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1 Introduction 1 

An important consideration in the design of speech recognition systems is the choice of an 

accurate yet economical representation for the speech signal [Davis 80, White 76]. Most systems use 

a compact encoding of the short-term spectrum such as LPC or coefficients derived from band-pass 

filtering. Necessarily, a great deal of information (such as spectral detail and temporal structure) is 

lost in the encoding. For vocabularies containing words whose spectra are highly distinct (e.g., the 

digits) such a representation is adequate for high-accuracy recognition. In other cases, the coarseness 

of the spectral mapping leads to difficulties in discrimination. A subset of the alpha-digit 

vocabulary, words ending in the vowel / i / , illustrates such difficulties.2 Utterances in the / i / set are 

confusible because their distinctive characteristics arc restricted almost entirely to a short segment at 

the beginning of the utterance (the consonant). It is in the nature of template matching to give equal 

weight to all portions of an utterance, as a result the contribution of the initial segment to the total 

distance between two utterances is frequently outweighted by random variations in the remainder of 

the utterance (the vowel). The goal of the work reported in this paper is to explore techniques that 

enhance the contribution of phonetically significant portions of an utterance while preserving a 

representation that allows a uniform template matching procedure to be used. The work described 

in this paper was done using the CICADA system developed at Carnegie-Mellon University [Alleva 

81, Waibel 80]. CICADA uses a representation based on a compression of the short-term spectrum 

according to a 16 coefficient mel scale. 

Let us consider the CICADA representation in more detail: In addition to a loss of fine spectral 
detail, two major features of the speech signal are lost in the mel-scale compression: The pitch of the 
vocalic portions and the distinction between a periodic and an aperiodic signal. Although the 
contribution of pitch information to phonetic identity is not well understood (see, however, [Massaro 
78]), the latter distinction provides information that can be used to discriminate otherwise 
confusable utterances, such as "C"-"Z" and "T"-"D". 

A purely spectral representation, particularly the kind used in the CICADA system, has only at best 

ambiguous information about the excitation source for a given speech segment. In this paper we 

describe an investigation of the potential advantages of including information about excitation 

source as a supplement to the spectral representation. We chose to investigate the zero-crossing 

^NOTE: Some of the data described in this paper were reported earlier at the 102nd Meeting of the Acoustical Society of 
America, December, 1981 

^ e 10-member confusable set is composed of the letters «BVCVD V E V G VPVTVVVZ", and the digit M3M. 
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count as a source of such information because of its straightforward derivation and its familiarity in 

the field (see e.g., [Baker 74]), 

2 An analysis of zero-crossing statistics 

The present section introduces the count method, describes a number of statistics for our speech 

corpus, and examines the use of statistical data as a basis for recognition decisions. 

Zero-crossing statistics were collected for all utterances in our data base3 (a total of 2880 

utterances). The zero-crossing count was calculated using the same time-frame parameters used for 

the calculation of spectral coefficients; that is, over a 20 msec window stepped 10 msec through the 

utterance. The zero-crossing count was calculated using flo/z-preemphasized speech. The potential 

range for the resulting zero-crossing count was thus 0-200, in actuality the observed range was 2-164. 

A number of alternate counting algorithms could have been used, most notably, calculating the 

zero-crossing count for only the central 10 msec of each spectral frame. Since the waveform is 

Hamming-windowed before spectral analysis, the central 10 msec would correspond to the region 

that makes the major contribution to the frame spectrum. On the other hand, a 10 msec window can 

give an unstable estimate of the zero-crossing count, thus introducing extra noise into the parameter. 

Empirical test seems to indicate that the 20 msec window results in better performance (see section 

3). 

Zero-crossing counts were collected for the utterance as bounded by the begin and end points 

determined by an automatic begin-end detector [Yegna 79]. The following statistics were calculated: 

the mean, the standard deviation, the median, and the range. In addition, the median zero-crossing 

count in ten equally-spaced intervals within an utterance was calculated. 

Over the 8 talker database we observe a 2 —164 range of zero-crossing counts. The highest mean 

and median zero-crossing counts are found for the utterance "SIX". This is to be expected, since 

"SIX" contains proportionately the most frication in the alpha-digit vocabulary. Looking at the 

standard deviations (SDs), we see again as expected, that utterances containing fricatives have high 

standard deviations. If we consider the absolute difference between the mean and the median to be 

a rough estimate of the skewness of a particular distribution, we note that pairs of utterances 

differing primarily in the degree of frication present (for example, C-Z, T-D, and P-B) show 

3Thc database consists of 10 tokens of each word in the 36 member alpha-digit vocabulary (A..Z;0 9) recorded by>*^fcers 
(4 ̂ T^TM lers were W . T*e material was recorded on audio tape in a moderately no1Sy ( office ) 
environment then digitized using a 10 kHz sampling rate. 
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differences in the skewness of their zero-crossing count distributions: utterances with frication have 

more skewed distributions. Differences between utterances become even more apparent if we 

restrict the scope of our measurements to the initial portion of such utterances. 

2.1 Using an utterance's zero-crossing count characteristics 

The data described above suggest that we might be able to use the behaviour of the zero-crossing 

count in an utterance to supplement spectral matching. Unfortunately, these differences cannot be 

directly translated into reliable tests that distinguish pairs of spectrally similar utterances (for 

example, P-B). To show that this is the case, we will examine several specific instances. 

Table 1 shows the range of standard deviations (SD) found for the minimal pairs B-P and D-T. If 

SD is to be used to reliably discriminate between the members of the two pairs, then the SD ranges 

for the two members of each pair must not overlap. As can be seen from the Table, this is the case 

only half the time. Several talkers (ds, gg, rp) show consistent discrimination for both pairs. For the 

other talkers, however, the separation is absent or is inconsistent across die two pairs examined. The 

same pattern is apparent for the skewness measure (Table 2): The members of a pair can be 

consistently distinguished for five talkers, inconsistently for two more and not at all for the 

remaining talkers. Focussing on those parts of the utterance known (from phonetic analysis) to carry 

the discriminative information, in this case the beginning of the utterance, does not allow us to 

realise an increase in accuracy or consistency (Table 3). 

Table 1: The use of variance information for voicing discrimination 

utterance decision 
dataset B D P T P/B T/D 

ds 5-13 4 - 1 1 18-27 19-44 y y 
fa 4 - 1 1 5-12 5-18 8-22 n n 
gg 
jl 

6-10 8-13 17-31 25-33 y y gg 
jl 6-14 6-18 8-26 29-39 n y 
ma 3-17 7-19 16-34 22-37 n y 
ms 3-11 8-28 4 -21 16-32 n n 
rp 5-15 7-13 16-28 28-42 y y 
sw 3-19 7-18 9-21 11-22 n n 

Total correct classifications: 3 5 

Note: values are the range of variances, calculated over 10 utterances for each talker. 

short exercise leads to the conclusion that zero-crossing information is not consistently useful 
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mean-median difference 

dataset B D P T P/B T/D 

ds 3 2 9 14 y y 
fa 
22 

1 0 1 4 n y fa 
22 1 2 11 12 y y 

ji 
ma 

-2 -1 -4 -10 y y ji 
ma 2 4 9 14 y y 
ms 2 5 2 10 n y • 
rp 
sw 

0 0 9 17 y y rp 
sw 2 1 4 6 y y 

Total correct classifications: 6 8 

Table 3: Zero crossing count range for voiced and unvoiced pairs 

voiced-unvoiced pail's non-overlaps 
ti di Pi bi si zi 

fa 34 56 

O
O

 32 58 140 0 

ds 62 62 57 42 99 33 1.5 

gg 
jl 
ma 

75 37 52 31 35 67 2 gg 
jl 
ma 

7 51 33 30 50 19 1 gg 
jl 
ma 55 57 37 35 70 102 1 
ms 47 104 15 30 37 74 1 

rp 
sw 

38 46 84 59 30 81 1 rp 
sw 34 39 1.1 33 37 59 0 

totals 1.5 5 1 

Note: The entires in this table indicate the relevant extremes of the range distribution. Thus, for the entries for the 
unvoiced members of each pair indicate the lowest zero-crossing count observed for that utterance, while the entries for the 
voiced member indicates the highest zero-crossing count for that utterance. Obviously, if the lowest unvoiced is less than the 
highest voiced count, zero crossing count is not diagnostic of voicing. Each value is based on ten (10) instances. 

over all talkers or over all utterances. It is the case, however, that such information is consistent for 

some talkers and for some distinctions. Use of zero-crossing information, therefore, requires the 

presence of additional knowledge, such as might be obtained through tuning to a particular talker or 

through a recognition procedure that has the capability to narrow down choices to small sets for 

which the zero-crossing (or any other) attributes are well understood (see [Cole 81] for an example of 

this strategy). As an example of the latter, if the choices for an utterance can be narrowed down to 

"T-D", then the SD information can be used to pick either one word or the other. Likewise, if the 

choice can be narrowed down to "P-B", then the (raw) zero-crossing count for the initial portion of 

Table 2: Mean-median disparity 
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the utterance can be used as a source of evidence. The implication is that given the imperfect 

reliability of zero-crossing information, it is best used in the context of a recognition strategy that 

incorporates detailed knowledge of the characteristics of speech sounds and uses an informed 

sequential decision strategy. While die C-MU speech group is actively pursuing work on such 

systems, the focus of the present paper is on die enhancement of template matching techniques. 

One of the attractions of dynamic time warping is that it is a general decision procedure and 

makes no use of domain specific information. This allows die use of highly efficient search 

procedures, but requires that adequate discriminative information be included in the representations 

of the events being matched. The question therefore is whether a parameter such as the zero-

crossing count can selectively enhance discriminative information contained in the representation. 

Concretely, we are interested .in determining the optimal manner in which to extract and 
transform zero-crossing information and include it as a part of a spectral template. 

3 Designing an optimal zero-crossing function 

The ideal zero-crossing coefficient would take on a neutral value when die speech signal was 

either silence or vocalic and go to one of several levels when different kinds of aperiodic energy were 

present in the speech. Such a function is in practice difficult to design, however, a reasonable 

approximation can be achieved. To do so, we must be able to define the following parameters: 

• a floor value: a count below which it can be assumed no aperiodic energy of interest is 
present, i.e., during vocalic portions or during silence. 

• a ceiling value: a count above which differentiating different degrees of zero-crossing 
counts is not informative. 

• quantization: a mapping of the range between the ceiling and the floor which conveys 
useful information about the nature of the speech signal, e.g., providing distinctions 
between voiced and unvoiced fricatives. 

The experiments described below represent a.systematic, though certainly not exhaustive, search for 
optimal settings of the above parameters. 

3.1 General procedure for all experiments 

Except in the case of some pilot experiments (summarized in section 3.5), all experiments were 

performed using the full set of utterances (800) in the confusible "E" set All matches were 

performed within talkers, using each of the ten repetitions of a vocabulary item in turn as a reference 
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template. Thus, a total of 900 matches were performed for each talker data set or a total of 7200 

matches for each condition in die experiments described below. All experiments were performed 

using the CICADA2 system [Alleva 81]. 

3.2 The basic zero-crossing algorithm 

A zero-crossing is defined as a transition between two successive waveform samples that produces 

a change in sign. The number of such transitions per frame is taken as the raw zero-crossing count 

for that frame. Except in the case of a few experiments (see section 3.5), the raw zero-crossing count 

is transformed by the following equation: 

ZCcoef f ic ient » (RawZC-Floor)/RangeFactor 

The Floor and RangeFactOP parameters correspond to the parameters described at the 

beginning of this section. Together they define a floor (explicitly) and a ceiling (implicitly) for the 

function. Values which fall outside this range are automatically clipped to the boundary values. In 

actual use, ZCcoeff I c i e n t is normalized to a [-7..+7] range, corresponding to a 4 bit code. This 

feature is useful for our particular representation, as the spectral coefficients are also in this range. 

The contribution of ZCcoef f 1c1ent to the calculation of a distance between two frames within 

the warping algorithm is equivalent to that of a single spectral coefficient, or one sixteenth. 

Differential weighting of ZCcoef f i d e n t is discussed in section 3.5. 

3.3 Floor value 

For our present purposes we will assume that the kind of information provided by the zero 

crossing count is rather limited in scope (but see [Baker 74]). That is, it can signal the presence of 

aperiodic speech energy; perhaps differentiate frication and aspiration, but no more. Zero-crossings, 

however, are always present in recorded speech: During periodic portions, during nominal silences, 

as well as during aperiodic portions. To make the count more sensitive, it is desirable to eliminate 

the "noise" introduced by zero crossings during silences and vocalic speech. One common 

technique is to calculate zero-crossing counts on the basis of a center-clipped signal. Although 

center-clipping has a number of advantages, we decided against using it because of its apparent 

sensitivity to changes in signal amplitude. In fact, one of our design considerations, being able to 

treat vocalic and silent segments equivalendy, made the use of a "floor" threshold desirable. 

A floor parameter is specified by selecting a threshold value for zero-crossing counts such that if 

the zero-crossing count falls below this value, it is assumed that no aperiodic speech energy is 



present. To establish the level of "background zero-crossing'1 for voiced speech we can examine a 

vocalic utterance such as "ONE" and note the zero-crossing values encountered. A strict criterion 

would involve setting die threshold to the maximum zero-crossing value found in the all-voiced 

utterance. Although it would not be possible to guarantee that any value above this threshold 

indicates the presence of aperiodic energy (consider, for example, the interpolation of some 

environmental noise), the likelyhood of this being the case would be very high. Since a DC offset or 

the presence of voicing might alter die zero-crossing count for a segment that otherwise would be 

unambiguously identified as frication, it might be desirable to set a laxer criterion, preemphasize the 

signal,, or even use the raw zero-crossing count. 

The purpose of the present experiment is to establish an optimal value for this threshold, or 
Floor value. To simplify the design, the RangeFactor parameter was set to a constant value (4) 
that would ensure that most of the zero-crossing range was included, with minimal clipping at the 
ceiling value. 

Figure 1: Performance (% error) as a function of floor value. 

rhe experiment was performed using two spectral mapping scales: a 16 coefficient mel scale and a 

coefficient scale based on the French and Steinberg [French 47] equi-intelligibility scale; this 
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latter scale will be referred to as the FrcSt scale [Rudnicky 82]. The results arc presented graphically 

in Figure 1. The optimal floor value.for the mel scale is about 30, while the optimal value for the 

FreSt scale is about 20. The minima of the two functions are rather shallow and thus these values 

are approximate. There does not appear to be any ready explanation for die difference in minima 

for the two scales. 

The present experiment establishes that the presence of a direshold (Floor) increases the 

accuracy of template matching. We believe that it does so by reducing die variance of die zero-

crossing count in those parts of an utterance for which this information is not discriminative (i.e., 

vocalic segements). The reduction in variance contributes to a less-noisy match between the 

template and the test utterance. 

3.4 The range factor 

Zero-crossing counts have an inherent instability (as do all acoustic parameters of speech), it is 

therefore desirable to reduce their variability. This can be done by quantizing die range of the 

function and producing a smaller number of (discrete) levels. The present experiment compares 

several degrees of quantization by altering the RangeFactor parameter in the zero-crossing 

algorithm (see section 3.2). Table 4 shows the results of varying the range factor for two different 

floor values. Note that variations in the range factor appear to have a minimal effect on 

performance — all values obtained are within 0.5% of each other. 

Table 4: Range Factor experiment Error Rates (%) 

Range factor Floor=40 Floor=20 

3 
4 25.18 
5 25.24 
6 25.33 
7 25.69 

24.83 
24.38 
24.38 
24.57 

Taken together with the Floor experiment, these data indicate that the full range of zero-

crossing information (i.e., 2-164) is not necessary for effective use of this parameter. Thus, the 

(clipped) range between 20-65, divided into 15 levels, can give satisfactory performance, the 

interpretation of this result appears straight-forward: Low zero-crossing counts (i.e., below 20) are 

likely to come from the vowel portion of an utterance, since all vowels in the set studied are the 
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same, the zero-crossing fine-structure of the vowels does not contain useful information. (Although 

diis may not be an appropriate conclusion, given that a constant vowel environment was used.) 

Similarly, zero-crossing counts of over 65 are almost certainly taken from aperiodic portions of an 

utterance, knowing an exact count above that ceiling does not provide any additional information 

and only contributes unnecessary variance. The range between the ceiling and floor values, 

however, may contain useful information about the degree of frication present in die signal. The 

results of the RangoFactor experiment suggests that, again, the fine-structure of the intermediate 

range contributes little specific information, the useful information being die fact diat it is an 

intermediate range. 

In order to understand the role of fine structure in the intermediate range, an additional 
experiment was performed, quantizing the intermediate range to successively coarser levels (from 
the original 15). Two levels were examined: 8 and 3. The mel scale spectral representation was used 
for this experiment. The Floor and RangeFactor parameters were set to 20 and 4, respectively. 
The results of this experiment are shown in Table 5. 

Table 5: Range quantization 

Number of levels % error 
3 
8 
15 

28.77 
25.55 
25.22 

As can be seen, the reduced number of levels leads to poorer performance. This result can be 
interpreted in one of two ways: Either the proportion of zero crossings present provides useful 
information and the coarse quantization destroys this information, or a gradual shift from one 
category to the other allows the recognition process to recover from errors of categorization. We 
believe that the latter is the case. An definitive assessment of this question, however, is beyond the 
scope of this paper. 

3.5 Miscellaneous factors 

This section describes several additional manipulations that were considered, but were not 

pursued. In all cases, the data were obtained for only three talkers (ds, fa, gg). These talkers were 

chosen to be representative of the entire 8 talker set The results are displayed in Table 6. The 100 

msec non-overlapped window condition uses an algorithm originally developed by [Niimi 80]. A 

number of findings are apparent: using the raw zero-crossing count degrades recognition 

performance, presumably because the inherent variability of the zero-crossing count adds more 
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% error 

27.81 

Manipulation 

mei scale only 

mei scale; raw zero-crossing; 10msec non-overlapped window 30.41 

mei scale; raw zero-crossing; 20msec overlapped window; value divided by 2. 31.18 

FreSt scale only 28.01 

FreSt scale; raw zero-crossing: 20 msec overlapped window 39.56 

FreSt scale; floor=30; ranged to [-14.. 4-14], instead of [-7..+7] 27.40 
(i.e., coefficient weight doubled) 

4 Analysing the improvement 

The previous section has established that zero-crossing information can produce an improvement 

in recognition accuracy. The purpose of the present section is to examine in more detail the process 

by which zero-crossing information produces an improvement in recognition scores. Two questions 

will be dealt with: In which part of the utterance is the new, discriminative information present? 

How does zero-crossing information interact with the warping process? 

4.1 The locus of useful zero-crossing information 

The addition of zero-crossing information was hypothesized to enhance the discriminability of 

fricative and voiced portions of utterances. The utterances in the "E-set" differ only in the initial 

portion of the utterance and so we should expect that the improvement in performance is due to 

extra information at the beginning of the utterance. It is also possible, however, that for some reason 

utterances will differ in zero-crossing count not only at the beginning, but throughout the utterance. 

If this is the case, then we would be dealing with a qualitatively different phonetic difference than 

the one we were originally trying to represent (the fricative/non-fricative distinction). To assure that 

the improvement in performance was due to better discriminability based on the initial portion of 

the utterance, we performed the following experiment: All utterances were divided in half and a 

noise than useful information. Doubling the weight also produces a decrement; this latter result is 

consistent with the results of the quatization experiment reported in section 3.4. 

Table 6: Results of miscellaneous experiments 
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whole 1st half 2nd half 

FreSt scale only 28.01 24.29 73.27 
FreSt scale and z-c 23.38 21.75 73.66 

improvement 4.63 2.54 -0.39 

As can be seen, the results support the hypothesis: Recognition based on only the second half of the 

utterance is equally poor, with or without zero-crossing information. In contrast, zero-crossing 

information improves performance for recognitions based on only the first half of the utterance. 

Two other interesting points should be noted about the data: There is an overall improvement in 

performance when only the first half is used, second, the improvement on first halves (with or 

without zero-crossing information) is less than the improvement obtained by adding zero-crossing 

information to the whole utterance. The improvement found when using only the first half of an 

utterance can be attributed to the elimination of mismatches caused by spurious differences at the 

ends of utterances. We believe these differences arise from instabilities in the speech signal that 

occur when phonation ceases.4 In a template matching system, the resulting difference between 

reference and test utterances cannot be distinguished from meaningful differences, such as those 

which occur at the beginning of the utterances. 

If, for a given unknown utterance, class membership (e.g., in the E-set) can be reliably 

determined, then it might be possible to improve recognition by focussing the recognition matching 

on the most informative portions of the utterance (see, e.g., [Niimi 80], and [Bfadshaw 82]). The 

second result of interest is the relatively smaller improvement for the first half when zero-crossing 

information is added points to the asymptotic nature of most of the improvements which are added 

(see [Rudnicky 82] for further discussion of this point). 

4 
In h«man speech perception, the information necessary for identifying an utterance must have presumably been extracted 

before the end of the utterance has been reached: Instabilities of this kind do not appear to influence the percept produced. 

recognition run was done separately on die first and second halves. If we are dealing with a 

whole-utterance phenomenon, then both halves should show some improvement in performance 

once zero-crossing information is added. If the additional information is present only at the 

beginning of the utterance, then only the first half of the utterance should show the improvement. 

For diis experiment, the previously determined optimal settings for the zero-crossing were used, i.e., 

Floor: 20, RangeFactor: 40. Tlie results are shown in Table 7. 

Table 7: Error rates for whole, 1st half, and 2nd half utterances 



12 

4.2 The influence of zero-crossing information on matching behaviour 

The matching process in isolated word recognition can usually be factored into two conceptually 

distinct aspects: 1) die calculation of an optimal time alignment between an unknown utterance and 

a reference (i.e., establishing a warping path), 2) die calculation of a global "distance" between die 

two utterances, typically computed from inter-frame distances along the warping path. In practice, 

however, diese two factors are confounded since the same measure, inter-frame distance, is used for 

both die choice of a warping path and for the calculation of distances. In die context of the present 

study, it is of interest to find out whether the increase in recognition accuracy is due to the 

development of a better warping padi or to die enhancement of the score calculated along an 

existing padi, or to a combination of the two. 

With this in mind, an experiment was designed to separate the path-formation and distance 

formation aspects of the zero-crossing coefficient. The following four conditions were used: 

1. Zerocrossing coefficient used for both path formation and distance calculation. (This is 
identical to the configurations used for the experiments in section 3). 

2. Zerocrossing coefficient used for neither path nor distance. 

3. Zerocrossing information used in conjunction with spectral information to determine 
best path. Distance calculated along the path without using the zero-crossing coefficient 

4. Spectral information alone used to determine the best path. Distance calculated with 
both spectrum and zero-crossing coefficients. 

The results of the experiment are presented in Table 8. It is quite apparent that zero-crossing 

information contributes only to the distance calculation component of the matching process and not 

to the path-establishing component There is no interaction between the two. 

Table 8: Error rates for the path-distance experiment 

Distance 
no yes difference 

no 36.45 33.61 2.84 

path 
yes 36.36 33.25 3.11 

difference 0.09 0.36 

We can draw the following conclusions from this experiment. Time alignment based on spectral 

information alone produces what appears to be an optimal alignment between a test and reference 



utterance, at least one which cannot be improved upon by die addition of zero-crossing information. 

This result suggests that a fruitful approach to template matching might be die use of spectrum-

based warping to align two utterances, followed by the use of tiiis alignment to perform more 

detailed spectrum and feature-based distance computation over corresponding time frames (along 

the warping path) of the unknown and reference utterances. It also suggests diat a promising avenue 

of exploration might be to determine the minimal information needed to produce optimal 

alignment, tiiereby freeing a system's resources to allow them to be concentrated on post-alignment 

processing. 

5 Summary 

The experiments described in this paper have shown that zero-crossing information can be 

successfully used to augment a spectral representation in a template-matching speech recognition 

system. The reduction in error rate, over 8 talkers, is between 10-13% depending on die spectral 

mapping. Taking into account that the specific parameter values presented in this paper are in all 

likelyhood not generalizable beyond die present recognition system, the alpha-digit vocabulary, and 

the set of talkers, we can offer the following guidelines for the use of zero-crossing information: 

• Effective use of zero crossing information requires the elimination of "noise". This can 
be done by defining an "active" range for the count using floor and ceiling values. Once 
defined, this range can be effective even if quantized to a small number of levels. 

• A promising strategy for template based recognition might be to separate time alignment 
and distance score computation. Simple spectral matching can be used to perform time 
alignment, while computationally more expensive discriminative techniques (based on 
feature extraction and phonetic knowledge) can be used to calculate the distance score. 

6 References 

[AUeva81] F.Alleva. 
Cicada! Users9Manual. 
1981. 
Carnegie-Mellon Speech Group: Internal memo. 

[Baker 74] Baker, J.M. 
A new time-domain analysis of human speech and other complex waveforms. 
PhD thesis, Carnegie-Mellon University, 1974. 

[Bradshaw 82] G.L. Bradshaw, R.A. Cole, and Z. Li. 
A comparison of learning techniques in speech recognition. 
Technical Report, Carnegie-Mellon University, 1982. 
(also presented at ICASSF82). 



14 

[Cole 81] II. A. Cole. 
A feature-based speech recognition strategy. 
1981. 
Carnegie-Mellon Speech Group: unpublished paper. 

[Davis 80] Davis, S.B. and Mcrmelstein, P. 
Comparison of Parametric Representations for Monosyllabic Word Recognition in 

Continuously Spoken Sentences. 
IEEE Transactions on Acoustics, Speeck Signal Processing ASSP-2S{4):357-366, 

August, 1980. 

[French 47] French, N.R. and J.C Steinberg. 
Factors governing die intelligibility of speech sounds. 
Journal of the Acoustical Society of America 19:90-119,1947. 

[Massaro 78] Massaro, D.W. and Cohen, M.M. 
The contribution of fundamental frequency and voice-onset time to die /zi/Vsi/ 

distinction. . 
Journal of the Acoustical Society of America 60:704-717,1978. 

[Niimi80] Niimi,Y. 
Weighed template matching. 
1980. 
Carnegie-Mellon Speech Group: unpublished research. 

[Rudnicky82] Rudnicky, A.I. 
Representing the speech signal in a template matching system. 
Technical Report, Carnegie-Mellon University, 1982. 

[Waibel80] A.Waibel, B.Yegnanarayana. 
Optimization of Nonlinear Time Warping Techniques in Isolated Word Recognition 

Systems. 
Technical Report, Carnegie-Mellon University, 1980. 

[White 76] White, G.M. and Neely, R.B. 
Speech Recognition Experiments with Linear Prediction, Bandpass Filtering, and 

Dynamic Programming. 
IEEE Transactions on Acoustics, Speech Signal Processing ASSP-24:183-188, 

April, 1976. 

[Yegna 79] Yegnanarayana, B. 
* An automatic begin-end detection algorithm based on spectral values. 
1979. 
CMU Speech Group: Internal memo. 


