NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-C8-79-137

The Symbolic Manipulation of Computer Descriptions

The ISPS Computer Description Language

Mario R. Barbacci
Gary E. Barnes
Roderic G, Cattell
Daniel P. Siewiarek

Departments of Computer Science
and Electrical Engineering
Carnegie-Mellon University
148 August 1977
6 March 1978
16 August 1979

Copyright (C) 1979 Mario R. Barbacci

The development of ISPS is part of the research on the Symbaolic Manipulation of Computer
Descriptions sponsored by the Defense Advanced Research Prgjects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-78-C-1551.

The Qiews and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defensea Advanced Research Projects Agency or the US Government.

ISPS Reference Manual

1079

1SPS Reference Manual

Table of Contents

1. Introduction
2. Syntactic Conventions
3. Character Sef, Identifiers and Constanis

3.1. ISPS Character Set

3.2. Identifiers

3.3. Constants
3.3.1. Constant Alphabets
3.3.2. Kilo and Mega Multipiiers
3.3.3. Don’t Care Digits
3.3.4. Length of Constants

3.4. Comments

3.5. Alias

3.6. Quoted Text

3.7. Name Pairs

4, ISPS Descriptions

4.1. Deciarations

4.2, Structure

4.3. Behavior

4.4, Scope of Declarations
45. Examples

5. Behavioral Expressions

5.1, Actions

5.2. Block Actions

5.3. Labelled Actions

5.4. Conditional Actions
5.4.1. DECODE Action Selactors
5.4.2. Don’t Care Digits
5.4.3. Examples

5.5. Control Actions
5.5.1. Loops
5.5.2. Action Terminators
5.5.3. Examples _
5.5.4. Seiecting the Right Operation

6. Carrier Expressions

6.1. Data Types and Arithmetic Representation
6.2. Data Operators

6.2.1. Add-0Op {(Unary)

6.2.2. NOT

6.2.3. &

. 6.2.4. Shift-Op
6.2.5. Muit-Cp
6.2.6. Add-0Op (binary)

iv

6.2.7. Rel-op
6.2.8. And-Op
6.2.9. Or-Op
6.3. Transfer Operation
6.3.1. Storing into Concatenated Carriers
6.3.2. Multiple Transfers

7. Carrier Terms

7.1. Read/Write Access

7.2. Activation

7.3. Combined Access and Activation

7.4. Compatibility Between Use and Declaration
7.5. Examples

8. Predefined Qualifiers

8.1. INCREMENT Qualifier

8.2. REFerence Qualifier

8.3. PROCESS and CRITICAL Qualifiers
8.4. MAIN Qualifier

8.5. PTIME Qualifier

8.6. Arithmetic Qualifiers

9. Qualifiers

10.

11.
12.
13.
14.

18.
16.

9.1. Placement of Qualifiers
9,2, Identifier Sequences
9.3. Summary of Predefined Qualifiers in ISPS

Other Declarations

10.1. REQUIRE

10.2. MACRO

10.3. DEFINE

Predeciared Entities

Resarved Keywords and Identifiers in ISPS
Using the ISPS Parser

ISPS Global Data Base: File Format and Syntax
14.1. GDB Header Line

14.2. The GDB Syntax
14.3. Representation of Node-Names and Terminals

14.4. Attribute Types

GDB Node Types
A Complete GDB Example

16.1. ISPS Description
16.2. GDB File

ISPS Reference Manual

37
37
37
37
38
38

39

40
40
4]
41
41

43

43
45
438
50
50
52

55

b5
56
56

59

59
59
60
61
63
65
67

67
67
69
71

73
81

81
82

ISPS Reference Manual

17. References
Appendix 1. Syntax Charts
Index

vi

ISPS Reference Manual

ISPS Reference Manuat

Figure 5-1:
Figure 8-]

Figure 8-2:
Figure 8-3:

Figure 8-4:

Figure 17-1:
Figure 17-2:
Figure 17-3:
Figure 17-4;
Figure {7-5:
Figure 17-6:
Figure 17-7:
Figure 17-8:
Figura 17-9:

+ o

List of Figures

Static and Dynamic Use of LEAVE, RESTART, and RESUME
INCREMENT Qualifier
REFerence Qualifier :
PROCESS and CRITICAL Qualifiers
Use of the MAIN Qualifier

Syntax Chart - |

Syntax Chart - 11

Syntax Chart ~ Il

Syntax Chart - IV

Syntax Chart - V

Syntax Chart - VI

Syntax Chart - VII

Syntax Chart - VIII

Syntax Chart - IX

vii

31
43
46
48
50
85
85
85
85
85
85

85

viii ISPS Refersnce Manual

ISPS Reference Manual

Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 6-1:

List of Tables

Non-alphanumeric Characters
Special Characiers in ISPS
Representation of Constants
Length of Constants
Operator Precedence

)
WOWwWo-

ISPS Reference Manual 1
The Symbolic Manipulation of Computer Descriptions

Designers make use of notations and languages as abstraction building tools. The meaning
of these abstractions is based on a set of predefined notions on the domain of probiems that
the designers attempt to solve. In the Symbolic Manipulation of Computer Descriptions
(SMCD) project we are attempting to design and build systems that operate relative to
computer descriptions. Thus we need abstractions to describe computers.

When one tries to design a problem oriented language, one can use different notations for
each probtem area and as new problem areas become the focus of our research we sim‘ply
develop new languages as needed. Alternatively, one can make a guess and develop a
language that incorporates every possible abstraction that anybody might ever need. 1t is
easy to see why neither of these solutions is satisfactory. If we use different languages we
need to transiate machine descriptions developed in other notations into our own. Verifying
the translation is akin to testing the equivalence of algorithms, an unsoivable problem in
general. Any certification that might have been painstakingly obtained is now lost if we can
not verify the equivalence of the descriptions.

The second approach tends to yield complicated, hard to understand, and sometimes
unimplementable languages. All users must pay the price of the inefficiencies introduced to
cope with a huge set of abstractions, even if the application one has in mind requires a
limited subset of what the language offers.

ISPS is a kernel language which provides the users with the tools to define application
dependent abstractions around a core notation. It is the applications that define the meaning
of the abstractions. This alleviates the problem of accommodating new, unforeseen
requirements by providing users with a set of tools: a language and a parser, and a
mechanism by which the meaning of the descriptions can be specified, modified, or extended.
We have avoided the problefn of the inefficiency of an umbrella language by partitioning the
implementation of application dependent semantics among the users. Only those abstractions
needed for an active area of research are implemented and the body of expertise centered
around the manipulation of ISPS descriptions can grow graduaily.

Mario R. Barbacci, 14 August 1977
Pretace {o the Sacond Edition

A number of tyﬁographical errors have been corrected in this second edition of the manual.
A few comments have been added to help clarify the meaning of some features. The changes
however, are of a minor nature and users of the first edition of the manual (8/14/77) do not

2 ISPS Reference Manual

need a new copy. The ISPS readers that provided me with valuable feedback are too

numerous to mention. [am grateful for their comments.
MRB, 6 march 1978
Pretace to the Third Edition

This is the third edition of the [SPS reference manual. It describes the features
implemented in version 5 of the ISPS parser. The main differences with the previous release
are: a) the elimination of one construct {(concatenated mappings) and, b) and the introduction
of several new operators and predeclared entities. In addition to presenting the new
language features, many sections have been rewritten to clarify the language constructs and
their intended use,

The manual now includes a set of charts describing the syntax in a pictorial manner. 1t is
hoped that these will complement the BNF in presenting the syntax of the language. '

The previous edition of the manual mentioned an “applications manual®” and many users
requested copies. Unfortunately, the "applications manual® was never intended to be a single,
monolithic document, but rather an expanding set of documents describing systems and
programs making use of ISPS. Some of these documents are included in the software
distribution tape. Others are to be obtained directly from the authors or maintainers of the
applications programs.

The previous edition of the manual included an introductory chapter. This chapter has
been eliminated since it is available as a separate technical report [Barbacci, 1978] and as an
appendix in a published book [Bell, 1978].

MRB, 16 August 1979

ISPS Reference Manual ' 3

1. Introduction

The ISP notation was first introduced by Bel!&Neweil [Bell,1971] as a formalism to describe
the programming level in the hierarchy of digital systems descriptions. At the programming
level a computer is described in terms of data types, data operations, and an interpretation
rule. The interpreter is an algorithm that defines the sequences of operations performed by
the machine. These operations are encoded in a particular data type: the instruction, and
they operate on other data types encoded in the memory and registers of the machine. The
data types are stored or transmitted in data carriers (memories, registers, and data paths).
These values are transformed or operated upon by the data operators (functional units),
controlled by a. network of clocks and sequential circuits. All of these components are
defined in terms of a lower level of computer descriptions, the Register Transfer level.

Although ISP is oriented towards the description of Instruction Set Processors, it contains
a fair number of constructs which can be used to describe a large class of register transfer
systems (digital computers are a subset of the latter, namely, those systems that fetch,
decode and execute instructions).

The design philosophy of ISPS was guided by two principles, flexibility and simplicity.
Specifically, it was desired to design a computer description language that wouid be
appropriate for diverse appiications: automated design, simutation (for both software
development and hardware debugging), and automatic generation of machine relative software
(in particular, compiler-compilers). Thus, although ISPS can be viewed as a programming
language, the aim of the notation is to describe computers and other digital systems, not
necessarily general computational algorithms.

The ISPS language is parsed by a compiler’ which runs on a PDP-10. This is not a
compiler in the normal sense; its output is a parse tree, which is used as input by the various
aforementioned application programs.

The definition of what constitutes a *correct’ ISPS description depends to some extent on
the nature of the application programs using the machine description. An assembler
generator might, for instance, require the specification of the instruction mnemonics but it
might not have any use for the specification of the memory technology. The situation is
reversed when a design automation system uses the same parse tree. A compiler-compiler
system might be interested in the "cost’ of each instruction in order to generate optimal code.
For details on these and other applications, see [Barbacci, 19791

To allow the coexistence of multiple applications, ISPS provides an extension facility for.
the specification of application dependent information. This information is attached to the
parse trees and can be easily retrieved by the application programs. Because of the open

4 ISPS Reference Manual

ended nature of the application dependent information, the parser can only perform syntactic
analysis of the extensions. Relatively little can be done at parse time with regard to the
semantic analysis and the bulk of the semantic analysis of the extensions thus lies in the
domain of the application areasl.

We are indebted to many individuals, at CMU and elsewhere, for their comments, ¢riticisms,
and encouragement. The RT-CAD group at CMU and the meetings of the AMD Working Group
provided invaluable feedback to the designers of the language. The following individuals
deserve special thanks: Steve Crocker (USC-ISI), Lloyd Dickman (DEC), Vittal Kini (CMU)},
Barry Press (TRW), Don Thomas {CMU), and Andries Van Dam (Brown University).

lAl experience with the language trows, the semantic knowladge buili into the parser will be sugmented to

incorporsie those aspects that sre common to ail applications or which can result in contradictory assumptions by the
users of the machine description.

ISPS Reference Manual 5

2. Syntactic Conventions

The syntax of the ianguage is defined in the Backus-Normal-Form (BNF) meta-notation. The

characters ’u=' separate the name of a production from the 'sequence of terminals and
non-terminals which define the production. Alternatives sequences are separated by ’|"

All production names are written in bold face (e.g. c-expression). Keywerds and reserved
identifiers are written in upper case {e.g. BEGIN). Bear in mind however, that ISPS makes no
distinction between upper and lower case letters, thus in an actual description "BEGIN’ and
begin’, and even 'BeGiN' are ail equivalent.

In order to keep the number of BNF productions down to a fevel which does not impair the
readability of this manual, the following meta-convention will be used: A production name of
the form °x-LISTY” stands for a sequence of, at least one, instances of x, separated by ‘y’,
where 'y’ can be any character, including NULL (this allows for the specification of lists
without any special delimiter). i.e.:

Z 1= X-LIST) is equivatent to: Z u=X|Z;X

By the same token, a production of the form ’x-LISTY-LIST? stands for a sequence of, at
least one, instances of "x-LISTY”, separated by 'z’

ISPS Reference Manual

ISPS Reference Manual

3. Character Set, ldentifiers and Constants

3.1. ISPS Character Set

The character set used in ISPS is essentially the full 7-bit ASCII character set. Upper and
lower case letters are considered to be equivalent (the 1SPS parser maps all letters td their
upper case form.) Most other characters are taken literally with no mapping performed on
them. Table 3-1 depicts the non-alphanumeric characters and their meaning in ISPS.

QOctal

041
042
043
047
050
051
052
053
054
055
056
057

072 .

073
074
07%
076
077
100
133
134
135
137
173
174
175

g -

R Adalhk"

w

oo

u/ﬁ@-ﬂv I . Wl

=

Use

Indicates a comment

Indicates a hexadecimal constant
Indicates an octal constant
Indicates a binary constant
Used in blacks and expressions
Used in blocks and expressions
Multiplication operator

~ Addition operator

Used as a list separator.
Subtraction operator

Used in identifiers

Division operatoer

Used to indicate a range of values
Concurrent Action and Qualifier separator
Used to describe a bit structure
Logical transfer operator

Used to describe a bit structure
Used in Constants

Concatenation operator

Used to describe a word structure
Used in Aliases

Used to describe a word structure
Logical transfer operator

Used in Qualifiers

Used to quote strings

Used in Qualifiers

Table 3~1: Non-alphanumeric Characters

(See [3.4))

(See [3.3))

(See [3.3])

(See [3.3])

(See [5.2, 7])
(See [5.2, 7D

(See [6.2.5))

(See [6.2.1, 6.2.6])
(See [4.2, 4.3,5.4, 7, 9)
(See [6.2.1, 6.2.6))
{See [3.2]

{See [6.2.5]

(See [3.7D)

(See [5, 9]

(See [4.2, 7]
(See [6.3])

(See [4.2, 7])
(See [3.3.3, 5.4.2])
(See [6.2.3]

{See [4.2, 7))
(See [3.5))

(See {4.2, 7])
{See [6.3])

(See [9]

(See [3.5, 5.2, 9, 10])
(See [9))

Tabs, form feeds, blank lines, etc. may be used anywhere a space may be used.

In addition to the characters shown in Table 3-1, ISPS makes use of certain special

8 ISPS Reference Manual

characters outside the ASCIl character set. These special characters have obvious
transliterations in terms of multiple ASCII characters, as shown in Table 3-2

LGhac. Use

$= Used in declarations and labels (See [4,1, 5.3, 5,4, 10])
=> Used in conditional actions (See [5,4])
<= Arithmetic transfer operator (See [6,3])
%% Section Head Delfimiter (See [4,3])

Tabie 3-2: Special Characters in ISPS

3.2. Identifiers

Identifiers in ISPS are made up of the foliowing characters: A-Z, a-z, 0-S, and *.’ Upper
and lower case letters are equivalent.

Identifiers must start with a letter and may be of any length (the current impiementation
limits identifiers to be up to 80 characters long).

Examples:

NAME

NaMe ‘
This,is,a.long,identifier
¢1d3e5

3.3. Constants

A constant is a sequence of characters in some alphabet determined by the base of the
constant. The default base is ten; any constant which appears without a base indicator is
considered to be decimal. Base eight constants are preceded by . Base two constants are
preceded by *. Base sixteen constants are preceded by ",

ISPS Reference Manual 9

3.3.1. Constant Alphabets

The alphabets for the predefined bases in ISPS are depicted in Table 3-3.

2 ’ a,1,?

8 H 0,1,2,3,4,5,6,7,7?

10 none 0,1,2, 3, 4, 5,6,7, 8,9

16 v 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,?

Tabla 3-3: Representation of Constants

3.3.2. Kilo and Mega Mullipliers

For convenience, any constant may be appended with a sequence of Ks, which acts as a
multiplier of value = 1024. Thus iK is equivalent to 1024, 4K is equivalent to 4096, 1KK is
equivalent to 1024K or 1048576. Similarly, a sequence of Ms can be used as a multiplier of
value = 1048576.

3.3.3. Don’t Care Digits

The character *? can be used in a binary, octal, or hexadecimal constant to specify a don't
care digit. Its presence stands for any digit in the corresponding alphabet. Don’t care digits
are a notational convenience for writing partially specified 'bit patterns’. In the current
implementation the use of 7" is restricted to constants used to label DECODE alternatives (See
[5.4.2]).

Examples!
"1000 ! base 15
4096 1 base 10
#10006 | base 8
21000 ! base 2

10

1SPS Reference Manual

3.3.4. Length of Constants

Constants have two properties. The first of these is the base they are in, the second is

their length. The length of a constant is measured in bils, according to the rules shown in

Table 3-4.

Base

10

8

16

Examples:
"1000
4095
#17
0
Al
g
#10000
7101
700771
B2

Length of Constants

Decimal consiants are one bit longer than the smallest number of bits
needed to represent its value,

Binary constants have one bit for each digit explicitly written.
Octal constants have 3 bils for each digit explicitly written.
Hexadecimal constants have 4 bits for each digit explicitly written.

Table 3~4: Length of Constants

16 bits
13 bits
6 bits
2 bits
8 bits
12 bits
15 bits
3 bits
S bits
B bits

S G W S SE S=E = =B = S

ISPS provides means to specify constant bit patterns whose length do not follow the above
length ruies. These are described under ¢-terms (See [7]).

3.4. Comments

A comment is indicated by a '". Everything from the " to the end of the line in which it
appears is treated as a commentary and is not parsed. Commenis appear in the parse tree
(See [14.4]) and can be used by the application programs:

Examplet

I This is a comment

ISPS Reference Manual 11
3.5. Alias

It is possible to attach an alias to any identifier. The alias is usually a long form of the
identifier which is too long to use conveniently, e.g.:

Exameles:

PC\Program, Counter
ALNFARNA,Long, Name,For,A,Register

It is also possible to attach an alias to any constant. This alias is a convenient way of
attaching a special meaning to the constant, e.g.:

Examples:
’0110\Priority,Mask
#204\AND, Instruction

Any number of aliases can be specified, separated by V. Syntactically, an alias is an
identifier. Semantically, an alias is treated as commentary information by the parser. l.e.
PROGRAM.COUNTER is not interchangeable with PC.

Aliases are kept in the parse tree (See [14.4)) for the benefit of the apptlication programs.

3.6. Quoted Text

There are several ptaces in an ISPS description where an arbitrary ASCIIL string is valid
(e.g: qualifiers, see [9]. These strings are mainly for the benefit of the application
programs that operate on the ISPS parse trees. A quoted-text is a string of characters
enclosed between " and ’. A '} inside the quoted-text is represented by °|[’:

Examplet |This a a random string with a || in it]

3.7. Name Pairs

In ISPS there are several uses for a list of constanls. A name-pair is an abbreviated
notation for a list of consecutive constants.

name=pair ::= constant | {See (3.31)
constant : constant

Examplest 315 stands for 3,4,5: 714 stands for 7,6,5,4

12 ISPS Reference Manual

Name=-pairs are used, among other things, to name the bits of a carrier. A name-pair-LIST’
{a list of name-pairs separated by '’) is used to label the elements of a list of DECODE

alternatives (See [5.4)).

Ezs.a_mLea=

3,5:7,4 (equivalent to 3,5,8,7,4, In that order)
15113,12,11:10 (equivaient to 15110 or 15,14,13,12,11,10)

ISPS Reference Manual 13

4. ISPS Descriptions

ISPS describes the interface (i.e. external structure) and the behavior of abstract
hardware units (cailed entities in the language). The interface describes the number and
types of carriers used to store and transmit information between the units. The behavioral
aspects of the unit are described by procedures which specify the sequence of control and
data operations in the machine.

Formally, in ISPS we define a digital system as a network of entities. These
entities can have different structural and behaviorali properties. Thus, the
deciaration of the main memory of a computer must specify the number of words
and the number of bits per word. An arithmetic unit must specify the different
operations it can perform. Other components share both types of properties. For
instance one could describe a bus as an entity with a structure (e.g. the bus lines)
and a function (e.g. the arbitration mechanism).

The exact physical implementation, the data storage and transmission
mechanisms, the mechanisms used to activale and terminate the execution of
operations, the synchronization and timing characteristics, etc. can be specified via
qualifiers (See [9]). This type of information is not required by the parser. That is,
an ISPS description does not need to specify the actual implementation or even the
organization of the data paths.

4.1. Declarations

ISPS~daclaration ::= e=daclaration

e~declaration 1:= e~head | (See [4.21)
e~head := e-body | {(See [4.31)
other-declarations (See {181)

An ISPS-declaration is the minimal parsing unit. For the sake of explanation we can call it a
*program’. An enfity declaration (e~declaration) defines a hardware component which might

have a structure and exhibit some behavior. The entity head (e-head, see [4.2]) defines the
structural properties. The entity body {e-bedy, see [4.3)), if present, defines the behavioral
proper’tiesi '

4.2. Structure

e-head ::= identifier fc-set fs-set {See [3.2])
fc=set ::= nit | ()} 1 (e-head-LIST» }

fe=sat 1:= nil | bit-fs-set | word-fs~set bit-ts-set

word=-ig-set ;:= [nama-pair] (See [3.71)
bit=fs-set ::= < > | < name=-pair >

An e~head defines the structural aspects of a declaration. It consists of several parts,

14

ISPS Reference Manual

some of which may be optional:

Companent

identifier

fc-set

fs-sot

4.3. Behavior

e~body ::=

section ::=
section-header ::=

Meaning

The identifier distinguishes the entity from other entities defined at the
same level or scope (See [4.4]). It must aiways be present.

The formal connection set (fc-set) defines an interface for connecting
entities. Syntactically, it is a (possibly empty) list of carriers (a~heads)
playing the role of *formal parameters’. The fc-set is optional.

The formal structure set (fs-set) defines a carrier and it may consist of a
single *word’ or an array of "words’ (a memory). The fs-set is optional.

word-fs-set The word formal structure set (word-fs-sel) defines
the structure of an array of 'words’. The names of
the words are specified inside [and °T. The
word=-fs=set is optional.

bit-fs-set The bit formal structure set (bit-fs-set) defines the
structure of a single word. The names of the bits
are specified inside ’<' and *>'. The bit-fs=set must
be specified if the fs-set is present.

name-pair The eiements of the name-pairs (the dimensions)
' specify a naming convention for the *words® and *bits’
of a carrier. The name-pair must be present in a
word-fs—sel, it is optional in a bit~fs-set (an empty
bit-fs-set (<>) stands for a single, unnamed bit.)

BEGIN section-L1ST END | (sectien-LI1ST) |

BEGIN b-expression END | (bexpression) | (See (51)
e-head {See [4.2])
section~header e-deciaration-LIST® {See [4.11)
o identifier {See [3.21)

An entity body (e<body) defines the behavior of an entity. There are three kinds of

"bodies’:
Body Tvype
section=-LIST

Explanation

The most general case of an e=-bady consists of a list of sections, each
consisting of a seclion-header followed by 2 list of e=-declarations, local to
the body. The declarations inside the sections can be of arbitrary
complexity. They can in fact, have bodies with local sections to any level
of nesting,

Declarations are grouped in sections as an abstraction

frreie e -

e
FTY

ISPS Reference Manual 15

mechanism., Application programs which manipulate ISPS parse
trees might require specific sections to be present while
possibly ignoring others.

b-expression Simpler bodies are defined by a b-expression (a behavioral expression,
see [5]) which can be thought of as a sequential or combinational
network, depending on the nature of the operations used and the
implementation thereof.

e~head The third type of e-body is used to define or map alternative structures
o and naming conventions over previously declared carriers. The bit (or
word) names used on the left hand side of a structure mapping are
independent from the bit or word names used on the right hand side.
Both sides of a mapping must, however, specify structures of the same
size (# words * # bits/word). The equivalence between the bits of the
right hand side and the bits in the left hand side is obtained by aligning .
the leftmost bit of the leftmost word of the left hand side with the
. leftmost bit of the leftmost word of the right hand side.

4.4, Scope of Declarations

ISPS declarations follow the same scope rules used in Aigol and other programming
languages. Declarations must be unique within a section-LIST defining the body of an entity.
Sections do not define scopes, i.e. declarations in separate seclions of the same section-LIST
must have unique identifiers.

Entities declared inside another entity are not accessible outside the enclosing entity.
Internal entities are ‘own’ (in the Algol sense), thus carriers used to describe storage
elements preserve their values across activations of the enclosing entity.

Labels used to name labelled-actions (See [5.3]) are not considered to be declarations in
the normal sense. The label (an identifier) is known and available only inside the
labelled=action and no conflicts arise from the use of the same label for several concurrent or

sequential labelled-actions.

4.5. Examples

IrN\Instruction, Register<0:31>

This declaration defines a 'register’ (IR) whose structure consists of 32 bits (0,1, ...,30,31).
The elements of the name=pair 0:31 specify the names of the bits.

Mpl 01 255] <7: 0>

16 ISPS Reference Manual

This deciaration defines a ‘memary’ {M) whose structure consists of 256 words, 2ach 8 bits
long. The words are named 0,1,2,.255 while the bits inside each word are named 7,6,...,1,0.

VMA\Virtual,Memory,Address<13:35>

This declaration shows that the bit (and word) names can be specified in ascending or
descending order. In fact, the name-pairs do not even have to begin or end on 0. The VMA
carrier is declared to be 23 bits long, the bits named as 13,14,..,34,35 (the example was
derived from the DEC PDP-10 Virtual Memory Address format; the VMA carrier is loaded with
bits 13 through 35 of the Instruction Register, thus the bit names.)

Alu(Areg<0:15>,Breg<0:15>)<0116>

The example defines the structure of a ’functional unit® (ALU) which consists of two
interface carriers (AREG<0:15> and BREG<0:15>) and one ‘result’ carrier, (ALU<0:16>), The
word ‘result’ is being used in an informal sense. ALU<0:16> is just another carrier and be
can read or written by other entities as well as by ALU itself.

MARK1 := | Manchester University Mark-1
Begin ‘
*% Memory,State *x
M[0:8191])<31:0>,

** Processor,State *x
PI\Present,Instruction<15:0>,
CR\Caontrol,Register<12:0>,
Acc\Accumulator<31:0>,

*% Instruetion,Exocution *=

I,Cycle =
Begin
End
End

The example depicts the body of the declaration of an entity, in this case a minicomputer.
The header of the declaration (MARK]) does not specify an structure. The body or
behavioral part consists of a list of declarations for the memory, registers, and operations of
the machine. These declarations are (arbitrarily}) grouped into three sections (%%
MEMORY.STATE *¢, ** PROCESSOR.STATE ##, and *+ INSTRUCTION.EXECUTION 21£). The last

file:///Present

ISPS Reference Manual ‘ 17

section consists of a singie entity (LCYCLE) which specifies the sequence of data and control
operations.

iNinstruction<15:0>, 1 POP=-11 Instruction Format
bop\binary,operation<210> 1= i<14112>,
s\source, field<S: 0> 1= i<11:16>,
sm\source,mode<1:0> 1= s<5:14>,
sd\source, def erred<> 1= s<3>,
srcreg\source, reg<2:0> 1= 5<210>,
d\destination,field<St0> = {<5:10>,
dm\destination, mode<ii 0> 1= d<Si14>,
dd\destination,deferred<> t= d<d>,
desreg\destination,reg<2:0> 1= d<2:0>,

In the above example, several fields of 1 (The PDP-11 Instruction Register) have been
defined as if they were independent ‘registers’ {i.e. each field has its own name, with an
optional alias, and a structure or dimension specification).

CCodes[0:3]<> 1= PSW<«15:18>, .1 §360 Condition Codes

The last example shows how different structures can be mapped on top of a previously
declared carrier. CCODES is defined as an array of 4 1-bit carriers. Thus, one can access the
bits in the field PSW<15:18> using two alternative structures (i.e. an array of 1-bit carriers
or a 4-bit field). The equivatence of bits is as follows: The leftmost bit of waord O of CCODES'
corresponds to bit 15 of PSW. Since this is the only bit of word 0, we continue on word 1,
whose bit corresponds to bit 16 of PSW, etc. ete.

18

ISPS Reference Manual

ISPS Reference Manual 19

5. Behavioral Expressions

b-expression ::= s~action
seaction §:= paction-L ISTNEXT |
p-action ::= action-LIST? (Sees [5.11)

A behavioral expression (b-expression} defines the behavior of an entity. b-expressions
are built by specifying the sequence of transformations and transfers of values stared in
carriers. Simple b=exprassions (actions) can be combined to build larger b-expressions by
activating them in sequence (s=actions separated by NEXTs) or concurrently {p-actions
separated by ')

No synchronization must be assumed between parallel actions. Actions separated
by s are considered to be order independent and can be executed in any fashion.
The only reguirement is that paraliel aclions are completed before proceeding
beyond the following NEXT separator.

Order independence refers to the order of evaluation of the actions, it does not
refer to the order of initiation of the actions. Parallei actions, separated by ;' are
initiated concurrently, their execution can proceed in any order,

Notice that this does not imply that the same resuits should be obtained from all
implementations. This is particularly true when the concurrent actions contain
control operators that modify the flow of control. It is not necessarily the case
that the writer of an ISPS description is aware of the consequences of specifying
concurrent operations separated by . In general, it is an unsolvable problem to
determine when two concurrent operations are meaningful or desirabie. The ISPS

Parser does not even iry to check concurrent operations Caveat Emptor.

Example @~ Description

A=1; B=2 Next C=3 In this example the first two transfers are initiated in parallel and then,
after their compietion, the third one is performed.

_Next A=1; B=2 Next (C=3 Next D=4} E=5 Next...
A=1 and B=2 are performed in parallel. Then, the sequence C=3 followed
by D=4 is performed in parallel with E=5.

5.1. Actions

action :i= block=action | (See [5.21)
jabelled-action | : {(See [5.31)
conditional-action 1 (See [5.4])
control-action | (See [5.51)
c~gxpression {See (B]l}
block=action ::= BEGIN b-expression END } { b-expression) (See [51)

jabatled~action ::= identifier := action {Ses [3.21)

20 ISPS Reference Manual

Actions are used to build complex behavioral expressions ranging from a primitive
c-expression, to conditional or unconditional control flow operations, to a complex
b~expression inside BEGIN/END or parentheses. The latter type can be used to build
arbitrarily nested b~expressions.

5.2. Block Actions

A biock-action consists of a list of sequential or concurrent actions (2 b-expression) enclosed
inside BEGIN/END or parentheses. The brackets are used to specify an order of execution
different from that implied by the precedence of the sequencing (7’ and 'NEXT") and data
cperations.

The brackets can be aptionally foilowed by a quoted-text or block name to provide the
reader with some degree of visual identification of the levels of nesting:

e Begin | this is the outer block |
Begin | this is the inner block |
End i ;h;s'i; the inner block |

End i ;h;s.i; the outer block |

The quoted-texts attached to matching BEGIN/END or parentheses pairs must be identical.
The parser wili warn the user if that is not the case.

5.3. Labelled Actions

Actions may be labelled to allow the description of complex activities, including selection
and premature termination or reinitialization of actions.

x 1= Begin, , ., ., . End

5.4. Conditional Actions

ISPS Reference Manual 21

conditional-action ::= {F c-expression => aclion | {See [6, 5.11)
DECODE c-expression => BEGIN numbered-action-LIST* END
DECODE c-expression => { numbered-action-LIST*)}
numbered-aclion ::= action | : :
constant := action | : {See (3.3])

name-pair := action | {See (3.71)
[name-pair-LIST*] := sction |
OTHERWISE :w= action

Two operators, IF and DECODE, are used to specify the selection of alternative actions,
depending on the vaiue stored in a carrier or computed from a c-expression.

If the value of the c-expression associated with an IF operation is non-zero (‘true’) the
action following the => operator is executed, otherwise it is skipped. The c-expression is
interpreted as an unsigned value (See [6.1)).

The c-expression associated with a DECODE operator is evaluated and its value used to
select one of the actions specified in the numbered-action-LIST’ following the => operator.
The c-expression is interpreted as an unsigned value (See [6.1]).

5.4.1. DECODE Action Selectors

When the DECODE operation specifies a large number of alternatives, it is sometimes
difficult for a reader to assaciate the alternatives with the values of the c~expression which
selects them. In ISPS one can explicitly write the vaiue of the c-expression associated with
the action as a label-like action selector:

selector = action

Selector Meaning

nil If no selector is specified, the actions are assumed to have implicit
: selectors, given by the position of the action in the list of alternatives.
The positions are numbered as 0,1,2,..

constant A constant used to select an action identifies the value of the c-expression
associated with the action.

name=-pair A name-pair used to select an action identifies a range of values of the
c-expression associated with the action.

[name-pair-LIST)] A list of constants and nama=pairs can be enclosed inside [* and °T to
indicate a non-consecutive list of values of the c-expression associated
with the action.

22 ISPS Reference Manual

OTHERWISE The keyword OTHERWISE is used to specify a default action if the
outcome of the c-expression is not covered by the other action-selectors.

If a value of the c~expression is covered by more than one action selector (either directly,
as a constant or indirectly, as part of a name=-pair) only the first action associated with the
vatue is executed (i.e. exactly one action can be executed as a result of a DECODE operation).

It is a bad practice to mix actions with implicit and explicit action-seiectors. The
syntax allows it to handle the situation in which a designer is not yet sure of the

proper constant action-selectors to use and wants to go ahead developing the 1SPS
description.

ALL outcomes of the c¢-expression must be accounted for. OTHERWISE must be used in
some aclion if the number of actions is smaller than the number of possible values of the
c-expression.

5.4.2. Don’t Care Digits

The use of don’t care digits ('?") in a name-=pair of the form constant:constant used to label a
DECOODE aiternative can be ambiguous. For instance, the range *#?5:407" couid be construed as
any of the following cases:

705,406,707
#05,#04,#03,#02,#01,#00
RIS, 074,873, ... 711,710,407
#75,”74’ #?3, s e ’#02, #01’#00

More interesting patterns could be inferred from a more complicated examplez:

‘0711720 : ’?11707

To avoid any ambiguity, the foliowing (arbitrary) meaning has been atiached to the use of
don’t care digits in a range:

1. The type of range (i.e. whether it is ascending or descending) is determined by
assuming that all don’t care digits have value '0, #0, or "0, as the case may be3.

2. If the range is descending (i.e. the left constant, interpreted as in (1), is greater
than the right constant, interpreted as in (1)), the exireme values or boundaries

2"1. determination of all possibis renges is Jeft sn an exsrcize to the readerl

aﬂomrrbor thet '?" is not sllowed in » decimal constant.

ISPS Reference Manuai 23

of the range are defined by replacing all don’t care digits in the left constant by
1, #7, "F, as the case may be, and replacing all don’t care digits in the right
constant by '0, #0, or "0, as the case may be.

3. If the range is ascending (i.e. the left constant, interpreted as in (1) is lesser that
the right constant, interpreted as in (1)), the extreme values or boundaries of the
range are defined by replacing all don’t care digits in the left constant by "0, &0,
"0, as the case may be, and replacing ail don't care digits in the right constant by
’1, #7, or "F, as the case may be.

4, The range consists of all consecutive constants contained betwsen the boundaries
determined above, including the boundaries. Notice that steps (2) and (3) are

designed to define the largest possible range within the limitations imposed by
step (1) .

5.4.3. Examples

IF Ace EQL X => PC=PC+2

In this example, the operator EQL (See [6.2.7]) defines a 1-bit result (‘O stands for false, ’1
for true). Depending on the vatue of this bit, PC is incremented (1) or not (0).

I1f 2<41?> => Begin , , , . . End

This example shows that in general, the c-expression does not have to be 1 bit long. The
action following the '=> will be executed if ANY bit in the Z carrier is 1 (i.e. Z ¥ 0).

Decode 0P<1:0> =>

Begin |
ACC=0, . ‘ 1 if OP<1:0> is O
ACC=ACC+M[2], 1 1§ OP<1:0> is 1
M[2]1=ACC, I if OP<1:0> is 2
PC=M[21 | 1f OP<1t0> Is 3
End

[y

One of the four actions listed inside the BEGIN/END pair is executed, depending on the
value of OP (0, 1, 2, or 3).

Decode OP<1:0> =>

Begin

1= ACC=0, 1 i¢ OP<1:0> is O
2 1= M[2] =ACC, 1 1§ OP<1:0> is 2
1= ACC=ACC+M(2], 1 1 0P<1:0> is 1
3= PC=M{ 2] 1 1f OP<1:0> is 3
End

24 ISPS Reference Manual

Notice that in the example we have aitered the order of the aclions. If explicit action
selectors are used, as in the example, one is free to write the actions in any order. For
instance, when describing the instruction decoding in a computer, one might wish to group all
the ADD instructions (half word, full word, doubile word, floating point, etc), followed by all
the SUBTRACT instructions, etc. even though the operation codes are not consecutive.

Decode F =>»

Begin

0= CR = M[S],

1 1= CR = CR + M[S],
2 1= Acc = - M[S],
3= M[S] = Ace,

4:5 1= Acc = Ace - M[S],

1= If Acc Lss 0 => CR = CR + 1,
7 1= Stop(),
End next

The above example is taken from the Manchester University MARK-I computer
[Lavington,1975]. Notice that there are two operation codes (4 and 5) associated with the
Subtract operation.

Decode Address => 1 PDP=11
Begin
#17???? = Begin ,,.. End, ' ! 1/0 Page
#00?7??7? t= Begin .,,. En : ! memory
End :

In the PDP-11, addresses in the range #170000:2177777 constitute the [/O page and are
handied differently from those in the range 200000:#167777. The use of don't care digits
siyaptities the writing af the alternative selectors.

ISPS Reference Manual 25

eadd\effective,address<0:11> = ! POP8 Effective Address

Begin '

Decode pb => | Page Zero Bit
Begin

1= eadd =’00000 @ pa, ! Page Zero

1 1= eadd = last,pc<0i14> @ pa 1 Other Pages
End Next

1f ib => ! Indirect Bit
Begin
1 eadd<0:18> Eqi #001 => M[eadd] = Mleadd] + 1 Next lAutoindex
eadd = M[eadd] ! Memory Fetch
End

Eﬂd,

Although we have not yet defined the data operations, it should not be difficult to
understand the example. Notice the use of the carrier associated with EADD (EADD<0:11>) in
the computation of the effective address. Algoi-like scope rules are used in ISPS and
non-local carriers can be accessed from inside a body (e.g. IB, M, PA etc.)

5.5. Control Actions

control~action ::= REPEAT action | {See (5.11)
LEAVE identifier | {See (3.2]1)
RESTART identifier |
RESUME identifier |
TERMINATE identifier

5.5.1. Loops

An action that must be executed repeatedly (a loop) can be described by the use of the
REPEAT operator preceding the action:

26 ISPS Reference Manuat

Example:
ICycle = ! PDP-10 Instruction Cycle
Begin
REPEAT
Begin
IR = Memory[Pcl Next ! Instruction Fetch
Pc = Pc + 1;: VMA = IR<13:135> Next ! Increment PC
EA = VMA()<18135> Next ! Effective Address Computation
1Execute() ! Instruction Execution
End
End

5.5.2. Action Terminators

The LEAVE, TERMINATE, RESTART, and RESUME operators are used to terminate the’
execution of an action. The aclion is specified through its label {in the case of a
labelled-action) or through the identifier used in the e-head (in case the action is the body of
an entity),

There are several restrictions which govern the use of these operators:

1. The label or entity name associated with the operation is statically bound. That
is, the action to which the operation refers is determined by the lexical nesting
of the declarations.

2. If the identifier is an action label, the operation must be lexically nested in the
body of the labelled-action. In other words, if a labelled-action invokes an
activity, the body of the activity can not use the label in a control operation.
This is a consequence of the scope rules (See [4.4)).

3. If the identifier is an entity name, in the case of the LEAVE, RESTART, and
RESUME operations, the operation must be dynamically or statically nested inside
the entity. In the case of the TERMINATE operation, the operation need not be
nested inside the action to be terminated.

eration Meanin
Operation Meaning
LEAVE The LEAVE operator is used to force the termination of labeiled=actions

and e-bodies. Any aclions (other than PROCESSes, ses [8.3)) initiated
during the execution of the action to be terminated and not yet completed
are also terminated by the LEAVE operator. PROCESSes activated by the
action being aborted must be individuaily TERMINATEd (see below).

TERMINATE The TERMINATE operation is essentially equivalent to the LEAVE
operation (i.e. it aborts an action) but it is not limited to specifying an
enclosing action. in other words, TERMINATE can be used to abort any

ISPS Reference Manual 27

RESTART

RESUME

concurrent activity. [f the action being TERMINATEd is an enclosing
action, this operation is identical to LEAVE. If the action to be
TERMINATEd is not currently active, this operation is ignored. The main
use of TERMINATE is to abort concurrent PROCESSes (See [8.3)).

The RESTART operator is used to reset’ an executing action. All actions
initiated by the action to be restarted and not yet completed are
terminated, as in the case of the LEAVE operation, before the action is
restarted.

The RESUME operator provides another mechanism to terminate the
execution of an action. It differs from LEAVE in that LEAVE is followed by
the label of the action to be terminated. RESUME is followed by the labet
of the action whose execution is to be continued. Any actions initiated
during the execution of the action to be resumed and not yet completed
are terminated.

Beware that these operators affect the sequence of operations and Enight be meaningless

or unimplementable when used in parallel actions, e.g.:

Example:

X 1=(.. NEXT, , ., B=C: LEAVE X NEXT , , ,)

The example illustrates a possible source of ambiguety since no order of evaluation can be
imposed on "B = C ; LEAVE X*. When "LEAVE X is executed, the transfer 'B = C’ may or may
not have been completed.

5.5.3. Examples

Exanples
INIndirect<> 1= YMA<13>,
X\IndeX<0: 3> 1= YHA<I 417>,
Y\Of fset<0:17> 1= YMA<18:35>,
YMA\Virtual,Memory, Address<13:35> = - { POP-10
BEGIN
REPEAT
BEGIN
IF X s> Y = RegiX] + Y NEXT ! add the Index register
DECODE I =>
BEGIN
1= (VMA<13:117> = 0 NEXT LEAVE VMA), | done
1:= YMA = Memory{Y]<13:35> ! indirect loop
END
END

END

28 ISPS Referenca Manual

The body of the Virtual Memory computation specifies a (potentially infinite) ioop of
indirect address. Indexing through a register specified in the X field is performed (if X#£0) by
adding the contents of the offset field to the register and truncating the result to 18 bits.
After indexing has taken place, the indirect address fieid {1-bit) is tested. If the indirect bit is
’Q’ the index field is cleared and the cperatlion is completed (the effective address is left in
its carrier, VMA), If the indirect bit is '1°, the current value of the offset is used to access a
memory location. The rightmost 23 bits of the word are loaded into the virtual memory
address carrier and the operation is repeated from the start. '

Examele:
S(Key<0:13>)<> 1= ! Searches the first 512 words of Mp for KEY!
BEGIN
Index=0 NEXT
REPEAT
BEGIN
IF MP[Index] EQL Key => (S = 1 NEXT LEAVE S) NEXT
Index= Index+1 NEXT
IF Index EQL 512 => (S = 0 NEXT LEAVE S)
END
END] end of S

The search ioop can be terminated under two conditions: {a) by finding a match or, {b) by
exhausting the list. The carrier 5<> is set to '1* or "0’ respectively, to indicate the mode of
termination. The carrier INDEX contains a pointer or address to the last location searched.

Example:

S(Key<0:3>)<> 3= | Searches the first 512 words of Mp for KEY:
BEGIN
Index=0 NEXT
Slt= BEGIN
IF Index EQL 512 => (S = 0 NEXT LEAVE S) NEXT
IF MP[Index] NEQ Key =>
(Index = Index + 1 NEXT RESTART S1) NEXT
S=1
END
END ' ! end of S

The example is a variation on the table search of the previous exampie. Now however, the
loop is built implicitly, by defining the body of the loop as a labelled~action and simply
restarting it the inside.

ISPS Reference Manual 29

Examele:
Interpreter 1= ! Instruction Interpreter
BEGIN
v » o o o NEXT
Icycle() NEXT ! Invoke the Instruction Cycle
IF Error EQL 1 => BEGIN , END NEXT { Error Handler
END,
Icycle = ! Instruction Cycle
BEGIN
PC = PC + 2 NEXT ! Increment Program Counter
IR = Rword(PC) NEXT ! Instructlion Fetch
DECODE IR<0:3> => I Operation Decoding
BEGIN '
ACC = ACC + Rword(IR<4115>) ! ADD Instruction
END,
Rword(Addr<0:11>)<0115> := | Memory Access
BEGIN
IF Addr GTR Upper,Bound => { Boundary check
(Error = 1 NEXT RESUME Interpreter) NEXT 1 Abort
Rword = MP[Addr] ! Memory Fetch
END,

In the example, procedure INTERPRETER activates procedure ICYCLE which fetches,
decodes, and executes the instructions. In doing so, ICYCLE activates proéedure RWORD which
is used to access the memory (MP) of the machine. RWORD checks that the memory address
is in bounds before performing the access operation. If a boundary error is detected, a flag
(ERROR) is set and the rest of the operation of ICYCLE is aborted {(by returning to procedure.
INTERPRETER, at the point where it activated ICYCLE). It is up to the resumed’ procedure
(INTERPRETER) to'take the proper corrective action, if any. Notice that we could have let
ICYCLE handle the error by terminating RWORD with *LEAVE RWORD’. However, this would
have meant that the ICYCLE procedure had to check the error flag (ERROR) after every call to
RWORD. Depending on the size or complexity of the description, this might be undesirable.

30 ISPS Reference Manual

Example:

P(oc)<-|> i=
Begin
L LN N NeXt
L= (A(|.)3 B(X)3 C(on) Next se e) Next

End,
B(Y<0:2>) :=

Begin

Decode Y =>
Begin
’000 := Leave P,
001 t= Restart P,
010 := Resume P,
‘011 := Terminate P,
100 1= Terminate A,
7101 := Leave B,
110 t= Leave C,
111 := Leave L
End

End

The last example attempts to illustrate the full power and consequences of the use of the
control operators of ISPS. An entity (P} contains a tabelled-action (L), whose first step
consists of concurrently invoking three other entities (A, B, and C). A and C are not really
important and we will not specify their behavior. B however, takes one ’parzmeter’ (Y) and
depending on the value of the actual ’parameter’ (X} it will select a particular control
operation:

Value of X Effect ‘

0 The "LEAVE P’ operation aborts P and in the process, it also aborts A, B,
C, and L. ‘

1 The 'RESTART P’ operation aborts A, B, C, and L, and execution continues

from the beginning of P.

2 The "RESUME P’ operation aborts A, B, and C (not L). That is, the body of
P (L) resumes execution.

The "TERMINATE P’ operation has the same effect as "LEAVE P*.
The *TERMINATE A’ operation aborts A. B and C continue normaily.

ISPS Reference Manual 31

5 The 'LEAVE B’ operation aborts B. A and C continue normalily.

6 The 'LEAVE C’ operation is in error. The activation of B was not nested
inside the activation of C. Errors of this type are not always detectabie
by static analysis.

7 The 'LEAVE L’ operation is in error. The label L is not accessible or know
to B. Notice however, that if L also happens to be the name of an entity
declared in the scope of B, the operation may or may not be valid,
depending on the dynamic nesting of activations (in any event, the
idantifiar L refers to the entity, not to the labelled-action).

5.5.4. Selecting the Right Operation

By a suitable rearrangement of the description, inserting or eliminating labelled-actions, etc,
LEAVE, RESUME, and RESTART are more or less interchangaabieq. It is a matter of style to
selact the best mechanism o describe the behavior of the computer. One must select
whatever is more descriptive, clear, or in agreement with cne’s own personal bias.

Figure 5-1 contrasts the LEAVE, RESTART, and RESUME operations when used in static and
dynamic contexts. -

4Thoy ars ol cases of 'retury’, LEAVE means "return from .., RESLIME means ‘raturn {o ', and RESTART means 'return
to the head of .

32

P{.....)=
Begin
2 P2(.....)

Leave P2
l:' End —

(a) Static LEAVE

3

C End

(d) Dynamic RESTART

4

PI(.....) -
Begin
2 P2(.....)
End
P2(.....) -
Begin <

{c) Static RESTART

[SPS Refersnce Manual

N
ty
PI(.....)=
Begin
2 P2(.....)
End z
P2(..... } =
Begin
___ Leave P1
L End

{b) Dynamic LEAVE

Pi(.....)=
Begin
2 P2(.....)
..... -2
End '
P.....) i
Begin

3 Resume P1
[_: End

{e) Dynamic RCSUMNT

Figure 5-1: Static and Dynamic Use of LEAVE, RESTART, and RESUME

1SPS Reference Manual

6. Carrier Expressions

¢-expression ::=

c-transfer ::=

~ g~-disjunction ::

c-conjunction ::

c-relation ::=
c=SUm =
c-factor ::=
c-shift t:=

e~concatenation ::=

c-unary :i=

e~disjunction | c-transter

33

e-accass-L [ST-L[5Tiransier-0p trancter-op c-disjunction

c~conjunction-L [STOr=0p
c=ralation-L1S
c-sum-L1STret-op
c-factor-L | 572dd-0p
c-shift-L [gTmuit-op
c-concatenation-L 1 5Tshift-op
c-unary-LIST®

c-term | unary~op c=term

{See (7]}

(Sea [71)

Carrier expressions (c-expressions) describe a logicai connection between carriers and

aperators. Each operation defines a carrier which can then be connected to other operators

to define yet other carriers.

The syntax of a c-expression defines the precedence of the language operations (these are

listed in Table [6-1], in increasing order of precedence; unary-ops have the highest

precedence.) All operators in the same row have the same precedence and consecutive

operations of the same precedence are executed from left to right, with the exception of the

transfer operations which are executed from right to left.

transfer-op ::=

or-op ii=
and-op ::=
rel-op ::=
add-op t: =
mult-op :i=
shift~op ::=

concat-op ::=
unary=-op :i=

Expression

c-term

I-I(-

OR | XOR
AND | EQV

EQL | NEQ | LSS | LEQ | GTR | GEG |

+ | -

« 1/ 1 MOD
SL@) SLL I SLR | SLD | StI |
SR8 | SR1 | SRR | SRD | SRI

@
NOT 1 + 1 -

Table 6~-1: Operator Precedence

Meaning

These are the basic carriers used to build expressions.

Briefly, these

include constants, entity carriers, c-expressions in parentheses, etc. See

[7] tor details.

34 ISPS Reference Manual

¢~unary The resuit of applying a unary operator to a c~term carrier.
c-concatenation‘ The result of concatenating one or more ¢-unary carriers.

cshift The result of shifting or rotating c-concatenation carriers.

c-factor The result of muitiplying, dividing, etc, e=shift carriers.

c=sum The result of adding or subtracting c~faclor carriers.

c-ralation The result of applying a relational operator to c-sum carriers.
c~-canjunction The result of ANDing or EQVing ¢-relation carriers.

c~disjunction The result of ORing or XORing ¢-conjunction carriers.

c-transfer The result of transfering values from a c-disjuntion carrier to one or

more concatenated e-sccess carriers. Multiple transfers from the same
c-disjunction carrier can be specified .

6.1. Data Types and Arithmetic Representation

A bit pattern stored in a carrier has no semantic content. It is the context in which the
carrier is used which determines whether the bit string is to be treated as a logical or
arithmetic operand.

When treated as an arithmetic operand, a bit string can be interpreted in any of four
standard arithmetic-representations: Two’s=Complement, One’s-Complement, Signed-Magnitude,
and Unsigned-Magnitude. For the signed representations (ail but the last), the sign bit is
always the leftmost one,

By default, ISPS arithmetic operators assume a Two’s Complement arithmetic
representation for the values contained in the carriers. The mechanisms used to select a
different arithmetic representation are described in [8.6] '

When describing the logical and arithmetic operators, we wiil use the term 'sign-extension’
to indicate the extension of an operand to match some length requirement. The meaning of

'sign extension’ is dependent on the particutar arithmetic representation used in the
operation, as defined in [8.6].

The arithmetic representation also applies to constants. For binary, octal, and hexadecimal
constants, the writer has explicit control over the bit patterns and can therefore specify
positive or negative constants. Decimal conslants are always positive (the ’sign bit” is always
O as a consequence of the rules used to coi-npute the length of decimal constants. See [3.3]).

. ISPS Reference Manuai a5

6.2. Data Qperators

6.2.1. Add-Op (Unary)

Unary + is treated as a no-op and is ignored by the parser.

Unary - defines a carrier whose value is the arithmetic complement of its operand. The
length of the result is one bit longer that the length of the operand. This operation is invalid
in unsigned arithmetic (negative numbers can not be represented).

Representation Meaning

Signed Magnitude In signed magnitude arithmetic, this operation simply inverts the sign bit
{the ieftmost bit of the resuit contains O).

One’s Complement In one’s complement arithmetic, this operation inverts svery bit of the
operand, including the sign bit (the leftmost bit of the result contains 0).

Two’s Complement In two’s complement arithmetic, this operation inverts every bit of the
operand, including the sign bit, and then increments the resuit by 1 (this
is an unsigned addition). The leftmost bit of the result contains the carry .
out of this addition, if any.

6.2.2. NOT

lThe NOT operafor defines a carrier whose length is equal to the length of its operand..
NOT defines a carrier whose value is the bitwise logical complement of its operand.

6.2.3. @

The @ operator concatenates its left and right operands. The length of the result is the
sum of the lengths of the operands. :

6.2.4. Shift-Op

The shift operations perform a variable number of single bit shift and rotate operations on
the left operand. The number of steps is determined by the value of the right operand or is
implied to be 1 (SLI and SRI. The right operand is treated as an unsugned quantity. The
length of the resulting carrier is the same as the length of the left operand.

The operator names indicate both the direction of shifting and the place were the input
bits come from. Ali shift operators have a name of the form Sxy where x is aither L{eft) or

36 ISPS Reference Manual

R(ight) to indicate the direction of shifting, and y is either 0, 1, R, D, or I to indicate the
source of shift-in bits. The first two (0 and 1) indicate a continucus stream of O or 1 bits,
respectively. R indicates a Rotation i.e. the shift-out bits are routed back to the shift-in
position. D indicates a Duplication, and the shift-in bits are simply a replication of the bit
contained in the shift-in position. I indicates immediate and the shift-in bit is the rightmost
bit of the second operand (the SLI and SRI operations always shift the left operand 1 position
to the left or right).

6.2.5. Muit-Op

The #, /, and MOD operators compute the arithmetic product, quotient, or remainder of their
-two operands.

The length of the result of the * operator is the sum of the lengths of its operands. The
length of the result of the / operator is the length of the left operand. The length of the
resuit of the MOD operator is the length of the right operand.

The sign of a product or quotient is computed according to the normal algebraic rules. The
sign of the remainder (MOD operation) is the same as the dividend.

6.2.6. Add-Op (binary)

The binary + and - operators compute the arithmetic sum and difference of their two
operands, respectively. These operations require that both operands be of equal lengths. If
this is not the case, the shortest operand is sign-extended until it matches the length of the
other operand. The length of the result in both cases is one bit longer than the longest
aperand.

In Unsigned, Two’s Compiement and One’s Complement addition (subtraction), the extra bit
added to the length of the result contains the carry (borrow) out of the most significant bit
position,

In Signed Magnitude arithmetic, the sign bit is not treated as part of the number (as in the
complement representations) and the most significant bit of the operands is the bit to the
right of the sign. The resuit of a signed magnitude addition (subtraction) has the following
format: 1) the carry (borrow) out of the most significant position occupies the leftmast bit of
the resuit, 2) the sign of the resuit appears in the second bit from the left, 3) the rest of the
resuit. In other words, all representations use the extra bit added to the length of the result
to store the carry/borrow out of the operation.

ISPS Reference Manual 37

6.2.7. Rel~0p

The EQL, NEQ, LSS, LEQ, GTR, GEQ, and TST operators perform an arithmetic test between
their operands. The length of the result of the TST operation is two bits long and encodes a
FORTRAN-like IF statement (i.e. the result is either '00, *01, or '10 depending on whether the
left operand is less than, equal to, or greater than, the right operand). All other retationai
operators produce 1 bit long results, indicating whether the relation is True (1} of False ("0).

As with the + and - operators, these operators require that their operands be of the same
length. This is accomplished by sign-extending the shortest operand untit it matches the
length of the longest operand. The relational operations are performed in the context of a
specific arithmetic representation, thus, positive and negative zero {possible in sign magnitude
and one’s compiement representations) are EQual.

6.2.8. And-Op

The AND and EQV operators perform the bitwise conjunction (logical product) and
coincidence operations on their operands, respectively. The length of the result is equal to
the length of their operands. If the operands are not of the same length, the shortest
IOperand is expanded by concatenating enough O bits on its left until it matches the length of
the iongest operand.

6.2.9. Or-Op

The OR and XOR operations perform the bitwise disjunction ({logical sum) and exclusive-or
operations on their operands, respectively. The length of the result is equal to the length of
their operands. If the operands are not of the same length, the shortest operand is expanded
by concatenating enough O bits on its left until it matches the length of the longest operand.

6.3. Transfer Operation

The _, = and <= operators are used to transmit values between carriers. The _ and =
operators are equivalent and perform a logical-transfer (the right operand is axtended with
zeroes or is truncated on the left if the lengths of the operands are not equal).

The <= operator performs an arithmetic-transfer (the right operand is sign-extended until
it matches the length of the left operand. If the right operand is longer that.the left operand,

a truncation will occur),

" For completeness, the ’resuit’ of a transfer operation is the result of the evaluation of the

38 ISPS Reference Manuai

right operand (before any truncation or extension takes placs).

Although the t{ransfer-ops play a role similar to that of an assignment operator in a
programming language, an important difference must be understood: A transfer operator is
simply a connection between carriers, it is the nature of the carriers that determines the
implementation of the connection. Thus, syntaclically, there is no difference between a gated
carrier transfer (writing a value into a memory) and the toading of a bus {making a value
available to some lines,)

6.3.1. Storing into Concatenated Carriers

The transfer operators are different from the other operators in that they take a vajue
from a carrier and place it into another. Because of this difference, only one certain operator
is ailowed on the left side of a transfer. This aperator is "® or concatenation. Since the
operator @ is defined to be a carrier 'grouping’ operator it defines carriers which mlght be
read from as weil as written into.

A@B=D ! Yalid Transfer
A+B=C t Invalid Transfer

The first example takes the D carrier and 'spiits’ it between A and B, D is 2ero-expanded if
A®B is larger. The leftmost bit of (the expanded) D is loaded into the leftmost bit of A; the
rightmost bit of D is loaded into the rightmost bit of B. The second example (A+B=D) is invalid.
It implies that the right hand side carrier (D) is lcaded into the left hand side carrier which
happens to be the output of an adder.)

6.3.2. Multiple Transfers

As indicated in (ke syniax, mulﬁple iransfers of an expression can be described:

= R2[X] <= R3 = RAGR5 = A + B

which is equivalent to:

Temporary = A + B next
R1 = Temporary:

R2[X] <= Temporary:
R3 = Temporary;

RAGRS = Temporary;

A muitiple transfer impiies a *broadcast’ of the rightmost carrier. Truncations or extensions
take place on each individual transfer.

1SPS Reference Manual a9

7. Carrier Terms

c-term: : =

e-accesg: i =
ac-got: =
as-sel::=
word=as-selt: : =
bit-ag-set: : =

o-accass |

constant | (See [3.31)
constant < name=-pair > | ' : (See (3.71)
constant < c-expression > | (See [B])

{ c-expraession) |

{ c-expression) < name-pair > |

(c¢-expression } < c-expression > |

identifiar ac-set as-set (See (3.21)
nil 1 () | (c-axpression-LIST)

word-as-se! bit-as-set

nit | [c-exprassion]

nil | < name=-pair > | < c-expression >

A carrier term (c-tarm) defines the primitive operands that are used ta build c=exprassions,

Carrier Term

@=acCoss

constant

c-expression

Description

An entity access (e-access) serves two roles. It is used to connect (a
portion of) the carrier associated with an entity to the data operators. It
is also used to activate the body of an entity. The context and format of
the e-access determines which of these roles it is playing (this is
explained in the following sections).

identifier The identifier is used to uniquely select the entity.
ac-sel The actual connection set (ac-set) defines a set of

carriers to match the carriers specified in the formal
connection set (fe-set) of the entity declaration.

as-set The actual structure set {as-set) defines a subset of
the formal structure set (fs-set) specified in the
entity declaration.

word-as-set The word structure selects one
of the 'words’ specified in the
declaration of the entity.

bil-as-set The bit structure selects one or
more consecutive bits specified
in the declaration of the entity.

A constant defines a carrier whose value can not be modified. The
structure of a constant is defined by its base and length (See [3.3)).
Constant carriers are assumed to have the structure <N:0>, where N+l is
the length of the constant. One or more bits of a constant can be
accessed by specifying the bit names inside *<* and ™',

A c-expression can be enclosed in parenthesis, to specify an order of
evaluation different from that which is implied by the precedence of the

40 ISPS Reference Manual

operators, A carrier defined by 3 c-expressions in parenthesis has a
default bit-naming convention, <N:0>, where N+l is the length of the
carrier. One or more bits of the carrier can be selected by enclosing the
bit names in '<* and ™,

As described in [4.2], the general format of an e-head consists of an identifier, , a list of
interface carriers (optional), a word structure (optional), and a bit structure (optional).

Depending on which of the optional parts were specified in the e-head, the entity can be
read, written, or activated.

An e-access also consists of an identifier, a list of interface carriers (optional), a word
structure (optional), and a bit structure (optional). Depending on which of the optional parts
were specified in the e~access, the entity wiil be read, written, or activated.

7.1. Read/Write Access

It is possible to read from or write into the carrier associated with an entity without
activating, it; all that is needed is to specify the entity name and a strycture. 1f only the name
is used, then the entire carrier, as defined in the entity declaration, is used.

An actual structure set (as-set) is used to specify a subset of the formal structure set

(fs-set) used in the declaration of the entity’s carrier.

Example: eee = o4 + AlxI<6:?> .,

A c-expression used to select a word or a bit of a carrier must evaluate to a value
corresponding to one of the words or bits named in the entity declaration. Notice that while
it is valid to access any number of consecutive bits, only one word can be specified (i.e. no
word name=-pairs are allowed in an access),

7.2. Activation

1

It is possible to activate an entily without accessing its carrier; all that is nesded is to
specify the entity name and a connection.

An actual connection set (ac-set) consists of a list of carriers that are connected to, or
transferred into the corresponding elements of the formal connection set (fe-set, see [4.2).
For details on the actual mechanism used to establish the connection between actual and
formal carriers see [8.2]

Example: ... NEXT X(Y<3:4>): 2() NEXT .,,

ISPS Reference Manuai 41

7.3. Combined Access and Activation

it is possiblé to both access and activate an entity; all that is needed is to specify the

entity name, a structure, and a connection. An e-access can appear, as a c-lerm , on either
side of a transfer-operator. If no activation is implied {i.e. there is no ac-get), then the
carrier is simply read or written, depending on whether is it on the right or left of the
transfer-operator, respectively. If an activation is implied (i.e. there is an ac-set), then the
body is activated before (after) the carrier is read (written).

Example: ... X()<6:7> ,,,

7._4. Compatibility Between Use and Declaration

A valid e-access must be compatible with the declaration of the entity:

1. A valid e-access can specify a word structure (word-as-set) if and only if the
entity declaration specified a word structure (word-is-set).

2. A valid e-sccess can specify a bit sfructure (bit-es-set) only if the entity
declaration specified a bit structure (bit=fs-set). If no bit structure is specitfied in
the access, the full bit structure used in the declaration is assumed.

3. A valid e=access can specify a list of interface carriers (ac-set) if and only if the
entity declaration specified a list of interface carriers (fc-set) or an e=-body. An
empty list (°()"} must be used to activate an entity which does not have any
formal interface carriers.

7.5. Examples

(Breg + Ireg + Displacement) <23:0>

The result of the additions is truncated by taking the rightmost 24 bits.
Mode @ #177777<1510>

Although ’;177777’ is an 18-bit constant (6 octal digits), the use of *<15:0>" in fact defines

a 16-bit constant carrier.

ACC<0> = X<B<3:i0>>

The example shows the use of a c-expression to select an arbitrary bit in a carrier. The
contents of B<3:0> determines a bit name. Since this value can range from O to 15, X must

42 ISPS Reference Manual

have been declared as a carrier of the form X<n:0> or X<0:n> where n 2 15,

X(R)<5> = L] L] L]

1) Compute the expression to the right of the =’ operator, 2) Take the rightmost bit of the
result and store it into bit 5 of X, 3) Connect (or copy) R to the formal interface carrier of X,
and finally, 4) Acfivate X,

X =20

1) Activate Z (Z does not have any interface carriers), 2) When the activation is completed
take the vaiue in the carrier Z<.> and store it into X<.>. If Z has the PROCESS attribute (See
[8.3]) the transfer takes place immediately, at the start of the activation (i.e. the vaiue in the
Z carrier may be ambiguous).

YMA = IR<13:35> NEXT EA = YMA()<18:35> NEXT

1) Load the virtual memory address carrier {VMA) 2) Activate the entity {(VMA), 3) Load the
effective address carrier (EA).

YMA() = IR<13:35> NEXT EA = YMA<18:35> NEXT

performs the same sequence of operations as the previous example.

ISPS Reference Manual 43

8. Predefined Qualifiers

The previous chapters have provided the basic syntax and semantics for the declaration of
gntities, and their carriers, interfaces, and bodies. In this chapter we define means for
extending the basic semantics of declarations. These extensions are based on the general
qualifier mechanism, to be described in [9]

8.1. INCREMENT Qualifier

The increment attribute changes the interpretation of the word names used in the left hand
side of a2 mapped array declaration. Normaily, there are as many words as there are integers
in the name-pair used to declare the word structure (word=-fs-set) . When the INCREMENT
attribute is used, the actual number of words is obtained by dividing the size of the range by
a user specified INCREMENT value:

o~head { INCREMENT : conslant } := e=head

The word names in the range are obtained by dividing the original word names by the
increment value (integer division) and then muitiplying the quctient by the increment value.

There are some limitations in the use of the INCREMENT attribute:

1. The INCREMENT attribute is only valid (or meaningful} when used in mapped
array declarations in which the 'word size’ of the left hand side is a muitiple of
the *word size' on the right hand side.

2. If one member of an array mapping chain is qualified by INCREMENT, ALL
members of the chain must map onto arrays of shorter words.

3. A chain of mappings propagates the INCREMENT attributes in such a way that an
array mapped onto another has an increment attribute which Is the product of
the increment attributes towards the base of the chain.

Examplet
Mbl#177777:0]<7: 0>, ! POP-11 Byte Memory

Muwl#177777:10] <151 0> {INCREMENT: 2} 1= Mb[#177777:01<7:0> ! Word Memary

In the example above, Mw is defined to have 64K/2 words, named #177776,
¢177774,..;.a4,32,to. Each word maps exactly over two consecutive bytes. Moreover, notice-
that the mapping also specifies that the even-address byte contains the low-order bits of a
word, as defined in the POP-11 architecture. Pictorially, the equivaience of the address

spaces is shown in Figure 8-1 (a).

44 ISPS Refersnce Manual

Mb 177777 77778 |177775] ¢ ¢ ¢ 0 e e e 0 o o 2 1 0

Mw 177776 o

(a) PDP-11 Address Space

M1 0 1 2 3 4 5 6 7
M2 0 2 4 6

M3 0 4

M4 0)

{b) Muitiple Mappings

Figure 8-1: INCREMENT Qualifier

Structure Mappings de not have to be organized as a linear chain of declarations, as the
following example shows:

Example:
mi[0:7]<0:7>,
m2[0:?1<0:15> {increment:2} := mi[0:7]<0:7>, chaln is M2,M1
m3[0:7]<0: 31> {increment!?2} t= m2{017]<0:15>, M3, M2, M1
mda[0: 71 <01 31> {incrementid] t= m1[0:171<017>, M4, M1

The inérément attribute attached to M3 is 2¢2=4. That is, M3"s addresses increment twice
as fast as M2's addresses and these, in turn increment twice as fast as M1’s addresses. M4
has an increment attribute of 4; it is not affected by M2’s increment because M2 is not in its
chain of mappings. There are 8/2=4 elements in M2 (M2[0}, M2[2], M2{4), and M2[6]) and
8/4=2 elements in M3 {(M3[0] and M3[4]). M3{4], M3{5], M3[6), and M3([7] refer to the same
memory location: M3[4], which in turns maps onto M1[4:7] Pictorially, this is represented in
Figure 8-1 (b). '

ISPS Reference Manual 45

8.2. REFerence Qualifier

The default implementation of an interface (fc-set, See [4.2]) is by means of storage units
which are loaded when the entity is activated (See [7.2, 7.3])

The default mechanism for establishing a connection between the actual and the formal
interface carriers in an entity activation is by copying the valuss contained in the actual
carriers into the formal carriers, zero-extending or truncating on the left if necessary. The
mechanism can be though of as a carrier transfer of the form:

Formal = Actual

In some applications the default interface mechanism outlined above might be tco limiting
and ISPS provides an aiternative mechanism to specify the impiementation of the interface
carrier and the connection mechanism:

REF e~head
e~head { REF }

When a formal carrier is qualified with the string 'REF”, the interface is not a storage unit,
local to the entity, but instead it is a REFerence to some external carrier, to be specified at
the activation site. :

Example: F(REF Reg<0:17>) := Begin End

When F is activated, no transfer of data between the actual carrier and the formal carrier
(REG) takes place. REG is simply 'connected’ to whatever carrier was specified at the call
site. This connection remains in effect throughout the length of the activation. The
mechanism can be though of as a carrier mapping of the form:

formal := actual

The mapping is established at the time of the connection and is subject to the same
limitations normal mappings have (i.e. no truncation or extension is permitted).

An entity can have both REFerence and local interface carriers, as suggested in Figure 8-2.
(a) and (b) display two aiternative interfaces. The former uses local carriers for ail the input
operands while the latter uses REFerence carriers for the data operands while using a local
carrier to retain the value of the third operand (the function code). (c) and (d) display the
connection mechanisms. The former indicates that the local carriers are loaded

46 ISPS Reference Manual

instantaneously, at the onset of the activation (this is suggested by the ’strobe’ signal used to
load the carriers). The latter indicates that the REFerence carriers are connected (in both
directions) to the actual operand carriers throughout the length of the activation (this is
suggested by the 'level’ signat used to connect the carriers).

Actual carriers that correspond to REF formal carriers must be e-accesses and not
arbitrary c-expressions. This is because, in principle, a REF formal carrier can be read or
written.

The mapping of a REF carrier applies to both the structure of the actual carriers and to the
behavioral part, it any. That is, the entity being activated can read/write/activate the actual
entities through the formai carrier name.

Aithough the syntax aflows otherwise, the ac-set of an actual e-access involved in a REF
connection must be empty (i.e. *()").

Example:

P1(X<0:3>, REF Y«<0:1>) := BEGIN , , , ., . END,
R2<0:1>,
P2 1= BEGIN , , , NEXT P1("C,R2) NEXT , . . . END

In the above example, Pl requires two interface carriers, one of which (Y) has the REF
attribute. The activation of P1 inside P2 copies the canstant "C (decimal 12) into X (a registér
local to P1l) and maps Y onto R2 ("Y<0:1> := R2<0:1>"). During the activation of P1, R2 is
accessible and known as Y. P1 can read and/or write Y (i.e. R2).

The use of REF connections can be used to describe complex behaviors:
Example!

P1(REF X()<0:1>) 1= BEGIN , ., , , , END,

P2(REF Y()<0:1>) 1= BEGIN , , , . . END,

A()<0:1> 1= BEGIN , , , . END,

P3 1= BEGIN ., , . NEXT P1(A); P2(A) NEXT , , , END,

In the example, when P3 activates both P1 and P2, it connects to both of them the entity
(A). Since both P1 and P2 can read/write/activate A, they can affect each other’s behavior.

Jsylend) ssusiedy :Z2-8 aundi4

Alu { A<0:15>, B<0:15>, F<0:3>) <0:15>

e yis 43
Activate A B - F
—————— >
G- Arithmetic Unit
Complete
ALU
A16
(a) Loca! Interface Carriers
Y y 4 ‘101
. i I
Y Vv \v4
A B F

Arithmetic Unit

ALU

(c) Interface Iransfers

Alu (REF A<0:15>, REF B<0:15>, F<0:3>) <0:15>

/"16 Jqs A3
Activate A B F
------ ¥
PRSI Arithmetic Unit
Complete
ALU
Al6
(b} REFerence Interface Carriers
Y Z ‘101
2} yAY
S T U [B .
hvd Y v
A B F

Arithmetic Unit

ALU

{(d) REFerence Interface Connections

jenuepy 8ouaid;8y SdSI

5B
~l

48 ISPS Reference Manual

8.3. PROCESS and CRITICAL Qualifiers

By default, entities are activated as if they were procedures or functions in a programming
language. That is, the activating entity waits until the activated entity completes its operation.
Although this mechanism is a useful abstraction, it is not powerful enough to describe the
behavior of complex hardware units. An entity declaration can specify a departure from the
default by means of the PROCESS and CRITICAL qualifiers:

PROCESS e-head := e-body
e~head { PROCESS} := e-body

CRITICAL e-head :» e-body
e-head { CRITICAL} := a-bady

The qualifier PROCESS can be used as a attribute (prefix or inside *{}"} to a declaration to
indicate that the entity is to be executed as an asynchronous control environment. An
activation of an entity marked as 'process’ results in the creation of a control 'token’ for the
entity. It then starts executing concurrently with the caller.

Example: PROCESS ALU(A<0:15>, B<0:15>, F<013>)<0:115> 1= ,,, ,

The qualifier CRITICAL can be used as a attribute (prefix or inside *{}’) to a declaration to
indicate that the entity contains an arbitration mechanism so that one and only one activation
of the entity can be in progress at the same time. Activations are queued if the entity is
already active.

Example: CRITICAL arbiter 1= Begin ,,... End,

PROCESS and CRITICAL are independent attributes. The former controls the continuation
of the callers, the latter controls concurrent callers. When both qualifiers are present,
CRITICAL takes precedence. That Is, the caller of a CRITICAL PROCESS entity is delayed until
the entity is free or idle befcre it continues executing in parallel.

Figure 8-3 suggests the control of activations in the presence of the PROCESS and
CRITICAL attributes.

Attempting to activate an aiready active, non-critical entity is an error and it yields
unpredictable resuits.

The arbitration mechanism implied by the CRITICAL qualifief applies not only to the
activation of the entity but also to the evaluation and connection of interface carriers. This is
to avoid conflicting use of the formals (REF or otherwise). Thus, the callers wait until the
entity has completed its current activation before establishing a new connection.

sseyend TYOLLIO Pue S5300ud 1€-8 84ndig

Process Alu (A<0:15>, B<0:15>, F<0:3>)<0:15>

7’16 16 /3
d d / Activate
Jphtate [A JL B JLF N e
Running . . .
1 G- Arithmetic Unit N Done
4. _____
_| Bore . ALU
A16

- (a) PROCESS Attribute

Critical Alu { A<0:15>, B<0:15>, C<0:3>)<0:3>

X16

X186

A3

A

B

Arithmetic Unit

AlLU

Arbiter

A16

(b} CRITICAL Attribute

Process Critical Alu { A<0:15>, B<0:15>, C<0:3>)<0:3>

Y16 P20 ¥3
_1_Activate | A B F
Running
B0 [I Arithmetic Unit
__ Done |

AtU

- Arbiter

A16

" {c) Combined Attributes

|BnUBy 92Ud4a49Y SdSI

6y

50 ISPS Reference Manual
8.4. MAIN Qualifier

As seen in [4.3), an e-body can consist of a list of seclions, each of which can contain a list
of entity declarations (e~declarations). The qualifier MAIN is used to identify the 'main’ entry
point of an entity or ISPS description:

MAIN e-head := e-body
e~head { MAIN } := e=body

MAIN serves to identify which one of the internal entities is to be executed when the
enclosing entity is activated. This applies to either the entire ISPS program or an internal
declaration, to any level of nesting.

Example:
P1 (.l') ==
Begin
2 R 1
pz (..l)

i= Begin ,,.,., End,
P3 (.l.) = Begin vsse End,
MAIN P4 := Begin ,.,., End,
PS5 (I.Q) 1= Begln sres End
End

The effect of invoking P1 is equivalent to invoking its main internal entity, P4, directly {of
course, since that entity is internal, it is not directly available to the caller.)

When activating an entity with an internal, main entity, the connection is done through the
interface carriers, if any, of the enclosing entity.

Although syntactically correct, the presence of an interface (fe=set} or carrier
(fs=set) in the declaration of the main internal entity is useless since there is no
way for a caller to access these inierr_la! carriers.

Figure 8-4 depicts the activation of a complex entity, containing several internai entities,
one of which has the MAIN attribute.

8.5. PTIME Qualifier

The PTIME qualifier is used to specify the average or expected ‘execution’ time for the
body of an entity. This is useful in some applications such as simulation, synthesis, or
verification. The qualifier is specified as an attribute of the declaration of the entity:

e-head { PTIME : constant } := e-body

ISPS Reference Manual 51

Main

Figure 8=4: Use of the MAIN Qualifier

The value of the qualifier is a constant specifying the number of *time units’ needed for the

average execution of the entity body.
Example: P(A<,,>,B<,,>) {PTIME:25} i= Begin .esss End

This mechanism for specifying timing is onily an approximation. If more detailed timing is
desired, the body of the entity can specify via DELAY, WAIT, and TIMEWAIT (See [11]) the

actual time needed for each control path.

52

ISPS Reference Manual

8.6. Arithmetic Qualifiers

The selection of the representation to be used in the context of an arithmetic operation is

indicated by one of the following gualifiers:

Qualifier
{TC}

{oc}

{SM}

{us}

Meaning

used to indicate that the operation is to be done in Two's Complement
arithmetic. If an operand needs to be sign-extended, the extension is
done by replicating the sign bit.

used to indicate that the operation is to be done in One’s Complement
arithmetic. If an operand needs to be sign-extended, the extension is
done by replicating the sign bit.

used to indicate that the operation is to be done in Signed Magnitude
arithmetic. If an operand needs to be sign-extended, the eshxtension is
done by inserting 'O’ bits between the sign bit and the rest.

used to indicate that the operation is to be done in Unsigned arithmetic.
If an operand needs to be sign-extended, the extension is done by
adding 0’ bits to the left of the carrier.

The selection of arithmetic representation can be done over a single operation {attaching

the modifier to the operator), over an entire b-expression {attaching the modifier to one of
the BEGIN/END brackets), or finally, over an entire seclion (attaching the modifier to the
saction~header. The following example will illustrate this:

I1SPS Reference Manual ' 53

Example:

Sample 1=
BEGIN | By default, all arithmetic is Two’s Compiement
»%x Section,l **
*x Section,2 ** {OC} ! Section Is One’s Complement
F(X<0:5>) 1= BEGIN {SM} , . . . « END | F Is Signed Magnitude
G(Y<015>) := {1 G is One’s Complement

BEGIN

L L L] . »

IF Y<0> => BEGIN {uM} , . + « .+ END
1 The conditional action uses Unsigned Magnitude as default,

] L] . ¥

Y =Y+ (TC} 2 NEXT ! Two’s Complement Additlon
END '
** Section,3 ** ! Return to Two’s Complement

END

54

’ ISPS Reference Manual

ISPS Reference Manual 55 |

9. Qualifiers

In this chapter we specify the mechanism for specifying information of interest to an
application program. In general, the parser will only perform syntactic checks on these
constructs since it has no means to ascertain their semantic correctness. The mechanism
(Qualifiers) has already been introduced in previous sections (e.g. REF, INCREMENT, etc.), now
we give the formal specification.

g=set ::= { q=av-pair-LIST? }

q-av-pair ::= identifiar | {Sea [3.2])
identitier : |
identifier : q-value-LIST®

q-value ::= identifiar |
constant | {See 13.31)
quoted-text | {See [3.6])
q-set

The qualifier set (q-set) is used to specify lists of attribute/value pairs which are used to
extend the semantics of an ISPS description. '

Examplet
ALUCF<0! 3>, A<0115>,B<0115>) <0t 15>{SPEED: 2503 MODULE1SN74181hi=,,.,,

The syntax of a q-set indicates that in some instances an identifier can stand for both the
attribute name and the list of values. This is allowed to simplify the writting of certain
qualifier values that uniguely identify the attribute {If one wishes to be explicit about it,
sidentifier:’ can be used instead. The ' indicates that the preceding identifier is an attribute
name). Notice that qualifiers can be arbitrarily nested (i.e. a q=setis a valid g=velue.)

g,1. Placement of Qualifiers

Quatifiers can appear in several contexts in a descriptiomn:

1. After an e-head, following the idenlifier, {c=set, or fs-set, whichever is the tast
component of the e~head (before the ™=’ i present). This applies to e~heads in
any context: declarations, mappings, and format carriers.

2. After the brackets ("BEGIN’, *END’, °(, and ')") used to enclose an e~body or a
block=action.

3. After the identifier of a labelled=action, before the *:=’ operator.

4. After the 'IF" and 'DECODE’ keywords in a conditional-action, before the
c-e@xpreassion.

56 ISPS Reference Manual

5. After any data operator, including arithmetic, logical, transfer, etc.,, before the
rigth operand.

6. After an e-access, following the identifier, ac-sel, as-sel, whichever is the last
component of the e~access.

9.2. Identifier Sequences

For convenience and readability, it is sometimes necessary to display qualifiers in a context
that can be easily noted. This can be achieved with id-saquences of the form:

id~sequence ::= identifier | {See [3.2])
identifier id-sequence

The ISPS parser will treat all identifiers preceding the last identifier of the sequence (if
any) as qualifiers. These qualifiers are lumped together with whatever gualifiers were
explicitly defined inside *{}, if any (notice that these identifiers stand for both the attribute
name and the value list as indicated above). An id-sequence can appear anywhere an
identifier is valid. Thus, the following are equivalent:

Examples:

A[0:255]<013> {ROM: CONNECTiLINK2],
ROM A[0:255]<0:3> {CONNECT: LINK2},

9.3. Summary of Predefined Qualifiers in ISPS

An initial set of qualifiers has been predefined in the tanguage. These qualifiers have
aiready been introduced in this document. Here we simply list them, indicating their format.
For additionai details about each of these qualifiers, the reader must consuit the sections
were these qualifier are introduced.

ISPS Reference Manual 57

Qualifiec Eocmas, Usage

TC K,Q Two’s Complement Arithmetic
oc K,Q One’s Complement Arithmetic
SM K,Q Signed-Magnitude Arithmetic
us K,Q Unsigned Arithmetic
INCREMENT: n Q Structure Mapping

PTIME: n Q Execution Time

CRITICAL K,Q Protected Activities

PROCESS K,Q Independent Activities

REF K,Q Interface Carriers

The column labeiled Format indicates wheather the attribute can be used as a Keyword

preceding an entity name (i.e. as part of a id-sequence) or as a Qualifier, enciosed in *{}".

58

ISPS Reference Manual

ISPS Reference Manuai 59

10. Other Declarations

other-declarations ::= REQUIRE.ISP quoted-text | {See [(3.8])
MACRO identifier m=psrameter-set := quoted-text | ‘
(Ses [3.21)
ISPS-definition
m=parameter-set ::= nil |
(i
(identifier-LI1ST*)

ISPS~definition 1: = DEFINE identifier := q-set | (See [3]1)
DEFINE identifier := quoted-text ! '
DEFINE identifier := constant (See [3.31)

10.1. REQUIRE

The reserved keyword REQUIRE.ISP is used to signal the expansion of a an external file
inside the ISPS description. The quoted-text describes the file name. The expansion takes
place at the point the REQUIRE.ISP construct appears:

Examples REQUIRE,ISP | MARK1,ISP{L410MB25] |,

10.2. MACRO

The reserved keyword MACRQ provides a simple mechanism to declare text strings that are
to be substituted for instances of the identifier in the ISPS description. Optional parameters
can be specified by enclosing a list of identifiers inside parenthesis. These ’formal
parameters’ are matched by corresponding ‘actual parameters’ at the expansion site. The.
actual parameters can be any *expression’ in ISPS. The use of any type of bracksts, CC, *), T,
*T, etc.) in an actual parameter is permitted, provided its partner is also part of the actual
parameter.

60 ISPS Reference Manual

Exagple:

MACRO t1(],body) := : ! Two parameters: Length and Body
| | Macro delimiter
Begin
X% 5 X% . ! create a dummy sectlion name
temp<0:]>, ! create a temp of the right length,
Main t 1= Begin body End ! create a ’procedure’
End
l» . ! Macro delimiter

P2 t= t1€ 75, .4000) | This use of the macro expands tot

p2 t= Begin
A% 5 %X
temp<01 7>,
Main t =
Begin
End
End

10.3. DEFINE
The reserved keyword DEFINE is used to name a q~set, a constant, or a quoted=text.
Exampjes:

Define ROM 1= {MODULE: SN74187; SPEED: 40},
Define MSIZE t= 255,

ISPS Reference Manual 61

11. Predeciared Entities

The following entities are predeclared in the language:

COUNT.ONE(.)<.> is a predeclared entity which has a structure, and whose activation
COUNT.ONE(expression) returns the number of non-zero bits in the
expression. The length of the result is equal to the decimal value of the
length of the expression, regardless of the value of the expressions. For
instance, if the expression is 16 bits long, the result of COUNT.ONE is
ALWAYS 6 bits long (5 bits to express 16 plus a leading 0).

DELAY(..) is a predeclared entity which does not have a structure and whose
invocation, DELAY(expression), does not have side effects. DELAY
terminates its aclivation after a number of application-defined time units
given by the vaiue of the expression.

FIRST.ONE(..)<..> is 2 predeclared entity which has a structure, and whose invocation
FIRST.ONE(expression} returns the number of leading zeros in the value
of the expression (i.e. the number of 2eros before the first one, hence
the name). If the expression is all zeroes, the result is the length of the
expression. The length of the result follows the rule defined for
COUNT.ONE.

IS.RUNN]NG{-X> is a predefined entity which has a 1-bit structure and whose invocation
IS.RUNNING(entity.name} returns 1 (true) if entity.name is currently
active, O (false) otherwiss.

LAST.ONE(..)<..> is a predeclared entity which has a structure, and whose activation
LAST.ONE(expression) returns the number of trailing zeroes in the value -
of the expression {i.e. the number of zerces after the last one). The
length of the resuit is identical to that of FIRST (COUNT) .ONE.

MASK.LEFT(.,.)<.> is a predeclared entity which has a structure, and whose activation
MASK.LEFT(expr 1,expr2) returns a result with the same length as EXPRL.
The leading EXPR2 bits are set to O, the remaining bits retain the value
they had in EXPRI. Basically, this function builds a mask of
LENGTH(EXPR1) bits with EXPR2 bits on the left set to 0 and the rest sat
to 1. It then computes its result by ANDing the mask with EXPR1. If
EXPR2 is equai to O (unsigned comparison), the resuit is identical to
EXPR1. If EXPR2 is greater than the length of EXPRI1, the result is all Os.

MASK.RIGHT(..,.)<.> is a predeclared entity which has a structure, and whose activation
MASK_RIGHT(expr 1 ,expr2) is identical to MASK.LEFT but cleans up the bits
on the right of EXPR1 using EXPR2 to compute the number of bits.

NO.OP() is a predeclared entity ‘which does not have a structure and whose
behavior has no side effects. NO.OP() can be used as a nuli action. '

Swhenever the expression 'decimal value’ is usad it mesns s number whose length follows the rules of ISPS for
decimal numbers, that is, 3 number whose length in exactly one kit longer than the smailest number of bits needed to
represeni the number. This is to svoid problems when performed signed arithmetic. . Decimal numbers sre ALWAYS
ponitive since their leading bit is O!

62

PARITY(.)<>

STOP()

TIMEWAIT(..,.)<.>

UNDEFINED()<..>

UNPREDICTABLE()

WAIT(.)<.>

ISPS Reference Manual

1s a predeclared entity which has a l-bit structure and whose activation
PARITY(expression) returns the odd-parity bit of the expression (it is
equivalent to COUNT.ONE(EXPRESSION) MOD{US} 2).

is a predeclared entity which does not have a structure and whose
invocation, STOP(), terminates the activation of ALL entities.

ts a predeclared entity which has a structure and whose invocation
TIMEWAIT(exprl,expr2) combines the effect of the WAIT and DELAY
entities. TIMEWAIT continucusiy evaluates EXPR1 until it is non-zero or
until the number of time units represented by EXPR2 has been exceeded.
EXPR2 is computed exactly once, at the beginning of TIMEWAIT. When
the activation is completed, TIMEWAIT returns the final value of EXPR1
(the length of the result is the same as the length of EXPR]). Depending
on the value returned, the caller can decide whether EXPR! yielded a
non-zero value or the time-out iimit provided by EXPRZ was exceeded
before EXPR1 became non-zero.

is a predeclared entity which has some structure and whose activation
UNDEFINED() returns a carrier of undetermined length, whose value is
unknown. Activations of UNDEFINED are guaranteed to terminate after
some undetermined amount of time.

is a predeclared entity which does not have a structure and which
exhibits a totally unpredictable behavior. It is different from UNDEFINEDX)
in that the latter preserves the flow of control. An activation of
UNPREDICTABLE() is not guaranteed to terminate or that upon
termination, control wiil return to the activation site.

is a predeclared entity which has a structure and whose invocation,
WAIT(expression), continuously evaluates the expression. WAIT
terminates its activation when the value of the expression is not equal to
0. WAIT returns the last value of the expression (the non-zero value
which terminated the activation; the result has the same length as the
expression),

ISPS Reference Manual 63

12. Reserved Keywords and Identifiers in ISPS

AND Logical Operator
CRITICAL only when used as qualifier
DECODE Conditional action Selector
DEFINE Special Declaration
EQL Arithmetic Operator
EQV Logical Operator
GEQ Relational (Arithmetic) Operator
GTR . Relational (Arithmetic) Operator
IF Conditional action Selector
INCREMENT only when used as qualifier
K only when attached to a constant
LEAVE Control Operator
LEQ Relational (Arithmetic) Operator
LSS Relational (Arithmetic) Operator
M only when attached to a constant
MACRO Special Declaration
MOD Arithmetic Operator
NEQ Relational (Arithmetic) Operator
NEXT Sequencing Operator
NOT Logical Operator
oC only when used as qualifier
OR Logical Operator
PROCESS only when used as qualifier
PTIME only when used as gualifier
REF only when used as qualifier
REQUIRE.ISP Special Declaration
REPEAT Controi Operator
RESTART Contro!l Operator
RESUME Cantro!l Operator
SLO Shift Operatoer
sL1 Shift Cperator
SLD Shift Operator
SLl Shift Operator
SLR Shift Operator
SM only when used as qualifier
SRO Shift Qperator
SR1 Shift Operator
SRD Shift Operator
SRI Shift Operator
SRR Shift Operator
TC only when used as qualifier
TERMINATE Control Operator
TST Relational (Arithmetic) Operator.
us oniy when used as qualifier

XOR

Logical Operator

64

ISPS Reference Manual

ISPS Reference Manual 65

13. Using the ISPS Parser

The following reproduction of a session running the parser should be self explanatory.
The parser accepts the specifications of a source file (ISPS) and produces a listing file
(optional) and an object file containing the parse tree. There are several switches that can be
appended to the input file specification. These switches controi several options with regard
to the generation of the listing and the object file.

.run isps
ISPS Translator VBB(1)-7
(/H for Help)

£/h
File specifications follow normal CUSP convention:

<object>.GDB,<listing>.LST-<source>.ISP/<switch>l<switch>l...

Abbreviated file specifications can be used:
FilNam.ISP ; GDB has same name as ISP. No Listing file.
FilNam.ISP/L ; GDB and LST have same name as ISP.

A switch is turned on by "/<letter>’ and off by '/-<letter>”:

(% indicates a2 switch turned on by defauit)

: All. Same as switch combination /E/L/O/R/S/W.

. Comments. Comments from ISP are placed in the GDB file.

: Expand. Macro invocations are printed in the LST file.

: Help. This text.

: Keep. Macro definitions will appear in the GD8 file.

. List. Causes a listing file to be generated.

: No program. LST file will only contain error messages.

: Original. GDB file will have ISP format numbers

. Position. Put out Line/Page position on terminals.

: Readable. GDB file has lexeme names instead of numbers.

: Symbols. Print out name of declarations as they are parsed.
. Watch. Prints a skeleton trace of compiler phases as they occur.
: SyntaX. Quick syntax-oniy check of ISP. No GOB file.

m'UQZI—XI!“‘IOP

»*

Xew

stest
TEST.ISP 1.

Errors: 0

Warnings: -0

Stack Used: 74 of 512 Words
PStack Used: 13 of 200 Words
Max. Core Used: 3 + 18 K
Machine Time: 00:00:00
People Time: 00:00:00

EXIT

66 ISPS Reference Manual

The above procedure will create a file TEST.GDB which contains the object program (parse
tree). No listing was requested and none was generated. If the parser detects errors in the
source program appropriate messages are typed on the user’s terminal. If a listing file is
being generated, the error messages will also appear in the listing,

ISPS Reference Manuai ' 67

14. ISPS Global Data Base: File Format and Syntax

Floret Silva Nobilis
Floribus et Foliis

Carl Ortf, Carmina Burana, 1937

The purpose of the Global Data Base (GDB) is to provide a means of representing a

machine description in 3 manner that is amenable to manipulation by many programming

languages. This is accomplished by storing the GDB as an ASCII file with a specific format.
Any language which can read a file as a stream of characters can work with the GDB.

A GDB file contains a representation of the parse tree of an ISPS description. When the
description is processed and transformed into a GOB representation, the entire information
content is retained. Because of this the transformation is reversible. A GDB may be changed
back into an ISPS description with ’ease’.

14.1. GDB Header Line

The first line of a GDB file contains a header which gives information about the format of
the rest of the file, the compiler version, the source file name, and the date and time of
compilation. The rest of the file (from the second line on) is the tree representation of an
1$PS description.

A typical header line looks like:
GDB:A;ISPS Compiler VBB-7;DSK: TEST.ISP[N655MB25}17 Jun 79;23:18:25;

The character following 'GDB:’ is a letter which indicates the form of the information in the
tree. Currently there are four formats, A’ F, °C’, and 'D". Each of the formats uses the
same syntax, only the printing-form of the information is different, The differences will be
discussed later.

14.2. The GDB Syntax

A non-terminal of the language appears as a sub-tree within the parse tree. The syntax
for a sub-tree is an open parentheses ("™ followed by a node-name representing the
non-terminal. This is in turn followed by a {possibly empty) list of sons of the non-terminal

after which comes a close parentheses (")"). i.e.

(<non-terminal,node,name> <soni> <SONZ> o44e <SONN>)

The sons of the non-terminal may be non-terminals themselves or they may be terminais

68 ISPS Reference Manual

(leaves of the tree). A terminal appears in the tree as a string of characters, without
enclosing parenthesis. Both non-terminai node-names and terminals can be followed by a list
of "attributes”. The general form of an attribute is

Ixxlyyryy!

The string "xx’ is a decimal integer indicating the type of the attribute. (The types will be
discussed later, in [14.4]) The string ’yyyyy' is an arbitrary character string where
occurrences of " are represented as "', Thus, in general, a GDB node looks like:

{ <node-name> <attributei> ees <attributep>
<sony> <attributes> ..., <attribute;>

<sonp> <attribute;> ,,,, <attributeg>)

Spaces, Tabs, Carriage-Returns, and Line-Feeds appear in the GDB trees only as delimiters
between elements. (Except for the interior of quoted-lexts and node attributes which may
have arbitrary characters.) Multiple occurrences of any or all of these delimiter characters
are considered equivalent to a single occurrence of any of them.

Different types of non-terminals have different numbers of sons. However each type of
non-terminal has a particular number of sons and the position and type of the sons is fixed.
In the tree, all of the sons of a node which are not Nil (LISP style Nil} actually appear in the
tree. Nodes which are Nil only appear if some son appears after them which is not Nil. An
example will serve to demonstrate. An E-Access® has five sons. The E-Access "A{QUALITY}"
gpprars in the tree as:

(EACCESS A NIL NIL NIL (QSET QUALITY))

The E-Access "A(3)" appears in the tree as:

(EACCESS A (ACSET 3))

The Nil sons on the ’end’ of the E-Access were left out of the tree.

SWhenever possible, node-names heve been derived from the production names used in the BNF description of ISPS

ISPS Reference Manual 69

14.3. Representation of Node-Names and Terminals

There are two representations for node-names in the GDB file. Which one is used is
controlled by a compilation switch (See [13]). The R switch controls the representation of
the node-names.

By default, node-names appear as an ASCII string which has some mnemonic relation to the
production name used in the BNF. The list of node-names is described in {15]

If the -R {(complement of R) switch is used during the compilation, the GDB node-names will -
appear as octal numbers. The equivalence between these numbers and the node names is
subject to change without notice. if you feel that you need the table, contact the maintainers.

The following example will help clarify the difference between these two formats:

test<03177> 1=
‘ BEGIN
test _ 123456789123456789 next
test _ 0 next
test _ Not test
END

The above ISPS file, when compiled with the default setting of the R switch, produces the
fotlowing GDB file:

GDB: A; I SPS Compiler VS5B-7;DSK: TEST,ISPIN6SSMB25]1:17 Jun 793 23:18:25;
(1SPSDECLARATION

(EDECLR
(EHEAD TEST NIL NIL (: 0 77))

(NEXT
(_ (EACCESS TEST) 123456789123456789)

(_ (EACCESS TEST) 0)
(_ (EACCESS TEST) (NOT (EACCESS TEST)}))))

When the same ISPS file is compiled using the -R switch, the GDB file looks like this:

70 ISPS Reference Manual

GDB:C; ISPS Compiler Y5B-7;DSK: TEST,ISPIN6S5MB25]317 Jun 79;23: 20: 47;
(1
(2
(& TEST NIL NIL (40 0 77))
(23
(117 (171 TEST) 123456789123456789)
(11?7 (171 TEST) 0)
(117 (171 TEST) (170 (171 TESTINN

There are three types of terminals that can appear in a GDB tree. They correspend to
identifiers , constants , and quoted-text strings. identifiers and quoted-text strings appear in
the GDB tree exactly as they appear in the original ISPS source file {with the exception of
lower case letters which are mapped into upper case.)

There are two representations for constants . The compiler switch Q is used to select which
format is {o be generated.

By default, constants in a GDB file appear exactly as they appear in the original ISPS
source file (See [3.3]). The above examples used this format.

If the -O (complement of 0) switch is used during the compilation, constants have the
following format in the GDB tree:

Hxxxx<yy>

The string "xxxx’ is an octal number which is the value of the corresponding ISPS constanti.
The string ’yy’ is a decimal number which indicates the EXACT bit length of the octal constant.

The following GOE file was generated from the above ISPS source file, using the -O switch:

GDB: B; ISPS Compiler YSB=-73D8K: TEST,1SPING6SSMB251:17 Jun 793231211503
(I SPSDECLARATION
(EDECLR .
(EHEAD TEST NIL NIL (: #0<2> #115<8>))
(NEXT
(_ (EACCESS TEST) #66546645654564057425<58>)
{_ (EACCESS TEST) #0<2>)
(_ (EACCESS TEST) (NOT (EACCESS TEST))»)))

The following table describes the relation between the switch settings and the GD8 format

ISPS Reference Manual

generated:
Format R 0
A /R /0 (default)
B /R /=0
c /=R /0
D /=R /=0

14.4, Attribute Types

71

A node-name or terminal may have any number of attributes following it. The format of an
attribute is

1xxlyyyyyl

The string xx’ is a decimal number indicating the type of the attribute and the string
yvyyyy’ is the body of the attribute. The body may contain any ASCII character except NULL
(0) and occurrences of 'V are represented by "I,

The attribute types are:
1.

This attribute corresponds to a comment which appeared in the ISPS description.
The comment appeared at the end of the line which this node was located on.
This type of attribute appears in the tree only if the /C swilch is used in the
compiier.

This attribute corresponds to a blank line which appears in the I1SPS description.
This only appears if the /C switch is used in the compiler.

. This attribute corresponds to an ISPS aiias. If an alias is given to a constant or

to an identifier in ISPS this attribute will appear in the tree, foliowing the
constant or identifier.

. This attribute corresponds to a comment which appears at the end of the ISPS

description, it only appears in the tree if the /C switch is used in the compiler,

. This attribute provides the line and page number in the ISPS description that a

node appeared on. This is only given for terminals (constants and identifiers).
These attributes appear in the tree only if the /P switch Is used in the compiler.
The attribute looks like '4'500/4! for fine 500 on page 4. The numbers are
decimal.

. This attribute contains the name of a labeled block, e.g.: "Begin |name| ... End

Iname|" produces an attribute of "Siname!".

72

ISPS Reference Manual

ISPS Reference Manual 73

15. GDB Node Types

For the rest of this document we will assume that the reader knows the grammar of ISPS.

Not all of the non-terminals in the BNF are used in the tree. A great effort has been made
to remove any nonessential redundancy from the tree. For instance, the simpie ISPS register
access of "A" is parsed as a cunary which has a definition of a c-term which is defined as
e-access which is defined as identifier which is "A". The tree for this would look something
like:

(CUNARY (CTERM (EACCESS A)))

The cunary and the c-term are unnecessary and the GDB file is simplified to:

(EACCESS A)

The following is a list of the valid node types followed by their representation in the tree.
The upper case identifiers are the literal strings (node-names) which appear in the tree. The
lower case strings are subtree-type names. For example, 'c-expression’ may be replaced by
any valid tree which corresponds to an ISPS c-expression parse tree. These include the
sub-trees whose roots are *+', ’¢’, "SHO", "MOD’, 'EACCESS’, etc.

The form used in the tables belovﬁ is:

1 SPS=-BNF~Name\GDB-F| | e=Pr i nt-Name(s)
<first tree representation>
<second tree representatior>

<last tree representation>

Disecussion,

The tree representations given are those that appear in the tree if all sons indicated so
are not NIL. The actual node in the tree need only have as many sons as are not NiL. If a
NIL son is followed by a non-NIL son then both will appear in the tree. (See the exampies in
{14}

In the tree representations, any representation which is not contained in ()’ indicates the
name of a sub-tree which can appear in place of the node type under discussion.

I1SPS=Declaration\] SPSDECLARATION
(1 SPSDECLARATION e-declaration)

74 ISPS Reference Manual

The node ISPSDECLARATION is always the root of the parse tree. It appears once, as the
first node of the GDB file.

E~-Declaration\EDECLR
(EDECLR e-head e-body)
(XDEFINE identifier g~set g=-set)
(XDEFINE identifier quotedtext q-set)
(XDEFINE identifier constant g-set)
(XMACRO identifier fcset quotedtext)
e~-head

An EDECLR node appears only if an ISPS entity declaration has an e=-body.

Macros are expanded during the compilation and then, usuaily, thrown away. The /K switch
forces the compiler to keep the macro declaration in the tree. The FCSET son of a XMACRO
node is a special case of the general FCSET node. The elements of the FCSET are identifiers,
nat arbitrary EHEADs.

E-Head\EKEAD
(EHEAD identifier fc-set word-fs~set bit-fs-set g=-set)

The q-set of an EHEAD node is specified in the ISPS description as a set of keywords
preceding the identifier, or as a set of qualifiers inside { and } after the e-head (before the
"= or %, as the case may bel)

E-Body\EBODY
(EBODY s-action g-set)
(EBODY section=iist g-set)
s~action
section-list
e<head

The node EBODY will not actually appear in the tree unless the Q-Set is non~NIL. The
g-set of an EBODY node is specified in the ISPS description as a set of qualifiers inside { and
} after the BEGIN or END brackets surrounding the e-body.

FC~Set\FCSET
(FCSET)
(FCSET e~head e-head)
NIL

The FC-Set node with no sons (" (FCSET) ') appears only when a ()’ appeared in the ISPS
description,

ISPS Reference Manual 75

. Word-FS-Set\[]
name-palr
NIL

The Word-FS-Set node never appears in the tree.

Bit=-FS~-Set\«<f>
(<f>)
name=-pair
NIL

The Bit-FS-Set node with no sons (* (<f>} *) appears only when a '<>' appeared in the
ISPS description.

Name=Palr\:
(: constant constant)
constant

Q-Set\QSET
(QSET g-av-pair ,,,, q-avepair)
NIL

Q-AV~Pair\iqt
(1qt identifier gq~-value-list)
identifier

Q=-Value=List\,q,
(,qs q-value ,,,, g-value)
q-value

@=-Value\QVALUE
identifier
constant
quotedtext
q-set

The Q-Value node never appears in the tree.

Sect ion=-List\SECTIONLIST
(SECTIONLIST section ,,.. Section)
section

The Section-List node appears in the tree only if there is mare than one section.

76 ISPS Reference Manual

Sect ion\SECTION
(SECTION identifier e-declaration-iist q-set)

The g-set of a SECTION node is specified in the ISPS description as a set of qualifiers
inside { and } following the clasing "+#’ of the section-header.

E-Declaration-List\EDECLRLIST
(EDECLRLIST e-declaration ,.,, e-declaration)
e-declaration
NIL

The E-Declaration-List node appears in the iree only if there is more than one
E-Declaration.

S~Act | on\NEXT
(NEXT p-action ,,., p-action)
p-action

The S-Action node appears in the tree only if there is more than one P-Action.

P-Action\:
(; action ,,,. action)
action

The P-Action node appears in the tree only if there is more than ane Action.

ActionN\ACTION
block-action
label | ed-action
ec=expression
conditional-execution
conditional~-decode
control-action

The Action node never appears in the tree,

BIock-Actlon\BLUCKACTIGN
(BLOCKACTION s-action g=set)
s-action

The Block-Action node appears in the tree only if there is a non-NIL Q-Set. The g-set of a
BLOCKACTION node is specified in the ISPS description as a sel of qualifiers inside { and }
following the BEGIN or END surrounding the action.

ISPS Reference Manual 77

Label |l ed=Act i on\LABELLEDACTICON
(LABELLEDACTION identifier action g-set)

The g-set of a LABELLEDACTION node is specified in the .ISPS description as a set of
qualifiers inside { and } following the identifier, before the "='.

Conditional-Execution\IF
(IF c-expression action g-set)

The g-set of an IF node is specified in the ISPS description as a set of gualifiers inside {
and } following the IF operator.

Conditional -Decade\DECODE
(DECODE c-expression numbered«list g~set)

The g-set of an DECODE node is specified in the ISPS description as a set of qualifiers
inside { and } following the DECODE operator. ‘

Numbered-L| st \NUMBEREDLIST
(NUMBEREDLIST numbered-action ,... humbered-action)

Numbered=-Act ion\!=n
(3=n constant action)
(:1=n name-pair action)
(t=n name-1ist action)
(i=n otherwise action)
action

Otherwise\DTHERKI SE
(OTHERWI SE)

Name-List\,n,
(,n, name-pair ,,,, name-pair)
name=pair

The Name-List node appears in the tree only if there is more than one name-pair.

Control~Action\LEAVE, RESTART, RESUME, TERMINATE, REPEAT
(LEAVE identifier)
(RESTART identifier) .
(RESUME identifier)
(TERMINATE identifier)
(REPEAT action)

78

C=Expression\CEXPRESSION
c=-transfer
c-=disjunction
e=conjunctian
c-relation

c=5um

c~factor
c-shift
c-concatenation
c=unary

The C-Expression node never appears in the tree,

C-Transfer_, <=
(_ c=-expression c-expression g-set)
(<= c-expression c-expression g-set)

See note after NOT node

C-Disjunction\OR, XOR
(OR c-expression ¢c-expression q-set)
(XOR c~-expression c-expression g-set)

See note after NOT node

C~Conjunction\AND, EQY

(AND
(EQY

c-expression
c-expression

See note after NOT node

C-Relation\EQL, NEG, LEQ;

(EQL
(NEQ
(LEG
(GEQ
(LSS
(GTR
(18T

c~expression
c-expression
c=expression
c=expression
c=expression
c-expression
c-expression

See note after NOT node

C=Sum\+, =

c-expression g-set)
c=expression g-set)

GEQ, LSS, GTR, TST
c-expression g=-set)
c-expression q-set)
c-expression q-set)
c-expresslion g-set)
c-expression g-set)
c-expression g-set)
c-expression g-set)

(+ c-expression c-expression g-set)
(- c~expression c-expression g-set)

ISPS Reference

ISPS Reference Manual

See note after NOT node

C-Factor\s, /, MOD
(* c~-expression c-expression g-set)
(/ c-expression c-expression g-set)
(MOD c-expression c-expression g-set)

See note after NOT .node

C=-Shi ft\SRO,
(SRO
(SR1
(SRD
(SRR
(SRI
(sLo
(st1
(stD
(SLR
(SLI

SR1, SRD, SRR, SRI, SLO, SLi, SLD, SLR, SLI

c=expression
c-expression
c-expression
c-expression
c=expression
c-expression
c-expression
c-expression
c-expression
c-expression

See note after NOT node

C-Concatenation\@
(@ c-expression c-expression g-set)

See note after NOT node

C=Unary\CUNARY
c-term
c=negation
c~-complement

c-expression
c-expression
c-expression
c~expression
c~expression
c-expressian
c-expression
c-expression
c-expression
c-expression

“The C-Unary node never appears in the tree.

C=-Negation\++, ==
(++ 'c-expression q-set)
(== c-expression g-set)

The unary-plus nodes are all thrown away., Only unary-minus nodes appear in the tree.

See note after NOT node.

C-Compiement\NDT
(NOT c-expression g-set)

g-set)
gq~set)
g=-set)
g-set)
q-set)
g-set)
q-set)
q-set)
q=-set)
q-set)

80 ISPS Reference Manual

The g-set in an operator node is specified in the ISPS description as a set of qualifiers
inside { and } following the operator,

C=Term\CTERM
(CTERM constant bit=-as-set)
(CTERM c-expression bit-as-set)
e-access
constant
c-expression

E=Access\EACCESS
(EACCESS identlifier ac-set word-as~set bit-as-set g-set)

The g-set of an EACCESS node is specified in the ISPS description as a list of keywords
preceding the bnf or as a set of qualifiers inside { and } following the e=access.

Word-As=Set\[al
c-expression

The Word-AS-Sel node never appears in the tree.

Bit-As~Set\<a>
access-pair

The Bit-As-Set node never appears in the tree.

Access=Pair\:a!
(t1a: constant constant)
c-expression

AC<Sei\ACSET
(ACSET)
(ACSET c~expression ,,., c-expression)
NIL

The ACSET node with no sons (* (ACSET) *) appears only when a ()’ appeared in the ISPS
description.

ISPS Reference Manual

16. A Complete GDB Example

The foliowing is a listing of the entire GDB file generated from the MARKI
Description.

16.1. ISPS Description

1 The Manchester University Mark-1 Computer

!

tThis is the ISPS description of the first version of the machine, as
treported in [Lavington, S.H, "A History of Manchester Cowputers”,
INational Computing Centre Publications, Manchester, England, 1975]

Mario R, Barbacc! (BARBACCI@CMUA)

Begin
*x Memory,State **
M[0:8191]<3110>,

*» Processor,State *%
Pi\Present , Instruction<i5: 0>,
F\Function<0:2> = PI<15:13>,
$<0:12> = PI<12:0>,
CR\Contrel ,Register<i2:0>,
Acc\Accumulator<31:0>,

** Instruction,.Execution =+ {TC}
Main I.,Cycle :=

Begin

PI = M[CR]1<15:0> next

Decode F =>

Begin
ONJMP 1= CR = M[S],
1N\JRP = CR = CR + M[S],

2\LDN = Acc = - M[S],
3\STO 1= M[S] = Acc,
4:5\SUB 1= Acc = Acc = M[S],
G\CMP 1= If Ace Lss 0 =>CR=CR + 1,
\STP 1= Stop(),
End next
CR = CR + 1 next
Restart I.Cycle
End
End

81

ISPS

file:///Present

82 ISPS Reaference Manual

16.2. GDB File

GDB:A; ISPS Compiler V58-7;DSK:MARKL. ISP (NGSSNB25) ;18 Jun 79;088:12112;
(ISPSDECLRRRTION
(EDECLR
(EHERD HARK1)
(SECTIONLIST
(SECTION MENORY.STATE (EHERD M NIL (: & Bi91) (: 31 8)))
(SECTION
PROCESSOR.STRTE
(EBECLRLIST
(EHERD PT !2!PRESENT.INSTRUCTION! NIL KiL G 15 &)
(EDECLR
(EHEAD F '2'FUNCTION! NIL NIL (: 8 2))
(EHERD PI NIL NIL (: 15 130
(EDECLR
(EHEAD S NIL NIL (: 8 120
(EHERD PI NIL NIL (: 12 80))
(EHEAD CR I2!/CONTROL.REGISTER! NIL NIL (: 12 @))
(EHERD ACC 121ACCUMULATOR! NIL NIL (¢ 31 8)))}
(SECTION
INSTRUCTION.EXECUTION
(EDECLR
(EHERD T.CYCLE NIL NIL NIL (QSET MAIN))
(NEXT
(_ (EACEESS PI) (EACCESS W NIL (ERCCESS CR) (:a: 15 @)))
(DECODE
{EACCESS F»
(NUMBEREOLIST
(1mn
8 [21JHpP!
{_ (EACCESS CR) (ERCCESS M NIL (ERCLESS S)11))
(tmn
1 12V1JRP!
LN
(ERCCESS CR)
(+ (ERCCESS CR) (ERCCESS M NIL (EACCESS S$)))))
(tun
2 I21LDN!
L
(EACCESS RLL)
(«~ (ERCCESS M NIL (ERCCESS S)1 M)
{1an
3 12157TQ!
(_ (ERCCESS M NIL (ERCCESS 5)) (EACCESS RACC)))
{tun
{: 4 5 IZI15UB")
L
(ERCCESS ACC)
(— (EACCESS RACE) (EACCESS M NIL (ERCCESS 5)31)1))
{tun
6 121CHPI
(§123
{1.5S (ERCCESS ACC) @)
(. (EACCESS CR)Y (4 (EACCESS CR) 1NN
(tan 7 [21STP) (ERCCESS STOP (ACSETY)))}
(.. (EACCESS CR) (+ (ERCCESS CR) i)}
{RESTRRT [.CYCLE}))
(ASET TO))

ISPS Reference Manual 83

17. References

[Barbacci,1978)

[Barbacci, 1979]

[Bell,1971]

[Bell,1978]

M.R. Barbacci: "An Introduction to ISPS". Technicat Report, Department
of Computer Science, Carnegie-Mellon University, 1978. Report
CMU-CS-78-137.

M.R. Barbacci: "Instruction Set Processor Specifications (ISPS): The
Notation and its Applications”. Technical Report, Department of Computer
Science, Carnegie-Mellon University, 1979. Report CMU-CS-79-123.

C.G. Beil and A. Newell: Computer Structures: Readings and Examples,
Mc-Graw Hill Book Company, New York, 1971.

C.G. Bell, JC. Mudge, and JE. McNamara: Computer Engineering, A DEC
View of Hardware Systems Design. Digital Press, 1378.

84

ISPS Reference Manual

ISPS Reference Manual _ 85

Appendix |
Syntax Charts

This appendix contains the complete syntax of ISPS. It is presented in a pictorial format.
All productions of the form X-LISTY are explicitly defined. The charts show explicitly ati the
places were a qualifier can appear.

Whenever the keywords 'BEGIN' and 'END’ appear, they ¢an be replaced by ' and *)
" respectively.

ISPS Reference Manual

86

{£-0) 1191Q

(1-0) 119iq v @AT.I

juejsuon

(6-0) L1910 @ —

juejsuo)

juejsuony [

Jed-awepN

H(De—

%9 -pajond

s pjuep]

aeyuepj

o

Cf“&

<t

aouanbag-pj

Y pun ae—

431jljuspy

Figure {7-1: Syntax Chart - |

87

ISPS Reference Manual

jxei-psjond dSINDIY

asyrjuep])

yxo)-pejond A..@n

Apog-3 A||®

,_

pesH-l —

yx8-psjond)

jurjsvoeyy kiE—

15D <&

b|°Al.I sausnbes-p]

G

uolje.se|dsg-3

uoiyraepeg-3 [E———

uolje.e[23Q-SdSI

Figure 17-2: Syntax Chart - II

II[- 1BYD XBJUAG 3E-£1 eunBiy

E-Head

| id-Saquence |—3| FC-Set pl FSSet |3 g5t |—>
FC-Set >
Lo 40,
E-Head
O
FS-Set I
Name-Pair h@j

Section-List

o
E-Body —~;>C BEGIN)_D

oo

Name-Pair

5

Q-Set

b-expression

X

Q-Set

Section-List

IDENTIFIER

4 E-Head

TC w)

Rer

Q-Set

E-Daclaration

v

=

@

531

|enue 8oueJla)ey S4S1

89

ISPS Reference Manual

eV |

uopoy

J031uep]

uonay-joajuony i

uoyoe

~jeuoljipuo]

<t

ucljae

ON3

uoisseidni-f

uvoissesdxly-)

T.@A-Il Jmpyuep]

uonoy

(oo)
G e

UoI}oYy -|04juod)

uoissaidx3-g

Figure 17=4: Syntax Chart - IV

ISPS Reference Manual

90

an3

f

(D

-0

-

>

Jieg-sweN

e f-swey

<F——

ISIMUIHIO <

ejsuony

_Alll

uonoy <1

uoissasdny-9

KE—— J95-0

Ul oY

(<)

uoissadx3-y Kt——r

uonoe-~jeuonipuo?)

Figure 17-5t Syntax Chart - V

IA - 14BYD XBJUAS 9=/ eandiy

C - Expression

34 € - Disjunction

sy E-Access Q-Set

A
L Q-Set ®

C-Relation

> C-Sum : >
L Q-s.{ o« <7 S

C-Disjunction

L

C-Conij

(&)

Q-Set

® ¢

C-Conjunction

C-Relation

O

Q-Set AND a

&

£Q

&

;

16

jenuepyy 8ausla)ay Sdsi

wie)-o

195D

@
e

D

1*5-0

™

=)

c

N

=

(]

£

o 188

L

2

o

o

o Iélv

a

a
(o
(o)
{0us)—p
{15}
{9
>{01s) S

<t uoljeu}EIU0)-D
o~
o

HYS-J

Aleun-9

1%5-d

Aldeun)-n

Uoljeua}esuns-9)

1e5-D

HNS-D

i0joe 4-9

195-0

ioyaeg-n

.

wng-9

Figure 17-7: Syntax Chart - VII

THIA = MeUYD XeJuAsS 1g-L] 84nBi4

C-Term

p{ E-Access yiy
4 Conatant P
__1;.@—-9 C-Expreasion —-p@-—T l@—p Access-Pair —p@—
E-Access
w3l 1d-Sequence | —— AC-Set 4 AS-Set 3 Q-Set T
AS-Set
l o4
C-Exprassion f}——P> @-—D Access-Pair >
AC-Set

O

C-Exgprassion

Access~Pair

O

pa C-Expression

Constant

Constant

jenueyy 85U84848Y SdS]

£6

94

Q-Set

ISPS Reference Manual

Figure 17-9: Syntax Chart - IX

<t
o] 3 v
Sl EtlI. Y (-
b=
AEEEEE RN
2 llol|lle]lid

[

-

e

L

[~

[}

-]

L

At

ISPS Reference Manual

Index

1 10
* 89 22
- 8922
8,9 22
(13 14,19, 21,39,59
) 13 14,19, 21,398, 59

. 33 36
» 14

+ 33, 35, 3§, 37
, 18,14, 21, 39, 55, 89
- 33, 3% 36,37

/ 33,38

11, 22, 65
~ 13 21,59

i 19,55

< 13, 39
< 33 37

= 33 37
o> 21

> 13,39
7 8,22
e 33, 735 38

Ae-sst 39, 40, 41, 46, 56, 80
Access-psir 80

Actien 19, 21, 25, 26, 27, 76
Add-op 33

Alias 11,71

AND 33, 37, 63

And-op 33
Arithmetic-transfer 37
As-set 38, 40, 58

B-oxpression 14, 19, 52
BEGIN 14, 19, 21, 52
Bit-ss-set 39, 80
Bil-fs-set 13 75
Block-action 18, 20, 56, 76

C-complement 79
C-concateration 33,79
C-conjunction 33,78

96

C-disjunction 33, 7B

C-expression 19, 21, 33, 39, 40, 41, 48, 55, 78
C-factor 33, 79

C-negation 79

C-relation 33, 7§

C-shift 33, 79

C-sum 33 78

C-term 10, 33, 39, 41, 80

C-transfor 33, 78

C-unary 33,79

Comments 10, 71

Conditional-action 19, 21, 55
Conditional-decode 77

Conditional-execution 77

Constant 8, 11, 21, 22, 34, 39, 46, 50, 55, 59, 70, 71
Control-actien 19, 25, 77

COUNTONE 62

CRITICAL 48, 58, 83

DECODE 9, 12, 21, 22, 55, 63
DEFINE 59,63
DELAY 81, 62

E-access 39, 40, 41, 46, 56, 80
E-body 13, 14, 26, 41, 55, 74
E-declaration 13, 14, 74
E-declaration-list 75

E-head 13 14, 40, 55, 74

END 14,19, 21, 52

EQL 33 37,63

EQV 33 37,63

Fc-sot 13, 40, 41, 55, 74
FIRSTONE 62
Fe-set 13, 40, 55

GEQ 33, 37, 83
GTR 33 37, 63

Id-sequence 58, 57

Identifier 8, {3, 14, 19, 25, 39, 40, 55, 58, 59, 70, 71
IF 2, 55, 63

INCREMENT 43, 586, 63

ISRUNNING 62

ISPS-declarstion 13 73

1SPS-definition &9

K 9 63

Labetled-action 15, 19, 20, 28, 55, 77
LASTONE 62

LEAVE 25, 26, 27, 83

LEQ 33, 37,83

Logical-tranafer 37

LSS 33, 37, 83

M g 63
M-parameter-set 59
MACRO 59, 63
MAIN 50
MASKLEFT 82
MASKRIGHT 62
MOD 33 38, 63
Mult-cp 33

ISPS Reference Manual

ISPS Reference Manual

Neme-list 77

Name-pair 11, 13, 21, 22, 38, 43, 75
NEQ 33, 37,63

Next 19, 83

NOOP 62

NOT 33, 35, 63

Numbersed-sction 21, 77
Numbered-list 77

OC 652, 56, 63

One's Complement 34, 35, 36, 52, 56
OR 33 37,63

Qr-op 33

Other-deciarations 13

OTHERWISE 21,77

P-action 19,78

PARITY 62

PROCESS 26, 48, 56, 63

PTIME 50, 58, 63

Q-av-pair 55, 75
Q-eet 55,59, 75
. Q-value 55,75
Q-velun-list 75
Quoted-text 11, 20, 55, 68, 70

REF 45, 486, 56, 63
Relop 33

REPEAT 25, 83
REQUIRE.ISP 59, 63
RESTART 25, 27, 63
RESUME 25, 27, 63

S-sction 19,76
Section 14, 15, 52, 78
Section-hesder 14, 52
Section-list 75
Shift-op 33

Signed Magnitude 34, 35, 36, 52, 56
SLO 33, 35, 63

SL1 33 35, 63

SLD 33, 35, 63

SLl 33 3%, 63

SLR 33, 35, 63

SM 52, 56, 63

SRO 33 35,63

SR1 33, 35, 63

SRD 33, 35, 63

SRI 33, 35, 63

SRR 33, 35,63

sTOP 62

TC 52, 56, 63

TERMINATE 25, 26, 83

TIMEWAIT 51, 62

Transfer-cp 33, 38, 41

TST 33, 37, 63

Two's Complement 348, 35, 38, 52, 58

Unary-op 33

UNDEFINED 62
UNPREDICTABLE 62
Unsigned 34, 35, 36, 52, 56
ys 52, 56, 63

98

ISPS Reference Manual

WAIT 51, 82

Werd-as-set 39, 4}, 50
Word-fs-set 13, 41, 43, 75
XQR 33, 37, 83

[13 21,39

\ O

1 1321, 39

- 3337

{ 55 56,57

bt

} S5, 58, 57

