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Abstract 

We describe the current state of the 3 D Mosa i c project, whose goal is to incrementally acquire a 

3D model of a complex urban scene from images. The notion of incremental acquisition arises from 

the observations that (1) single images contain only partial information about a scene, (2) complex 

images are difficult to fully interpret, and (3) different features of a given scene tend to be easier to 

extract in different images because of differences in viewpoint and lighting conditions. In our 

approach, multiple images of the scene are sequentially analyzed so as to incrementally construct the 

model. Each new image provides information which refines the model. We describe some 

experiments toward this end. Our method of extracting 3D shape information from the images is 

stereo analysis. Because we are dealing with urban scenes, a junction-based matching technique 

proves very useful. This technique produces rather sparse wire-frame descriptions of the scene. A 

reasoning system that relies on task-specific knowledge generates an approximate model of the 

scene from the stereo output. Gray scale information is also acquired for the faces in the model. 

Finally, we describe an experiment in combining two views of the scene to obtain a refined model. 
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1 . Introduction 
The goal of the 3D M o s a i c project is to automatically acquire a detailed 3D descript ion (or model) 

of a complex urban scene from images. We are currently work ing with aerial photographs of 

Washington, D. C. Fig. 1 shows a stereo pair of images from our database. 

Our approach to this problem is based on the not ion of incremental acquisit ion of the scene model. 

A single image or view of a complex scene is generally not adequate for deriving a complete, accurate 

descript ion of the scene. Some reasons for this are: 

1. Many surfaces in the scene are occluded in any particular view. 

2. Because of the complexity of an image, it would be diff icult to interpret all the detai led 
parts. 

3. Some characterist ics of visible surfaces may not be as apparent in one image as in a 
different image. For example, it may be diff icult to analyze a highly oblique surface 
because of lack of resolution in the image, or it may be diff icult to analyze surfaces with 
shadows cast across them. 

4. Errors in analyzing and interpreting the image may create errors and inconsistencies in 
the scene descr ipt ion. 

Our method involves using multiple views of the scene in a sequential manner. A partial descript ion 

is derived from each view. As each successive view is analyzed, the model of the scene is 

incrementally updated with information derived from the view. The model is initially an approximation 

of the scene, and becomes more and more refined as new views are processed. At any point along its 

development, the model should be usable for the fol lowing types of tasks: 

1. When information is derived from a new view, it must be matched to the model so that 
updating can occur. The model should, therefore, contain information that facil itates this 
matching. 

2. The model should permit higher-level components to determine which parts of the scene 
should be analyzed in more detail , and whether a different view is required for further 
analysis of these parts. 

3. The model should be usable in its task domain, e.g. for photointerpretat ion or display 
generation. 

In our approach, 3D features that are relatively inexpensive to obtain, such as certain corners of 

bui ldings, are extracted from the images. A model of the scene is then hypothesized from these 

features by util izing task-specific knowledge (e.g. block-shaped objects in an urban scene). Updating 

and refinement of the model is facil itated by remembering which parts of the model have been 
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hypothesized and which parts have been directly derived f rom the images. 

There are several applications we have in mind for the types of models that are acquired. The first 

involves model-based photointerpretat ion. A scene model can provide signif icant help in interpreting 

images of the scene taken from arbitrary viewpoints [4 ,15 ] . Furthermore, the analysis results can be 

used in the incremental acquisit ion loop to update and refine the model. Another area of application 

deals with generating fl ight plans (simulating the appearance of the scene along potential f l ight paths) 

or familiarizing personnel with a given area. Our methods provide the ability to acquire a model of a 

scene from only a few views and then generate arbitrary views from the model. Finally, our 

incremental 3 D M o s a i c approach should be applicable to robot navigation and manipulat ion tasks. 

The ability to incrementally acquire approximate descr ipt ions of complex environments could prove 

useful for these tasks, since these descript ions may then be used to make decisions deal ing with path 

planning or determining which parts of the environment to analyze in more detai l . 

In the rest of this paper, we first discuss how to extract a 3D scene descr ipt ion from a single view. 

The stereo pair of images shown in Fig.1 consti tutes the single view to be considered. Afterward, we 

discuss combining information from multiple views. 

2. Stereo Analysis 
Our current method of extracting 3D shape information from the images is via stereo analysis. In 

the future, we may add other methods, such as shadow analysis [16]. 

Our approach to the stereo matching problem is to match junct ions and lines found in the images. 

There are several reasons for this: 

1. Our goal is to recover the 3D structure in the scene. We approach this problem by first 
extracting 3D information dealing with vertices and edges in the scene. In an urban 
scene, vertices often correspond to corners of buildings. Therefore, by recovering scene 
vertices and edges that emanate from them, we obtain port ions of boundaries of the 
bui ldings. These boundaries then allow us to construct 3D approximations of the 
buildings. (See [10] for a different approach developed for the same task domain.) 

2. Our stereo images are fairly wide angle and the scene consists of tall bui ldings. As a 
result, there are large discontinuit ies in disparity and the appearance of many objects 
differ signif icantly in the two images. This has caused problems for most previous stereo 
matching techniques since there are large port ions of the scene that are visible in one 
image but not in the other. In our approach, we are not interested in matching scene 
faces that are occluded in one of the image pairs. Rather, our goal is to match face 
boundaries that are visible in both images. We do th is by explicit ly taking into account the 
way junct ions change from one image to the other. We f ind a junct ion in one image, use 
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task-specif ic constraints to predict its appearance in the other image, and search for the 
corresponding junct ion by making use of the predicted appearance. Currently, our 
method of predict ing junct ion appearances is based on the fol lowing task-specif ic 
knowledge: 

a. In aerial photography, image planes tend to be almost parallel to the ground plane. 

b. In urban scenes, roofs of buildings tend to be almost parallel to the ground plane, 
while walls tend to be perpendicular to this plane. 

c. Therefore, features lying on a roof or on the ground wil l maintain the same shape in 
both images. Edges in the scene that are perpendicular to the ground plane will 
appear in each image to be directed toward the origin, defined by the intersection 
of the camera axis with the image plane [11]. 

If an L junct ion is found in one image, it is initially assumed to arise from a corner of a 
roof, and thus its appearance in the other image can be predicted. If an ARROW or 
FORK junct ion is found, the line, directed toward the origin is initially assumed to arise 
from a scene edge which is perpendicular to the ground, while the other two lines of the 
junct ion are initially assumed to arise from scene edges lying on a roof or on the ground. 
Again, its appearance can be predicted. 

3. Many stereo systems have trouble with wide angle stereo images because they rely 
heavily on local similarities in the two images [2, 3, 9, 12,13] . In our approach, however, 
because the junct ion is intended to represent a structural component in the scene, we 
also rely on more global, structural similarities in the two images to perform the matching. 

4. For a scene with many occlusion boundaries, an approach based on feature matching 
results in much more accurate 3D positions for these boundaries than an approach 
based on gray scale area matching. 

2 . 1 . S t e p s in S t e r e o A n a l y s i s 

E x r a c t i n g l i nes . The first step in the stereo analysis is to extract linear features. A 3x3 Sobel 

operator is used to extract edge points, as shown in Fig. 2. Then the edges are thinned using a 

modif ied Nevatia and Babu algori thm [14], as shown in Fig. 3. The resulting edge points are l inked 

and straight lines are fitted to them. The method used to fit straight l ines to a set of l inked points is 

based on iterative end-point fitting [7]. However, since this method determines a l ine using only two 

end points, the line equation for the set of points is recalculated using least squares. Finally, short 

lines are discarded. The resulting l ine images are shown in Fig. 4. 

E x t r a c t i n g j u n c t i o n s . The next step is to extract junct ions f rom the line images. A junct ion is a 

group of lines that meet at a point, and often arises from a vertex in the scene. We consider the 

fol lowing four junct ion types: L, ARROW, FORK, and T. To find junct ions, a 5x5 window around each 

end point of each line is searched for ends of other lines. Lines in the window that are close and 
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nearly parallel are combined into a single line. Then, if the window contains the ends of three lines, 

the lines are classified as an ARROW, FORK, or T junct ion depending on the angles between the 

lines. The position of the junct ion point is the middle of the three end points. If a window conta ins the 

ends of two lines, the lines are classif ied as an L junct ion. The intersection of the two lines 

determines the position of the junct ion point. If a window contains more than three lines, each set of 

two lines is assumed to form a dist inct L junct ion. Junct ions that have been found in this manner are 

labeled in Fig. 5. 

F ind p o t e n t i a l j u n c t i o n m a t c h e s . The next step in the stereo analysis is to match the junct ions 

found in one image with those in the other. Let us consider how L junct ions are matched. As 

explained previously, each L junct ion in one image is initially assumed to lie on a plane which is 

almost parallel to the camera image planes. The shape and or ientat ion of its corresponding junct ion 

in the other image, therefore, can be predicted. Each L junct ion in the first image may be matched 

with several junct ions in the second image that lie along the corresponding epipolar l ine and that 

have, within tolerance, the predicted shape and orientation. An interesting point is that we do not try 

to match only with junct ions in the second image that have been previously found. Rather, the shape 

and orientation of the corresponding junct ion in the second image is predicted for every point lying 

on the epipolar line (on the appropriate side of the infinity point), and at each of these points, a search 

is made within a pre-specif ied window for lines that might correspond to the predicted junct ion. The 

requirements, however, for two lines to be a junct ion is more relaxed than the requirements dur ing 

initial junct ion search. We therefore improve feature detection in. each image by using the features 

found in one image to predict features in the other image. (Matching is performed in two direct ions, 

from the first image to the second, and v ice versa.) 

To match ARROW, FORK, and T junct ions, each pair of lines forming the junct ion is treated as if it 

were an L junct ion and matched in the manner descr ibed above. 

S e a r c h f o r u n i q u e j u n c t i o n m a t c h e s . Next, a beam search [15] is used to arrive at a unique 

combinat ion of junct ion matches. There are two factors involved in comput ing costs for the various 

combinations of matches: 

1. Local cost between two potentially matching junct ions is computed by the similarity of the 
image intensities inside the junct ions. The assumption here is that the two junct ions will 
have similar intensities if they arise from the same face corner. 

2. Global cost is based on the considerat ion that if there are two vertices in the scene with 
the same heights, the posit ional relationship between their corresponding junct ions in 
one image wil l be the same as in the other image. This is due to the image planes being 
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parallel to the ground plane. We make the assumption that junct ions which are close to 
one another will often correspond to vertices lying on top of the same bui ld ing, thus 
having approximately the same height. Global cost between two potentially matching 
junct ions is therefore computed by the similarity of the conf igurat ion of the 
neighborhoods around the junct ions. 

The matching procedure is applied from the first image to the second and vice versa. The results 

are then merged. Fig. 6 shows junct ions and lines in one image that have matches in the other image. 

S e a r c h f o r t h i r d l egs of j u n c t i o n s . The next step is to f ind lines in the images that might be the 

third leg of matched junct ions and that might represent scene edges perpendicular to the ground 

plane. The method used is to find lines near the junct ions in both images that are directed toward the 

origin. 

G e n e r a t e 3D w i r e f r a m e s . Finally, 3D coordinates are derived using tr iangulation. Fig. 7 shows 

a perspective view of the 3D vertices and edges that result. We call this a wire-frame descript ion of 

the scene. 

3. Representing and Modifying the 3D Scene Model 
Our requirement that the scene model is to be incrementally acquired leads to several issues: (1) 

representing partial constraints on 3D structure, (2) incremental accumulat ion of these partial 

constraints, and (3) handling discrepancies in information acquired at different t imes. 

Our approach involves representing the model in a modular manner. Constraints on 3D structure 

are represented in the form of a graph, called the structure graph. The nodes and links represent 

primitive topological and geometric constraints. The structure graph is incrementally constructed 

through the addit ion of these constraints. As constraints are accumulated in the graph, their effects 

are propagated to other parts of the graph so as to obtain globally consistent interpretations. 

3 . 1 . R e p r e s e n t a t i o n o f M o d e l 

The current structure-graph representation models surfaces in the scene as polyhedra. The 

components of a polyhedral surface are the face, edge, and vertex. We distinguish the topology of 

the polyhedral components from their geometry [ 1 ,8 ] . The geometry involves the physical 

dimensions and location in 3-space of each component, while the topology involves connect ions 

between the components. 

In the structure graph, nodes represent either primitive topological elements -- faces, edges, 
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vertices, objects, and edge-groups (which are rings of edges on faces) - or primitive geometric 

elements - planes, lines, and points. Vertex, face, and edge nodes are tagged as either confirmed or 

unconfirmed. Conf irmed means that the element represented by the node has been derived directly 

from the images. Unconf i rmed means that the element has only been hypothesized. 

The primitive geometr ic elements serve to constrain the 3-space locations of faces, edges, and 

vertices. Plane and line nodes contain plane and line equations, respectively. Point nodes contain 

coordinate values. The graph contains two types of links: the part-of l ink, representing the 

par t /who le relation between two topological nodes, and the geometric constraint l ink, representing 

the constraint relation between a geometr ic and topological node. 

3 . 2 . M o d i f i c a t i o n s t o M o d e l 

Modif icat ions to the model wil l occur as part of the process of incremental construct ion. Deletions 

and changes are made when new information is found to conf l ict with information currently contained 

in the model. This will happen most often with portions of the model that have been hypothesized. 

Addit ions to the model are made to incorporate the new information as part of the model. 

Modif icat ions to the structure graph are made by adding or delet ing nodes and links, or changing 

the equations of l ine and plane nodes, or the coordinates of point nodes. All effects of modif ications 

are propagated to other parts of the graph. 

As an example, consider adding or deleting a geometr ic constraint link between a geometr ic and 

topological node. Any of the three geometr ic nodes - points, lines, and planes - may constrain any 

of the three topological nodes vertices, edges, and faces. Fig. 8 shows how a constraint on one 

node may propagate to others. The arrows in the f igure indicate the direct ion of propagat ion. For 

example, if a point constrains a vertex, it must also constrain all edges and faces containing that 

vertex. Similarly, a point that constrains an edge also constrains all faces containing that edge. 

When a geometric constraint link is deleted, the rest of the structure graph must be made 

consistent with this change. Our approach to this problem is based on the TMS system [6 ] , using the 

notion that when an assertion is deleted, all assertions implying it and all assertions implied by it 

should also be deleted, unless they have other support. Assertions that imply a given assertion are 

obtained by fol lowing backwards along the arrows in Fig. 8. Assertions implied by a given assertion 

involve fol lowing forward along the arrows. 

Consider the example in Fig. 9a, wh ich depicts three topological nodes (vertex v, edge e, face 0 
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constrained by one geometr ic node (point p). Suppose now that link 4 is deleted (Fig. 9b), i.e.,the 

assertion "p constrains e " is deleted. To f ind the assertion that might imply this one, locate the box in 

Fig. 8 that represents a point constraining an edge, fol low backwards along the arrow, and the result 

is the box that represents the point constraining any vertex of the edge. In Fig. 9b, this represents the 

assertion "p constrains v, and v is part of e " . This assertion must therefore be made false. To do so, 

we may delete either l ink 1, link 3, or both from Fig. 9b. We have arbitrarily decided that part-of links 

should dominate constraint links, and thus link 3 is deleted. This seems to work well for our 

examples. 

We now must determine the assertions implied by the one initially deleted. We follow forward along 

the arrow from the box in Fig. 8 that represents a point constraining an edge, and the result is the box 

that represents the point constraining all faces containing the edge. In Fig. 9b, this represents the 

assertion "p constrains / " , which is link 5. This link should therefore be deleted because it has no 

other support. The result ing structure graph is depicted in Fig. 9c. 

4. Generating the 3D Scene Model 
We now present an example showing how the scene model is generated from the output of the 

stereo analysis component . We start wi th the 3D wire-frame descript ion shown in Fig. 10. The final 

model derived is a surface-based descr ipt ion. 

C o m b i n e e d g e s . First, if there are two wire-frame edges that are nearly parallel and very close to 

each other, they are merged into a single edge. This occurs only once in Fig. 10, for the two edges 

labeled E1 and E2. 

G e n e r a t e w e b f a c e s . Next, each vertex is assumed to correspond to a corner of an object. 

Therefore each adjacent pair of legs ordered around the vertex corresponds to the corner of a planar 

face. Thus far in our experiments, we have dealt only with tr ihedral vertices. In this case, every pair 

of legs of each vertex corresponds to the corner of a separate face. A partial face, called a web face, 

is generated for each such pair. 

M e r g e p a r t i a l f a c e s . After all web faces have been created, those that represent the corners of a 

single face are merged. Two partial faces that contact each other (e.g. F1 and F2 in Fig. 10) should 

be merged if (1) they share exactly one edge, (2) the edge serves as a boundary of both faces, but 

does not partit ion them, and (3) the planes of the faces are nearly parallel and very close to each 

other. 



Two partial faces that d o not contact each other (e.g. F3 and F4 in Fig. 10) should be merged if (1) 

each face has a single chain of edges that is not c losed, (2) each of the two end points of the edge 

chain of one face must be uniquely matched wi th those of the other face, where unique matching is 

determined by the d istance between the two points being less than a threshold, and (3) the planes of 

the faces are nearly parallel and very c lose. When merging the two non-contact ing faces, the two 

edges on which each matching pair of end points lie are extended in space and intersected. The 

intersection points form two new vertices on the result ing face. 

C o m p l e t e t h e s h a p e s of f a c e s . After all mergers have been performed, many faces may stil l be 

incomplete, i.e., they do not have a c losed boundary. In these cases, task-specif ic knowledge is used 

to hypothesize the shape of each face, and it is completed by generat ing the appropr iate edges and 

vertices. The rules used here are: 

1. If the partial face consists of a single corner, i.e., it contains only two connected edges, 

the shape is completed as a paral lelogram. 

2. If the partial face contains three or more edges connected as a single chain, the shape is 
completed by connect ing the two end points of the chain wi th a new edge. 

F ind h o l e s in t h e f a c e s . After all f3ces have been completed, one face is assumed to represent a 

hole in another face if (1) the planes of the faces are nearly parallel and close to each other, and (2) 

the boundary of the first face, when projected onto the plane of the second face, falls inside the 

boundary of that face. When these condi t ions are met, the bounding edges of the first face are 

converted into an inner r ing of edges of the second face. 

G e n e r a t e v e r t i c a l f a c e s f o r i n c o m p l e t e o b j e c t s . At this point, many objects wil l be only 

partially complete because they are not c losed. Task-specif ic knowledge may be used to add more 

faces to the object. Because our 3D information is obtained from aerial images of an urban scene, 

many faces that lie high enough above the ground plane represent roofs of bui ldings. For each such 

face, vertical walls are dropped toward the ground plane f rom each edge of the face, unless the edge 

is also part of another face. The equat ion of the ground plane is current ly interactively obtained. A 

vertical wall is dropped either down to the ground plane, or to the first face it intersects on the way 

down. 

Our procedure for dropping vertical faces from a face F is as fol lows. First, an edge is dropped 

from each vertex of F either to the ground plane or to the first face it intersects. Next, web faces are 

created for each new edge pair at each vertex. Newly created faces are then merged and completed 

in the ways descr ibed above. Fig. 11 shows several perspective views of the resulting scene model. 
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4 . 1 . C o m p a r i s o n w i t h D e p t h M a p 

There are several interesting points about the generated model. First, not ice that it is a higher level 

descr ipt ion than a depth map. The product of most stereo analysis systems is a depth map [2 ,13 ] 

wh ich, like an image, is an array of numbers that requires descr ipt ion. Our approach, on the other 

hand, has been to extract a sparse amount of 3D information using stereo analysis (as shown in Fig. 

10) and to use task-specif ic knowledge to go direct ly to a higher level 3D descr ipt ion. This 

descript ion is much more compact than one based on surface points, and allows propert ies such as 

topology, shape, absolute size, and absolute posit ion of scene objects to be easily available. It should 

therefore be easier to update and refine the model from information obtained from subsequent views. 

Furthermore, the model should be more useful for matching with 2D image information, with 3D 

information extracted f rom images, and with other models. 

4 . 2 . M a p p i n g G r a y S c a l e o n t o F a c e s 

In order to render more realistic displays, gray scale is added to them [5]. This is accompl ished by 

associat ing with each face in the model a normalized intensity image patch of the face. Al though 

these patches are currently derived from a single image of the scene, we plan to generate them from 

mult iple images. Geometric normal izat ion, which eliminates the effects of perspective project ion, is 

performed on the patches. We also hope to perform photometr ic normalization to el iminate the 

effects of varying i l lumination condi t ions. Fig. 12 shows the results of adding gray scale to the faces 

of the model. The red port ions in the f igure indicate faces and parts of faces that are occluded in the 

original image. An interesting future problem involves incremental ly updat ing the intensity patch of a 

face as information is acquired from successive images. Note that the gray scale displays might also 

be useful in performing a 2D match between the projected image of the model and an image of the 

real scene. 

5. Multiple Views 
This sect ion descr ibes an experiment in combin ing information f rom two views to generate the 

scene descr ipt ion. The 3D information shown in Fig. 10 is derived f rom one view (viewing the scene 

from the " f ron t " ) . Another set of vert ices and edges, depicted in Fig. 13, was manually generated to 

simulate the information available from an opposing point of view (viewing the scene from the 

"back " ) . The viewpoints for the perspective drawings of Figs. 10 and 13 are similar to allow easier 

compar ison by the reader. Notice that the information in Fig. 10 emphasizes edges and vertices that 

are facing the front of the scene, whi le vert ices and edges facing the back of the scene are 

emphasized in Fig. 13. 
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We have made the assumption in this experiment that we know the exact posit ions, relative to the 

first view, of the cameras used to obtain the second view. Therefore, the wire-frame descript ions in 

Figs. 10 and 13 can be expressed in the same coordinate system. We are current ly working on the 

problem of matching such descript ions wi th a model so that relative positions of views can be 

automatically determined. 

The procedure used in this experiment is similar to the one descr ibed in the last sect ion, except 

that matching and merging of the two sets of wire-frames is also required. 

First, for each set of wire frames, edges that are nearly parallel and very close to each other are 

merged. Next, each connected group of edges is labeled as a separate wire-frame object. We now 

want to merge objects derived from the first view with matching objects derived from the second view. 

Two objects are said to match if they have matching vertices or edges. The requirements for two 

vertices, one from each object, to match are: (1) they must be very close together, or (2) they must be 

part of matching edges, and the other two vertices of the edges match. The requirements for two 

edges, one from each object, to match are: (1) the two vert ices of one edge must match the two of the 

other, or (2) one vertex of one edge matches one vertex of the other, and the two edges are close 

together and overlap in their lengths. These rules are used in a relaxation algori thm to obtain 

matching vertices and edges. 

Two matching wire-frame objects are merged in the fol lowing manner. First, their matching 

vertices are merged. The coordinates of each result ing vertex are those of the midpoint of the line 

connect ing the two initial vertices. Next, the matching edges are merged by using a type of 

"averag ing" to obtain a resulting edge for two initial edges that do not coincide. This averaging is 

based on the observation that end points of edges that are vert ices generally have much more 

accurate 3-space positions than end points that are not vertices. Therefore, the vertex end points are 

given greater weight in the averaging than the non-vertex end points. Finally, all ether edges and 

vertices of the two objects are combined to generate a single wire-frame object. 

From this point onward, processing cont inues as descr ibed in the previous sect ion. Web faces are 

generated for each corner of each vertex, the web faces are merged, the shape of incomplete faces 

are completed, holes in faces are found, and vertical walls are dropped from faces f loating above the 

ground. Fig. 14 shows several perspective views of the resulting scene model. 
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5 . 1 . Resu l t s w i t h M u l t i p l e V i e w s 

There are two important differences between the scene models shown in Figs. 14 and 11 . First, the 

one in Fig. 14 contains more bui ldings. This is expected because more wire-frame data is available in 

construct ing this model. Second, many buildings that are described in both models are more 

accurately descr ibed in the one in Fig. 14. That is, the positions of vert ices and edges of these 

buildings are more precise. There are two reasons for this: (1) Since more wire-frame data is 

available for reconstruct ing these bui ldings, we obtain high accuracy for more vertices and edges. 

(2) Since many vertices and edges are redundantly available in both sets of data, their posit ions are 

"averaged" , generally decreasing the amount of error. 

This experiment demonstrates how the information provided by each addit ional view allows the 

scene model to be gradually refined and made more complete. 

In this experiment, only wire-frame objects are matched and merged. Our next step will be to match 

and merge a wire-frame descript ion with a scene model. Our current experiment can also be thought 

of as merging wire frames with a scene model by noting that it is equivalent to having generated a 

model from one set of wire frames, but using only conf irmed vertices and edges of the model to match 

and merge with the other set of wire frames. This gives an indication of the importance of conf irmed 

information for the more general matching and merging processes. Our next step wil l require 

determining which parts of the model, both conf irmed and unconf i rmed, require modif icat ion. Some 

of these parts may actually have to be pulled apart and rebuilt, while others may merely require 

modif ications to their 3-space locations. 

6. Conclusion 
The current state of the 3D Mosa i c project has been descr ibed. The goal of this project is to 

acquire a detailed 3D model of a complex scene from images. A useful approach to this problem is to 

acquire the model in an incremental manner, over a sequence of images taken from multiple 

viewpoints. We have also shown that task-specific knowledge is very useful in interpreting complex 

images. Our stereo analysis component uses such knowledge for matching features in the images, 

and our higher level reasoning component uses such knowledge for reconstruct ing shapes from the 

stereo output. 

Fig. 15 displays a flow chart for the whole system. The stereo analysis extracts 3D wire-frame 

descript ions representing portions of boundaries of the buildings in the scene. A surface-based 

model representing an approximation of the scene is then generated from the wire-frame 
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descr ipt ions. This model should be useful for tasks such as matching, photointerpretat ion, display 

generat ion, and path planning. As indicated in Fig. 12, parts of the scene not yet observed are 

displayed in red. This idea can be used in a task such as planning fl ight paths for reconnaissance, 

where a path that permits viewing the maximum amount of red port ions might be optimal. 

There are several extensions and improvements we have in mind for our system. In addit ion to 

cont inuing our experiments with mult iple views as discussed in the previous sect ion, the fol lowing are 

our main tasks for the immediate future: 

1. Using the scene model for matching. This is required for performing model-based image 
understanding and for updating the model with information obtained f rom a new view. 

2. Verifying a scene model in a top-down manner by project ing hypothesized edges and 
vert ices into the image plane and then searching for them in the image. 

3. Increasing the amount and accuracy of the wire-frame information extracted dur ing 
stereo analysis. More boundaries of bui ldings in the scene than shown in Fig. 7 can 
probably be extracted by direct ly incorporat ing task-specific knowledge at the lowest 
levels in the process of extract ing junct ions from the image. 
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F igu re 1 : Gray scale stereo images of a region of Washington, D.C. 
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Figu re 3 : Result of th inning the edges in Fig. 2. 
Results for the upper middle part of each .mage 

in Fig. 2 are shown here. 



Figu re 4 : Straight l ines fitted to the edge points 
of Fig. 3 after they are l inked. 



Figu re 5: Result of classifying junct ions in a different version 
of line images than shown in Fig. 4. Junct ions 

are classified as L, A (arrow), F (fork), or T. 
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F i g u r e 7 : Perspective view of 3-D vertices and 
edges der ived from matches shown in Fig. 6 . 



vis part of e(link 1) 
e is part of/(link 2) 
p constrains v (link 3) 
p constrains e (link 4) 
p constrains /(link 5) 

(a ) 

(fa) 
( c ) 

F i g u r e 9 : (a) initial structure graph.(b) Link 4 is deleted, 
(c) Result ing structure graph after effects of de.etion have been propagated. 
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Figui re 1 0 : Perspective view of 3-D vertices and edges extracted 
from stereo pair. This version is different from the one shown in Fig. 7. 
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P e r s P e c t , v e v { e w s of reconstructed buildings. 
These bu.ld.ngs correspond to the cluster of buildings 

at the upper middle parts of the images in Fig 1 

Figure 1 2 : Reconstructed buildings of Fig. 11 with gray scale mapped 
onto faces. Gray scale values were derived from the left image 

in Fig. 1. The red in the display indicates faces and portions 
of faces that are occluded in the original image. 



gu re 1 3 : Perspective view of manually generated vertices and edges whl 
simulates the information derived from stereo analysis of images obtained 
from an opposite point of view from that shown in Fig. 1 . The viewpoint for 
this drawing is similar to Fig. 10, to allow easier comparison by the reader. 
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