursion stops when the polygon currently examined has fewer 

than 7 notches, at which point the procedure just described is called upon to finish off the decomposition. We 

observe that if either the vertex v. or v., say v., in Theorem 1 is a notch, i.e., c = l, v{ appears in both of the 

resulting polygons Pl and i° 2, but is a notch for at most one of them. Therefore if, by extension, we let C(N) 

denote the weight of P and C(A 1̂) (resp. C(iV2) be the weight of P1 (resp. i°2), we can write: 

C(A0<C(A^ + C(JV2) (1) 

CiNJ < C(N2) < 2C(N)/3 + 2 (2) 

Note that C(N^) and C(N2) are actual weights, i.e., they count exacdy the number of notches in P1 and i° 2, 

as opposed to the weights of P1 and P2 as defined in Theorem 1, which did not account for the endpoints of 

the splitting segment. It is easy to see that, in the worst case, we will end up with C(N)/6 polygons with, each, 

6 notches, and the final phase will use 2 cuts for the resolution of each reflex angle. This will result in 

13C(7V)/6 convex pieces, which is to be compared with the minimum number of convex pieces, shown to be 

always greater than or equal to C(N)/2+1 in [CH80]. 

Next we turn to the complexity of our decomposition algorithm. While it clearly needs O(A0 space, 

evaluating its run-time T(A0 calls for further investigation. If we neglect the preprocessing phase for the time 

being, we have the relations 

T(A0 = T(iVx) + T(# 2 ) + 0(A9, if C(A0 > 6 (3) 

Nx + N2 = N+2 (4) 

T(N) = O(A0, ifC(A0<6 (5) 
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Consider the recursion tree, and label each node with the number p of vertices in the corresponding 

polygon. At the leaves, we have C(P) < 6, while for their ancestors, C(P) > 6. Relations (3) and (5) show that 

up to within a constant factor, T(N) is equal to the sum of the labels in the tree, while from Relation (4), it 

follows that if L(i) counts the sum of all labels at level i, we have L(0)=N and 

L(i) < L(i-1) + 2 \ 

which gives L(i) < N + 2 1 + \ If k is the height of the tree, we easily find that 

L(0) + .... + Uk-l) <Nk + 2 * + 1 , 

and since, from (2), we have k = 0(log C(A0) = 0(log AO, including the 0(Mog AO preprocessing in the 

running time, we can conclude: 

Theorem 7: In 0(Mog N) time and with 0(N) space, it is possible to decompose a simple 
N-gon P into fewer than 4.333...XOPT convex pieces, without introducing new vertices, where 
OPT is the minimum number of convex pieces necessary to partition P. 

3.2. Triangulation 

When all the pieces of a convex decomposition are triangles and no new vertices are introduced, the 

decomposition is called a triangulation of the polygon. An 0(Mog AO algorithm for computing a triangulation 

of a simple polygon has been given in [GJ78]. The method requires the somewhat cumbersome use of 

AVL-trees or similar logarithmic search trees. This can be avoided by using a strategy based on the polygon-

cutting theorem. 

We may choose to assign a weight = 1 to each vertex of P and apply the polygon-cutting theorem 

recursively, until the polygon under consideration has fewer than 7 vertices, at which point it is 

straightforward to complete the triangulation. We omit the details. An alternative consists of computing a 

convex decomposition of P as described in the previous section, then triangulate each convex polygon. To do 

so, pick any vertex of the polygon and join it to every other. 

In both cases, a triangulation of P can be explicitly computed in 0(Aflog AO time, which matches the 

performance of [GJ78]. We recall that it is yet unknown whether kMog N is optimal for this problem. 

Theorem 8: Using the polygon-cutting theorem, it is possible to triangulate a simple Af-gon in 
0(Mog AO time and O(A0 space. 

It is shown in [CH82] how the additional information provided by an arbitrary triangulation of a simple 

polygon is sufficient to derive optimal algorithms for a number of geometric problems. Using the previous 

result to compute a triangulation of P, it is then possible to determine the area visible from any point inside P 

in linear time. Also, internal path problems, i.c., problems involving the computation of the shortest path 
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between two points inside Pcan then be solved optimally [CH82]. 

4. Conclusions and future research 
The decomposition principle in geometry expresses the feasibility of local treatments for the solution of 

general problems on arbitrary figures. The polygon-cutting theorem presented in this paper asserts the 

applicability of this principle in the case of simple polygons, and by doing so, leads to efficient, simple 

divide-and-conquer methods for solving a variety of geometric problems. 

The merit of this approach lies primarily in the versatility of its applications as well as in the increased 

efficiency which it affords. The most immediate open question is whether sorting the vertices in preprocessing 

is indeed required. If not, the algorithm would automatically become linear. In this paper, we have 

deliberately chosen simplicity and practicality over generality by restricting the weights attached to the 

vertices to take on the values 0,1. This was motivated by the fact that this restriction still allowed us to apply 

divide-and-conquer to an arbitrarily chosen subset of vertices, while adding simplicity to the exposition. The 

reader will observe, however, that it is straightforward to extend the theorem to a more general weight 

function. 

The applications mentioned in this work are only a few examples among a number of other problems 

which can benefit from the polygon-cutting theorem. Enlarging the list of applications given here is certainly 

a worthwhile endeavor. 
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