
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M J - C S - 7 9 - 1 3 7

The Symbolic Manipulation of Computer Descriptions

The ISPS Computer Description Language

Mario R. Barbacci
Gary E. Barnes

Roderic G. Cattell
Daniel P. Siewiorek

Departments of Computer Science
and Electrical Engineering

Carnegie-Mellon University
14 August 1977
6 March 1978

16 August 1979

Copyr ight (C) 1979 Mario R. Barbacci

The development of ISPS is part of the research on the Symbolic Manipulation of Computer
Descriptions sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-78-C -1551.

The v iews and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government

ISPS Reference Manual

ISPS Reference Manual

Table of Contents

1. Introduction

2. Syntactic Conventions

3. Character Set, Identifiers and Constants

3.1. ISPS Character Set
3.2. Identifiers
3.3. Constants

3.3.1. Constant Alphabets
3.3.2. Kilo and Mega Multipliers
3.3.3. Don't Care Digits
3.3.4. Length of Constants

3.4. Comments
3.5. Alias
3.6. Quoted Text
3.7. Name Pairs

4 . ISPS Descriptions

4.1. Declarations
4.2. Structure
4.3. Behavior
4.4. Scope of Declarations
4.5. Examples

5. Behavioral Expressions

5.1. Actions
5.2. Block Actions
5.3. Labelled Actions
5.4. Conditional Actions

5.4.1. DECODE Action Selectors
5.4.2. Don't Care Digits
5.4.3. Examples

5.5. Control Actions
5.5.1. Loops
5.5.2. Action Terminators
5.5.3. Examples
5.5.4. Selecting the Right Operation

6 . Carr ier Expressions

6.1. Data Types and Arithmetic Representation
6.2. Data Operators

6.2.1. Add-Op (Unary)
6.2.2. NOT
6.2.3. (©
6.2.4. Shift-Op
6.2.5. Mult-Op
6.2.6. Add-Op (binary)

iv ISPS Reference Manual

6.2.7. Rel-op 37
6.2.8. And-Op 37
6.2.9. Or -Op 37

6.3. Transfer Operation 37
6.3.1. Storing into Concatenated Carriers 38
6.3.2. Multiple Transfers 38

7. Car r ie r Terms 39

7.1. Read/Write Access 40
7.2. Activation 40
7.3. Combined Access and Activation 41
7.4. Compatibility Between Use and Declaration 41
7.5. Examples 41

8. Predefined Qualifiers 43

8.1. INCREMENT Qualifier 43
8.2. REFerence Qualifier 45
8.3. PROCESS and CRITICAL Qualifiers 48
8.4. MAIN Qualifier 50
8.5. PTIME Qualifier 50
8.6. Arithmetic Qualifiers 52

9. Qualifiers 55

9.1. Placement of Qualifiers 55
9.2. Identifier Sequences 56
9.3. Summary of Predefined Qualifiers in ISPS 56

10. Other Declarations 59

10.1. REQUIRE 59
10.2. MACRO 59
10.3. DEFINE 60

11. Predeciared Entities 61

12. Reserved Keywords and Identifiers in ISPS 63

13. Using the ISPS Parser 65

14. ISPS Global Data Base: File Format and Syntax 67

14.1. GDB Header Line 67
14.2. The GDB Syntax 67
14.3. Representation of Node-Names and Terminals 69
14.4. Attribute Types 71

15. GDB Node Types 73

16. A Complete GDB Example 81

16.1. ISPS Description 81
16.2. GDB File 82

ISPS Reference Manual

17. References

Appendix I. Syntax Charts

Index

ISPS Reference Manual

ISPS Reference Manual vil

List of Figures

Figure 5-1: Static and Dynamic Use of LEAVE, RESTART, and RESUME 31
Figure 8 -1 : INCREMENT Qualifier 43
Figure 8 - 2 : REFerence Qualifier 46
Figure 8 - 3 : PROCESS and CRITICAL Qualifiers 48
Figure 8 - 4 : Use of the MAIN Qualifier 50
Figure 17-1: Syntax Chart - I 85
Figure 17-2: Syntax Chart - II 85
Figure 17-3: Syntax Chart - III 85
Figure 17-4: Syntax Chart - IV 85
Figure 17-5: Syntax Chart - V 85
Figure 17-6: Syntax Chart - V I 85
Figure 17-7: Syntax Chart - V I I 85
Figure 17-8: Syntax Chart - VI I I 85
Figure 17-9: Syntax Chart - IX 85

ISPS Reference Manual

ISPS Reference Manual ix

List of Tables

Table 3 -1 : Non-alphanumeric Characters 7
Table 3 - 2 : Special Characters in ISPS 8
Table 3 - 3 : Representation of Constants 9
Table 3 - 4 : Length of Constants 10
Table 6 - 1 : Operator Precedence 33

ISPS Reference Manual 1

The Symbolic Manipulation of Computer Descriptions

Designers make use of notations and languages as abstraction building tools. The meaning

of these abstractions is based on a set of predefined notions on the domain of problems that

the designers attempt to solve. In the Symbolic Manipulation of Computer Descriptions

(SMCD) project we are attempting to design and build systems that operate relative to

computer descriptions. Thus we need abstractions to describe computers.

When one tries to design a problem oriented language, one can use different notations for

each problem area and as new problem areas become the focus of our research we simply

develop new languages as needed. Alternatively, one can make a guess and develop a

language that incorporates every possible abstraction that anybody might ever need. It is

easy to see why neither of these solutions is satisfactory. If we use different languages we

need to translate machine descriptions developed in other notations into our own. Ver i fy ing

the translation is akin to testing the equivalence of algorithms, an unsolvable problem in

general. Any certification that might have been painstakingly obtained is now lost if we can

not v e r i f y the equivalence of the descriptions.

The second approach tends to yield complicated, hard to understand, and sometimes

unimplementable languages. All users must pay the price of the inefficiencies introduced to

cope with a huge set of abstractions, even if the application one has in mind requires a

limited subset of what the language offers.

ISPS is a kernel language which provides the users with the tools to define application

dependent abstractions around a core notation. It is the applications that define the meaning

of the abstractions. This alleviates the problem of accommodating new, unforeseen

requirements by providing users with a set of tools: a language and a parser9 and a

mechanism by which the meaning of the descriptions can be specified, modified, or extended.

We have avoided the problem of the inefficiency of an umbrella language by partitioning the

implementation of application dependent semantics among the users. Only those abstractions

needed for an active area of research are implemented and the body of expertise centered

around the manipulation of ISPS descriptions can grow gradually.

Mario R. Barbacci, 14 August 1977

Preface to the Second Edition

A number of typographical errors have been corrected in this second edition of the manual.

A few comments have been added to help clarify the meaning of some features. The changes

however , are of a minor nature and users of the first edition of the manual (8/14/77) do not

2 ISPS Reference Manual

need a new copy. The ISPS readers that provided me with valuable feedback are too

numerous to mention. I am grateful for their comments.

MRB, 6 march 1978

Preface to the Third Edition

This is the third edition of the ISPS reference manual. It describes the features

implemented in version 5 of the ISPS parser. The main differences with the previous release

are: a) the elimination of one construct (concatenated mappings) and, b) and the introduction

of several new operators and predeclared entities. In addition to presenting the new

language features, many sections have been rewritten to clarify the language constructs and

their intended use.

The manual now includes a set of charts describing the syntax in a pictorial manner. It is

hoped that these will complement the BNF in presenting the syntax of the language.

The previous edition of the manual mentioned an "applications manual* and many users

requested copies. Unfortunately, the "applications manual" was never intended to be a single,

monolithic document, but rather an expanding set of documents describing systems and

programs making use of ISPS. Some of these documents are included in the software

distr ibution tape. Others are to be obtained directly from the authors or maintainors of the

applications programs.

The previous edition of the manual included an introductory chapter. This chapter has

been eliminated since it is available as a separate technical report [Barbacci, 1978] and as an

appendix in a published book [Bell, 1978].

MRB, 16 August 1979

ISPS Reference Manual 3

1. introduction

The ISP notation was first introduced by Bell&Newell [Bell,1971] as a formalism to describe

the programming level in the hierarchy of digital systems descriptions. At the programming

level a computer is described in terms of data types, data operations, and an interpretation

rule. The interpreter is an algorithm that defines the sequences of operations performed by

the machine. These operations are encoded in a particular data type: the instruction, and

they operate on other data types encoded in the memory and registers of the machine. The

data types are stored or transmitted in data carriers (memories, registers, and data paths).

These values are transformed or operated upon by the data operators (functional units),

controlled by a network of clocks and sequential circuits. All of these components are

defined in terms of a lower level of computer descriptions, the Register Transfer level.

Although ISP is oriented towards the description of Instruction Set Processors, it contains

a fair number of constructs which can be used to describe a large class of register transfer

systems (digital computers are a subset of the latter, namely, those systems that fetch,

decode and execute instructions).

The design philosophy of ISPS was guided by two principles, flexibility and simplicity.

Specifically, it was desired to design a computer description language that would be

appropriate for diverse applications: automated design, simulation (for both software

development and hardware debugging), and automatic generation of machine relative software

(in particular, compiler-compilers). Thus, although ISPS can be viewed as a programming

language, the aim of the notation is to describe computers and other digital systems, not

necessarily general computational algorithms.

The ISPS language is parsed by a 'compiler* which runs on a PDP-10. This is not a

compiler in the normal sense; its output is a parse tree, which is used as input by the various

aforementioned application programs.

The definition of what constitutes a 'correct' ISPS description depends to some extent on

the nature of the application programs using the machine description. An assembler

generator might, for instance, require the specification of the instruction mnemonics but it

might not have any use for the specification of the memory technology. The situation is

reversed when a design automation system uses the same parse tree. A compiler-compiler

system might be interested in the 'cost* of each instruction in order to generate optimal code.

For details on these and other applications, see [Barbacci, 1979].

To allow the coexistence of multiple applications, ISPS provides an extension facility for

the specification of application dependent information. This information is attached to the

parse trees and can be easily retrieved by the application programs. Because of the open

4 ISPS Reference Manual

ended nature of the application dependent information, the parser can only perform syntactic

analysis of the extensions. Relatively little can be done at parse time with regard to the

semantic analysis and the bulk of the semantic analysis of the extensions thus lies in the

domain of the application areas*.

We are indebted to many individuals, at CMU and elsewhere, for their comments, criticisms,

and encouragement. The RT-CAD group at CMU and the meetings of the AMD Working Group

prov ided invaluable feedback to the designers of the language. The following individuals

deserve special thanks: Steve Crocker (USC-ISI), Lloyd Dickman (DEC), Vittal Kini (CMU),

B a r r y Press (TRW), Don Thomas (CMU), and Andries Van Dam (Brown University).

As sxperience with the language trows, ths semantic knowledge built into the psrssr will bs augmented to
incorporate those aspects that are common to all applications or which can rssult in contradictory assumptions by ths
users of ths machine dsseription.

ISPS Reference Manual 5

2. Syntactic Conventions

The syntax of the language is defined in the Backus-Normal-Form (BNF) meta-notation. The

characters ' : : « ' separate the name of a production from the sequence of terminals and

non-terminals which define the production. Alternatives sequences are separated by '|*.

All production names are written in bold face (e.g. c-expression). Keywords and reserved

identifiers are written in upper case (e.g. BEGIN). Bear in mind however, that ISPS makes no

distinction between upper and lower case letters, thus in an actual description 'BEGIN 9 and

'begin' , and even 'BeGilST are all equivalent.

In order to keep the number of BNF productions down to a level which does not impair the

readability of this manual, the following meta-convention will be used: A production name of

the form ' x -L IST^ ' stands for a sequence of, at least one, instances of x, separated by 'y\

where V c a n be any character, including NULL (this allows for the specification of lists

without any special delimiter), i.e.:

Z : : - X-LIST'' is equivalent to: Z X | Z ; X

By the same token, a production of the form 'x-LIST^-LIST 2 * stands for a sequence of, at

least one, instances of 'x-LIST^' , separated by 'z\

ISPS Reference Manual

ISPS Reference Manual 7

3.1* ISPS Character Set

The character set used in ISPS is essentially the full 7-bit ASCII character set. Upper and

lower case letters are considered to be equivalent (the ISPS parser maps all letters to their

upper case form.) Most other characters are taken literally with no mapping performed on

them. Table 3-1 depicts the non-alphanumeric characters and their meaning in ISPS.

Octal Char. Use

041 ; Indicates a comment (See [3.4])
042 Indicates a hexadecimal constant (See [3.3])
043 Indicates an octal constant (See [3.3])
047 Indicates a binary constant (See [3.3])
050 (Used in blocks and expressions (See [5.2, 7])
051) Used in blocks and expressions (See [5.2, 7])
052 Multiplication operator (See [6.2.5])
053 Addition operator (See [6.2.1, 6.2.6])
054 Used as a list separator. (See [4.2, 4.3, 5.4, 7, 9])
055 Subtraction operator (See [6.2.1, 6.2.6])
056 Used in identifiers (See [3.2])
057 / Division operator (See [6.2.5])
072 Used to indicate a range of values (See [3.7])
073 ! Concurrent Action and Qualifier separator (See [5, 9])
074 < Used to describe a bit structure (See [4.2, 7])
075 Logical transfer operator (See [6.3])
076 > Used to describe a bit structure (See [4.2, 7])
077 ? Used in Constants (See [3.3.3, 5.4.2])
100 <s> Concatenation operator (See [6.2.3])
133 [Used to describe a word structure (See [4.2, 7])
134 \ Used in Aliases (See [3.5])
135] Used to describe a word structure (See [4.2, 7])
137 Logical transfer operator (See [6.3])
173 f

1
Used in Qualifiers (See [9])

174
f
1 Used to quote strings (See [3.6, 5.2, 9, 10])

175 } Used in Qualifiers (See [9])

Table 3-1: Non-alphanumeric Characters

Tabs, form feeds, blank lines, etc. may be used anywhere a space may be used.

In addition to the characters shown in Table 3-1, ISPS makes use of certain special

3. Character Set, Identifiers and Constants

8 ISPS Reference Manual

characters outside the ASCII character set. These special characters have obvious

transliterations in terms of multiple ASCII characters, as shown in Table 3-2

C h a r - Use

i = Used I n d e c l a r a t i o n s and l a b e l s (See [4 , 1 , 5 . 3 , 5 . 4 , 1 0])
=> Used i n c o n d i t i o n a l a c t i o n s (S e e [5 , 4])
<= A r i t h m e t i c t r a n s f e r o p e r a t o r (S e e [6 , 3])
** S e c t i o n Head D e l i m i t e r (S e e [4 . 3])

Table 3 -2 : Special Characters in ISPS

3.2. Identifiers

Identifiers in ISPS are made up of the following characters: A -Z , a-z, 0-9, and V Upper
and lower case letters are equivalent.

Identifiers must start with a letter and may be of any length (the current implementation
limits identifiers to be up to 80 characters long).

Examples*

NAME
NaMe
T h i s , I s . a , l o n g , i d e n t i f i e r
c l d 3 e 5

3.3. Constants

A constant is a sequence of characters in some alphabet determined by the base of the

constant. The default base is ten; any constant which appears without a base indicator is

considered to be decimal. Base eight constants are preceded by *. Base two constants are

preceded by \ Base sixteen constants are preceded by \

ISPS Reference Manual 9

Base Pref f x A lphabet

2
8
10
16

0 , 1 , ?
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , ?
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F , ?

none

Table 3 -3 : Representation of Constants

3-3.2. Kilo and Mega Multipliers

For convenience, any constant may be appended with a sequence of Ks, which acts as a

multiplier of value - 1024, Thus IK is equivalent to 1024, 4K is equivalent to 4096, IKK is

equivalent to 1024K or 1048576. Similarly, a sequence of Ms can be used as a multiplier of

value - 1048576.

3.3.3. Don't Care Digits

The character T can be used in a binary, octal, or hexadecimal constant to specify a don't

care digit. Its presence stands for any digit in the corresponding alphabet. Don't care digits

are a notational convenience for writing partially specified 'bit patterns'. In the current

implementation the use of '?' is restricted to constants used to label DECODE alternatives (See

[5.4.2]).

Examples*

"1000 J base 16
4096 I base 10
#10000 ! base 8
'1000 I base 2

3.3.1. Constant Alphabets

The alphabets for the predefined bases in ISPS are depicted in Table 3-3.

10 ISPS Reference Manual

3.3.4. Length of Constants

Constants have two properties. The first of these is the base they are in, the second is

their length. The length of a constant is measured in bits, according to the rules shown in

Table 3 -4 .

Base Length of Constants

10 Decimal constants are one bit longer than the smallest number of bits
needed to represent its value.

2 Binary constants have one bit for each digit explicitly written.

8 Octal constants have 3 bits for each digit explicitly written.

16 Hexadecimal constants have 4 bits for each digit explicitly written.

Table 3-4: Length of Constants

"1000 I 16 b i t s
4095 I 13 b i t s
#17 ! 6 b i t s
0 I 2 b i t s
" A l J 8 b i t s
"OOF I 12 b i t s
#10000 ! 15 b i t s
'101 I 3 b i t s
' 0 0 ? ? 1 I 5 b i t s
#?2 ! 6 b i t s

ISPS provides means to specify constant bit patterns whose length do not follow the above

length rules. These are described under c-terms (See [7]).

3.4. Comments

A comment is indicated by a T . Everything from the T to the end of the line in which it

appears is treated as a commentary and is not parsed. Comments appear in the parse tree

(See [14.4]) and can be used by the application programs:

Example I T h i s i s a comment

ISPS Reference Manual 11

3.5. Alias

It is possible to attach an alias to any identifier. The alias is usually a long form of the

identifier which is too long to use conveniently, e.g.:

Examples*

PC\Program.Count e r
ALNFARNA. Long . Name. F o r . A, Regi s t e r

It is also possible to attach an alias to any constant This alias is a convenient way of

attaching a special meaning to the constant, e.g.:

Efiarnplss*

' O l l O N P r i o r i t y . M a s k
2 0 4 \ A N D , I n s t r u c t i o n

Any number of aliases can be specified, separated by '\\ Syntactically, an alias is an

identifier. Semantically, an alias is treated as commentary information by the parser, i.e.

PROGRAM.COUNTER is not interchangeable with PC.

Aliases are Kept in the parse tree (See [14.4]) for the benefit of the application programs.

3.6. Quoted Text

There are several places in an ISPS description where an arbitrary ASCII string is valid

(e.g.: qualifiers, see [9]). These strings are mainly for the benefit of the application

programs that operate on the ISPS parse trees. A quoted-text is a string of characters

enclosed between ')' and *|\ A T inside the quoted-text is represented by '||':

E x a m p l e : [T h i s a a random s t r i n g w i t h a || i n I t |

3.7. Name Pairs

In ISPS there are several uses for a list of constants. A name-pair is an abbreviated

notation for a list of consecutive constants.

name-pair : : « constant I (See [3*31)
constant : constant

E x a m p l e s : 3 :5 s tands f o r 3,4,5* 7:4 s tands f o r 7 , 6 , 5 , 4

12 ISPS Reference Manual

Name-pairs are used, among other things, to name the bits of a carrier. A name-pair-LIST>

(a list of name-pairs separated by V) is used to label the elements of a list of DECODE

alternatives {See [5.4]).

Examples8

3 , 5 : 7 , 4
15 :13 ,12 ,11110

(e q u i v a l e n t t o 3 , 5 , 6 , 7 , 4 , I n t h a t o r d e r)
(e q u i v a l e n t t o 15:10 o r 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0)

ISPS Reference Manual 13

4. ISPS Descriptions

ISPS describes the interface (i.e. external structure) and the behavior of abstract

hardware units (called entities in the language). The interface describes the number and

types of carriers used to store and transmit information between the units. The behavioral

aspects of the unit are described by procedures which specify the sequence of control and

data operations in the machine.
Formally, in ISPS we define a digital system as a network of entities. These

entities can have different structural and behavioral properties. Thus, the
declaration of the main memory of a computer must specify the number of words
and the number of bits per word. An arithmetic unit must specify the different
operations it can perform. Other components share both types of properties. For
instance one could describe a bus as an entity with a structure (e.g. the bus lines)
and a function (e.g. the arbitration mechanism).

The exact physical implementation, the data storage and transmission
mechanisms, the mechanisms used to activate and terminate the execution of
operations, the synchronization and timing characteristics, etc. can be specified via
qualifiers (See [9]). This type of information is not required by the parser. That is,
an ISPS description does not need to specify the actual implementation or even the
organization of the data paths.

4*1. Declarations

ISPS-declaration : :
e-declaration : : -

An ISPS-declaration is the minimal parsing unit. For the sake of explanation we can call it a

'program'. An entity declaration (e-declaration) defines a hardware component which might

have a structure and exhibit some behavior. The entity head (e-head, see [4.2]) defines the

structural properties. The entity body (e-body, see [4.3]), if present, defines the behavioral

properties*

o-declaration
e-head I (See [4 . 2])
e-head : » e-body I (See t 4 . 3 3)
other-declarations (See [1 8])

4.2. Structure

e-head w - l i W > identifier fc-set fs-set (See [3 . 2])
f c - S e t : : « n i l I () I (e-head-LIST>)
fs-set : : - o i l I bit-fs-set I word-fs-set bit-fs-set
word- fs -set : : - [name-pair] (See [3 . 7])
bit - fs -set : : - < > I < name-pair >

An e-head defines the structural aspects of a declaration. It consists of several parts,

14 ISPS Reference Manual

some of which may be optional:

Component Meaning

identifier

fc -set

fs -set

The identifier distinguishes the entity from other entities defined at the
same level or scope (See [4.4]). It must always be present.

The formal connection set (fc-set) defines an interface for connecting
entities. Syntactically, it is a (possibly empty) list of carriers (e-heads)
playing the role of 'formal parameters*. The fc-set is optional.

The formal structure set (fs-set) defines a carrier and it may consist of a
single 'word' or an array of 'words' (a memory). The fs-set is optional.

word-fs-set

bit-fs-set

name-pair

The word formal structure set (word-fs-set) defines
the structure of an array of 'words'. The names of
the words are specified inside ' [' and ']*. The
word-fs-set is optional.

The bit. formal structure set (bit - fs -set) defines the
structure of a single word. The names of the bits
are specified inside '<' and *>\ The bit-fs-set must
be specified if the fs-set is present.

The elements of the name-pairs (the dimensions)
specify a naming convention for the 'words' and 'bits'
of a carrier. The name-pair must be present in a
word-fs-set, it is optional in a bit-fs-set (an empty
bit-fs-set (o) stands for a single, unnamed bit.)

4.3- Behavior

e -body BEGIN section-LIST END I (section-11 ST) I
BEGIN b-expression END I (b-expression) I (See [53)
e-head (See [4 .23)

section section-header e-declaration-L I ST • (See [4! 13)
section-header vnv identifier (See [3!23)

An entity body (e-body) defines the behavior of an entity,
'bodies' :

There are three kinds of

Body T y p e

sect ion-LIST

Explanation

The most general case of an e-body consists of a j]si of sections, each
consisting of a section-header followed by a Hst of e-deciarations, local to
the body. The declarations inside the sections can be of arbitrary
complexity. They can in fact, have bodies with local sections to any level
of nesting.

Declarations are grouped in sections as an abstraction

ISPS Reference Manual 15

mechanism. Application programs which manipulate ISPS parse
trees might require specific sections to be present while
possibly ignoring others.

b-expression Simpler bodies are defined by a b-expression (a behavioral expression,
see [5]) which can be thought of as a sequential or combinational
network, depending on the nature of the operations used and the
implementation thereof.

e-head The third type of e-body is used to define or map alternative structures
and naming conventions over previously declared carriers. The bit (or
word) names used on the left hand side of a structure mapping are
independent from the bit or word names used on the right hand side.
Both sides of a mapping must, however, specify structures of the same
size (# words * * bits/word). The equivalence between the bits of the
right hand side and the bits in the left hand side is obtained by aligning
the leftmost bit of the leftmost word of the left hand side with the

• leftmost bit of the leftmost word of the right hand side.

4.4. Scope of Declarations

ISPS declarations follow the same scope rules used in Algol and other programming

languages. Declarations must be unique within a section-LIST defining the body of an entity .

Sections do not define scopes, i.e. declarations in separate sections of the same section-LIST

must have unique identifiers.

Entities declared inside another entity are not accessible outside the enclosing entity.

Internal entities are 'own' (in the Algol sense), thus carriers used to describe storage

elements preserve their values across activations of the enclosing entity.

Labels used to name labelled-actions (See [5.3]) are not considered to be declarations in

the normal sense. The label (an identifier) is known and available only inside the

labelled-action and no conflicts arise from the use of the same label for several concurrent o r

sequential labelled-actions.

4.5* Examples

I r \ I n s t r u c t i o n . Regi s te r<0 :31>

This declaration defines a 'register' (IR) whose structure consists of 32 bits (0,1, -.,30,31).

The elements of the name-pair 0:31 specify the names of the bits.

Mp[0x255]<7:0>

16 ISPS Reference Manual

This declaration defines a 'memory' (M) whose structure consists of 256 words, each 8 bits

long. The words are named 0,1,2^.255 while the bits inside each word are named 7,6,~.,1,0.

V M A W I r t ua I . Memory. Address<13* 35>

This declaration shows that the bit (and word) names can be specified in ascending or

descending order. In fact, the name-pairs do not even have to begin or end on 0. The VMA

carr ier is declared to be 23 bits long, the bits named as 13,14^...,34,35 (the example was

der i ved from the DEC PDP-10 Virtual Memory Address format; the VMA carrier is loaded with

bits 13 through 35 of the Instruction Register, thus the bit names.)

A I u (A r e g < 0 i 15>,Breg<0« 15>)<0* 16>

The example defines the structure of a 'functional unit' (ALU) which consists of two

interface carriers (AREG<0:15> and BREG<0:15>) and one 'result' carrier, (ALU<0:16>). The

w o r d 'result* is being used in an informal sense. ALU<0:16> is just another carrier and be

can read or written by other entities as well as by ALU itself.

MARK1 i = I Manchester U n i v e r s i t y Mark -1
B e g i n
** M e m o r y . S t a t e **
M [Q : 8 1 9 1] < 3 1 : 0 > .

** P r o c e s s o r . S t a t e **
P I \ P r e s e n t . I n s t r u c t i on<15« 0>,
C R N C o n t r o I . R e g i s t e r < 1 2 : 0 > ,
AccNAccumu i at or<3110>,

** I n s t r u c t l o n c E x e c u t i o n **
I . C y c 1 e i -

B e g i n

End
End

The example depicts the body of the declaration of an entity, in this case a minicomputer.

The header of the declaration (MARK1) does not specify an structure. The body or

behavioral part consists of a list of declarations for the memory, registers, and operations of

the machine. These declarations are (arbitrarily) grouped into three sections (**

MEMORY.STATE **, ** PROCESSOR.STATE **, and ** INSTRUCTION.EXECUTION **>. The last

file:///Present

ISPS Reference Manual 17

section consists of a single entity (LCYCLE) which specifies the sequence of data and control

operations.

t \ i n s t r u c t i o n < 1 5 i 0 > , ! PDP-11 I n s t r u c t i o n Format
b o p \ b i n a r y . o p e r a t i o n < 2 x 0 > i s i <14:12> t

s \ s o u r c e . f i e l d < 5 i 0 > i s i < 1 1 : 6 > t

sm\source,mode<liO> i s s < 5 : 4 > t

s d \ s o u r c e . d e f e r r e d o i s s<3>,
s r c r e g \ s o u r c e t r e g < 2 : 0 > i s s<2i0>*

d\des t I n a t i o n . f i e i d < 5 i 0 > i s |<5x0>,
dm\dest inat ion .mode<l i0> i s d<5 i4> ,
d d \ d e s t i n a t i o n , d e f e r r e d o i s d<3>,
d e s r e g N d e s t i n a t i o n . r e g < 2 i 0 > i s d<2x0>,

In the above example, several fields of I (The PDP-11 Instruction Register) have been

defined as if they were independent 'registers' (i.e. each field has its own name, with an

optional alias, and a structure or dimension specification).

C C o d e s [0 i 3] < > : = PSW<15H8>, •! S360 C o n d i t i o n C o d e s

The last example shows how different structures can be mapped on top of a previously

declared carrier. CCODES is defined as an array of 4 1-bit carriers. Thus, one can access the

bits in the field PSW<15:18> using two alternative structures (i.e. an array of 1-bit carr iers

o r a 4-bit field). The equivalence of bits is as follows: The leftmost bit of word 0 of CCODES

corresponds to bit 15 of PSW. Since this is the only bit of word 0, we continue on w o r d 1,

whose bit corresponds to bit 16 of PSW, etc. etc.

ISPS Reference Manual

ISPS Reference Manual 19

b-expression : ; - s-action
s-action p - a c t i o n - L I S T N E X T

p-action : : - action-L 1ST' (See [5 . 1 3)

A behavioral expression (b-expression) defines the behavior of an entity, b-expressions

are built by specifying the sequence of transformations and transfers of values stored in

carr iers. Simple b-expressions (actions) can be combined to build larger b-expressions b y

activating them in sequence (s-actions separated by NEXTs) or concurrently (p-actions

separated by y) .
No synchronization must be assumed between parallel actions. Actions separated

by V are considered to be order independent and can be executed in any fashion.
The only requirement is that parallel actions are completed before proceeding
beyond the following NEXT separator.

Order independence refers to the order of evaluation of the actions, it does not
refer to the order of initiation of the actions. Parallel actions, separated by y are
initiated concurrently, their execution can proceed in any order.

Notice that this does not imply that the same results should be obtained from all
implementations. This is particularly true when the concurrent actions contain
control operators that modify the flow of control. It is not necessarily the case
that the writer of an ISPS description is aware of the consequences of specifying
concurrent operations separated by y. In general, it is an unsolvable problem to
determine when two concurrent operations are meaningful or desirable. The ISPS
Parser does not even try to check concurrent operations Caveat Emptor.

Example Description

A - l ; 8=2 Next 0 3 In this example the first two transfers are initiated in parallel and then,
after their completion, the third one is performed.

- .Next A - l ; B - 2 Next (C - 3 Next D-4); E-5 Next...
A - l and B-2 are performed in parallel. Then, the sequence C - 3 fol lowed
by D-4 is performed in parallel with E-5.

5-1. Actions

action : : - block-action I (See [5 . 2 3)
labelled-action I (See [5 . 3 3)
conditional-action I (See [5 . 4 3)
control-action I (See [5 . 5 3)
c-expresston (See [S3)

block-action : : - BEGIN b-expression END I (b-expression) (See [53)
labelled-action : : - identifier : « action (See [3 . 2 3)

5. Behavioral Expressions

20 ISPS Reference Manual

Actions are used to build complex behavioral expressions ranging from a primitive

c-expression, to conditional or unconditional control flow operations, to a complex

b-expression inside BEGIN/ENO or parentheses. The latter type can be used to build
arbit rar i ly nested b-expressions.

5.2. Block Actions

A block-action consists of a list of sequential or concurrent actions (a b-expression) enclosed
inside BEGIN/END or parentheses. The brackets are used to specify an order of execution
dif ferent from that implied by the precedence of the sequencing (V and 'NEXT') and data
operations.

The brackets can be optionally followed by a quoted-text or block name to provide the

reader with some degree of visual identification of the levels of nesting:

X i =

B e g i n | t h i s i s t h e o u t e r b l o c k |

B e g i n | t h i s i s the i n n e r b l o c k |

End | t h i s i s t h e i n n e r b l o c k |

End | t h i s i s the o u t e r b lock |

The quoted-texts attached to matching BEGIN/ENO or parentheses pairs must be identical.
The parser will warn the user if that is not the case.

Labelled Actions

Actions may be labelled to allow the description of complex activities, including selection
and premature termination or reinitialization of actions.

x i = B e g i n End

5.4. Conditional Actions

ISPS Reference Manual 21

conditional-action : : « I F c-expression => action I (See CG. 5 * 1])
DECODE c-expression - > BEG IN , numbered-action-L 1ST* END
DECODE c-expression «> (numbered-action-L I ST •)

numbered-action : : - action I
constant := action I (See [3 . 3])
name-pair action I (See [3*73)
[name-pair-LIST' 3 action I
OTHERWISE action

T w o operators. IF and DECODE, are used to specify the selection of alternative actions,

depending on the value stored in a carrier or computed from a c-expression.

If the value of the c-expression associated with an IF operation is non-zero ('true') the

action following the «> operator is executed, otherwise it is skipped. The c-expression is

interpreted as an unsigned value (See [6.1]).

The c-expression associated with a DECODE operator is evaluated and its value used to

select one of the actions specified in the numbered-action~LIST> following the « > operator .

The c-expression is interpreted as an unsigned value (See [6.1]).

5.4.1. DECODE Action Selectors

When the DECODE operation specifies a large number of alternatives, it is sometimes

difficult for a reader to associate the alternatives with the values of the c-expression which

selects them. In ISPS one can explicitly write the value of the c-expression associated with

the action as a label-Iike action selector:
selector : « action

Selector

nil

constant

name-pair

[name-pair-LIST»]

Meaning

If no selector is specified, the actions are assumed to have implicit
selectors, given by the position of the action in the list of alternatives.
The positions are numbered as 0,1,2.~.

A constant used to select an action identifies the value of the c-expression
associated with the action.

A name-pair used to select an action identifies a range of values of the
c-expression associated with the action.

A list of constants and name-pairs can be enclosed inside '[* and ' J to
indicate a non-consecutive list of values of the c-expression associated
with the action.

22 ISPS Reference Manual

OTHERWISE The keyword OTHERWISE is used to specify a default action if the
outcome of the c-expression is not covered by the other action-selectors.

If a value of the c-expression is covered by more than one action selector (either directly,

as a constant or indirectly, as part of a name-pair) only the first action associated with the

value is executed (i.e. exactly one action can be executed as a result of a DECODE operation).

It is a bad practice to mix actions with implicit and explicit action-selectors. The
syntax allows it to handle the situation in which a designer is not yet sure of the
proper constant action-selectors to use and wants to go ahead developing the ISPS
description.

ALL outcomes of the c-expression must be accounted for. OTHERWISE must be used in

some action if the number of actions is smaller than the number of possible values of the

c-expression.

5.4.2. Don't Care Digits

The use of don't care digits (T) in a name-pair of the form constanhconstant used to label a
DECOOE alternative can be ambiguous. For instance, the range '#?5:#0?* could be construed as
any of the following cases:

#05 ,#06,#07
#05,#04,#03,#02,#01,#00
7 5 , # 7 4 , # 7 3 , . . . , # 1 1 , # 1 0 , # 0 7
7 5 , # 7 4 , # 7 3 , . . . , # 0 2 , # 0 1 , # 0 0

More interesting patterns could be inferred from a more complicated example^:

/ 0 ? 1 1 ? 0 i ' ?11?0?

T o avoid any ambiguity, the following (arbitrary) meaning has been attached to the use of
don't care digits in a range:

1. The type of range (i.e. whether it is ascending or descending) is determined by
assuming that all don't care digits have value '6, #0, or "0, as the case may be^.

2. If the range is descending (i.e. the left constant, interpreted as in (1), is greater
than the right constant, interpreted as in (1)), the extreme values or boundaries

the determination of all possible ranfaa it laf* aa an axarciaa to tha readerl

'Remember that T ia not allowed in a decimal conatant.

ISPS Reference Manual 23

of the range are defined by replacing all don't care digits in the left constant by
'1, *7, T , as the case may be, and replacing all don't care digits in the right
constant by '0, *G, or M 0, as the case may be.

3. If the range is ascending (i.e. the left constant, interpreted as in (1) is lesser that
the right constant, interpreted as in (1 » , the extreme values or boundaries of the
range are defined by replacing all don't care digits in the left constant by '0, *0,
N 0 , as the case may be, and replacing all don't care digits in the right constant by
'1, #7, or T , as the case may be.

4. The range consists of all consecutive constants contained between the boundaries
determined above, including the boundaries. Notice that steps (2) and (3) are
designed to define the largest possible range within the limitations imposed by
step (1).

5.4.3. Examples

I F Acc EQL X => PC=PC+2

In this example, the operator EQL (See [6.2.7]) defines a 1-bit result CO stands for false. '1

for true). Depending on the value of this bit, PC is incremented (1) or not (0).

I f Z<4:7> => B e g i n , t 9 9 9 End

This example shows that in general, the c-expression does not have to be 1 bit long. The

action following the ' « > ' will be executed if ANY bit in the Z carrier is 1 (i.e. Z + 0).

Decode 0P<1:0> =>
B e g i n
A C O O , ! i f 0P<ls0> i s 0
ACC=ACC+M[Z], I I f 0P<1:0> i s 1
M[Z]=ACC t ! i f 0P<1*0> i s 2
PC=M[Z] I I f 0 P < l i 0 > i s 3
End

One of the four actions listed inside the BEGIN/END pair is executed, depending on the

value of OP (0, 1, 2, or 3).

Decode 0P<1*0> =>
B e g i n
0 s= ACC=0, ! I f 0P<1:0> i s 0
2 : s MCZ]=ACC, I i f 0P<1:0> I s 2
1 : = ACC=ACC+M[Z], ! i f 0P<1:0> i s 1
3 : = PC=H[2] 1 i f 0 P < U 0 > t s 3
End

24 ISPS Reference Manual

Notice that in the example we have altered the order of the actions. If explicit action

selectors are used, as in the example, one is free to write the actions in any order. For

instance, when describing the instruction decoding in a computer, one might wish to group all

the ADD instructions (half word, full word, double word, floating point, etc), followed by all

the SUBTRACT instructions, etc. even though the operation codes are not consecutive.

B e g i n
0 : = CR = M [S] ,
1 : = CR = CR + M [S] ,
2 : = Acc = - M [S] ,
3 i = M[SJ = Acc ,
4*5 : = Acc = Acc - M [S] ,
6 : = I f Acc Lss 0 => CR = CR + 1,
7 i = S t o p O ,
End n e x t

The above example is taken from the Manchester University MARK-I computer
[Lavington,1975]. Notice that there are two operation codes (4 and 5) associated with the
Subtract operation.

Decode F =>

Decode Address => I PDP-11
B e g i n
#17???? : = Beg in
#00???? i = Beg in
End

0 § • • End ,
End

! I /O Page
! memory

In the PDP-11, addresses in the range «170000:#177777 constitute the I/O page and are
handled differently *rom those in the range *00000:*167777. The use of don't care digits
simplifies the writing of the alternative selectors.

ISPS Reference Manual 25

e a d d \ e f f e c t i v e , a d d r e s s < 0 : 1 1 > »= I PDP8 E f f e c t i v e A d d r e s s
B e g i n
Decode pb => I Page Z e r o B i t

B e g i n
0 : = eadd ='00000 @ p a , ! Page Z e r o
1 : = eadd = l a s t . p c < 0 » 4 > @ pa I O t h e r Pages
End Next

I f l b => 1 I n d i r e c t B i t
B e g i n
I f eadd<0:8> Eq l 0001 => Mteadd] - M[eadd] + 1 Next ! A u t o I n d e x
eadd = H[eadd] I Memory F e t c h
End

E n d ,

Although we have not yet defined the data operations, it should not be difficult to

understand the example. Notice the use of the carrier associated with EADD (EADD<0:11>) in

the computation of the effective address. Algol-like scope rules are used in ISPS and

non-local carriers can be accessed from inside a body (e.g. IB, M, PA etc.)

5.5* Control Actions

control-action : : - REPEAT action I CSee [5 . 1])
LEAVE identifier I (See [3 . 2 1)
RESTART identifier I
RESUME identifier I
TERMINATE identifier

5.5.1. Loops

An action that must be executed repeatedly (a loop) can be described by the use of the

REPEAT operator preceding the action:

26 ISPS Reference Manual

Example1

I C y c l e : = I PDP-10 I n s t r u c t i o n C y c l e
B e g i n
REPEAT

B e g i n
I R = Memory!Pc] Next I I n s t r u c t i o n F e t c h
Pc = Pc + 1; VMA = IR<13:35> Next ! I n c r e m e n t PC
EA = VMA()<18:35> Next 1 E f f e c t i v e Address C o m p u t a t i o n
I E x e c u t e O I I n s t r u c t i o n E x e c u t i o n
End

End

5.5.2. Action Terminators

The LEAVE, TERMINATE, RESTART, and RESUME operators are used to terminate the '

execut ion of an action. The action is specified through its label (in the case of a

labelled-action) or through the identifier used in the e-head (in case the action is the body of

an ent i ty) .

There are several restrictions which govern the use of these operators:

1. The label or entity name associated with the operation is statically bound. That
is, the action to which the operation refers is determined by the lexical nesting
of the declarations.

2. If the identifier is an action label, the operation must be lexically nested in the
body of the labelled-action. In other words, if a labelled-action invokes an
activity, the body of the activity can not use the label in a control operation.
This is a consequence of the scope rules (See [4.4]).

3. If the identifier is an entity name, in the case of the LEAVE, RESTART, and
RESUME operations, the operation must be dynamically or statically nested inside
the entity. In the case of the TERMINATE operation, the operation need not be
nested inside the action to be terminated.

Operation Meaning

LEAVE The LEAVE operator is used to force the termination of labelled-actions
and e-bodies. Any actions (other than PROCESSes, see [8.3]) initiated
during the execution of the action to be terminated and not yet completed
are also terminated by the LEAVE operator. PROCESSes activated by the
action being aborted must be individually TERMINATEd (see below).

TERMINATE The TERMINATE operation is essentially equivalent to the LEAVE
operation (i.e. it aborts an action) but it is not limited to specifying an
enclosing action. In other words, TERMINATE can be used to abort any

ISPS Reference Manual 27

concurrent activity. If the action being TERMINATEd is an enclosing
action, this operation is identical to LEAVE. If the action to be
TERMINATEd is not currently active, this operation is ignored. The main
use of TERMINATE is to abort concurrent PROCESSes (See [8.3]).

The RESTART operator is used to 'reset' an executing action. All actions
initiated by the action to be restarted and not yet completed are
terminated, as in the case of the LEAVE operation, before the action is
restarted.

The RESUME operator provides another mechanism to terminate the
execution of an action. It differs from LEAVE in that LEAVE is followed by
the label of the action to be terminated. RESUME is followed by the label
of the action whose execution is to be continued. Any actions initiated
during the execution of the action to be resumed and not yet completed
are terminated.

Beware that these operators affect the sequence of operations and might be meaningless

or unimplementable when used in parallel actions, e.g.:

E x a m p l e : X i = (. , , NEXT . . . B=C; LEAVE X NEXT . . .)

The example illustrates a possible source of ambiguety since no order of evaluation can be

imposed on 'B * C ; LEAVE X'. When 'LEAVE X' is executed, the transfer 'B » C f may or may

not have been completed.

5.5.3. Examples

E x a m o l e l

i M n d i r e c t o i = VMA<13>,
X \ l n d e X < 0 : 3 > i = VMA<14:17>,
Y \ 0 f f s e t < 0 : 1 7 > i = VMA<18:35> t

V M A W i r t u a I . M e m o r y . A d d r e s s < 1 3 : 3 5 > . = I PDP-10
BEGIN
REPEAT

BEGIN
I F X s> Y = RegLX] + Y NEXT t add t h e Index r e g i s t e r
DECODE I =>

BEGIN
0:= <VMA<13:17> = 0 NEXT LEAVE VMA) , i done
1;= VMA = Memory[Y]<13.35> ! I n d i r e c t l o o p
END

END
END

RESTART

RESUME

28 ISPS Reference Manual

The body of the Virtual Memory computation specifies a (potentially infinite) loop of

indirect address. Indexing through a register specified in the X field is performed (if X»*0) by

adding the contents of the offset field to the register and truncating the result to 18 bits.

A f te r indexing has taken place, the indirect address field (1-bit) is tested. If the indirect bit is

' 0 ' the index field is cleared and the operation is completed (the effective address is left in

its carr ier , VMA). If the indirect bit is T , the current value of the offset is used to access a

memory location. The rightmost 23 bits of the word are loaded into the virtual memory

address carrier and the operation is repeated from the start.

Example8

S < K e y < 0 : 3 >) < > : = J Searches t h e f i r s t 512 words of Mp for KEYi
BEGIN
I n d e x - 0 NEXT
REPEAT

BEGIN
I F H P [I n d e x] EQL Key => (S = 1 NEXT LEAYE S) NEXT
I n d e x = Index+1 NEXT
I F I n d e x EQL 512 => (S = 0 NEXT LEAVE S)
END

END I end of S

The search loop can be terminated under two conditions: (a) by finding a match or , (b) by

exhausting the list. The carrier S<> is set to T or '0' respectively, to indicate the mode of

termination. The carrier INDEX contains a pointer or address to the last location searched.

Example8

S<Key<0s3>)<> : = I Searches t h e f i r s t 512 words of Mp for KEY:
BEGIN
I n d e x - 0 NEXT
S l s = BEGIN

I F I n d e x EQL 512 => (S = 0 NEXT LEAVE S) NEXT
I F MPCIndex] NEQ Key =>

(I n d e x = Index + 1 NEXT RESTART S I) NEXT
S = 1
END

END I end of S

The example is a variation on the table search of the previous example. Now however, the
loop is built implicitly, by defining the body of the loop as a labelled-action and simply
restart ing it the inside.

ISPS Reference Manual 29

I n t e r p r e t e r »= I I n s t r u c t i o n I n t e r p r e t e r
BEGIN

NEXT
I c y c l e O NEXT J I n v o k e t h e I n s t r u c t i o n C y c l e
I F E r r o r EQL 1 => BEGIN END NEXT I E r r o r H a n d l e r
• a • t t

END,
I c y c l e : = I I n s t r u c t i o n C y c l e

BEGIN
PC = PC • 2 NEXT I Increment Program C o u n t e r
I R = Rword(PC) NEXT ! I n s t r u c t i o n F e t c h
DECODE IR<0:3> => 1 O p e r a t i o n D e c o d i n g

BEGIN

ACC = ACC + Rword<IR<4.15>) I ADD I n s t r u c t i o n

END,
R w o r d < A d d r < 0 : l l >) < 0 : 1 5 > : = I Memory A c c e s s

BEGIN
I F Addr GTR Upper .Bound => I Boundary c h e c k

(E r r o r = 1 NEXT RESUME I n t e r p r e t e r) NEXT ! A b o r t
Rword = MP[Addr] i Memory F e t c h
END,

In the example, procedure INTERPRETER activates procedure ICYCLE which fetches,

decodes, and executes the instructions. In doing so, ICYCLE activates procedure RWORD which

is used to access the memory (MP) of the machine. RWORD checks that the memory address

is in bounds before performing the access operation. If a boundary error is detected, a flag

(ERROR) is set and the rest of the operation of ICYCLE is aborted (by returning to procedure

INTERPRETER, at the point where it activated ICYCLE). It is up to the 'resumed' procedure

(INTERPRETER) to take the proper corrective action, if any. Notice that we could have let

ICYCLE handle the error by terminating RWORD with 'LEAVE RWORD'. However, this would

have meant that the ICVCLE procedure had to check the error flag (ERROR) after every call to

RWORD. Depending on the size or complexity of the description, this might be undesirable.

30 ISPS Reference Manual

Example*

p < . .) < . . > »=

B e g i n
Next

L i- C A (. .) i B<x>* C (. .) Next . . .) Next

E n d ,

B < Y < 0 : 2 >) : =
B e g i n
Decode Y =>

B e g i n
'000 :
B e g i n
'000 : = Leave P,

'001 x s R e s t a r t P,
'010 s = Resume P,
' O i l : s Terminate P,
'100 : = Terminate A,
'101 : s Leave B,
'110 : = Leave CT

'111 i s Leave L
End

End

The last example attempts to illustrate the full power and consequences of the use of the

control operators of ISPS. An entity (P) contains a labelled-action (L), whose first step

consists of concurrently invoking three other entities (A, B, and C). A and C are not really

important and we will not specify their behavior. B however, takes one 'parameter' (Y) and

depending on the value of the actual 'parameter' (X) it will select a particular control

operat ion:

Value of X Effect

0 The 'LEAVE P' operation aborts P and in the process, it also aborts A, B,
C, and L

1 The 'RESTART P' operation aborts A, B, C, and L, and execution continues
from the beginning of P.

2 The 'RESUME P' operation aborts A, B, and C (not L). That is, the body of
P (L) resumes execution.

3 The TERMINATE P' operation has the same effect as 'LEAVE P\

4 The TERMINATE A' operation aborts A. B and C continue normally.

ISPS Reference Manual 31

5 The 'LEAVE B' operation aborts B. A and C continue normally.

6 The 'LEAVE C operation is in error. The activation of B was not nested
inside the activation of C. Errors of this type are not always detectable
by static analysis.

7 The 'LEAVE L' operation is in error. The label L is not accessible or Know
to B. Notice however, that if L also happens to be the name of an entity
declared in the scope of B, the operation may or may not be valid,
depending on the dynamic nesting of activations (in any event, the
identifier L refers to the entity, not to the labelled-action).

5.5.4. Selecting the Right Operation

By a suitable rearrangement of the description, inserting or eliminating labelled-actions, etc,

LEAVE, RESUME, and RESTART are more or less interchangeable4. It is a matter of style to

select the best mechanism to describe the behavior of the computer. One must select

whatever is more descriptive, clear, or in agreement with one's own personal bias.

Figure 5-1 contrasts the LEAVE, RESTART, and RESUME operations when used in static and

dynamic contexts.

^Jhmy •rm all cstas of Vaturn', LEAVE means 'raturw frojtt J t RESUME mom 'raiurn la J , and RESTART maans Vaiurn
lq tha head of -.'

32 ISPS Reference Manual

P K) : -
Begin

P 2 (. . .

End

P2()
Begin

3 , Leave P2

End

(a) Static LEAVE

P K >
Begin

2 . P2(.)

End

P2() : -

in
3 , Restart P I

End

(d) Dynamic RESTART

PK) :-
Begin

P2()

End

P2() : -
Begin ^ _

3 . Restart P2

L> End

(c) Static RESTART

P K >
Begin

-P2()

End
5

P2<) : -

!Z>End

Begin

Leave P I

(b) Dynamic LEAVE

PK > :-
Begin

2 . P 2 (.)

P2()

End

Begin

Resume P I

End

(e) Dynamic RCSLS.C

Figure 5-1: Static and Dynamic Use of LEAVE, RESTART, and RESUME

ISPS Reference Manual 33

c-expression
c-transfer :

c-disjunction I c-transfer
e-access-L I ST®-L I S T t r a n s f e f - ° P transfer-op c-disjunction

(See £7])
c-disjunction : : «
c-conjunction : : -
c-relation : : -
c-sum : : •
c - f actor : : -
c-shift : : •
c-concatenation : :
c -unary : : •

c-conjunction-LIST o r -°P
c - re lat ion -L IST a n d "°P
c - s u m - L I S T r e H) P
c - fac to r - L IST a d d - °P
c - s h i f t - L I S T m u l t " ° P ,

c-unary-LIST®
(See [7]) c-term I unary-op c-term

Carr ier expressions (c-expressions) describe a logical connection between carriers and

operators . Each operation defines a carrier which can then be connected to other operators

to define yet other carriers.

The syntax of a c-expression defines the precedence of the language operations (these are

listed in Table [6 -1] , in increasing order of precedence; unary-ops have the highest

precedence.) All operators in the same row have the same precedence and consecutive

operations of the same precedence are executed from left to right, with the exception of the

transfer operations which are executed from right to left.

o r - o p : : «
and-op : : -
re l -op : : -
add-op : : *
mult-op : : -
shift-op : : -

transfer-op : : - I - I < -
OR I XOR
AND I EQV
EQL I NEQ I LSS I LEQ I GTR I GEQ I TST
+ I -
* I / I MOD
SL8 I SL1 I SLR I SLD I SL I I
SR8 I SRI I SRR I SRD I SRI

concat-op : : •
unary-op : : - NOT I + I -

Table 6-1: Operator Precedence

Expression

c- term

Meaning

These are the basic carriers used to build expressions. Briefly, these
include constants, entity carriers, c-expressions in parentheses, etc. See
[7] for details.

6. Carr ier Expressions

34 ISPS Reference Manual

c -unary The result of applying a unary operator to a c-term carrier.

c-concatenation The result of concatenating one or more c-unary carriers.

c-shift The result of shifting or rotating c-concatenation carriers.

c - f actor The result of multiplying, dividing, etc. c-shift carriers.

c-sum The result of adding or subtracting c-factor carriers.

c-relation The result of applying a relational operator to c-sum carriers.

c-conjunction The result of ANDing or EQVing c-relation carriers.

c-dis junction The result of ORing or XORing c-conjunction carriers.

c - transfer The result of transfering values from a c-disjuntion carrier to one or
more concatenated e-access carriers. Multiple transfers from the same
c-disjunction carrier can be specified .

6.1. Data Types and Arithmetic Representation

A bit pattern stored in a carrier has no semantic content. It is the context in which the
carr ier is used which determines whether the bit string is to be treated as a logical or
arithmetic operand.

When treated as an arithmetic operand, a bit string can be interpreted in any of four

standard arithmetic-representations; Two's-Complement, One's-Complement, Signed-Magnitude,

and Unsigned-Magnitude. For the signed representations (all but the last), the sign bit is

always the leftmost one.

By default, ISPS arithmetic operators assume a Two's Complement arithmetic

representation for the values contained in the carriers. The mechanisms used to select a

dif ferent arithmetic representation are described in [8.6].

When describing the logical and arithmetic operators, we will use the term 'sign-extension'

to indicate the extension of an operand to match some length requirement. The meaning of

'sign extension' is dependent on the particular arithmetic representation used in the

operat ion, as defined in [8.6].

The arithmetic representation also applies to constants. For binary, octal, and hexadecimal

constants, the writer has explicit control over the bit patterns and can therefore specify

posit ive or negative constants. Decimal constants are always positive (the 'sign bit' is always

0 as a consequence of the rules used to compute the length of decimal constants See [3.3]).

ISPS Reference Manual 35

6.2* Data Operators

6.2.1. Add-Op (Unary)

Unary + is treated as a no-op and is ignored by the parser.

Unary - defines a carrier whose value is the arithmetic complement of its operand. The

length of the result is one bit longer that the length of the operand. This operation is invalid

in unsigned arithmetic (negative numbers can not be represented).

Representation Meaning

Signed Magnitude In signed magnitude arithmetic, this operation simply inverts the sign bit
(the leftmost bit of the result contains 0).

One's Complement In one's complement arithmetic, this operation inverts every bit of the
operand, including the sign bit (the leftmost bit of the result contains 0).

Two 's Complement In two's complement arithmetic, this operation inverts eve ry bit of the
operand, including the sign bit, and then increments the result by 1 (this
is an unsigned addition). The leftmost bit of the result contains the car ry
out of this addition, if any.

6.2-2. NOT

The NOT operator defines a carrier whose length is equal to the length of its operand.

NOT defines a carrier whose value is the bitwise logical complement of its operand.

6.2.3. e

The @ operator concatenates its left and right operands. The length of the result is the

sum of the lengths of the operands.

6.2.4. Shift-Op

The shift operations perform a variable number of single bit shift and rotate operations on

the left operand. The number of steps is determined by the value of the right operand or is

implied to be 1 (SLI and SRI). The right operand is treated as an unsigned quantity. The

length of the resulting carrier is the same as the length of the left operand.

The operator names indicate both the direction of shifting and the place were the input

bits come from. All shift operators have a name of the form Sxy where x is either L(eft) o r

36 ISPS Reference Manual

R(ight) to indicate the direction of shifting, and y is either 0, 1, R, D, or I to indicate the

source of shift - in bits. The first two (0 and 1) indicate a continuous stream of 0 or 1 bits,

respect ive ly . R indicates a Rotation i.e. the shift-out bits are routed back to the shift - in

posit ion. D indicates a Duplication, and the shift-in bits are simply a replication of the bit

contained in the shift- in position. I indicates Immediate and the shift-in bit is the rightmost

bit of the second operand (the SLI and SRI operations always shift th$ left operand 1 position

to the left or right).

6.2.5. Mult-Op

The *, /, and MOD operators compute the arithmetic product, quotient, or remainder of their
t w o operands.

The length of the result of the * operator is the sum of the lengths of its operands. The

length of the result of the / operator is the length of the left operand. The length of the

result of the MOD operator is the length of the right operand.

The sign of a product or quotient is computed according to the normal algebraic rules. The
sign of the remainder (MOD operation) is the same as the dividend.

6.2.6. Add-Op (binary)

The binary + and - operators compute the arithmetic sum and difference of their two

operands, respectively. These operations require that both operands be of equal lengths. If

this is not the case, the shortest operand is sign-extended until it matches the length of the

other operand. The length of the result in both cases is one bit longer than the longest
operand.

In Unsigned, Two's Complement and One's Complement addition (subtraction), the extra bit
added to the length of the result contains the carry (borrow) out of the most significant bit
position.

In Signed Magnitude arithmetic, the sign bit is not treated as part of the number (as in the

complement representations) and the most significant bit of the operands is the bit to the

r ight of the sign. The result of a signed magnitude addition (subtraction) has the following

format: 1) the carry (borrow) out of the most significant position occupies the leftmost bit of

the result , 2) the sign of the result appears in the second bit from the left, 3) the rest of the

result . In other words, all representations use the extra bit added to the length of the result

to store the carry/borrow out of the operation.

ISPS Reference Manual 37

6.2.7. Rel-op

The EQL, NEQ, LSS, LEQ, GTR, GEQ, and TST operators perform an arithmetic test between

their operands. The length of the result of the TST operation is two bits long and encodes a

FORTRAN-like IF statement (i.e. the result is either '00, '01, or '10 depending on whether the

left operand is less than, equal to, or greater than, the right operand). All other relational

operators produce 1 bit long results, indicating whether the relation is True C D of False CO).

As with the + and - operators, these operators require that their operands be of the same

length. This is accomplished by sign-extending the shortest operand until it matches the

length of the longest operand. The relational operations are performed in the context of a

specific arithmetic representation, thus, positive and negative zero (possible in sign magnitude

and one's complement representations) are EQuaL

6.2.8* And-Op

The AND and EQV operators perform the bitwise conjunction (logical product) and

coincidence operations on their operands, respectively. The length of the result is equal to

the length of their operands. If the operands are not of the same length, the shortest

operand is expanded by concatenating enough 0 bits on its left until it matches the length of

the longest operand.

6.2.9. Or-Op
The OR and XOR operations perform the bitwise disjunction (logical sum) and exclusive-or

operations on their operands, respectively. The length of the result is equal to the length of

their operands. If the operands are not of the same length, the shortest operand is expanded

b y concatenating enough 0 bits on its left until it matches the length of the longest operand.

6.3. Transfer Operation
The « , and <* operators are used to transmit values between carriers. The _ and -

operators are equivalent and perform a logical-transfer (the right operand is extended with

zeroes or is truncated on the left if the lengths of the operands are not equal).

The < « operator performs an arithmetic-transfer (the right operand is sign-extended until

it matches the length of the left operand. If the right operand is longer that the left operand,

a truncation will occur).

For completeness, the 'result' of a transfer operation is the result of the evaluation of the

38 ISPS Reference Manual

r ight operand (before any truncation or extension takes place).

Although the transfer-ops play a role similar to that of an assignment operator in a

programming language, an important difference must be understood: A transfer operator is

simply a connection between carriers, it is the nature of the carriers that determines the

implementation of the connection. Thus, syntactically, there is no difference between a gated

car r ier transfer (writing a value into a memory) and the loading of a bus (making a value

available to some lines.)

6.3.1* Storing into Concatenated Carriers

The transfer operators are different from the other operators in that they take a value

from a carr ier and place it into another. Because of this difference, only one certain operator

is allowed on the left side of a transfer. This operator is '©' or concatenation. Since the

operator @ is defined to be a carrier 'grouping1 operator it defines carriers which might be

read from as well as written into.

A@B=D I V a l i d T r a n s f e r
A+B=C I I n v a l i d T r a n s f e r

The first example takes the D carrier and 'splits' it between A and B. D is zero-expanded if

A(G>B is larger. The leftmost bit of (the expanded) D is loaded into the leftmost bit of A; the

rightmost bit of D is loaded into the rightmost bit of B. The second example (A+B=D) is invalid.

It implies that the right hand side carrier (D) is loaded into the left hand side carrier which

happens to be the output of an adder.

6.3<2. Multiple Transfers

As indicated in the syntax, multiple transfers of an expression can be described:

R l = R 2 [X] <= R3 = R4SR5 = A + B

which is equivalent to:

Temporary = A + B next
R l s Temporary ;
R2[X] <= Temporary ;
R3 = Temporary ;
R4@R5 « Temporary ;

A multiple transfer implies a 'broadcast' of the rightmost carrier. Truncations or extensions
take place on each individual transfer.

ISPS Reference Manual 39

c - t e r m : : -

e -access : : -
a c - s e t : : -
a s - s e t : : *
w o r d - a s - s e t : : «
b i t - a s - s e t : : -

e-access I
constant I
constant < name-pair > I
constant < c-expression > I
(c-expression) I
(c-expression) < name-pair >
(c-expression) < c-expression
identifier ac-set as-set
n i l I () I (c-expression-L I ST O
word-as-set bit-as-set
n i l I [c-expression]
n i l I < name-pair > I < c-expression >

I
> I

(See [3 . 3 3)
(See [3 . 7 3)

(See EG3)

(See [3 . 2 3)

A carrier term (c-term) defines the primitive operands that are used to build c-expressions.

Carr ier Term

•-access

constant

c-expression

Description

An entity access (e-access) serves two roles. It is used to connect (a
portion of) the carrier associated with an entity to the data operators. It
is also used to activate the body of an entity. The context and format of
the e-access determines which of these roles it is playing (this is
explained in the following sections).

identifier The identifier is used to uniquely select the entity.

ac-set The actual connection set (ac-set) defines a set of
carriers to match the carriers specified in the formal
connection set (fc-set) of the entity declaration.

as-set The actual structure set (as-set) defines a subset of
the formal structure set (fs-set) specified in the
entity declaration.

word-as-set The word structure selects one
of the 'words' specified in the
declaration of the entity.

bit-as-set The bit. structure selects one o r
more consecutive bits specified
in the declaration of the entity.

A constant defines a carrier whose value can not be modified. The
structure of a constant is defined by its base and length (See [3.3]).
Constant carriers are assumed to have the structure <NK)>, where N + l is
the length of the constant. One or more bits of a constant can be
accessed by specifying the bit names inside '<' and *>\

A c-expression can be enclosed in parenthesis, to specify an order of
evaluation different from that which is implied by the precedence of the

7. Carr ier Terms

40 ISPS Reference Manual

operators. A carrier defined by a c-expressions in parenthesis has a
default bit-naming convention, <N:0>, where N+l is the length of the
carrier. One or more bits of the carrier can be selected by enclosing the
bit names in *<* and *>\

As described in [4.2], the general format of an e-head consists of an identifier, , a list of

interface carriers (optional), a word structure (optional), and a bit structure (optional).

Depending on which of the optional parts were specified in the e-head, the entity can be

read, wr i t ten, or activated.

An e-access also consists of an identifier, a list of interface carriers (optional), a word

st ructure (optional), and a bit structure (optional). Depending on which of the optional parts

w e r e specified in the e-access, the entity will be read, written, or activated.

7.1. Read/Write Access

It is possible to read from or write into the carrier associated with an entity without

activating it; all that is needed is to specify the entity name and a structure. If only the name

is used, then the entire carrier, as defined in the entity declaration, is used.

An actual structure set (as-set) is used to specify a subset of the formal structure set

(fs -set) used in the declaration of the entity's carrier.

Example* • . . = + a [x] < 6 : 7 > . . .

A c-expression used to select a word or a bit of a carrier must evaluate to a value

corresponding to one of the words or bits named in the entity declaration. Notice that while

it is valid to access any number of consecutive bits, only one word can be specified (i.e. no

w o r d name-pairs are allowed in an access).

7.2. Activation

It is possible to activate an entity without accessing its carrier; all that is needed is to
spec i fy the entity name and a connection.

An actual connection set (ac-set) consists of a list of carriers that are connected to, or

t ransfer red into the corresponding elements of the formal connection set (fc-set, see [4.2]).

For details on the actual mechanism used to establish the connection between actual and

formal carriers see [8.2].

Example* . . . next x<y<3:4>>. z o next . . .

ISPS Reference Manual 41

7.3. Combined Access and Activation

It is possible to both access and activate an entity; all that is needed is to specify the

enti ty name, a structure, and a connection. An e-access can appear, as a c-term , on either

side of a transfer-operator. If no activation is implied (i.e. there is no ac-set). then the

carr ier is simply read or written, depending on whether is it on the right or left of the

transfer-operator, respectively. If an activation is implied (i.e. there is an ac-set), then the

body is activated before (after) the carrier is read (written).

Example* . . . x < y) < 6 : 7 > . . .

7.4. Compatibility Between Use and Declaration

A valid e-access must be compatible with the declaration of the entity:

1. A valid e-access can specify a word structure (word-as-set) if and only if the
entity declaration specified a word structure (word-fs-set).

2. A valid e-access can specify a bit structure (bit-as-set) only if the entity
declaration specified a bit structure (bit-fs-set). If no bit structure is specified in
the access, the full bit structure used in the declaration is assumed.

3. A valid e-access can specify a list of interface carriers (ac-set) if and only if the
entity declaration specified a list of interface carriers (fc-set) or an e-body. An
empty list ('()') must be used to activate an entity which does not have any
formal interface carriers.

7.5. Examples

(B r e g + I r e g + D isp lacement) <23:0>

The result of the additions is truncated by taking the rightmost 24 bits.

Mode @ # 1 7 7 7 7 7 < 1 5 i 0 >

Although '#177777' is an 18-bit constant (6 octal digits), the use of '<15:0>' in fact defines

a 16-bit constant carrier.

ACC<0> = X < B < 3 i O »

The example shows the use of a c-expression to select an arbitrary bit in a carrier. The

contents of B<3.-0> determines a bit name. Since this value can range from 0 to 15, X must

42 ISPS Reference Manual

have been declared as a carrier of the form X<nK)> or X<0:n> where n .> 15.

X (R) < 5 > = . . .

1) Compute the expression to the right of the operator. 2) Take the rightmost bit of the

result and store it into bit 5 of X, 3) Connect (or copy) R to the formal interface carrier of X,

and finally, 4) Activate X.

X = Z O

1) Activate Z (Z does not have any interface carriers), 2) When the activation is completed

take the value in the carrier Z<..> and store it into X<..>. If Z has the PROCESS attribute (See

[8.3]) the transfer takes place immediately, at the start of the activation (i.e. the value in the

Z carr ier may be ambiguous).

VMA = IR<13.35> NEXT EA = VMA<)<18i35> NEXT

1) Load the virtual memory address carrier (VMA) 2) Activate the entity (VMA), 3) Load the

effect ive address carrier (EA).

V M A O = IR<13:35> NEXT EA = VMA<18:35> NEXT

performs the same sequence of operations as the previous example.

ISPS Reference Manual 43

8. Predefined Qualifiers

The previous chapters have provided the basic syntax and semantics for the declaration of

entities, and their carriers, interfaces, and bodies. In this chapter we define means for

extending the basic semantics of declarations. These extensions are based on the general

qualifier mechanism, to be described in [9J

The increment attribute changes the interpretation of the word names used in the left hand

side of a mapped array declaration. Normally, there are as many words as there are integers

in the name-pair used to declare the word structure (word-fs-set) . When the INCREMENT

attribute is used, the actual number of words is obtained by dividing the size of the range b y

a user specified INCREMENT value:

e-head { INCREMENT : constant) : « e-head

The word names in the range are obtained by dividing the original word names b y the

increment value (integer division) and then multiplying the quotient by the increment value.

There are some limitations in the use of the INCREMENT attribute:

1. The INCREMENT attribute is only valid (or meaningful) when used in mapped
array declarations in which the 'word size' of the left hand side is a multiple of
the 'word size' on the right hand side.

2. If one member of an array mapping chain is qualified by INCREMENT, ALL
members of the chain must map onto arrays of shorter words.

3. A chain of mappings propagates the INCREMENT attributes in such a way that an
array mapped onto another has an increment attribute which is the product of
the increment attributes towards the base of the chain.

In the example above, Mw is defined to have 64K/2 words, named #177776,

*177774,..-#4,#2,*0. Each word maps exactly over two consecutive bytes. Moreover, notice

that the mapping also specifies that the even-address byte contains the low-order bits of a

w o r d , as defined in the PDP-11 architecture. Pictorially, the equivalence of the address

spaces is shown in Figure 8-1 (a).

8.1. INCREMENT Qualifier

Example

MbC#177777:03<7:0>,
MwC#17777710]<15«0> { INCREMENT^} : = Mb[#177777:0]<7:0>

I PDP-11 B y t e Memory
! U o r d Memory

44 ISPS Reference Manual

Mb 177777 177776 177775 2 1 0

Mw 177776 0

(a) PDP-11 Address Space

M l
0 1 2 3 4 5 6 7

M2
0 2 4 6

M3
0 4

M4
0 4

(b) Multiple Mappings

Figure 8-1: INCREMENT Qualifier

Structure Mappings do not have to be organized as a linear chain of declarations, as the

following example shows:

Example*

m l [0 : 7] < 0 i 7 > ,
m 2 [0 . 7] < 0 : 1 5 > { increment12} := m l [0 : 7] < 0 : 7 > , c h a i n i s M2,M1
» 3 [0 . 7] < 0 * 3 1 > { i n c r e m e n t ^ } r= m 2 [0 i 7] < 0 U 5 > , H3,M2,M1
m4[0 :7]<0 :31> { I n c r e m e n t ^ } I - ml[0*7]<0*7>, M4,Mi

The increment attribute attached to M3 is 2*2»4. That is, M3's addresses increment twice

as fast as M2's addresses and these, in turn increment twice as fast as Mi 's addresses. M4

has an increment attribute of 4; it is not affected by M2's increment because M2 is not in its

chain of mappings. There are 8/2-4 elements in M2 (M2[0], M2[2], M2[4], and M2[6]) and

8 / 4 - 2 elements in M3 (M3[0] and M3[4]>. M3[41 M3[5], M3[6], and M3[7] refer to the same

memory location: M3[4], which in turns maps onto Ml[4:7]. Pictorially, this is represented in

F igure 8-1 (b).

ISPS Reference Manual

8.2. REFerence Qualifier

The default implementation of an interface (fc-set, See [4.2]) is by means of storage units

which are loaded when the entity is activated (See [7.2, 7.3]).

The default mechanism for establishing a connection between the actual and the formal

interface carriers in an entity activation is by copying the values contained in the actual

carr iers into the formal carriers, zero-extending or truncating on the left if necessary. The

mechanism can be though of as a carrier transfer of the form:

Formal » A c t u a l

In some applications the default interface mechanism outlined above might be too limiting

and ISPS provides an alternative mechanism to specify the implementation of the interface

carr ier and the connection mechanism:

REF e-head
e-head { REF }

When a formal carrier is qualified with the string 'REP, the interface is not a storage unit,

local to the entity, but instead it is a REFerence to some external carrier, to be specified at

the activation site.

E x a m p l e : F (REF Reg<0:7>) := Beg in End

When F is activated, no transfer of data between the actual carrier and the formal carr ier

(REG) takes place. REG is simply 'connected9 to whatever carrier was specified at the call

site. This connection remains in effect throughout the length of the activation. The

mechanism can be though of as a carrier mapping of the form:

f o r m a l i = a c t u a l

The mapping is established at the time of the connection and is subject to the same

limitations normal mappings have (i.e. no truncation or extension is permitted).

An entity can have both REFerence and local interface carriers, as suggested in Figure 8 - 2 .

(a) and (b) display two alternative interfaces. The former uses local carriers for all the input

operands while the latter uses REFerence carriers for the data operands while using a local

carr ier to retain the value of the third operand (the function code), (c) and (d) display the

connection mechanisms. The former indicates that the local carriers are loaded

46 ISPS Reference Manual

instantaneously, at the onset of the activation (this is suggested by the 'strobe 9 signal used to

load the carriers). The latter indicates that the REFerence carriers are connected (in both

directions) to the actual operand carriers throughout the length of the activation (this is

suggested by the ' level ' signal used to connect the carriers).

Actual carriers that correspond to REF formal carriers must be e-accesses and not

arb i t rary c-expressions. This is because, in principle, a REF formal carrier can be read or

wr i t ten .

The mapping of a REF carrier applies to both the structure of the actual carriers and to the

behavioral part, it any. That is, the entity being activated can read/write/activate the actual

entit ies through the formal carrier name.

Although the syntax allows otherwise, the ac-set of an actual e-access involved in a REF

connection must be empty (i.e. '()').

Example*

P l (X < 0 s 3 > , REF Y<0:1>) : = BEGIN END?
R2<0:1>?
P2 i = BEGIN . . . NEXT P1("C ,R2) NEXT END

In the above example, P I requires two interface carriers, one of which (Y) has the REF

attr ibute. The activation of P I inside P2 copies the constant M C (decimal 12) into X (a register

local to P I) and maps Y onto R2 ('Y<0:1> : » R2<0:1>'). During the activation of P I , R2 is

accessible and known as Y. P I can read and/or write Y (i.e. R2).

The use of REF connections can be used to describe complex behaviors:

Example*

P I (R E F X O < 0 : 1 >) : = BEGIN END?
P2(REF Y O < 0 : 1 > > : = BEGIN END,
A O < 0 : 1 > : = BEGIN END?
P3 : = BEGIN . . . NEXT P I (A) ; P2(A) NEXT . . . END,

In the example, when P3 activates both PI and P2, it connects to both of them the entity

(A) . Since both P I and P2 can read/write/activate A, they can affect each other's behavior.

Alu (A<0:15>, B<0:15>, F<0:3>) <0:15>

Activate

<t
Complete

'16 '16

1 \ B

A Y3

Arithmetic Unit

ALU

/T16

(a) Local Interface Carriers

1 0 1

A B

Arithmetic Unit

ALU

(c) Interface I ransfers

Alu (REF A<0:15>, REF B<0:15>, F<0:3>) <0:15>

[is

Activate

<t
Complete

A 'IS '3

\ 3 F

Arithmetic Unit

ALU

/ J 1 6

(b) REFerence Interface Carriers

Y

-fir
z
-fir

' 1 0 1

B

Arithmetic Unit

ALU

(d) REFerence Interface Connections

48 ISPS Reference Manual

8.3. PROCESS and CRITICAL Qualifiers

By default, entities are activated as if they were procedures or functions in a programming

language. That is, the activating entity waits until the activated entity completes its operation.

Although this mechanism is a useful abstraction, it is not powerful enough to describe the

behavior of complex hardware units. An entity declaration can specify a departure from the

default by means of the PROCESS and CRITICAL qualifiers:

PROCESS e-head : « e-body
e-head { PROCESS} : » e-body
CRITICAL e-head : » e-body
e-head { CRITICAL} : - e-body

The qualifier PROCESS can be used as a attribute (prefix or inside ' { } ') to a declaration to

indicate that the entity is to be executed as an asynchronous control environment. An

activation of an entity marked as 'process' results in the creation of a control 'token' for the

ent i ty . It then starts executing concurrently with the caller.

E x a m p l e : PROCESS ALU(A<0:15>, B<0:15>, F<0t3>)<0H5> i = . . . *

The qualifier CRITICAL can be used as a attribute (prefix or inside '{} ') to a declaration to

indicate that the entity contains an arbitration mechanism so that one and only one activation

of the entity can be in progress at the same time. Activations are queued if the entity is

already active.

E x a m p l e : C R I T I C A L a r b i t e r i = Beg in End ,

PROCESS and CRITICAL are independent attributes. The former controls the continuation

of the callers, the latter controls concurrent callers. When both qualifiers are present,

CRIT ICAL takes precedence. That is, the caller of a CRITICAL PROCESS entity is delayed until

the entity is free or idle before it continues executing in parallel.

Figure 8 -3 suggests the control of activations in the presence of the PROCESS and
CRIT ICAL attributes.

Attempting to activate an already active, non-critical entity is an error and it yields
unpredictable results.

The arbitration mechanism implied by the CRITICAL qualifier applies not only to the

activation of the entity but also to the evaluation and connection of interface carriers. This is

to avoid conflicting use of the formals (REF or otherwise). Thus, the callers wait until the

ent i ty has completed its current activation before establishing a new connection.

Process Alu (A<0:15>, B<0:15>, F<0:3>)<0:15> Critical Alu (A<0:15>, B<0:15>, C<0:3>)<0:3>

Activate

Running
<t
Done
<fr

16 '16 '3

i B F

Arithmetic Unit

ALU

(a) PROCESS Attribute

Process Critical Alu (A<0:15>, B<0:15>, C<0:3>)<0:3>

(b) CRITICAL Attribute

(c) Combined Attributes

50 ISPS Reference Manual

8.4. MAIN Qualifier

As seen in [4.3], an e-body can consist of a list of sections, each of which can contain a list

of ent i ty declarations (e-declarations). The qualifier MAIN is used to identify the 'main9 ent ry

point of an entity or ISPS description:

MAIN e-head : » e-body
e-head { MAIN } : - e-body

MAIN serves to identify which one of the internal entities is to be executed when the

enclosing entity is activated. This applies to either the entire ISPS program or an internal

declaration, to any level of nesting.

Example*

P I (. . .) *=
B e g i n

P2 (. . .) : = Beg in End ,
P3 (. . .) : = Beg in E n d ,
MAIN P4 : = Beg in End ,
P5 (. . .) *= Beg in End
End

The effect of invoking P I is equivalent to invoking its main internal entity, P4, directly (of

course , since that entity is internal, it is not directly available to the caller.)

. When activating an entity with an internal, main entity, the connection is done through the
interface carriers, if any, of the enclosing entity.

Although syntactically correct, the presence of an interface (fc-set) or carrier
(fs-set) in the declaration of the main internal entity is useless since there is no
way for a caller to access these internal carriers.

F igure 8 -4 depicts the activation of a complex entity, containing several internal entities,
one of which has the MAIN attribute.

8.5. PTIME Qualifier

The PTIME qualifier is used to specify the average or expected 'execution' time for the

body of an entity. This is useful in some applications such as simulation, synthesis, or

veri f icat ion. The qualifier is specified as an attribute of the declaration of the entity:

e-head { PTIME : constant } : - e-body

ISPS Reference Manual

Main

51

Figure 8-4: Use of the MAIN Qualifier

The value of the qualifier is a constant specifying the number of 'time units' needed for the

average execution of the entity body.

E x a m p l e : P (A < . # > , B < . . > > {PTIME:25} : = Beg in i t # t t End

This mechanism for specifying timing is only an approximation. If more detailed timing is

desired, the body of the entity can specify via DELAY, WAIT, and TIME.WAIT (See [11]) the

actual time needed for each control path.

52 ISPS Reference Manual

8.6. Arithmetic Qualifiers

The selection of the representation to be used in the context of an arithmetic operation is

indicated b y one of the following qualifiers:

Qualifier Meaning

{ T C } used to indicate that the operation is to be done in Two's Complement
arithmetic. If an operand needs to be sign-extended, the extension is
done by replicating the sign bit.

{OC} used to indicate that the operation is to be done in One's Complement
arithmetic. If an operand needs to be sign-extended, the extension is
done by replicating the sign bit.

{SM} used to indicate that the operation is to be done in Signed Magnitude
arithmetic. If an operand needs to be sign-extended, the eshxtension is
done by inserting '0' bits between the sign bit and the rest.

{ U S } used to indicate that the operation is to be done in Unsigned arithmetic.
If an operand needs to be sign-extended, the extension is done by
adding '0' bits to the left of the carrier.

The selection of arithmetic representation can be done over a single operation (attaching

the modifier to the operator), over an entire b-expression (attaching the modifier to one of

the BEGIN/ENO brackets), or finally, over an entire section (attaching the modifier to the

section-header. The following example will illustrate this:

ISPS Reference Manual 53

END

** S e c t i o n . 3 » * I R e t u r n t o T w o ' s Complement

END

Example*

Sample : =
BEGIN I By d e f a u l t , a l l a r i t h m e t i c I s T w o ' s Complement
** Sect I o n . 1 **

** Sec t i o n . 2 ** {OC} I S e c t i o n i s O n e ' s Complement

F (X < 0 : 5 >) : = BEGIN (SM) END 1 F I s S i g n e d M a g n i t u d e

. • • • •
G<Y<0*5>) : = ! G t s O n e ' s Complement

BEGIN

IF* Y<0>" => BEGIN {UM} END
I The c o n d i t i o n a l a c t i o n uses Uns igned Magni tude as d e f a u l t .

Y-.VyV {TC} 2 NEXT I Two 's Complement A d d i t i o n

ISPS Reference Manual

ISPS Reference Manual 55

9. Qualifiers

In this chapter we specify the mechanism for specifying information of interest to an

application program. In general, the parser will only perform syntactic checks on these

constructs since it has no means to ascertain their semantic correctness. The mechanism

(Qualifiers) has already been introduced in previous sections (e.g. REF, INCREMENT, etc.), now

w e give the formal specification.

q-set : : - { q -av -pa i r - L IST ; }
q -av -pai r identifier I (See [3 . 2])

identifier : I
identifier : q -va lue-L IST '

q-value : : - identifier I
constant I (See [3 , 3 3)
quoted-text I (See [3 . 6 3)
q-set

The qualifier set (q-set) is used to specify lists of attribute/value pairs which are used to

extend the semantics of an ISPS description.

Example*

A L U (F < 0 : 3 > , A < 0 i 15>,B<0t 15>)<0:15>{SPEED:250; MODULE:SN74181): =

The syntax of a q-set indicates that in some instances an identifier can stand for both the

attribute name and the list of values. This is allowed to simplify the writting of certain

qualifier values that uniquely identify the attribute (If one wishes to be explicit about it,

'identifier:' can be used instead. The ':' indicates that the preceding identifier is an attribute

name). Notice that qualifiers can be arbitrarily nested (i.e. a q-set is a valid q-value.)

9.1. Placement of Qualifiers

Qualifiers can appear in several contexts in a description:

1. After an e-head, following the identifier, fc-set, or fs-set, whichever is the last
component of the e-head (before the ' : « ' , if present). This applies to e-heads in
any context: declarations, mappings, and formal carriers.

2. After the brackets ('BEGIN', 'END', '(', and ')') used to enclose an e-body or a
block-action.

3. After the identifier of a labelled-action, before the ' : - ' operator.

4. After the ' I P and 'DECODE' keywords in a conditional-action, before the
c-expression.

56 ISPS Reference Manual

5. After any data operator, including arithmetic, logical, transfer, etc., before the
r igth operand.

6. After an e-access, following the identifier, ac-set, as-set, whichever is the last
component of the e-access.

9.2. Identifier Sequences

For convenience and readability, it is sometimes necessary to display qualifiers in a context

that can be easily noted. This can be achieved with id-sequences of the form:

id-sequence : : - identifier I (See [3 . 2 1)
identifier id-sequence

The ISPS parser will treat all identifiers preceding the last identifier of the sequence (if

any) as qualifiers. These qualifiers are lumped together with whatever qualifiers were

expl icit ly defined inside ' { } ' , if any (notice that these identifiers stand for both the attribute

name and the value list as indicated above). An id-sequence can appear anywhere an

identifier is valid. Thus, the following are equivalent:

Examples*

A [0 : 2 5 5] < 0 : 3 > {ROM; CONNECT*LINK2},
ROM A [0 : 2 5 5] < 0 : 3 > (CONNECT: LINK2},

9.3. Summary of Predefined Qualifiers in ISPS

An initial set of qualifiers has been predefined in the language. These qualifiers have

already been introduced in this document. Here we simply list them, indicating their format.

For additional details about each of these qualifiers, the reader must consult the sections

w e r e these qualifier are introduced.

ISPS Reference Manual 5 7

Q u a l i f i e r Usage

TC K,Q Two's Complement A r i t h m e t i c

oc K,Q One's Complement A r i t h m e t i c

SM K,Q S igned -Magn i tude A r i t h m e t i c

us K,Q Unsigned A r i t h m e t i c
INCREMENTxn Q S t r u c t u r e Mapping

P T I M E : n Q E x e c u t i o n Time
C R I T I C A L K,Q P r o t e c t e d A c t i v i t i e s

PROCESS K,Q Independent A c t i v i t i e s

REF K,Q I n t e r f a c e C a r r i e r s

The column labelled Format indicates wheather the attribute can be used as a Keyword

preceding an entity name (i.e. as part of a id-sequence) or as a Qualifier, enclosed in *{}\

ISPS Reference Manual

ISPS Reference Manual 59

other-declarations : : 1

m-parameter-set : : «

ISPS-definition : : <

REQUIRE. ISP quoted-text I
MACRO identifier m-parameter-set quoted-text

ISPS-definition
n i l I
0 I
(ident i f ier -LISTO
DEFINE identifier : » q-set I
DEFINE identifier : - quoted-text I
DEFINE identifier constant

(See C 3 . 6])

(See [3 . 2 D

(See [91)

(See [3 . 3])

10.1. REQUIRE

The reserved keyword REQUIRE.ISP is used to signal the expansion of a an external file

inside the ISPS description. The quoted-text describes the file name. The expansion takes

place at the point the REQUIRE.ISP construct appears:

E x a m p l e : REQUIRE. ISP | MARK1.ISP[L410HB25] |,

10.2. MACRO

The reserved keyword MACRO provides a simple mechanism to declare text strings that are

to be substituted for instances of the identifier in the ISPS description. Optional parameters

can be specified by enclosing a list of identifiers inside parenthesis. These 'formal

parameters' are matched by corresponding 'actual parameters' at the expansion site. The

actual parameters can be any 'expression' in ISPS. The use of any type of brackets, C(\ *)\ T>

'] ' , etc.) in an actual parameter is permitted, provided its partner is also part of the actual

parameter.

10. Other Declarations

60 ISPS Reference Manual

Example*

MACRO 1 1 (1 , b o d y) : = I Two parameters : L e n g t h and Body
| I Macro d e l i m i t e r
B e g i n
** s ** ! c r e a t e a dummy s e c t i o n name
t e m p < 0 : l > , ! c r e a t e a temp of t h e r i g h t l e n g t h .
Main t x = B e g i n body End I c r e a t e a ' p r o c e d u r e '
End

|? I Macro de l 1 m i t e r

p2 i = 1 1 (7 , , « • • •) 1 T h i s use of t h e macro expands t o i

p2 i = B e g i n

temp<0«7>,
Main t »=

B e g i n

End
End

10.3. DEFINE

The reserved Keyword DEFINE is used to name a q-sat, a constant or a quoted-text

E x a w p l e s i

D e f i n e ROM i = (MODULE: SN74187; SPEED: 40},
D e f i n e MSI2E : = 255,

ISPS Reference Manual 61

11. Predeclared Entities

The following entities are predeclared in the language:

COUNT.ONE(. .K>

D E L A Y U

FIRST.ONEU<..>

is a predeclared entity which has a structure* and whose activation
COUNT.ONE(expression) returns the number of non-zero bits in the
expression. The length of the result is equal to the decimal value of the
length of the expression, regardless of the value of the expression^. For
instance, if the expression is 16 bits long, the result of COUNT.ONE is
ALWAYS 6 bits long (5 bits to express 16 plus a leading 0).

is a predeclared entity which does not have a structure and whose
invocation, DELAY(expression), does not have side effects. DELAY
terminates its activation after a number of application-defined time units
given by the value of the expression.

is a predeclared entity which has a structure, and whose invocation
FIRST.ONE(expression) returns the number of leading zeros in the value
of the expression (i.e. the number of zeros before the first one, hence
the name). If the expression is all zeroes, the result is the length of the
expression. The length of the result follows the rule defined for
COUNT.ONE.

is a predefined entity which has a 1-bit structure and whose invocation
IS.RUNNINGKentity.name) returns 1 (true) if entity.name is current ly
active, 0 (false) otherwise.

is a predeclared entity which has a structure, and whose activation
LAST.ONE(expression) returns the number of trailing zeroes in the value
of the expression (i.e. the number of zeroes after the last one). The
length of the result is identical to that of FIRST (COUNT) .ONE

is a predeclared entity which has a structure, and whose activation
MASK.LEFT(exprl,expr2) returns a result with the same length as EXPR1.
The leading EXPR2 bits are set to 0, the remaining bits retain the value
they had in EXPR1. Basically, this function builds a mask of
LENGTH(EXPR1) bits with EXPR2 bits on the left set to 0 and the rest set
to 1. It then computes its result by ANDing the mask with EXPR1. If
EXPR2 is equal to 0 (unsigned comparison), the result is identical to
EXPR1. If EXPR2 is greater than the length of EXPR1, the result is all Os.

MASK.RIGHT(..^.)<^> is a predeclared entity which has a structure, and whose activation
MASK.RIGHT(exprl,expr2) is identical to MASK.LEFT but cleans up the bits
on the right of EXPR1 using EXPR2 to compute the number of bits.

IS.RUNNING(..)<>

LAST.ONE(..)<..>

MASK.LEFT(..,..)<..>

NO.OPO is a predeclared entity which does not have a structure and whose
behavior has no side effects. N0.0P0 can be used as a nuH action.

5Whonovor tho oxprastion 'decimal vtlut' it uttd it m«wi • numbtr whoto lon*th foflowt tha rutoa of ISPS for
dacimal numbort, th.t it, • number whet. tor*th it txactly on. bit Ion*or thtn tho amtllott of bits nwdjjd to
roprosont th# numbor. This is to avoid problsms whon porformod •tfnod arithmetic Dsamst numbers ars ALWAYS
positive tinea their Isadinf bit it 01

ISPS Reference Manual

is a predeclared entity which has a 1-bit structure and whose activation
PARITY(expression) returns the odd-parity bit of the expression (it is
equivalent to COUNT.ONE(EXPRESSION) MOD{US} 2).

is a predeclared entity which does not have a structure and whose
invocation, STOPO, terminates the activation of ALL entities,

is a predeclared entity which has a structure and whose invocation
TIME.WAIT(exprl,expr2) combines the effect of the WAIT and DELAY
entities. TIME.WAIT continuously evaluates EXPR1 until it is non-zero or
until the number of time units represented by EXPR2 has been exceeded.
EXPR2 is computed exactly once, at the beginning of TIME.WAIT. When
the activation is completed, TIME.WAIT returns the final value of EXPR1
(the length of the result is the same as the length of EXPR1). Depending
on the value returned, the caller can decide whether EXPR1 yielded a
non-zero value or the time-out limit provided by EXPR2 was exceeded
before EXPR1 became non-zero.

is a predeclared entity which has some structure and whose activation
UNDEFINEDO returns a carrier of undetermined length, whose value is
unknown. Activations of UNDEFINED are guaranteed to terminate after
some undetermined amount of time.

is a predeclared entity which does not have a structure and which
exhibits a totally unpredictable behavior. It is different from UNDEFINEDO
in that the latter preserves the flow of control An activation of
UNPREDICTABLEO is not guaranteed to terminate or that upon
termination, control will return to the activation site.

is a predeclared entity which has a structure and whose invocation,
WAIT(expression), continuously evaluates the expression. WAIT
terminates its activation when the value of the expression is not equal to
0. WAIT returns the last value of the expression (the non-zero value
which terminated the activation; the result has the same length as the
expression).

ISPS Reference Manual 63

12. Reserved Keywords and identifiers in ISPS

AND
CRIT ICAL
DECODE
DEFINE
EQL
EQV
GEQ
GTR
IF
INCREMENT
K
LEAVE
LEQ
LSS
M
MACRO
MOD
NEQ
NEXT
NOT
OC
OR
PROCESS
PTIME
REF
REQUIRE.ISP
REPEAT
RESTART
RESUME
SLO
SL1
SLD
SLI
SLR
SM
SRO
S R I
SRD
SRI
SRR
T C
TERMINATE
T S T
US
XOR

Logical Operator
only when used as qualifier

Conditional action Selector
Special Declaration

Arithmetic Operator
Logical Operator

Relational (Arithmetic) Operator
Relational (Arithmetic) Operator

Conditional action Selector
only when used as qualifier

only when attached to a constant
Control Operator

Relational (Arithmetic) Operator
Relational (Arithmetic) Operator

only when attached to a constant
Special Declaration

Arithmetic Operator
Relational (Arithmetic) Operator

Sequencing Operator
Logical Operator

only when used as qualifier
Logical Operator

only when used as qualifier
only when used as qualifier
only when used as qualifier

Special Declaration
Control Operator
Control Operator
Control Operator

Shift Operator
Shift Operator
Shift Operator
Shift Operator
Shift Operator

only when used as qualifier
Shift Operator
Shift Operator
Shift Operator
Shift Operator
Shift Operator

only when used as qualifier
Control Operator

Relational (Arithmetic) Operator
only when used as qualifier

Logical Operator

ISPS Reference Manual

ISPS Reference Manual 6 5

13. Using the ISPS Parser

The following reproduction of a session running the parser should be self explanatory.

The parser accepts the specifications of a source file (ISPS) and produces a listing file

(optional) and an object file containing the parse tree. There are several switches that can be

appended to the input file specification. These switches control several options with regard

to the generation of the listing and the object file,

. run isps
ISPS Translator V 5 B (l) - 7
(/H for Help)

*/h
File specifications follow normal CUSP convention:

<object>.GOB,<listing>.LST«<source>.ISP/<switch>/<switch>/_

Abbreviated file specifications can be used:
FilNamJSP ; GDB has same name as ISP. No Listing file.
FilNam.ISP/L ; GDB and LST have same name as ISP.

A switch is turned on by V ^ e t t e r ^ and off by V ^ ' e t t e r ^ :
(* indicates a switch turned on by default)
A : All. Same as switch combination /E/L/O/R/S/W.
C : Comments. Comments from ISP are placed in the GDB file.
E : Expand. Macro invocations are printed in the LST file.
H : Help. This text.
K : Keep. Macro definitions will appear in the GDB file.
L : List. Causes a listing file to be generated.
N : No program. LST file will only contain error messages.
0*: Original. GDB file will have ISP format numbers
P : Position. Put out Line/Page position on terminals.
R*: Readable. GDB file has lexeme names instead of numbers.
S : Symbols. Print out name of declarations as they are parsed.
W : Watch. Prints a skeleton trace of compiler phases as they occur.
X : SyntaX. Quick syntax-only check of ISP. No GDB file.

•test

TEST.ISP 1.

Errors : 0
Warnings: 0
Stack Used: 74 of 512 Words
PStack Used: 13 of 200 Words
Max. Core Used: 3 + 18 K
Machine Time: 00:00:00
People Time: 00:00.00

EXIT

6 6 ISPS Reference Manual

The above procedure will create a file TEST.GDB which contains the object program (parse

t ree) . No listing was requested and none was generated. If the parser detects errors in the

source program appropriate messages are typed on the user's terminal. If a listing file is

being generated, the error messages will also appear in the listing.

ISPS Reference Manual

14. ISPS Global Data Base: File Format and Syntax

6 7

Floret SUva Nobilis
Floribus et Foliis

Carl Orff, Carmina Burano, 1937

The purpose of the Global Data Base (GDB) is to provide a means of representing a

machine description in a manner that is amenable to manipulation by many programming

languages. This is accomplished by storing the GDB as an ASCII file with a specific format.

Any language which can read a file as a stream of characters can work with the GDB.

A GDB file contains a representation of the parse tree of an ISPS description. When the

description is processed and transformed into a GDB representation, the entire information

content is retained. Because of this the transformation is reversible. A GDB may be changed

back into an ISPS description with 'ease*.

14.1. GOB Header Line

The first line of a GDB file contains a header which gives information about the format of

the rest of the file, the compiler version, the source file name, and the date and time of

compilation. The rest of the file (from the second line on) is the tree representation of an

ISPS description.

A typical header line looks like:
GDB:A;ISPS Compiler V5B-7;DSK:TEST.ISP[N655MB25];17 Jun 79;23:18:25;

The character following 'GDB:' is a letter which indicates the form of the information in the

t ree. Currently there are four formats, 'A', 'B*, ' C , and 'D\ Each of the formats uses the

same syntax, only the printing-form of the information is different. The differences will be

discussed later.

14.2. The GDB Syntax
A non-terminal of the language appears as a sub-tree within the parse tree. The syntax

for a sub- t ree is an open parentheses (T) followed by a node-name representing the

non-terminal. This is in turn followed by a (possibly empty) list of sons of the non-terminal

after which comes a close parentheses (")"). i.e.

< < n o n - t e r m I n a I , n o d e , n a m e > <sonl> <son2> •••• <sonN>)

The sons of the non-terminal may be non-terminals themselves or they may be terminals

68 ISPS Reference Manual

(leaves of the tree). A terminal appears in the tree as a string of characters, without

enclosing parenthesis. Both non-terminal node-names and terminals can be followed by a list

of "attributes". The general form of an attribute is

I x x l y y y y y !

The string 'xx ' is a decimal integer indicating the type of the attribute. (The types will be

discussed later, in [14.4]) The string V y y y y ' is an arbitrary character string where

occurrences of T are represented as 'If. Thus, in general, a GDB node looks like:

< <node-name> < a t t r i b u t e j > . . . < a t t r i b u t e n >
< s o n j > < a t t r l b u t e j > < a t t r i b u t e j >

< s o n n > < a t t p i b u t e j > < a t t r i b u t e ^)

Spaces, Tabs, Carriage-Returns, and Line-Feeds appear in the GDB trees only as delimiters

between elements. (Except for the interior of quoted-texts and node attributes which may

have arbi t rary characters.) Multiple occurrences of any or all of these delimiter characters

are considered equivalent to a single occurrence of any of them.

Different types of non-terminals have different numbers of sons. However each type of

non-terminal has a particular number of sons and the position and type of the sons is f ixed.

In the tree, all of the sons of a node which are not Nil (LISP style Nil) actually appear in the

t ree . Nodes which are Nil only appear if some son appears after them which is not Nil. An

example will serve to demonstrate. An E-Access® has five sons. The E-Access "A{QUAL1TY}"

e p p o a r s in the tree as;

(EACCESS A N I L N I L N I L (QSET QUALITY))

The E-Access " A O) " appears in the tree as:

(EACCESS A (ACSET 3))

The Nil sons on the 'end* of the E-Access were left out of the tree.

W h e n e v e r possible, nods-names hsvs been derived from the production nemos used in the BNF description of ISPS

ISPS Reference Manual 69

14.3. Representation of Node-Names and Terminals

There are two representations for node-names in the GOB file. Which one is used is

controlled by a compilation switch (See [13]). The R switch controls the representation of

the node-names.

By default, node-names appear as an ASCII string which has some mnemonic relation to the

production name used in the BNF. The list of node-names is described in [15].

If the - R (complement of R) switch is used during the compilation, the GDB node-names will

appear as octal numbers. The equivalence between these numbers and the node names is

subject to change without notice. If you feel that you need the table, contact the maintainors.

The following example will help clarify the difference between these two formats:

t e s t < 0 » 7 7 > » =
BEGIN
t e s t _ 123456789123456789 next
t e s t _ 0 n e x t
t e s t _ Not t e s t
END

The above ISPS file, when compiled with the default setting of the R switch, produces the

following GOB file:

G O B : A ; I S P S C o m p i l e r V5B-7:DSK:TEST. ISP[N655HB25] ;17 J u n 79*23:18:25*
(ISPSDECLARATION

(EDECLR
(EHEAO TEST N I L N I L (: 0 7 7))
(N E X T

(_ (EACCESS TEST) 123456783123456789)
(" (EACCESS TEST) 0)

(_ (EACCESS TEST) (NOT (EACCESS T E S T))))))

When the same ISPS file is compiled using the -R switch, the GOB file looks like this:

70 ISPS Reference Manual

G D B : C ; I S P S C o m p i l e r V5B-7;DSK:TEST, ISP[N655MB25]j 17 J u n 7 9) 2 3 : 2 0 : 4 7 ;
(1

<2
<6 TEST N I L N I L (40 0 7 7))
(2 3

(117 (171 TEST) 123456789123456783)
(117 (171 TEST) 0)
(117 (171 TEST) (170 (171 T E S T))))))

There are three types of terminals that can appear in a GOB tree. They correspond to

identifiers , constants , and quoted-text strings, identifiers and quoted-text strings appear in

the GDB tree exactly as they appear in the original ISPS source file (with the exception of

lower case letters which are mapped into upper case.)

T h e r e are two representations for constants . The compiler switch 0 is used to select which

format is to be generated.

By default, constants in a GOB file appear exactly as they appear in the original ISPS

source file (See [3.3]). The above examples used this format.

If the - O (complement of 0) switch is used during the compilation, constants have the

following format in the GOB tree:

x x x x < y y >

The string 'xxxx ' is an octal number which is the value of the corresponding ISPS constant

T h e string ' y y ' i s 3 decimal number which indicates the EXACT bit length of the octal constant

The following GOB file was generated from the above ISPS source file, using the - 0 switch:

GDB: B; I S P S Comp i I e r V 5 B - 7 : DSK: TEST. I SP[N655MB25]: 17 J u n 7 9 : 2 3 : 2 1 : 5 0 :
(I S P S D E C L A R A T I ON

(EDECLR
(EHEAD TEST N I L N I L (: #0<2> #115<8>))
(N E X T

(_ (EACCESS TEST) #6664664S65464057425<58>)
(_ (EACCESS TEST) #0<2>)
(_ (EACCESS TEST) (NOT (EACCESS T E S T))))))

T h e following table describes the relation between the switch settings and the GD8 format

ISPS Reference Manual 71

generated:

Format R 0

A
B
C
D

/R
/R
A R
A R

/0
A O
/O
A O

(d e f a u l t)

14.4. Attribute Types

A node-name or terminal may have any number of attributes following it. The format of an

I x x j y y y y y j

The string 'xx ' is a decimal number indicating the type of the attribute and the string

' y y y y y * is the body of the attribute. The body may contain any ASCII character except NULL

(0) and occurrences of T are represented by 'jr.

The attribute types are:

1. This attribute corresponds to a comment which appeared in the ISPS description.
The comment appeared at the end of the line which this node was located on.
This type of attribute appears in the tree only if the /C switch is used in the
compiler.

2. This attribute corresponds to a blank line which appears in the ISPS description.
This only appears if the /C switch is used in the compiler.

3. This attribute corresponds to an ISPS alias. If an alias is given to a constant or
to an identifier in ISPS this attribute will appear in the tree, following the
constant or identifier.

4. This attribute corresponds to a comment which appears at the end of the ISPS
description. It only appears in the tree if the /C switch is used in the compiler.

5. This attribute provides the line and page number in the ISPS description that a
node appeared on. This is only given for terminals (constants and identifiers).
These attributes appear in the tree only if the /P switch is used in the compiler.
The attribute looks like 14500/4! for line 500 on page 4. The numbers are
decimal.

6. This attribute contains the name of a labeled block, e.g.: "Begin |name| _ End
Inamel" produces an attribute of "HJname!".

attribute is

ISPS Reference Manual

ISPS Reference Manual 73

For the rest of this document we will assume that the reader knows the grammar of ISPS.

Not all of the non-terminals in the BNF are used in the tree. A great effort has been made

to remove any nonessential redundancy from the tree. For instance, the simple ISPS register

access of "A" is parsed as a cunary which has a definition of a c-term which is defined as

e-access which is defined as identifier which is "A". The tree for this would look something

like:

(CUNARY (CTERM (EACCESS A)))

The cunary and the c-term are unnecessary and the GOB file is simplified to:

(EACCESS A)

The following is a list of the valid node types followed by their representation in the t ree .

The upper case identifiers are the literal strings (node-names) which appear in the tree. The

lower case strings are subtree-type names. For example, 'c-expression' may be replaced b y

any valid tree which corresponds to an ISPS c-expression parse tree. These include the

sub - t rees whose roots are V , V , 'SHO', 'MOD', 'EACCESS', etc.

The form used in the tables below is:

I S P S - B N F - N a m e \ G D B - F i l e - P r i n t - N a m e (s)
<f i r s t t r e e r e p r e s e n t a t i o n
<second t r e e r e p r e s e n t a t i o n

• • • •

< l a s t t r e e r e p r e s e n t a t i o n

D i s c u s s i o n ,

The tree representations given are those that appear in the tree if all sons indicated so

are not N I L The actual node in the tree need only have as many sons as are not N I L If a

NIL son is followed by a non-NIL son then both will appear in the tree. (See the examples in

[14]>.

In the tree representations, any representation which is not contained in '()* indicates the

name of a sub-tree which can appear in place of the node type under discussion.

I S P S - D e c 1 a r at 1 on\ I SPSDECLARATI ON
(ISPSDECLARATION e -dec1arat i on)

15. GDB Node Types

74 ISPS Reference Manual

The node ISPSDECLARATION is always the root of the parse tree. It appears once, as the

f i rst node of the GDB file.

E - D e c I a r a t i on\EDECLR
(EDECLR e - h e a d e - b o d y)
(X D E F I N E i d e n t i f i e r q - s e t q - s e t)
(X D E F I N E i d e n t i f i e r q u o t e d t e x t q - s e t)
(X D E F I N E i d e n t i f i e r constant q - s e t)
(XMACRO i d e n t i f i e r f c s e t q u o t e d t e x t)
e - h e a d

An EDECLR node appears only if an ISPS entity declaration has an e-body.

Macros are expanded during the compilation and then, usually, thrown away. The /K switch

forces the compiler to keep the macro declaration in the tree. The FCSET son of a XMACRO

node is a special case of the general FCSET node. The elements of the FCSET are identifiers,

not arbi t rary EHEADs.

E -Head\EHEAD
(EHEAO I d e n t i f i e r f c - s e t w o r d - f s - s e t b i t - f s - s e t q - s e t)

The q -set of an EHEAD node is specified in the ISPS description as a set of keywords

preceding the identifier, or as a set of qualifiers inside { and } after the e-head (before the

or Y , as the case may be.)

' E -Body\EBODY
(EBODY s - a c t i o n q - s e t)
(EBODY s e c t i o n - l i s t q - s e t)
s - a c t i o n
s e c t J o n - l i s t
e - h e a d

The node EBODY will not actually appear in the tree unless the Q-Set is non -NIL The

q - se t of an EBODY node is specified in the ISPS description as a set of qualifiers inside { and

} after the BEGIN or END brackets surrounding the e-body.

F C - S e t \ F C S E T
(F C S E T)
(F C S E T e - h e a d e -head)
N I L

The FC -Set node with no sons (* (FCSET) *) appears only when a '()* appeared in the ISPS

descript ion.

ISPS Reference Manual 75

. W o r d - F S - S e t \ £ f]
name-pa I r
N I L

The Word -FS -Set node never appears in the tree.

B i t - F S - S e t \ < f >
< < f >)
name-pa i r
N I L

The Bi t -FS-Set node with no sons (' (<f>) *) appears only when a '<>* appeared in the

ISPS description.

N a m e - P a I r \ :
<: c o n s t a n t c o n s t a n t)
c o n s t a n t

Q - S e t \ Q S E T
(QSET q - a v - p a i r q - a v - p a i r)
N I L

Q - A V - P a i r V q .
O q * I d e n t i f i e r q - v a l u e - I 1 s t)
i d e n t i f i e r

Q - V a l u e - L i s t V q ,
(t q , q - v a l u e # t # t q - v a i u e)
q - v a l u e

Q - V a l u e \ Q VALUE
i d e n t i f i e r
c o n s t a n t
q u o t e d t e x t
q - s e t

The Q-Value node never appears in the tree.

S e c t 1 o n - L i s t \ S E C T I ONLI ST
(S E C T I O N L I S T s e c t i o n s e c t i o n)
s e c t i on

The Section-List node appears in the tree only if there is more than one section.

76 ISPS Reference Manual

S e c t i o n \ S E C T I O N
(S E C T I O N I d e n t i f i e r e - d e c l a r a t i o n - l 1 s t q - s e t)

The q -set of a SECTION node is specified in the ISPS description as a set of qualifiers

inside { and } following the closing '**' of the section-header.

E - D e c 1 a r a t i o n - L » s t N E D E C L R L I ST
(E D E C L R L I S T e - d e c i a r a t i o n e - d e c i a r a t i o n)
e - d e c l a r a t I o n
N I L

The E-Oeclaration-List node appears in the tree only if there is more than one

E-Declaration.

S - A c t ! o n \ N E X T
(N E X T p - a c t l o n i t t i p - a c t l o n)
p - a c t I on

The S-Act ion node appears in the tree only if there is more than one P-Action.

P - A c t I o n \ *
(; a c t i o n a c t i o n)
a c t i o n

The P-Action node appears in the tree only if there is more than one Action.

A c t I o n \ A C T I 0 N
b l o c k - a c t i o n
l a b e l l e d - a c t i o n
c - e x p r e s s i o n
cond i t i o n a I - e x e c u t I on
cond i t i ona1 -decode
c o n t r o l - a c t I o n

The Action node never appears in the tree.

B l o c k - A c t i on\BLOCKACTI ON
(BLOCKACTI ON s - a c t i o n q - s e t)
s - a c t i o n

The Block-Action node appears in the tree only if there is a non-NIL Q-Set. The q-set of a
BLOCKACTION node is specified in the ISPS description as a set of qualifiers inside { and }
following the BEGIN or END surrounding the action.

ISPS Reference Manual 77

L a b e 11 ee l -Act I on\LABELLEDACTI ON
(LABELLEDACTI ON i d e n t i f i e r a c t i o n q - s e t)

The q-set of a LABELLEDACTION node is specified in the ISPS description as a set of

qualifiers inside { and } following the identifier, before the

Cond i t i o n a I - E x e c u t i on\I F
(I F c - e x p r e s s i o n a c t i o n q - s e t)

The q-set of an IF node is specified in the ISPS description as a set of qualifiers inside {

and } following the IF operator.

Cond 11 i ona 1 -DecodeNDECOOE
(DECODE c - e x p r e s s i o n numbered -1 i s t q - s e t)

The q-set of an DECODE node is specified in the ISPS description as a set of qualifiers

inside { and } following the DECODE operator.

N u m b e r e d - L l st\NUMBEREDLI ST
(NUHBEREDLI ST numbered-act i on numbered -ac t ion)

N u m b e r e d - A c t i o n \ : =n
(: = n c o n s t a n t a c t i o n)
(s = n n a m e - p a i r a c t i o n)
(: = n n a m e - l i s t a c t i o n)
(: = n o t h e r w i s e a c t i o n)
a c t i o n

Otherwise\OTHERWISE
(OTHERWISE)

N a m e - L i s t \ . n .
(, n , n a m e - p a i r name-pa i r)
name-pa i r

The Name-List node appears in the tree only if there is more than one name-pair.

C o n t r o l - A c t i o n \ L E A V E , RESTART, RESUME, TERMINATE, REPEAT
(LEAVE i d e n t i f i e r)
(RESTART i d e n t i f i e r)
(RESUME i d e n t i f i e r)
(TERMINATE i d e n t i f i e r)
(REPEAT a c t i o n)

78

C - E x p r e s s i on\CEXPRESSI ON
c - t r a n s f e r
c - d i s j u n c t i o n
c - c o n j u n c t i o n
c - r e l a t i o n
c - s u m
c - f a c t o r
c - s h i f t
c - c o n c a t e n a t I on
c - u n a r y

The C-Expression node never appears in the tree.

C - T r a n s f e r \ _ , <=
(_ c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(< = c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after MOT node

C - D i s j u n c t i o n \ O R , XOR
(OR c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(XOR c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after NOT node

C - C o n j u n c t i o n \ A N D t EQV
(AND c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(EQV c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after NOT node

C - R e l a t i o n \ E Q L , NEQ, LEG? GEQ? LSS, GTR, TST
(E Q L c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(NEQ c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(L E Q c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(GEQ c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(L S S c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(GTR c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(T S T c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after NOT node

C -Sum\+t -
(+ c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(- c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

ISPS Reference Manual 79

See note after NOT node

C - F a c t o r \ * , /• MOD
<* c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(/ c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(MOD c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after NOT node

C - S h i f t \ S R O , S R I , SRD, SRR, SRI? SLO, S L I , SLD, SLR, SLI
(SRO c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(S R I c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(SRD c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(SRR c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(S R I c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(SLO c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(S L I c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(SLD c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(SLR c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)
(S L I c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after NOT node

C - C o n c a t enat i on\@
(@ c - e x p r e s s i o n c - e x p r e s s i o n q - s e t)

See note after NOT node

C -Unary\CUNARY
c - t e r m
c - n e g a t i on
c -compiement

The C -Unary node never appears in the tree.

C - N e g a t i o n \ + + , —
(•+ ^ - e x p r e s s i o n q - s e t)
(— c - e x p r e s s i o n q - s e t)

The unary-plus nodes are all thrown away. Only unary-minus nodes appear in the t ree .

See note after NOT node.

C-Comp1ement\N0T
(NOT c - e x p r e s s i o n q - s e t)

80 ISPS Reference Manual

The q-set in an operator node is specified in the ISPS description as a set of qualifiers

inside { and } following the operator.

C -Term\CTERM
(CTERM c o n s t a n t b i t - a s - s e t)
(CTERM c - e x p r e s s i o n b i t - a s - s e t)
e - a c c e s s
c o n s t a n t
c - e x p r e s s i o n

E - A c c e s s \ E A C C E S S
(EACCESS i d e n t i f i e r a c - s e t w o r d - a s - s e t b i t - a s - s e t q - s e t)

The q-set of an EACCESS node is specified in the ISPS description as a list of Keywords

preceding the bnf or as a set of qualifiers inside { and } following the e-access.

W o r d - A s - S e t \ [a]
c - e x p r e s s i o n

The Word -AS -Set node never appears in the tree.

B i t - A s - S e t \ < a >
a c c e s s - p a i r

The B i t -As -Set node never appears in the tree.

A c c e s s - P a i r \ : a :
(: a : c o n s t a n t c o n s t a n t)
c - e x p r e s s i o n

A C - S e t \ A C S E T
(A C S E T)
(ACSET c - e x p r e s s i o n t t . « c - e x p r e s s i o n)
N I L

The ACSET node with no sons (' (ACSET) *) appears only when a V9 appeared in the ISPS
descript ion.

ISPS Reference Manual 81

16. A Complete GDB Example

The following is a listing of the entire GDB file generated from the MARK1 ISPS

Description.

16.1. ISPS Description

I The Manchester U n i v e r s i t y Mark-1 Computer

j T h i s i s t h e ISPS d e s c r i p t i o n of the f i r s t v e r s i o n of t h e mach ine , as
I r e p o r t e d i n [L a v i n g t o n , S . H . "A H i s t o r y of Manchester C o m p u t e r s " ,
! N a t i o n a l Comput ing C e n t r e P u b l i c a t i o n s , Manchester , E n g l a n d , 1975]

! Mar io R. Barbacc i (BARBACCISCMUA)

MARK1 : =
B e g i n
** Memory .S ta te **
M[0 :8191]<31 :0> ,

** P r o c e s s o r . S t a t e **
PI \ P r e s e n t . I n s t r u c t i o n < 1 5 : 0 > ,

F\Funct lon<0s2> : = PI<15*13>,
S<0:12> : = P I < 1 2 : 0 > ,

CRXCont ro I . R e g i s t e r < 1 2 : 0 > ,
Acc\Accumula to r<31 :0> ,

** I n s t r u c t i o n . E x e c u t i o n ** {TC}
M a i n I . C y c l e : =

B e g i n
PI = M[CR]<15:0> next
Decode F =>

B e g i n
OVJMP i* CR = M I S] ,
1\JRP i s CR = CR + M [S] ,
2XLDN : = Acc = - M [S] ,
3NST0 : = MCS] - A c c ,
4:5\SUB : = Acc = Acc - M I S] ,
6\CMP t = I f Acc Lss 0 => CR s CR + 1,
7\STP : = S t o p O ,

End nex t
CR = CR + 1 nex t
R e s t a r t I . C y c l e
End

End

file:///Present

82 ISPS Reference Manual

16.2. GDB File

GOB: f i ; ISPS Compi ler V5B-7 ;DSK:nRRKi. ISP CN655HB25J; 18 Jun 79;88t 12t 12j
USPSOECLARATION

(EDECLR
(EHEAO MflRKi)
(SECTIQNLIST

(SECTION HEHORY.STATE (EHEflD fl NIL (t 8 8191) (* 31 0)))
(SECTION

PROCESSOR.STATE
(EOECLRLIST

(EHEflD PI) 2! PRESENT. INSTRUCTION I NIL NIL U 15 0))
(EDECLR

(EHEflD F !2!FUNCTI0Nl NIL NIL (s 0 2))
(EHEflD PI NIL NIL (: IS 13)))

(EDECLR
(EHEflD S NIL NIL (: 0 12))
(EHEflO P I NIL NIL (: 12 0)))

(EHEflD CR 12'CONTROL. REGISTER I NIL NIL 0 12 0))
(EHEflO flCC 12'ACCUMULATOR! NIL NIL (: 31 0))))

(SECTION
INSTRUCTION.EXECUTION
(EDECLR

(EHEflO I.CYCLE NIL NIL NIL (QSET flAIN))
(NEXT

(__ (EACCESS P I) (EACCESS fl NIL (EACCESS CR) O a i IS 0)))
(DECODE

(EACCESS F)
(NUPIBEREOLIST

(t « n
0 ! 2! JflP I
<_ (EACCESS CR) (EACCESS tl NIL (EACCESS S))))

(r*n
1 I2IJRP!
(_

(EACCESS CR)
U (EACCESS CR) (EACCESS fl NIL (EACCESS S)))))

(t « n
2 I2IL0NI
(_

(EACCESS ACC)
C-~ (EACCESS fl NIL (EACCESS S)))))

(t « n
3 !2!ST0!
(_ (EACCESS fl NIL (EACCESS S)> (EACCESS ACC)))

(t » n
(: 4 5 I2ISUB!)
(_

(EACCESS ACC)
(- (EACCESS ACC) (EACCESS fl NIL (EACCESS S)))))

(t « n
6 !2 !C«P!
(I F

(LSS (EACCESS ACC) 0)
(_ (EACCESS CR) (+ (EACCESS CR) 1))))

(tun 7 !2fSTPt (EACCESS STOP (ACSET)))))
(_ (EACCESS CR) U (EACCESS CR) D)
(RESTART I . C Y C L E)))

(QSET T O))))

ISPS Reference Manual 83

17. References

[Barbacci , ! 978] M.R. Barbacci: "An Introduction to ISPS". Technical Report, Department
of Computer Science, Carnegie-Mellon University, 1978. Report
CMU-CS-78-137.

[Barbacci , !979] M.R. Barbacci: "Instruction Set Processor Specifications (ISPS): The
Notation and its Applications". Technical Report, Department of Computer
Science, Carnegie-Mellon University, 1979. Report CMU-CS-79-123.

[Bell,1971] C.G. Bell and A. Newell: Computer Structures: Readings and Examples.
Mc-Graw Hill Book Company, New York, 1971.

[Bell,1978] C.G. Bell, J .C Mudge, and IE. McNamara: Computer Engineering. A DEC
View of Hardware Systems Design. Digital Press, 1978.

V

ISPS Reference Manual

ISPS Reference Manual 85

Appendix I
Syntax Charts

This appendix contains the complete syntax of ISPS. It is presented in a pictorial format.

All productions of the form X-LIST^ are explicitly defined. The charts show explicitly all the

places were a qualifier can appear.

Whenever the keywords 'BEGIN* and 'END' appear, they can be replaced by V and f) f

respectively .

Figure 17-1: Syntax Chart - I

Figure 17-2: Syntax Chart - I I

E-Head Sequence FC-Set FS-Set Q-Set FC-Set
I?

FS-Set
P Q-Set

FC-Set

E-Head

FS-Set

Name-Pair

Name-Pair

E-Body BEGIN £> Q-Set M b-expression Q-Set

Section-List

> E-Head > E-Head

Section-List
IDENTIFIER Q-Set E-Declaration

Figur* 17-4: Syntax Chart - IV

ISPS Reference Manual

Figure 17-5: Syntax Chart - V

C - Expression

7 T S
E-Acc«ss

Q-S«t

C-Dis junction
_—^1 C-Conjunction

C-Con junction

Q-S«t

C - Disjunction

C-Relation
W C-Som

Q-S*t - @ < f -

kf—(lss)<i-

< — (G T R) < t -

p—(S)<fr—

— (t s t) < i —

Figure 17-7: Syntax Chart - V I I

I
00

X
O
0)

I

<

C-Term
E-Access

(D
Constant

C-Expression Access-Pair

E-Access

CD
3
<•>
ID

s: &>
3
C

Id-Sequence AC-Set AS-Set £> Q-Set Id-Sequence J> AC-Set
I?

AS-Set
^

Q-Set

AS-Set

j J C-Expression

"5"

Access-Pair

AC-Set

Y j J C-Exprasiia

Access-Pair
O

©^

C-Expression *> C-Expression

r
Constant Constant

CO

Q-Set

ISPS Reference Manual

Index

f 10

" 8, 9, 22

• 89 9, 22

' 8, 9, 22

(13,14,19,21,39,59

) 13, 14, 19, 21, 39, 59

* 33, 36
•* 14

• 33, 35, 36, 37

, 13, 14, 21, 39, 55, 59

* 33, 35, 36, 37

/ 33, 36

: 11, 22, 55
- 13, 21, 59

i 19,55

< 13, 39
<- 33, 37

- 33, 37
•> 21

> 13, 39

1 9, 22

a 33, 35, 38

Ac-sat 39, 40, 41, 46, 56, 80
Accsss-pstr 80
Action 19, 21. 25, 26, 27, 76
Add-op 33
Alias 11,71
AND 33,37,63
And-op 33
Arithmetic-trtntftr 37
As-s*t 39, 40, 56

B-axprassion 14, 19, 52
BEGIN 14, 19, 21, 52
Bit-ss-sst 39, 80
Btt-fs-s*t 13, 75
Block-sction 19, 20, 55, 76

C-comptomant 79
C-concatenation 33, 79
C-conjunction 33, 78

ISPS Reference Manual

C-disjunction 33, 78
C-expression 19, 21, 33, 39, 40, 41, 46, 55, 78
C-factor 33, 79
C-negation 79
C-relation 33, 78
C-shift 33, 79
C-sum 33, 78
C-term 10, 33, 39, 41, 80
C-transfer 33, 78
C-unary 33, 79
Comments 10, 71
Conditional-action 19, 21, 55
Conditional-decode 77
Conditional-execution 77
Constant 8, 11, 21. 22, 34, 39, 46, 50, 55, 59, 70, 71
Control-action 19, 25, 77
C0UNT.0NE 62
CRITICAL 48, 56, 63

DECODE 9, 12, 21, 22, 55, 63
DEFINE 59,63
DELAY 51, 62

E-acceaa 39, 40, 41, 46, 56, 80
E-body 13, 14, 26, 41, 55, 74
E-declaration 13, 14, 74
E-declaration-list 76
E-head 13, 14, 40f 55, 74
END 14, 19, 21, 52
EQL 33, 37, 63
EQV 33, 37, 63

Fc-set 13, 40, 41, 55, 74
FIRST.ONE 62
Fs-set 13, 40, 55

GEQ 33, 37, 63
GTR 33, 37, 63

Id-sequence 56, 57
Identifier 8, 13, 14, 19, 25, 39, 40, 55, 56, 59, 70, 71
IF 21, 55, 63
INCREMENT 43, 56, 63
IS.RUNNING 62
ISPS-declaratfon 13, 73
ISPS-definition 59

K 9,63

Labelled-action 15, 19, 20, 26, 55, 77
LAST.ONE 62
LEAVE 25, 26, 27, 63
LEQ 33, 37, 63
Logical-transfer 37
LSS 33, 37, 83

M 9, 63
M-parameter-set 59
MACRO 59, 63
MAIN 50
MASK1EFT 62
MASK.RIGHT 62
MOD 33, 36, 63
Mult-op 33

ISPS Reference Manual

Name-list 77
Name-pair 11, 13, 21, 22, 39, 43, 75
NEQ 33, 37, 63
Next 19, 63
NO.OP 62
NOT 33, 35, 63
Numbered-ection 21, 77
Numbered-list 77

OC 52, 56, 63
Ona'a Complement 34, 35, 36, 52, 56
OR 33, 37, 63
Or-op 33
Other-declarations 13
OTHERWISE 21,77

P-action 19, 76
PARITY 62
PROCESS 26, 48, 56, 63
PTIME 50, 56, 63

O-av-pair 55, 75
Q-set 55, 59, 75
Q-value 55, 75
Q-value-list 75
Quoted-text 11, 20, 55, 68, 70

REF 45, 46, 56, 63
Rel-op 33
REPEAT 25,63
REQUIRE.ISP 59,63
RESTART 25, 27, 63
RESUME 25, 27, 63

S-action 19, 76
Section 14, 15, 52, 76
Section-header 14, 52
Section-list 75
Shift-op 33
Signed Magnitude 34,35,36,52,56
SLO 33, 35, 63
SL1 33,35,63
SLD 33, 35, 63
SLI 33, 35, 63
SIR 33, 35, 63
SM 52, 56, 63
SRO 33, 35, 63
SRI 33, 35, 63
SRD 33, 35, 63
SRI 33, 35, 63
SRR 33, 35. 63
STOP 62

TC 52, 56, 63
TERMINATE 25, 26, 63
TIME.WAIT 51,62
Tranafer-op 33, 38, 41
TST 33, 37, 63
Two's Complement 34* 35, 38, 52, 56

Unary-op 33
UNDEFINED 62
UNPREDICTABLE 62
Unsigned 34, 35, 36, 52, 56
US 52, 56, 63

ISPS Reference Manual

WAIT 51,62
Word-aa-aat 39, 41, 80
Word-fa-set 13, 41, 43, 75

XOR 33, 37, 63

{ 13, 21, 39

\ H

] 13, 21, 39

_ 33,37

{ 55,56,57

I 11

} 55, 56, 57

