
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-82-135

Learning by Chunking
A Production-System Model of Practice

Paul S. Rosenbloom and Allen Newell
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

September 1982

To be published in D. Klahr, P. Langley, & R. Neches (Eds.),
Self-Modifying Production System Models of Learning and Development, In Preparation,

Abstract

The power law of practice states that the time to perform a task decreases as a power-law function of the
number of times the task has been performed. One possible explanation for this ubiquitous regularity is the
chunking theory of learning. It proposes that the acquisition and use of chunks is the basis for these
improvements. In this article we describe a first attempt at implementing a learning mechanism based on the
chunking theory of learning. This work includes: (1) filling out the details of the chunking theory; (2)
showing that it can form the basis of a production-system learning mechanism; (3) showing that the
implemented mechanism produces power-law practice curves; and (4) investigating the implications of the
theory for production system architectures in general. The approach we take is to implement and analyze a
production-system model of the chunking theory in the context of a specific task — a 1023-choice reaction-
time task. In the process, we develop a control structure for the task; describe the three components of the
implemented model — the Xaps2 production-system architecture, the performance model for the task, and
the chunking mechanism; and analyze simulations to verify that the implemented model does generate
power-law practice curves.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government

LEARNING BY CHUNKING I

Table of Contents
1. Introduction 1
2. Previous Work 3

2.1. The structure of task environments 3
2.2. The power law of practice 3
2.3. The chunking theory of learning 5

2.3.1. The chunking curve 6
3. The Task 9
4. Constraints on the Model 16
5. The Xaps2 Production-System Architecture 20

5.1. Working memory 21
5.2. Production memory 23
5.3. The production system cycle 24

5.3.1. The match 24
5.3.2. Conflict resolution 27
5.3.3. Production execution 28
5.3.4. Updating of working memory 29

6. The Initial Performance Model 31
6.1. Interfacing with the outside world 31

6.1.1. The stimulus space 32
6.1.2. The response space 33

6.2. The control structure: a goal hierarchy 33
6.2.1. The Seibel goal 37
6.2.2. The OneTrial goal 37
6.2.3. The OnePattern goal 38
6.2.4. The OneStimulusPattera goal 39
6.2.5. The OneResponsePattera goal 40

7. The Chunking Process 41
7.1. The representation of chunks 41

7.1.1. The encoding component 42
7.1.1.1. Representation of higher-level stimulus patterns 43
7.1.1.2. Integration of the encoding component into the model 44
7.1.1.3. The encoding productions 45

7.1.2. The decoding component 48
7.1.3. The connection component 49

7.2. The acquisition of chunks 50
8. The Results 53

8.1. The results of a simulation 53
8.2. Simulated practice curves 55

9. Conclusion 61

n LEARNING BY CHUNKING

List of Figures
Figure 2-1: Learning in a Ten Finger, 1023 Choice Task (Log-Log coordinates). Plotted from the 4

original data for Subject JK (Seibel, 1963).
Figure 2-2: Optimal general power law fit to the Seibel data (Log-Log coordinates). 5
Figure 2-3: Best fit of the Seibel data by the combinatorial chunking function (X-axis log scaled). 7
Figure 2-4: A practice curve generated by the chunking theory of learning (Log-Log coordinates). 8

Its optimal power law fit is also shown.
Figure 3-1: The stimulus array of ten lights. 10
Figure 3-2: The response array (a portion of Alto the keyboard) with the ten keys highlighted. 10
Figure 3-3: Subject 3's learning curve (log-log coordinates). The data is aggregated by groups of 12

five trials.
Figure 3-4: Six typical trials. 13
Figure 3-5: Reaction times versus number of O/i-lights. The data is averaged over all trials of the 14

four subjects, except those with 5 Cto-lights on one hand (see text).
Figure 6-1: The model's goal hierarchy for Seibel's task. 31
Figure 8-1: The tree of chunks created during the nine trial simulation. 54
Figure 8-2: Practice curve predicted by the meta-simulation (log-log coordinates). The 408 trial 56

sequence performed by Subject 3 (aggregated by five trials).
Figure 8-3: Practice curve predicted by the meta-simulation (log-log coordinates). Seventy five 57

data points, each averaged over a block of 1023 trials.
Figure 8-4: Practice curve predicted by the meta-simulation (log-log coordinates). Seventy five 58

data points, each averaged over a block *of 1023 trials. The probability of creating a
chunk when there is an opportunity, is 0.02.

Figure 8-5: Practice curve predicted by the meta-simulation (log-log coordinates). The 408 trial 59
sequence performed by Subject 3 (aggregated by five trials). The probability of
creating a chunk when there is an opportunity, is 0.02.

LEARNING BY CHUNKING III

List of Tables
Table 8-1: The nine trial sequence simulated by the model. • is On, o is Off, and - is don 7 care. 53

LEARNING BY CHUNKING
1

Learning by Chunking
A Production-System Model of Practice 1

1. Introduction
Performance improves with practice. More precisely, the time to perform a task decreases as a power-law

function of the number of times the task has been performed. This basic law — known as the power law of

practice or the log-log linear learning law1 — has been known since Snoddy (1926). While this law was

originally recognized in the domain of motor skills, it has recently become clear that it holds over the full

range of human tasks (Newell & Rosenbloom, 1981). This includes both purely perceptual tasks such as

target detection (Neisser, Novick, & Lazar, 1963), and purely cognitive tasks such as supplying justifications

for geometric proofs (Neves & Anderson, 1981) or playing a game of solitaire (Newell & Rosenbloom, 1981).

The ubiquity of the power law of practice argues for the presence of a single common underlying

mechanism. The chunking theory of learning (Newell & Rosenbloom, 1981) proposes that chunking (Miller,

1956) is this common mechanism — a concept already implicated in many aspects of human behavior (Bower

& Winzenz, 1969; Johnson, 1972; DeGroot, 1965; Chase & Simon, 1973). Newell and Rosenbloom

(1981) established the plausibility of the theory by showing that a model based on chunking is capable of

producing log-log linear practice curves3. In its present form, the chunking theory of learning is a macro

theory; it postulates the outline of a learning mechanism, and predicts the global improvements in task

performance.

This paper reports on recent work on the chunking theory and its interaction with production-system

architectures (Newell, 1973)4. Our goals are fourfold: (1) fill out the details of the chunking theory; (2) show

that it can form the basis of a production-system learning mechanism; (3) show that the full model produces

power-law practice curves; and (4) understand the implications of the theory for production-system

architectures. The approach we take is to implement and analyze a production-system model of the chunking

theory in the context of a specific task — a 1023-choice reaction-time task (Seibel, 1963). The choice of task

We would like to thank John Anderson, Pat Langley, Arnold Rosenbloom, and Richard Young for their helpful comments on drafts
of this paper.

^Power-law curves plot as straight lines on log-log paper.

For a summary of alternative models of the power law of practice, see Newell and Rosenbloom (1981). Additional proposals can be
found in Anderson (1982) and Welford (1981).

A brief summary of this work can be found in Rosenbloom & Newell (1982).

2 LEARNING BY CHUNKING

should not be critical because the chunking theory claims that the same mechanism underlies improvements

on all tasks. Thus, the model, as implemented for this task, carries with it an implicit claim to generality,

although the issue of generality will not be addressed.

In the remainder of this paper we describe and analyze the task and the model. In Section 2 we lay the

groundwork by briefly reviewing the highlights of the power law of practice and the chunking theory of

learning. In Section 3 the task is described. We concentrate our efforts on investigating the control structure

of task performance through the analysis of an informal experiment. In Section 4 we derive some constraints

on the form of the model. Sections 5, 6, and 7 describe the three components of the model: (1) the Xaps2

production-system architecture; (2) the initial performance model for the task; and (3) the chunking

mechanism. Section 8 gives some results generated by running the complete model on a sample sequence of

experimental trials. The model is too costly to run on long sequences of trials, so in addition to the simulation

model, we present results from an extensive simulation of the simulation (a meta-simulation). We pay

particular attention to establishing that the model does produce power-law practice curves. Finally, Section

9 contains some concluding remarks.

LEARNING BY CHUNKING 3

2. Previous Work
The groundwork for this research was laid in Newell and Rosenbloom (1981). That paper primarily

contains an analysis and evaluation of the empirical power law of practice, analyses of existing models of

practice, and a presentation of the chunking theory of learning. Three components of that work are crucial

for the remainder of this paper, and are summarized in this section. Included in this summary are some

recent minor elaborations on that work.

2.1 . The structure of task environments
In experiments on practice, subjects are monitored as they progress through a (long) sequence of trials. On

each trial the subject is presented with a single task to be performed. In some experiments the task is

ostensibly identical on all trials; for example, Moran (1980) had subjects repeatedly perform the same set of

edits on a single sentence with a computer text editor. In other experiments the task varies across trials; for

example, Seibel (1963) had subjects respond to different combinations of lights on different trials. In either

case, the task environment is defined to be the ensemble of tasks with which the subject must deal.

Typical task environments have a combinatorial structure (though other task structures are possible); they

can be thought of as being composed from a set of elements which can vary with respect to attributes,

locations, relations to other elements, etc. Each distinct task corresponds to one possible assignment of values

to the elements. This structure plays an important role in determining the nature of the practice curves

produced by the chunking theory.

2.2. The power law of practice
Practice curves are generated by plotting task performance against trial number. This cannot be done

without assuming some specific measure of performance. There are many possibilities for such a measure,

including such things as quantity produced per unit time and number of errors per trial. The power law of

practice is defined in terms of the time to perform the task on a trial. It states that the time to perform the task

(T) is a power-law function of the trial number (N):

T=BN-« (1)

If this equation is transformed by taking the logarithm of both sides, it becomes clear why power-law

functions plot as straight lines on log-log paper:

log(r) = log(5) + (- a) log(AT) (2)

Figure 2-1 shows a practice curve from a 1023-choice reaction-time task (Seibel, 1963), plotted on log-log

paper. Each data point represents the mean reaction time over a block of 1023 trials. The curve is linear over

4 LEARNING BY CHUNKING

much of its range, but has deviations at its two ends. These deviations can be removed by using a four-

parameter generalized power-law function. One of the two new parameters (A) takes into account that the

asymptote of learning is unlikely to be zero. In general, there is a non-zero minimum bound on performance

time, determined by basic physiological and/or device limitations — if, for example, the subject must operate

a machine. The other added parameter (E) is required because power laws are not translation invariant

Practice occurring before the official beginning of the experiment — even if it consists only of transfer of

training from everyday experience — will alter the shape of the curve, unless the effect is explicitly allowed

for by the inclusion of this parameter. Augmenting the power-law function by these two parameters yields

the following generalized function:

T=A + B(N+E)~a (3)

A generalized power lkw plots as a straight line on log-log paper once the effects of the asymptote (A) are

removed from the time (7), and the effective number of trials prior to the experiment (E) are added to those

performed during the experiment (N):

log(7-A) = log(iB) + (- a) log(N+ E) (4)

Figure 2-1: Learning in a Ten Finger, 1023 Choice Task (Log-Log coordinates).
Plotted from the original data for Subject JK (Seibel, 1963).

Figure 2-2 shows the Seibel data as it is fit by a generalized power-law function. It is now linear over the

LEARNING BY CHUNKING 5

whole range of trials. Similar fits are found across all dimensions of human performance; whether the task

involves perception, motor behavior, perceptual-motor skills, elementary decisions, memory, complex

routines, or problem solving. Though these fits are impressive, it must be stressed that the power law of

practice is only an empirical law. The true underlying law must resemble a power law, but it may have a

different analytical form.

C
O
o

I

E
c
5
o

10.oo

1.00

.10

7 = .32 + 1673(A/ + 2440) .91

.Of
1000 10000 100000

Trial number [N + E]

Figure 2-2: Optimal general power law fit to the Seibel data (Log-Log coordinates).

2.3. The chunking theory of learning
The chunking theory of learning proposes that practice improves performance via the acquisition of

knowledge about patterns in the task environment Implicit in this theory is a model of task performance

based on this pattern knowledge. These patterns are called chunks (Miller, 1956). The theory thus starts from

the chunking hypothesis:

• The Chunking Hypothesis: A human acquires and organizes knowledge of the environment by
forming and storing expressions, called chunks, which are structured collections of the chunks
existing at the time of learning.

The existence of chunks implies that memory is hierarchically structured as a lattice (tangled hierarchy,

acyclic directed graph, etc.), rooted in a set of primitives. A given chunk can be accessed in a top-down

fashion, by decoding a chunk of which it is a part, or in a bottom-up fashion, by encoding from the parts of the

chunk. Encoding is a recognition or parsing process.

6 LEARNING BY CHUNKING

This hypothesis is converted into a performance model by adding an assumption relating the presence of
chunks to task performance.

• Performance Assumption: The performance program of the system is coded in terms of high-level
chunks, with the time to process a chunk being less than the time to process its constituent chunks.

One possible instantiation of this assumption is that performance consists of serially processing a set of

chunks, with the components of each chunk being processed in parallel. Performance is thus improved by the

acquisition of higher-level chunks. A second assumption is needed to tie down this acquisition process:

• Learning Assumption: Chunks are learned at a constant rate on average from the relevant patterns
of stimuli and responses that occur in the specific environments experienced.

This assumption tells us the rate at which chunks are acquired, but it says nothing about the effectiveness of

the newly acquired chunks. Do all chunks improve task performance to the same extent, or does their

effectiveness vary? The answer to this question can be found by examining the structure of the task

environment. If patterns in the task environment vary in their frequency of occurrence, then the effectiveness

of the chunks for those patterns will also vary. The more frequently a pattern occurs, the more the chunk

gains. The final assumption made by the theory is that the task environment does vary in this fashion:

• Task Structure Assumption: The probability of recurrence of an environmental pattern decreases
as the pattern size increases.

This assumption is trivially true for combinatorial task environments. As the pattern size grows (in terms of

the number of elements specified), the number of possibilities grows exponentially. Any particular large

pattern will therefore be experienced less often than any particular small pattern.

There is one notable case where the task structure assumption is violated — when the task environment

consists of just one task. This lack of variability means that the subject is presented with the identical

experimental situation on every trial. One way to look at this situation is as a combinatorial task environment

in which each element can take exactly one value. Now, as the size of the pattern grows, the number of

patterns of that size decreases rather than increases. As we shall see shortly, this violation does not result in a

markedly different prediction for the form of the practice curve.

2 .3 .1 . The chunking curve

Starting with the three assumptions, and with a little further specification, an approximate functional form

can be derived for the practice curves predicted by the chunking theory.

• Performance: Assume that performance time is proportional to the number of chunks that are
processed, with P — the number of elements in the task environment — chunks required initially.

• Learning1. Let X be the constant rate of acquisition of new chunks.

LEARNING BY CHUNKING 7

• Task structure: Let C(s) be the number of chunks needed to cover all patterns of s elements or
less in the task environment

Given these additional specifications, the chunking theory of learning predicts a learning curve of the form:

dN P V ds) 1 w

This equation depends on the structure of the task environment, as described by C(s). It is a power law

when C(s) is a power law. For a combinatorial task environment, % is given by j bs, where b is the number

of values that each element can take. For b> 1 — a standard combinatorial environment — the chunking

theory predicts the following learning curve (for arbitrary constants A, B, Dy and E):

T = A + D+ log(N+E) (6)

Figure 2-3 shows the Seibel data plotted in coordinates in which practice curves predicted by the

combinatorial chunking model are straight lines. The linearity of this plot is as good as that for the general

power law (Figure 2-2), and the r2 values are comparable: 0.993 for the power law vs. 0.991 for the chunking

model. This function and the power law can mimic each other to a remarkable extent Figure 2-4 contains

two curves; one of them is the combinatorial chunking law fit to the Seibel data (Figure 2-3), and the other is

the best power law approximation to that curve. The curves are indistinguishable (r 2 of 1.000).

Figure 2-3: Best fit of the Seibel data by the combinatorial chunking function (X-axis log scaled).

8 LEARNING BY CHUNKING

-s JO.O,

8

I

.E
ac
c
p
o

$

o
'•5
8

1.0

.11

7 = .21 + .44/[-8.68 + Ln(/V + 7391)]
7 = .30 + 277(A/ + 864)" 7 3

' 1 I I I I I • ' •
1000 10000 100000

Trial number [N + E]

Figure 2-4: A practice curve generated by the chunking theory of learning (Log-Log coordinates).
Its optimal power law fit is also shown.

For b=l — only one task in the task environment — jjf becomes simply f. Plugging this expression into

Equation 5 yields a hyperbolic curve of the form (for arbitrary constants A, B, and E):

T=A + B
N+E (7)

Since a hyperbolic function is just a special case of the power law (with a=1), this function is trivially well fit

by a power law.

LEARNING BY CHUNKING
9

3. The Task
It is difficult, if not impossible, to produce and evaluate a theory of learning without doing so in the context

of some concrete task to be learned The first characteristic required of such a task is that it be understood

how the learning mechanism can be applied to it For our purposes, this corresponds to understanding what

aspects of the task can be chunked The second characteristic required of the chosen task is that the control

structure of initial task performance be understood. Discovering such a performance model is well within the

domain of a learning system, but practice is the subclass of learning that deals only with improving

performance on a task that can already be successfully performed. Thus, our models will always start with

some method no matter how inefficient, for performing the chosen task.

The task that we shall employ is a 1023-choice reaction-time task (Seibel, 1963). This is a perceptual-motor

task in which the task environment consists of a stimulus array of ten lights, and a response array of ten

buttons in a highly compatible one-one correspondence with the lights. On each trial, some of the lights are

On, and some are Off. The subject's task is to respond by pressing the buttons corresponding to the lights that

are On. Ten lights, with two possible states for each light, yields 2 1 0 or 1024 possibilities. The configuration

with no ligttts on is not used, leaving 1023 choices.

This task easily meets the first criteria; in fact, the macro-structure of chunking in this task has already been

analyzed (Newell & Rosenbloom, 1981). The task has an easily recognizable combinatorial structure. The

lights and buttons are the elements of the task environment Each element has one attribute with two possible

values — On and Off for the lights, Press and NoPress for the buttons. These lights and buttons will form the

primitives for the chunking process.

One auxiliary benefit of selecting this task is that it fits in with a large body of experimental literature,

allowing exploration of the theory's implications to a large range of nearby phenomena. The literature on

perceptual-motor reaction time is a rich source of data on human performance. For this particular task,

practice curves already exist out to more than seventy thousand trials (Seibel, 1963). Figures 2-1, 2-2, and

2-3 are plotted from the data for one subject in that experiment

Unfortunately, the existing practice curves present highly aggregated data (by 1023-trial blocks), leaving us

with little evidence from which to deduce the within-trial structure of performance (the second required

characteristic). In order to gain some insight into this structure, an informal investigation into the

performance of human subjects in this task was performed. A version of the experiment was programmed on

an Alto personal computer (Thacker, McCreight Lampson, Sproull, & Boggs, 1982). The bit-map screen (8.5"

x 11" at 72 points to the inch) was used for the presentation of the stimulus lights. The screen was dark,

allowing C^-lights to be represented as solid white squares (.85 cm. on a side), while f l i g h t s were dark with

10 LEARNING BY CHUNKING

a white rim. The lights all fit into a rectangle 12 cm. wide by 2.8 cm. high (Figure 3-1). At an approximate

distance of 43 cm., the display covers 16 * of visual arc.

• • • •
• •

Figure 3-1: The stimulus array of ten lights.

The Alto keyboard allows the sensing of multiple simultaneous key-presses, so ten keys were selected and

used as buttons. The keys (a, w, e, f, v, n, j , i, o,;) were chosen so as to make the mapping between stimulus

and response as compatible as possible. The keys all fit into a rectangle 18.3 cm. wide by 4.9 cm. high (Figure

3-2).

r,

A |

W E | r

r.

rr: r.

r n r

! " g i r h

r

r

r

K H K [f i [fT
Figure 3-2: The response array (a portion of Alto the keyboard) with the ten keys highlighted.

Each trial began with the presentation of a fixation point between the center two lights. After 333 msecs,

the fixation point was replaced by the ten lights. A clock was started at this point (accurate to within one jiffy,

or about 17 msecs), and the time was recorded for each button that was pressed. The trial continued until the

subject had pressed the button corresponding to each Ort-light, even if wrong buttons had been pressed along

LEARNING BY CHUNKING 11

the way. It was not necessary to hold down the buttons; once they had been pressed they could be released.

Once all of the required buttons had been pressed, the screen was cleared. With this setup, the fastest way to

complete a trial was to press all ten buttons as soon as the lights appeared. To rule out this possibility, the

subject received, via the screen, feedback about the correctness of the response, and his cumulative percent

correct over the previous 20 trials. Subjects were instructed to respond as quickly as possible while

maintaining a low error percentage. Following error feedback, the screen went blank until the start of the

next trial — approximately 2 seconds.

Four male graduate students in their twenties were run informally in a somewhat noisy environment (a

terminal room). A trial sequence was generated from a random permutation of the 1023 possibilities. This

fixed sequence was divided into 102-trial blocks (except for the last block) and used for all subjects. Subject 1

completed 2 blocks of trials (or 204 trials); subject 2 completed 1 block; subject 3 completed 4 blocks; and

subject 4 completed 1 block. Any trial in which a bad key — one corresponding to an (f l igh t — was

pressed was considered to be an error of commission, and any trial that took longer than 5 seconds was

considered to be an error of omission. These error trials — 12% of the total trials — were removed from the

main analysis.

All four subjects improved during the course of the experiment, but the data is somewhat ragged due to the

small number of trials. All of the data for any of these subjects fits within one data point of the graphs of

SeibeFs subjects. Figure 3-3 shows the longest of these curves (Subject 3: 408 trials).

The learning curve verifies the power-law nature of learning in this task, but we are primarily interested in

the micro-structure of within-trial performance. Figure 3-4 shows the within-trial structure of some typical

correct trials. The ten short, wide bars represent the lights, separated into the two hands. A solid outline

signifies an Ow-light, while a dotted outline marks an Oj^light The narrow bars record the amount of time

between the start of the trial, and when the button corresponding to that light was pressed.

Most of the trials show a similar pattern: groups of buttons are pressed nearly simultaneously, with gaps

between these compound responses. These compound responses are termed response groups. The numbers

above the bars denote the response group to which each keypress belongs. The response groups primarily fall

into four classes: (1) A single Cto-light; (2) A group of adjacent 0/Hights; (3) All of the On-lights in a single

hand; and (4) All of the 0/2-lights.

For subjects 1 and 2, response groups were computed by forcing any two responses within 100 msec of each

other to be in the same response group. This algorithm works because the distribution of inter-button

response times is bimodal, with a break at about 100 msec. The distributions for subjects 3 and 4 are

12 LEARNING BY CHUNKING

~s 10.0
o

0)
E
C
o

o
f.oL

.17 r = 3.6AT

10 100 WOO
Trial number [N]

Figure 3-3: Subject 3's learning curve (log-log coordinates).
The data is aggregated by groups of five trials.

unimodal, so the concept of a response group is more difficult to define, and thus less useful for them. This

difficulty is partly due to the high degree to which both of these subjects responded to all lights at once,

resulting in a paucity of inter-group times.

For all four subjects, the response groups increased in size with practice. This is exactly what we would

expect if chunking were operating. Unfortunately, it is not possible to conclude that either the presence or

growth of response groups are evidence for chunking. The size of response groups can be artificially

increased by sequentially preparing a number of fingers (poising them above the appropriate keys), and then

pressing all of the prepared fingers simultaneously (and some subjects behaved this way). It is not possible to

fully disentangle the effects of these consciously selected strategies, and changes in strategy, from the effects

of chunking.

Though the experiment provides no clear evidence for chunking, it does provide some guidance for the

construction of a model of the task. The following facts are true of the data:

• There is no single right control structure for the task. The subjects employed qualitatively
different strategies.

Each subject used predominantly one strategy, but not exclusively.

LEARNING BY CHUNKING 13

-v 5000T

o

1 4000\

| 3000\

§ 2000[
2 iooo\
oc

3 3

2 2

5000 CO
o

<2 4 0 0 0

I 3OO01

§ 2000

g fOOCl

2 2 2

L 1 1

Finger

Subject 1, Trial 10

Finger

Subject 1, Trial 117

5000
o
©

52 4 0 0 0

| 3 0 0 0
§ 2 0 0 0

u
g 1000
oc

1 1

3 3

Finger

Subject 2, Trial 22

~s 5 0 0 0 r

o

<2 4 0 0 0
>§

| 3 0 0 0

§ 2 O O 0
u

j o o o

1 1 1 1 1 1

Finger

Subject 3, Trial 351

5000
o
0)

2 4 0 0 0

| 3000

§ 2 0 0 0

O
g t o o o

6

Subject 3, Trial 10

Finger

5000 CO
u

S 4 0 0 0

3 0 0 0 1 0)
E
§ 2000

2 tooo| .
oc

1 1 1 1 1

I I
Subject 4 .Trial 19

Finger

Figure 3-4: Six typical trials.

14 LEARNING BY CHUNKING

• The lights were processed in a predominantly left-to-right fashion.

• The number of On-lights is a significant component of the reaction time. Ignoring those trials on
which all five lights on a hand were on 5, Figure 3-5 plots reaction time versus the number of
0tt-lights. The figure reveals the strong linear trend of this data; all but the final point (one
Oj^light per hand) fall close to the regression line. Subjects may be employing a different
strategy for those trials, such as preparing to press all of the keys, and then unpreparing the key
corresponding to the C^light.

6 7 8
Number of Lights On

Figure 3-5: Reaction times versus number of 0n-lights.
The data is averaged over all trials of the four subjects,
except those with 5 Cto-lights on one hand (see text).

Taking these facts into consideration, a reasonable control structure for this task can be based on a simple

iterative algorithm.

When all of the lights on one hand are on. it can be treated as a single response of the whole hand, rather than as five individual
responses. In fart the reaction times for these trials are much faster than would be expected if the five lights were being processed
separately.

LEARNING BY CHUNKING, 15

Focus a point to the left of the leftmost light
While there is an On-light to the right of the focal point Do

Locate the Cto-light
Map the light location into the location of the button under i t
Press the button.
Focus the right edge of the light

The model of practice for this task starts with this simple model of initial task performance and a chunking

mechanism. As experimental trials are processed, chunks are built out of the stimulus and response patterns

that are experienced. These chunks reduce the response time on later trials by allowing the subject to process

a group of lights on each iteration, rather than just a single light

We will return to describe the implementation of the initial performance model in Section 6 after the

architecture of the production system in which it is implemented has been laid-out

16 LEARNING BY CHUNKING

4. Constraints on the Model
A useful initial step in the development of the model is the derivation of constraints — codifications of

fundamental limitations — on the form of the model. Any particular implementation of the model is going to

be wrong, at least along some dimensions. By delineating boundaries on the set of all legitimate models,

constraints provide a means by which knowledge can be transferred to later more "correct" models of the

task, and to models in other task domains. Constraints can be formulated in terms of either the behavior of

the model, or its structure. Behavioral constraints are the weakest, and are provided in profusion by the

results of psychological experiments. The power law of practice is an example, one we are using heavily. In

essence, behavioral constraints circumscribe the input-output pairs of the model, leaving the model itself as a

black box with any number of possible internal structures.

Structural constraints are much stronger; they limit the space of structures that may be inside the box. At

their most powerful, structural constraints are capable of ruling out large classes of architectures. Though the

rewards can be substantial, formulating and proving the correctness of such constraints is difficult For each

proposed constraint proofs of four properties are required.

• Universality. The limitation must be a universal property of the performance of the system.

• Architecturality: The universality of the limitation must be a reflection of an architectural
restriction, not just a regularity of the task environment

• Minimality. The constraint must describe the minimum architectural restriction capable of
producing the limitation.

• Uniqueness: The constraint must be the only valid implementation of the architectural restriction.

Ignoring these properties can lead to overly restrictive, or simply incorrect constraints. However, these

properties are difficult to establish, and we have not succeeded in formally proving them for the constraints

we propose. Minimality is a particularly hard concept to work with because it requires an ordering on the

space of constraints, an ordering that is not always clearly defined. For some of the constraints we will not

even attempt to evaluate this property. For the remaining three properties, we have resorted to informal

arguments in their favor. Though this is a serious shortcoming, we still feel that these constraints are

reasonable and interesting.

Once we have outlined the constraints, we can proceed to a discussion of one model that sits within the

design space bounded by the constraints. Wherever possible, design decisions are justified on the basis of

these constraints. But as long as the constraints leave room for variation, these justifications can extend only

as far as showing that a mechanism is sufficient to meet a constraint Necessity can only come from a more

constrained design space.

LEARNING BY CHUNKING 17

Many sources of knowledge can be employed to generate constraints on the model. For example, a

number of computational and psychological considerations have lead to the choice of a production-system

architecture as the basis for the performance system (Newell & Simon, 1972; Newell, 1973). Other

psychological constraints have lead to further refinement in the class of production-system architectures that

is explored (see, for example, Anderson, 1976, Newell, 1980, and Thibadeau, Just, & Carpenter, In Press). In

this section we focus on those constraints derivable from the chunking theory.

The five strongest constraints have significant impact on the nature of the production-system architecture

used as the basis of the model. These five constraints are described here, leaving other weaker constraints to

be discussed as they arise in the model. The theoretical constraints take the form:

If the chunking theory is correct,

then any architecture that implements it must meet some condition.

An example of this kind of argument in another domain is:

If the theory of evolution is correct,

then any model of reproduction must allow for the inheritability of mutations.

The form of argument is similar in spirit to that made by VanLehn (1981) concerning the implications of

repair theory.

It is possible to make general arguments that all constraints derivable from the chunking theory must be

universal and are almost certainly architectural. Universality follows directly from the assumed universality of

the chunking theory of learning. If the model is universal, and some limitation is necessary wherever the

model applies, then the limitation must also be universal. Architecturality is more difficult to establish

conclusively, so we resort to a simpler plausibility argument We start by noticing that if the limitations are

universal, then either the restriction is architectural, or all task environments must reflect the limitation. Since

the former choice is the simpler assumption of the two, we feel safe in assuming it until proven incorrect

The first major constraint is a direct consequence of the performance assumption — chunks improve

performance because the time to process a chunk is less than the time required to execute the constituent

chunks. This assumption rules out one of the more obvious schemes for processing chunks: decode the chunk

into a set of sub-chunks, and then serially process the sub-chunks. Such a scheme is reasonable if chunks are

thought of as nothing more than a space-efficient code for information, but it results in the time to process a

chunk being the sum of the times to process the constituent chunks, plus some overhead for decoding. This

consideration leads us to the following constraint:

The parallel constraint: The model must contain some form of parallel processing — it cannot
have a control structure that is totally serial.

This constraint is definitely not unique. One alternative is that subchunks are processed by a second, faster,

18 LEARNING BY CHUNKING

serial process. It is difficult to distinguish a parallel process from an arbitrarily fast serial process, so the result

must be left open to this extent

The simplest control structure meeting the parallel constraint is one that processes chunks (and everything

else) in parallel. However, such an architecture would also violate the performance assumption. If any set of

chunks can be processed in parallel, packaging them into a higher-level chunk will not improve performance.

At the extreme, all of the light-button pairs in Seibel's task could be processed simultaneously, achieving an

optimal algorithm. A second constraint is required if the chunking process is to produce performance

improvements:

The bottleneck constraint: The parallel capability of the control structure must be restricted so that
a bottleneck exists. This can be a serial bottleneck, or more generally, some form of capacity
limitation.

Chunking thus improves performance by alleviating the flow through a bottleneck. As with the parallel

constraint the bottleneck constraint is not the unique response to the required limitation. One alternative is

that the problem stems from a limitation on the learning system (another part of the the architecture), rather

than on the performance system. That is, the performance system is capable of executing any set of

productions that can be acquired by the subject but the learning system is only capable of acquiring

knowledge in terms of chunks. Without a principled reason for choosing this alternative, we believe that the

bottleneck constraint should be preferred because of the existing evidence for capacity limitations in humans

(e.g., Miller, 1956).

From the first two constraints we get the picture of a parallel system with at least one bottleneck. We can

constrain this architecture even further by bounding the location of the bottleneck.

The encoding constraint: The bottleneck occurs after the process of chunk encoding has
completed.

The decoding constraint: The bottleneck occurs before the final process of chunk decoding has
begun.

If either of these constraints did not hold, then chunking would not fulfill its function of reducing the flow

through the bottleneck. These constraints appear to be minimal and unique.

With the addition of these two constraints, the architecture has been limited to one that is parallel at its

extremes, with a limited capacity in between. However, it is a mistake to think that this implies a serial

cognitive system with parallel sensory and motor components. Practice improves performance on the fall

range of human tasks, specifically including purely cognitive tasks. The processing of cognitive chunks

therefore requires parallel computation just as do sensory and motor chunks. The last theoretical constraint

— a minimal and unique one — is thus:

LEARNING BY CHUNKING

The cognitive-parallelism constraint: The locus of parallelism in the system cannot be constrained
to the sensory and motor portions of the system

20 LEARNING BY CHUNKING

5. The Xaps2 Production-System Architecture
The Xaps architecture (Rosenbloom, 1979) was designed to investigate merging the concepts from (1)

symbolic production systems (specifically, the Ops2 language (Forgy, 1977)), (2) activation models of short-

term memory (e.g. Anderson, 1976; Shiffrin & Schneider, 1977), and (3) linear associative memories (see

Anderson & Hinton (1981) for a good review of this work). From (1), Xaps got its production-system control

structure and list-based representation; from (2) came the activation values attached to working memory

elements (modeling recency, priming effects, importance, focus of attention, etc.); and from (3) came the

parallel firing of productions. The resulting design bore many resemblances to Hpsa77 (Newell, 1980) and

Act (Anderson, 1976).

The main function of Xaps was as a testbed for assumptions about the decay of working-memory elements

(such as item decay, time decay, and fixed total activation), the combination of activation values in the match,

and the use of productions as conduits of activation. Its development was actively driven by work in the LNR

group at UCSD on the modeling of motor skills (such as finger tapping and typing (Rumelhart & Norman,

1982)), recognition networks (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982), and slips of

the mind (Norman, 1981).

The Xaps2 architecture6 is a direct descendant of Xaps. Like Xaps, it is a parallel, symbolic, activation-

based production system. Xaps2 differs in having an object oriented representation (rather than a list one),

and in its control and activation assumptions7. The changes have been driven by the needs and constraints of

the current research. While the justifications for the design decisions in Xaps2 will often be given in terms of

the task at hand, we must stress that there are very few features in the language particular to this task. Xaps2

is a general purpose production-system architecture.

The following sections describe the primary non-learning components of the Xaps2 architecture: working

memory, production memory, and the cycle of execution. The chunking mechanism is properly a part of this

architecture (as it is implemented by Lisp code, not productions), but it is described later (Section 7) because

its implementation is dependent on the form of the initial performance model (Section 6)°.

Xaps2 is implemented in Maclisp running on a DecSystem 2060.

7 The assumptions in Xaps2 bear a strong family resemblance to those in the Caps architecture (Thibadeau, Just, & Carpenter, 1982).

8Our ultimate goal is to develop a task independent implementation of chunking, but until that is possible, we must live with this
unsatisfactory but necessary dependence.

LEARNING BY CHUNKING 21

5.1. Working memory
Most modern production systems concur in defining working memory to be the active set of data to which

productions attend. They diverge on the choice of a representation for the individual data elements that

compose this working-memory set In Xaps2, the basic working memory data structure is the object. In the

model of Seibel's task, individual objects are used to represent instances of goals, patterns of perceived

stimuli, and patterns of responses to be executed.

Objects are tokens, in the sense of the classical type-token distinction; they are defined by the combination

of a type and an identifier. This style of representation allows more than one instance of a type to be active

and kept distinct simultaneously, a facility required both to represent the goal structure of Seibel's task, and

for chunking stimulus and response patterns. As an example, the following object represents an instance of

the goal to perform one trial of the task9:

(OneTrial 0 b j e c t l 3 4)

The type encodes the name of the goal, while the identifier is a unique symbol encoding the goal instance.

Identifiers tend to be arbitrary symbols because they are created on the fly during execution of the model.

In addition to its two defining symbols, each object optionally has a set of attributes. These attributes

provide a description of the object containing them. For example, the description of a goal includes a

statement of its current STATUS — should we Start fulfilling the goal, or is it already Done. When the relevant

attributes, and their values, are added to the above goal instance, the object looks like:

(OneTrial 0 b j e c t l 3 4 [INITIAL-LOCATION 0.99][STATUS Done])
The object has two attributes: initial-location, which tells us to start looking for stimulus patterns at

location 0.99, and STATUS, which tells us that this particular goal instance is Done. The type and identifier are

definitional characteristics of an object in that changing either of them creates a new object In contrast, the

values of attributes can be changed as needed — such as when the status of a goal changes — without

affecting the identity of the object

An important (and unusual) aspect of the Xaps2 working memory representation is that an attribute may in

fact have more than one value represented for it at the same time. Each reflects a proposed value for the

attribute. Parallel execution of productions often results in two productions simultaneously asserting different

values for the same attribute of an object This conflict is resolved by allowing both (or all) of the proposed

values to be placed in working memory. The final selection of which value to employ is made on the basis of

accumulated evidence about the choices.

9
In this and following examples, the notation has been modified for clarity of presentation. Some of the names have been expanded or

modified. In addition, types have been made bold, identifiers are in the normal roman font, attributes are in small capitals and values
are italicized.

22 LEARNING BY CHUNKING

Augmenting the previous example with the appropriate additional values yields the full symbolic

representation of the object:
(OneTrial 0 b j e c t l 3 4

[INITIAL-LOCATION 0.99 None 0.0 0.36]
[STATUS Done Initialize Object 138 Object 144 OnePattern Start])

Up to this point, working memory has been described as a totally symbolic structure consisting of a set of

objects. What has been ignored is the active competition for attention that occurs among these symbols.

Attention is modelled by associating an activation value with each type, identifier, and value. This is simply a

real number in the range [-1, 1]. A positive value indicates active presence in working memory, a negative

value indicates inhibition of the item, and a zero value is equivalent to absence from working memory.

Activation values in the range [-.0001, .0001] are sub-threshold, and assumed to be zero.

While types, identifiers, and values all have activation levels, they do not directly compete with each other.

Instead, each competes within a limited scope: the types compete with each other; the identifiers compete

with each other within each type; and the values compete with each other within each attribute of each object

The rule is that competition occurs between two symbols if and only if a process of selection is possible

between them.

Competition clearly occurs among the alternative values within an attribute. If we want to know the

STATUS of a goal, we need to select the best value from the set of proposed ones. Competition also occurs

between instances of the same type; for example, the model of Seibel's task must repeatedly choose one light

to attend to out of all of the stimuli that make up the model's visual input Competition between types

generally involves a choice between different goals. The utility of this is currently unclear.

One place where competition is not appropriate is among attributes within an object Attributes contain

information about orthogonal dimensions of an object, so competition is not only not required, but it is

actually a hindrance. An early version of Xaps2 did include competition between attributes, but it was

abandoned because of the ensuing difficulty of simultaneously maintaining the independent pieces of

knowledge about an object

Within the scope of each competition, the activation values are kept normalized by forcing the absolute

values of the activations to sum to 1. The absolute values of the activations are used because of the presence

of negative activations (inhibition). This concept of normalizing working memory is derived from work on

associative memories (Anderson, 1977). It is employed in Xaps2 to ensure that the levels of activation in the

system remain bounded. The normalization process has a number of implications for the maintenance of

activation in Xaps2.

LEARNING BY CHUNKING 23

• It produces a set of independent capacity limitations — one for each scope of competition. These
are not fixed limits on the number of items; instead they are limits on the amount of activation
available to keep items in working memory. They impose variable limits on the number of active
items.

• It implements a form of mutual inhibition between the competing items. Which items are
inhibited, and by how much, is determined dynamically as a function of the competing items.

• It defines a saturation level (ceiling) of 1 for the activation of any item.

With activation values included (in angle brackets), the example working memory object becomes:
(OneTrial<0 .1606> Ob j e c t l 3 4 < l . 0>

[INITIAL-LOCATION 0.99<O . 75> None<0 .1406>
0 . 0 < O . O 1 5 6 > O..?<5<0.0938>]

[STATUS Done<Q.5> Initialized . 0078>
Objectl38<0 .0313> Objectl44<0.125>
OnePattern<0.3281> Start<0.0078>])

For convenience we will refer to that value of an attribute that has the highest activation level as the dominant

value of that attribute. In this object, the values 0.99 and Done are the dominant values for the

INITIAL-LOCATION and STATUS attributes respectively.

5.2. Production memory
Productions in Xaps2 contain the standard components: a set of conditions, which are partial specifications

of objects in working memory; and a set of actions that result in changes to working memory. In addition,

each production has an execution-type; either Always, Once, or Decay. These have implications for conflict

resolution and action execution, and are therefore discussed in those sections. Here is the definition of a

typical production along with a rough english-like paraphrase of what it does 1 0:
(DefProd AfterOneStimulusPattern Always

((OnePattern = G o a l I d e n t i f i e r [STATUS =SubGoalldentifier])
(OneStimulusPattern =SubGoal Ident i f ier [STATUS Done}))

—•

((OnePattern = G o a l I d e n t i f i e r [STATUS MapOnePattern'])))
If there is an instance of the OnePattern goal

that is suspended while a sub-goal is being pursued
and that subgoal is an instance of the OneStimulusPattern goal

that has completed (the STATUS is Done),
then establish a new sub-goal for the OnePattern goal

that is an instance of the MapOnePattern goal.

1 0 T h e syntax of this production has been modified slightly for presentation purposes. Symbols beginning with " = " are variables (see
Section 5.3.1). This is the only example of the internal form of a production to appear; in the remainder of this paper we use the
paraphrase form.

24 LEARNING BY CHUNKING

This production, called AfterOneStimulusPattern. is an Always production with two conditions and one

action. Notice that conditions and actions do not specify activation values (or weights). The activation values

in working memory are used in the production system cycle (see below), but productions themselves are

totally symbolic. The details of the conditions and actions are discussed in the following section on the

production system cycle.

5.3. The production system cycle
The recognize/act production system cycle is mapped onto a four stage cycle in Xaps2. Recognition

consists of (1) the match, and (2) conflict resolution. Actions are performed by (3) executing the production

instantiations, and (4) updating working memory. The match starts with the productions and working

memory, and returns a set of legal production instantiations (productions with all free parameters bound).

Conflict resolution takes this set of instantiations and determines which ones should be executed on the

current cycle. These production instantiations are then executed, with the results being accumulated into a

pre-update structure. This structure is then merged with working memory in the final stage, to yield the

working memory for the next cycle. The following sections treat these four topics in more detail.

5 .3 .1 . The match
The match is responsible for computing a candidate set of executable productions and parameters for those

productions. This is accomplished by matching production conditions to objects in working memory. The

conditions of all of the productions are simultaneously matched against working memory; providing one

source of the parallelism required by the parallel constraint Each condition partially specifies an object as a

pattern built out of constant symbols, variables, and real-number comparison functions. The components of

an object (type, identifier, attributes, and values) differ in the kinds of patterns that can be created for them.

Types are specified by constant symbols only — signifying that an exact match is required.
In general, variables are required only when the correct value is not known a priori; that is,
when a run-time selection must be made among competing alternatives. Since types
compete for attention (Section 5.3.3), but dynamic selection among them is not required,
variables are not needed.

Identifiers are specified primarily by variables, but occasionally by constant symbols. A
variable can match any identifier, as long as multiple instances of the same variable match
the same thing, within a single production.

Identifiers are usually created dynamically by the system — as in the creation of a new goal
instance — and are thus not available to existing productions. Run-time selection among
identifiers is the rule. Specification of the type, and a description in terms of the object's
attributes, yields the identifier of the object as the binding of a variable.

Every attribute that is specified in the condition must successfully match against the object

Type

Identifier

ATTRIBUTES

LEARNING BY CHUNKING 25

in working memory, but the reverse is not true. There may be attributes in the object that
are not specified in the condition. This allows conditions to partially specify objects by
describing only known attributes.

When an attribute is specified, it is always a constant symbol. Variables are not allowed
because, as with types, attribute names are known when productions are created.
Searching for a value when the attribute is unknown i$ thus disallowed in the match.

Values Values are specified by constant symbols, variables, and real-number comparison functions
(discussed below). The specification is matched only against the dominant value of the
attribute. Many values can be proposed for each attribute, but the match can see an object
in only one way at a time (according to its dominant values). This mechanism enables
productions to perform a selection of the "best" value for each attribute.

If the pattern for a value is negated, the match succeeds only if no successful match is found
for the pattern. Again, only the dominant values are involved in the determination.

The process of matching the condition side of a production to working memory produces instantiations of

the production. An instantiation consists of all of the information required to execute the actions of a

production: the production name, bindings for all of the variables in the production, and an activation value.

More than one instantiation can be generated for a production through different combinations of bindings to

the variables. For an instantiation to be generated, each condition must be successfully matched to some

positively activated object in working memory. As with values of attributes, whole conditions can be negated,

signifying that the match succeeds only if no successful match is found for the condition.

The function of the first two components of an instantiation — the production name and variable bindings

— should be obvious; they determine which actions to execute, and what values will be passed as parameters

to those actions. The functions of the activation value are less obvious: it establishes an ordering on the

instantiations of a single production (used in conflict resolution, Section 5.3.2), and it provides activation

values for the results of the production's actions (Section 5.3.3). The value is computed by first calculating an

activation value for the match of each condition, and then combining them into a single value. The

combination function has been tuned so that it gives preference to large condition sides with well matched

conditions (highly activated condition matches). Favoring large condition sides is analogous to the special-

case conflict resolution strategy in the Ops languages. The computation is the sum of the condition activations

divided by the square root of the number of conditions. This computation is half way between summing the

activations, emphasizing the number of conditions, and taking the average, emphasizing the activation of the

condition matches. Negated conditions have no effect on this computation.

The activation of a condition match is computed from (1) the working-memory activation of the object

matched by the condition, and (2) the goodness-of-fit of the object's description (in terms of its attributes) to

26
LEARNING BY CHUNKING

the partial description specified by the condition. The first component, the activation of the working-memory

object, is defined to be the product of the activations of its type, and its identifier. The choice of

multiplicative combination (as opposed to additive, or some other scheme) is somewhat ad hoc. It was chosen

because it causes the sum of the activations of all of the objects in a type to equal the activation of the type.

Ob j e c t l 3 4 in Section 5.1 has an activation of0.1606 (= 0.1606x1.0).

The goodness-of-fit of the match is determined by how well the values of the object's attributes are fit by

the patterns in the condition. When the values of an attribute are defined on a nominal scale (i.e., they are

symbolic), the match must be all-or-none, so a successful match is a perfect match (assigned a value of 1.0).

When the values are defined on a ratio scale (i.e. a real number), a more sophisticated partial match is possible

(this is the real-number match alluded to earlier). The pattern for such a value specifies the expected value,

and an interval around the expected value in which the match is considered to have succeeded. The

goodness-of-fit is perfect (1.0) for the expected value, and decreases monotonically to threshold (0.0001) at the

edge of the interval.

Activation =

This partial match can be symmetric, with the match interval defined on both sides of the expected value, or

one sided (just greater-than or just less-than). Though this partial matching mechanism was added to Xaps2

to model the topological space in which Seibel's task is defined, its utility is definitely not limited to just this

task.

The total goodness-of-fit measure is the product of the measures for each of the attributes in the condition.

The activation of the condition match can then be defined as the product of this measure and the activation of

the working-memory object No deep justification will be attempted for this scheme; it is enough that it is

one possible mechanism and that it has proven more tractable in practice than the alternatives that have been

tried.

To make this whole mechanism more concrete, consider as an example the match of the following

condition to Ob j e c t 134:

If there is an instance of the OneTrial goal
that has an INITIAL-LOCATION > 0.7 (within 1.0)

In this condition, the type is specified by the constant symbol OneTrial, and the identifier is specified as a
variable (signified by an equals sign before the name of the variable) named Identifier. These both match
successfully, so the activation of the object is 0.1606 (as computed above). There is only one attribute
specified, so its goodness-of-fit is simply multiplied by 0.1606 to get the activation of the condition. The value
is specified by the condition as a one-sided (greater than) real-number comparison with the interval for a

LEARNING BY CHUNKING 27

successful match set to 1.0. The expected value (0.7) is compared with the dominant value of the

INITIAL-LOCATION attribute (0.99), yielding a goodness of fit of 0.4609 (from Equation 8). The activation for

this match is thus 0.0740 (= 0.1606x0.4609).

5.3.2. Conflict resolution

Conflict resolution selects which of the instantiations generated by the match should be fired on a cycle.

This is done by using rules to eliminate unwanted instantiations. The first rule performs a thresholding

operation.

• Eliminate any instantiation with an activation value lower than .0001.

The second rule is based on the hypothesis that productions are a limited resource.

• Eliminate all but the most highly activated instantiation for each production.

This rule is similar to the special case and working-memory recency rules in the Ops languages. It allows the

selection of the most focussed (activated) object from a set of alternatives. Following the execution of these

conflict-resolution rules, there is at most one instantiation remaining for each production. While this

eliminates within-production parallelism, between-production parallelism has not been restricted. It is

possible for one instantiation of every production to be simultaneously executing. This provides a second

locus of the parallelism required by the parallel constraint

What happens next depends on the execution-types of the productions that generated the instantiations
(see Section 5.2).

• Instantiations of Always productions are always fired.

• Instantiations of Decay productions are always fired, but the activation of the instantiation is cut
in half each time the identical instantiation fires on successive cycles. A change in the
instantiation occurs when one of the variable bindings is altered. This causes the activation to be
immediately restored to its full value.

• Instantiations of Once productions are fired only on the first cycle in which the instantiation
would otherwise be eligible. This is a form of refractory inhibition.

Standard Xaps2 productions are of execution-type Always, and nearly all of the productions in the model

are of this type. Decay productions have found limited use as a resettable clock (Section 7.1.12), while no

productions of execution-type Once have been employed.

28 LEARNING BY CHUNKING

5.3.3. Production execution
Following conflict resolution, all of the instantiations still eligible are fired in parallel, resulting in the

execution of the productions' actions. Each production may execute one or more actions, providing a third

type of parallelism in the architecture. The actions look like conditions (see the example in Section 5.2); they

are partial specifications of working-memory objects. Execution of an action results in the creation of a fully

specified version of the object Variables in the action are replaced by the values bound to those variables

during the match, and new symbols are created as requested by the action.

Unlike the Ops languages, actions only cause modifications to working memory; they are not a means by

which the model can communicate with the outside world. Communication is an explicit part of the task

model (Section 6.1). Actions modify working memory in an indirect fashion. The effects of all of the actions

on one cycle are accumulated into a single data structure representing the updates to be made to working

memory. The actual updating occurs in the next (and final) stage of the production system cycle (described in

the following section).

The first step in creating the pre-update structure is to assign activation levels to the components of the

objects asserted by the production actions. The identifier of the objects, and all of the values asserted for

attributes, are assigned an activation level equal to the activation of the production instantiation asserting

them. This allows activation to flow through the system under the direction of productions (like

Hpsa77 (Newell, 1980) and Caps (Thibadeau, Just & Carpenter, 1982)), as opposed to the undirected flow

employed by spreading-activation models (Anderson, 1976). No good scheme has been developed for

assigning activation to the type; currently, it is just given a fixed activation of 1.0. The activation levels can be

made negative by inhibiting either the whole object or a specific value. This is analogous to the negation of

conditions (and values) during the match.

If the same object is asserted by more than one action, the effects are accumulated into a single

representation of the object: the type activation is set to the same fixed constant of 1.0; the identifier

activations are summed and assigned as the identifier activation; and all of the activations of the same value

(of the same attribute) are summed and assigned as the activation of that value. This aggregation solves the

problem of synchronizing simultaneous modifications of working memory. Activation and inhibition are

commutative, allowing the actions to be executed in any order without changing the result The same is not

true of the operations of insertion and deletion, as used in the Ops languages.

After the actions have been aggregated, any external stimuli to the system are added into this structure.

External stimuli are objects that come from outside of the production system, such as the lights in Seibel's

task. These stimuli are inserted into the pre-update structure just as if they were the results of production

LEARNING BY CHUNKING
29

actions. An activation value of 0.01 is used for them. This level is high enough for the stimuli to affect the

system, and low enough for internally generated objects to be able to dominate them.

Following the inclusion of stimuli, the pre-update structure is normalized (just as if it were the working

memory) and used to update the current working-memory state (Section 5.3.4). Normalization of the pre-

update structure allows for the control of the relative weights of the new information (the pre-update

structure) and the old information (working memory).

5.3.4. Updating of working memory

The updates to working memory could be used simply as a replacement for the old working memory (as in

Joshi, 1978), but that would result in working memory being peculiarly memoryless. By combining the

pre-update structure with the current working memory, we get a system that is sensitive to new information,

but remembers the past, for at least a short time. Many combination rules (such as adding the two structures

together) are possible, and many were experimented with in Xaps. In Xaps2, the two are simply averaged

together. This particular choice was made because it interacts most easily with the lack of refractoriness in

production firing. The updates can be thought of as specifying some desired state to which the productions

are trying to drive working memory. Repetitive firing of the same set of production instantiations results in

working memory asymptotically approaching the desired state. Any weighted sum of the new and the old

(with the weights summing to 1) would yield similar results, with change being either slower or faster.

Averaging (equal weights of 0.5) was chosen because it is a reasonable null assumption.

Anything that is in one of the states being combined but not the other is assumed to be there with an
activation value of 0.0. Thus, ignoring normalization, items not currently being asserted by productions (ie.,
not in the pre-update structure) exponentially decay to zero, while asserted items exponentially approach their
asserted activation levels. This applies to inhibited as well as activated items — inhibition decays to zero if it
is not continually reasserted.

Averaging the two working-memory states preserves the total activation, modulo small threshold effects, so
the effects of normalization are minimal when it is employed with this combination rule. It has a noticeable
effect only when no item within the scope of the normalization is being asserted by a production. Without
normalization, all of the items would decay to zero. With normalization, this decay is reversed so that the
activations of the items once again sum to 1. The result is that the activations of the items remain unchanged.
Basically, items stick around as long as they have no active competition. Old items that have competition
from new items will decay away.

One consequence of the gradual updating of working memory is that it often takes more than one cycle to

30
LEARNING BY CHUNKING

achieve a desired effect This typically happens when the dominant value of an attribute is being changed.

Addition of new attributes can always be accomplished in one cycle, but modifying old ones may take longer.

It is essential that knowledge of the desired change remain available until the change has actually been made.

In fact some form of test production is frequently required to detect when the change has been completed,

before allowing processing to continue.

LEARNING BY CHUNKING
31

6. The Initial Performance Model
The chunking theory has been applied to SeibeFs task, yielding a model that improves its performance with

practice. Not covered by this model is the initial learning of a correct method for the task. Our future plans

include extending the chunking theory to the domain of method acquisition, but until then, the model must

be initialized with a correct method for performing the task. We consider only a single method, based on the

algorithm at the end of Section 3, though subjects exhibit a range of methods. This method is straightforward

but slow — efficiency comes from chunking.

The algorithm is implemented as a hierarchy of five goals (Figure 6-1). Each goal is a working-memory
type, and each goal instance is an object of the relevant type. In addition to the goal-types, there are two types
representing the model's interfaces with the outside world, one at the stimulus end, and the other at the
response end. We will start with a description of these interfaces, and then plunge into the details of the
model's internal goal hierarchy.

Or^timulusPatterr^ Cg^Response Patten

Figure 6-1: The model's goal hierarchy for Seibel's task.

6.1 . Interfacing with the outside world
The model interacts with the outside world through two two-dimensional euclidean spaces. These spaces

are defined in terms of object-centered coordinates. One space, the stimulus space, represents the information
received by the model as to the location of the lights within the stimulus array. The other space, the response
space, represents the information that the model transmits to the motor system.

32
LEARNING BY CHUNKING

The locations of objects within these spaces are specified by relative x,y coordinates. The exact coordinate

system used is not critical, but this particular one has proven to be convenient The use of rectangular

coordinates allows left-to-right traversal across the lights to be accomplished by just increasing x. With

relative coordinates, the left (top) edge of the space is 0.0, and the right (bottom) edge is 1.0. Since the

buttons and lights in the task have been arranged so as to maximize the compatibility of their locations, using

the same set of relative coordinates for the two spaces makes trivial the job of mapping stimulus locations into

response locations.

6 . 1 . 1 . The stimulus space
The stimulus space is a rectangle just bounding the total array of lights. To the model, this array appears as

a set of objects representing the lights (both On and Off). A typical On-light looks like (ignoring activations):

(External-Stimulus 0b jec t0012 [COMPONENT-PATTERN On] [SPATIAL-PATTERN One]
[MINIMUM-X 0.21] [MAXIMUM-X 0.36]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.30])

All stimuli have the same type (External-Stimulus), but the identifier is unique to this light on this trial

Productions must match the object by a description of it, rather than by its name.

A total of six attributes are used to describe the stimulus object Two of the attributes

(COMPONENT-PATTERN and SPATIAL-PATTERN) specify the pattern represented by the object The particular

stimulus object above represents just a single Cto-light but stimulus objects can represent patterns of arbitrary

complexity (such as an arrangement of multiple lights). The attribute COMPONENT-PATTERN specifies what

kind of objects make up the pattern — limited to On and Off (lights) for this task. The other attribute,

SPATIAL-PATTERN, specifies the spatial arrangement of those components. The value One given in object

0b j ec tO 012 signifies that the object consists of one O/i-light and nothing else. This single value suffices for

the initial performance model, but others are created when new chunks are built

The remaining four attributes (MINIMUM-X, MAXIMUM-X, MINIMUM-Y, and MAXIMUM-Y) define the

bounding box of the stimulus pattern. The bounding box is a rectangle just large enough to enclose the

stimulus. It is specified by its minimum and maximum x and y coordinates. For example, object

0b j ec tO 012 above is flush against the top of the stimulus space, and a little left of center.

We make the simplifying assumption that the entire array of lights is constantly within the model's "visual

field". This cannot be literally true for our subjects because of the large visual angle subtended by the display

(16"), but was more true for Seibel's subjects who worked with a display covering 7° of arc. Because the model

is assumed to be staring at the lights at all times during performance of the task, the stimulus objects are

inserted into working memory on every cycle of the production system (see Section 5.3.3 for how this is done).

LEARNING BY CHUNKING
33

6.1.2. The response space

The response space is constructed analogously to the stimulus space; it is a rectangle just bounding the

array of buttons. This is a response space (as opposed to a stimulus space) because the objects in it represent

patterns of modifications to be made to the environment, rather than patterns of stimuli perceived in the

environment. Objects in this space represent locations at which the model is going to press (or not press).

The fingers are not explicitly modelled; it is assumed that some other portion of the organism enables finger

movement according to the combination of location and action.

Response objects look much like stimulus objects. For example, the response object corresponding to
stimulus object Ob j e c 10 012 might look like:

(External-Response 0b jec t0141 [COMPONENT-PATTERN Press] [SPATIAL-PATTERN One]
[MINIMUM-X 03] [MAXIMUM-X 0.36]
[MINIMUM-Y 0.0] [MAXIMUM-Y 0.2])

The only differences are the type (External-Response), the identifier, which is unique to this instance of this
response, and the value of COMPONENT-PATTERN, which is Press rather than On.

Response objects are created dynamically by the model as they are needed. Once they are created,
response objects hang around in working memory until competition from newer ones causes them to drop
out

6.2. The control structure: a goal hierarchy
The control structure imposed upon the Xapsl architecture is that of a goal hierarchy. This control

structure is totally serial at the level of the goal. Information about proposed subgoals and suspended

supergoals can coexist with the processing of a goal instance, but only one such instance can be actively

pursued at a time. The choice of this tightly controlled structure is not forced by the nature of the

architecture. Instead, it came from the following three motivations.

• The control structure provides the bottleneck required by the bottleneck constraint Though this
satisfies the constraint it does so only in a weak sense because it is not an architectural limitation.
This contrasts with Hpsa 77 (Newell, 1980), in which the mechanism of variable binding creates a
structural bottleneck in the architecture.

• The bottleneck is only across goals, not within goals. During the processing of goal instances,
productions are free to execute in parallel. The parallel constraint is therefore still met In
addition, the cognitive-parallelism constraint is met; goals are employed all through the
performance system, so the locus of parallelism is not limited to just the sensory and motor
components.

• Complicated execution paths (such as iterative loops) are difficult to construct in loosely
controlled systems. While such systems may be logically adequate, convincing activation-based

34
LEARNING BY CHUNKING

control schemes to loop, solely on the basis of activation values, has proven difficult to
accomplish.

The first requirement of a system that employs a goal hierarchy is a representation for the goals. As stated

earlier, each goal is represented as an object type, and a goal instance is represented as an object with a unique

identifier. 0 b j e c t l 3 4 i n Section 5.1 represents a typical goal instance — the goal name is OneTrial, and the

identifier i s 0 b j e c t l 3 4 . Because goals can be distinguished by their types, and multiple instances of the

same goal can be distinguished by their identifiers, it is possible to maintain information about a number of

goal instances simultaneously.

The goal hierarchy is processed in a depth-first fashion, so the second requirement is a stack in which the

current state of execution can be represented. In Xapsl, working memory does not behave as a stack; more

recent objects will tend to be more highly activated, but this is not sufficient for the implementation of a goal

hierarchy. The primary difficulty involves simultaneously keeping the goals in the stack active and

maintaining the proper ordering among them. If the stack is just left alone, subgoal activity causes the objects

in the stack to decay. The oldest objects may very well decay right out of working memory. If the stack is

continually refreshed by reassertion of its elements into working memory, then the ordering, which depends

on activation levels, will be disturbed. Some variation on this scheme may still work, but we have instead

pursued a more symbolic representation of the goal stack.

Each goal instance has a STATUS attribute. Together, the STATUS attributes (that is, the dominant value of

the STATUS attributes) of the active goal instances completely determine the control state of the model. Three

common STATUS values are Start, Started, and Done. Start means that the goal is being initialized; Started

signifies that initialization is complete and that the goal is being pursued; and Done signifies that the goal has

completed The stack is implemented by pointing to the current subgoal of a suspended supergoal via the

STATUS attribute of the supergoal. Notice that any goal instance whose STATUS is the identifier of some other

goal instance must be suspended by definition, because its STATUS is no longer Started. A goal can therefore

be interrupted at any time by a production that changes its STATUS from Started to some other value.

Execution of the goal resumes when the STATUS is changed back to Started.

Activating a subgoal of a currently active goal is a multi-step operation. The first step is for the goal to

signify that it wants to activate a subgoal of a particular type. This is accomplished by changing the STATUS of

the goal to the type of the subgoal that should be started. This enables the productions that create the new

subgoal instance. Four tasks must be performed whenever a new subgoal is started.

1. The current goal instance must be blocked from further execution, until the subgoal is completed.

LEARNING BY CHUNKING
35

2. A new instance of the subgoal must be created. This is a new object with its own unique
identifier.

3. The parameters, if any, must be passed from the current goal instance to the subgoal instance.

4. A link, implementing the stack, must be created between the current goal instance and the new
subgoal instance.

As noted above, the supergoal is suspended as soon as the desire for the subgoal is expressed (task 1).

Changing the STATUS of the current goal instance effectively blocks further effort on the goal. The other

three tasks are performed by a set of three productions. Because the type of an object (in this case, the name

of the goal) cannot be matched by a variable, a distinct set of productions is required for each combination of

goal and subgoal. One benefit of this restriction is that the goal-instance creation productions can perform

parameter passing from goal to subgoal as part of the creation of the new instance. The first production of the

three, performs precisely these two tasks: (2) subgoal creation, and (3) parameter passing. Schematically,

these productions take the following form.

Production schema StarKGoal name>:

/ / the current goal instance has a subgoal name as its STATUS
then generate a new instance of the subgoal with STATUS Start

(parameters to the subgoal are passed as other attributes).

When such a production executes, it generates a new symbol to be used as the identifier of the object
representing the goal instance. The second production builds a stack link from a goal to its subgoal (task 4),
by copying this new identifier into the STATUS attribute of the current goal instance. This must be done after
the first production fires, because this production must examine the newly created object to determine the
identifier of the new goal instance.

Production schema CreateStackLink<Goal name>:

If the current goal instance has a subgoal name as its STATUS
and there is an active object of that type with STATUS Start

then replace the goal's STATUS with the subgoal's identifier.

The third production checks that all four tasks have been correctly performed before enabling work on the
subgoal:

Production schema Started<Goal name>:

If the current goal instance has a subgoal identifier as its STATUS
and that subgoal has STATUS Start

then change the STATUS of the subgoal to Started.

At first glance, it would appear that the action of this third production could just be added to the second

36
LEARNING BY CHUNKING

production. In most production systems this would work fine, but in Xapsl it doesn't. One production would

be changing the values of two attributes at once. Since there is no guarantee that both alterations would

happen in one cycle, a race condition would ensue. If the subgoal is Started, before the stack link is created,

the link will never be created. Generally in Xaps2, separate productions are required to make a modification

and test that the modification has been performed.

It generally takes one cycle of the production system to express the desire for a subgoal, and three cycles to

activate the subgoal (one cycle for each of the three productions), for a total of four cycles of overhead for

each new subgoal. This number may be slightly larger when any of the modifications requires more than one

cycle to be completed.

Goals are terminated by test productions that sense appropriate conditions and change the STATUS of the

goal instance to Done. If the subgoal is to return a result, then an intermediate STATUS of Result is generated

by the test productions, and additional productions are employed to return the result to the parent goal and

change the STATUS of the subgoal instance to Done, once it has checked that the result has actually been

returned. The standard way of returning a result in Xaps2 is to assert it as the new value for some attribute of

the parent goal instance. It may take several cycles before it becomes the dominant value, so the production

that changes the STATUS to Done waits until the result has become the dominant value before firing.

Terminating a goal instance generally requires one cycle, plus between zero and four cycles to return a result

The parent goal senses that the subgoal has completed by looking for an object of the subgoal type whose

identifier is identical to the parent's STATUS, and whose own STATUS is Done. Once this condition is detected,

the parent goal is free to request the next subgoal, or to continue in any way that it sees fit

The mechanism described so far solves the problem of maintaining the order of stacked goal instances.

However, it does not prevent the objects representing these instances from decaying out of working memory.

This is resolved by an additional production for each goal-subgoal combination that passes activation from

the goal type to the subgoal type. The topmost goal type passes activation to itself and downwards to the next

level. All of the other goal types simply pass activation to their subgoal types. These productions fire on

every cycle.

Keeping the types (goals) active insures that at least one instance of each goal can be retained on the stack.

Multiple instances of the same goal, such as would be generated by recursion, would result in lossage of

instances through competition. In order for recursion to work, either the architecture would have to be

changed to fire all instantiations of a production (one goal instance per instantiation) instead of only the

"best", or a separate production would be required for each instance (which must be created dynamically, as

are the goal instances). The five goal types are discussed in the following sections.

LEARNING BY CHUNKING 37

6 .2 .1 . The Seibel goal

Seibel is the top level goal type for the task. It enters the working memory as a stimulus from the outside

world (see Section 5.3.3 for a discussion of stimuli), corresponding to a request to perform the task. The

Seibel goal type is used solely to keep the OneTrial goal active.

6.2.2. The OneTrial goal

A desire for a new instance of the OneTrial goal is generated exogenously each time the stimulus array is
changed, that is, once each trial. Both this desire, and the new stimulus array are inserted into working
memory as stimuli. The Seibel goal could have detected the presence of a new stimulus array and generated
the OneTrial goal directly, but we have taken this simpler approach for the time being because we wanted to
focus our attention on within-trial processing.

The OneTrial goal implements the following aspects of the performance algorithm (Section 3):
Focus a point to the left of the leftmost light
While there is an On-light to the right of the focal point Do

<Goal OnePattem>

The point of focus is modelled as the value of an attribute (INITIAL-LOCATION) of the OneTrial goal
instance. This should be thought of as the focus of attention within the visual field, rather than as the locus of
eye-fixation. Setting the initial focus takes two cycles. First the goal's STATUS is changed to Initialize, and
then a production which triggers off of that STATUS, sets the value of the INITIAL-LOCATION to 0.0 (the left
edge of the stimulus space).

The entire body of the While loop has been moved inside of a single goal (OnePattern), so the loop is

implemented by repeatedly starting up OnePattern goal instances. The first instance is created when a test

production has determined that the INITIAL-LOCATION has been set Subsequent instances are established

whenever the active OnePattern instance has completed. The focal point gets updated between iterations

because the OnePattern goal returns as its result the right edge of the light pattern that it processed. This

result is assigned to the INITIAL-LOCATION attribute.

What we have described so far is an infinite loop; new instances of the OnePattern goal are generated

endlessly. This is converted into a While loop with the addition of a single production of the following form.

Production DoneOneTrial:

/ / there is a OneTrial goal with STATUS OnePattern
and there is no On-light to the right of its INITIAL-LOCATION

then the OneTrial goal is Done.

38
LEARNING BY CHUNKING

The test for an Cto-light to the right of the INITIAL-LOCATION is performed by a one-sided (greater than)

real-number match to the MINIMUM-X values of the stimulus objects. The expected value is the

INITIAL-LOCATION, and the interval is 1.0. The match will succeed if there is another light to the right, and

fail otherwise. The production above, therefore has this test negated.

The reaction time for the model on Seibel's task is computed from the total number of cycles required to

complete (STATUS of Done) one instance of the OneTrial goal. Experimentally, this has been determined to

be a fixed overhead of approximately 13 cycles per trial, plus approximately 31 cycles for each On-light — an

instance of the OnePattern goal (see Section 8.1). These numbers, and those for the following goals, are from

the full performance model, which is the initial performance model with some additional overhead for the

integration of chunking into the control structure (Sections 7.1.1.2 and 7.1.2).

6.2.3. The OnePattern goal
The OnePattern goals control the four steps inside the While loop of the performance strategy:

Locate the 0/i-light
Map the light location into the location of the button under i t
Press the button.
Focus the right edge of the light

Two of these steps (Map and Focus) are performed directly by the goal instance, and two (Locate and Press)

are performed by subgoals (OneStimulusPattern and OneResponsePattera).

At the start a typical instance of the OnePattern goal looks like 1 1:
(OnePattern 0b j ec t45 [INITIAL-LOCATION 0.0])

The first step is to locate the next stimulus pattern to process. This is accomplished by a subgoal,
OneStimulusPattern, which receives as a parameter the INITIAL-LOCATION, and returns the attributes of the
first <9fl-light to the right of the INITIAL-LOCATION. These attributes are added to the OnePattern instance, to

yield an object like:
(OnePattern 0b j ec t45

[INITIAL-LOCATION 0.0]
[STIMULUS-COMPONENT-PATTERN On] [STIMULUS-SPATIAL-PATTERN One]
[STIMULUS-MINIMUM-X 0.21] [STIMULUS-MAXIMUM-X 0.36]
[STIMULUS-MINIMUM-Y 0.00] [STIMULUS-MAXIMUM-Y 0.30])

The mapping between stimulus and response is currently wired directly into the performance algorithm.

This is sufficient but not essential for the current model. In some follow-on work we are investigating the

relationship between this model and stimulus-response compatibility. In these systems, the mapping is

n F o r simplicity of presentation, an additional STATUS attribute in the following three examples is not shown.

LEARNING BY CHUNKING 39

performed in a separate sub-goal. This provides flexibility, and the ability to perform a considerable amount

of processing during the mapping.

The mapping employed in the current model is a minimal one; all that is required is turning the stimulus

attributes into response attributes, and changing the COMPONENT-PATTERN from On to Press. This mapping

is performed by a single production to yield an object of the following form.

(OnePattern 0b j ec t45
[INITIAL-LOCATION 0.0]
[STIMULUS-COMPONENT-PATTERN On] [STIMULUS-SPATIAL-PATTERN One]
[STIMULUS-MINIMUM-X 0.21] [STIMULUS-MAXIMUM-X 0.36]
[STIMULUS-MINIMUM-Y 0.00] [STIMULUS-MAXIMUM-Y 0.30])
[RESPONSE-COMPONENT-PATTERN Press] [RESPONSE-SPATIAL-PATTERN One]
[RESPONSE-MINIMUM-X 0.21] [RESPONSE-MAXIMUM-X 0.36]
[RESPONSE-MINIMUM-Y 0.00] [RESPONSE-MAXIMUM-Y 0.30])

These response parameters are passed to a subgoal, OneResponsePattern, that converts them into a new

response object Following completion of this subgoal, the OnePattern goal terminates, passing the

coordinate of the right edge of the selected stimulus pattern as its result (to be used as the focal point for the

next search).

Not counting the time to perform its two subgoals, a typical instance of this goal requires 12 cycles of the
production system, including the overhead involved in starting and finishing the goal.

6.2.4. The OneStimulusPattern goal

The OneStimulusPattern goal is responsible for finding the next On-light to the right of the

INITIAL-LOCATION, which it receives as a parameter from its parent OnePattern goal. This selection is made

by a single production employing the same type of one-sided real-number match used to determine when the

trial has completed (Section 6.2.2). It looks for an On-light to the right of the INITIAL-LOCATION for which

there are no other On-lights between it and the INITIAL-LOCATION, (recall that Oj^lights are ignored in this

algorithm). As long as there is some On-light to the right of the INITIAL-LOCATION it will be found. If there is

more than one, the closest one to the INITIAL-LOCATION is selected. On completion, the goal instance returns

the values of the six attributes describing the selected stimulus pattern to the parent OnePattern goat

A typical instance of this goal requires 9 cycles of the production system, including the overhead involved
in starting and finishing the goal, though it may be higher.

40 LEARNING BY CHUNKING

6.2.5. The OneResponsePattern goal

Conceptually, the OneResponsePattern goal is the mirror image of the OneStimulusPattern goal. Given

the parameters of a response object, its task is to create a new response object with those values. We assume

that the motor system automatically latches on to response objects as they are created, so creation of the object

is the last step actually simulated in the model.

A typical instance of this goal requires 10 cycles of the production system, including the overhead involved

in starting and finishing the goal, though it may be higher.

LEARNING BY CHUNKING 41

7. The Chunking Process
The initial performance model executes an instance of the OnePattern goal for each O/i-light in the

stimulus array. Patterns consisting of a single On-light are primitive patterns for the model; they are at the

smallest grain at which the perceptual system is being modelled, larger, or higher-level, patterns can be built

out of combinations of these primitive patterns. For example, a single higher-level pattern could represent

the fact that four particular lights are all On. The same holds true for response patterns, where the primitive

patterns are single key presses. Higher-level response patterns that specify a combination of key presses can

be built out of these primitive response patterns.

According to the chunking theory of learning, chunks represent patterns experienced in the task

environment. They improve performance because it is more efficient to deal with a single large pattern than a

set of smaller patterns. The remainder of this section describes the design of this chunking process — how

chunks represent environmental patterns, and how chunks are acquired from task performance. As currently

constituted, this is an error free design; chunks are always acquired and used correctly. Rather than model

errors directly by a bug-laden final model, the problem of errors is tackled by discussing the types of errors

simple versions of the model naturally make, and the mechanisms implemented to ensure that these errors do

not occur.

7.1. The representation of chunks
We propose that a chunk consists of three components: (1) a stimulus pattern, (2) a response pattern, and

(3) a connection between the two. In contrast to systems that treat chunks as static data structures, we

consider a chunk to be an active structure. A chunk is the productions that process it The obvious

implementation of this proposal involves the creation of one production per chunk. The production would

have one condition for each primitive component of the stimulus pattern, and one action for each primitive

component of the response pattern. The connection is implemented directly by the production's condition-

action link. This implementation is straightforward enough, but it is inadequate for the following reasons.

• These productions violate the control structure of the model by linking stimuli to responses
directly, without passing through the intervening bottleneck. If such productions could be
created, then it should also be possible to create the optimal algorithm of ten parallel productions,
one for each light-button combination.

• The chunking mechanism implied by these productions is non-hierarchical; a chunk is always
defined directly in terms of the set of primitive patterns that it covers.

• The direct connection of stimulus to response implies that it is impossible for the cognitive system
to intervene in the middle. The mapping of stimulus to response is wired in and unchangeable.

42 LEARNING BY CHUNKING

These problems can all be solved by implementing each chunk as three productions, one for each

component The first production encodes a set of stimulus patterns into a higher-level stimulus pattern; the

second production decodes a higher-level response pattern into a set of smaller response patterns; and the

third production indirectly (see below) connects the higher-level stimulus pattern to the higher-level response

pattern.

For the acquisition of a chunk to improve the performance of the model, these productions must help

overcome the botdeneck caused by the model's inability to process more than one pattern at a time. This

bottleneck can be precisely located within the OnePattern goal — between the termination of the

OneStimulusPattern goal and the beginning of the OneResponsePattern goal. According to the encoding

constraint encoding must occur before the bottleneck, that is, before the OneStimulusPattern goal completes

and selects the pattern to use. Likewise, the decoding constraint implies that decoding must occur after the

bottleneck, that is, after the start of the OneResponsePattern goal. The connection production must appear

somewhere in between.

The model must execute an instance of the OnePattern goal for each pattern processed — approximately

31 production-system cycles (Section 6.2.2). If there are four Ow-lights in the stimulus, then the initial

performance model requires four iterations, or about 124 cycles. If one pattern can cover all four On-lights;

only one iteration is required, cutting the time down to 31 cycles. If instead we had two patterns of two

Cto-lights each, it would take two iterations, or about 62 cycles. Just as the chunking theory of learning

proposes, performance can be improved through the acquisition of patterns experienced during task

performance.

For simplicity, the current system works only with chunks that are built out of exactly two subchunks. This

is not a limitation on the theory; it is merely the simplest assumption that still lets us investigate most of

interesting phenomena. The remainder of this section describes how the three components of a chunk are

represented and how they are integrated into the model's control structure. We delay until the following

section the description of how a chunk is built

7 . 1 . 1 . The encoding component
The initial performance model perceives the world only in terms of primitive stimulus patterns consisting

of either a single O/i-light or a single Oj^light The encoding component of a chunk examines the currendy

perceived patterns, as reflected by the contents of working memory, and based on what it sees, may assert a

new higher-level stimulus pattern. When this new object appears in working memory, it can form the basis

for the recognition of even higher-level patterns. The entire set of encoding productions thus performs a

hierarchical parsing process on the stimuli.

LEARNING BY CHUNKING 43

Encoding is a goal-free data-driven process in which productions fire whenever they perceive their pattern.

This process is asynchronous with the goal-directed computations that make up most of the system. This

works because the perceived patterns interact with the rest of the system through a filter of goal-directed

selection productions. As an example, the selection production in Section 6.2.4 chooses one pattern from the

stimulus space based on its location and COMPONENT-PATTERN.

In essence, we are proposing that the traditional distinction between parallel data-driven perception and

serial goal-directed cognition be modified to be a distinction between parallel data-driven chunk encoding and

serial goal-directed cognition. In the remainder of this section we describe the details of this chunk-encoding

process.

7.1 .1 .1 . Representation of higher-level stimulus patterns

All stimulus patterns, be they primitive or higher-level, are represented as working-memory objects of type

External-Stimulus. For purposes of comparison, here are objects representing a primitive pattern, and a

higher-level pattern.

(External-Stimulus Primit ive-Example [COMPONENT-PATTERN On]
[SPATIAL-PATTERN One]
[MINIMUM-X 0.21] [MAXIMUM-X 0.36]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.30])

(External-Stimulus Higher-Level-Example [COMPONENT-PATTERN On]
[SPATIAL-PATTERN Spatial-Pattern-0145]
[MINIMUM-X 0.21] [MAXIMUM-X 0.78]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.64])

They are almost identical, what differs is the values of some attributes. The four attributes defining the

bounding box are interpreted in the same fashion for all patterns. They always define the rectangle just

bounding the pattern. For primitive chunks, this is a rectangle just large enough to contain the light For

higher-level chunks, it is the smallest rectangle that contains all of the lights in the pattern.

The COMPONENT-PATTERN of primitive patterns is always On or Off, signifying the type of light contained

in the pattern. For higher-level patterns, a value of On is interpreted to mean that all of the lights contained

in the pattern are On. Other values are possible for higher-level patterns, but in the current task we only deal

with patterns composed solely of On-lights. This means that the Oj^lights are dealt with by ignoring them —

not that the Oj^lights can't be there.

The primary difference between primitive and higher-level patterns is in the value of the SPATIAL-PATTERN

attribute. For primitive patterns it always has the value One, signifying that the entire bounding box contains

just a single light For higher level patterns, the value must indicate how many On-lights there are within the

box, and what their positions are. One alternative for representing this information is to store it explicitly in

44 LEARNING BY CHUNKING

the object in terms of a pattern language. The pattern language amounts to a strong constraint on the variety

of patterns that can be perceived. This is the tactic employed in most concept formation programs (for

example, Evans, 1968, and Mitchell, Utgoff, Nudell, & Banerji, 1981). It is a powerful technique within the

domain of the pattern language, but useless outside of it

We have taken the less constrained approach pioneered by Uhr & Vossler (1963), in which there is littie to

no precommitment as to the nature of the patterns to be learned. A unique symbol is created to represent

each newly perceived pattern. This symbol is stored as the value of the SPATIAL-PATTERN attribute —

Spatial-?atiern-0145 in the example above. Instead of the meaning being determined in terms of a hard­

wired pattern language, it is determined by the productions that act on the symbol. The encoding production

knows to create an object with this symbol when it perceives the appropriate lower-level patterns. Likewise,

the connection production knows how to create the appropriate response object for this symbol. With this

scheme, any pattern can be represented, but other operations on patterns, such as generalization, become

difficult

7.1.1.2. Integration of the encoding component into the model

When the concept of chunking is added to the initial performance model, changes in the control structure

are needed for the model to make use of the newly generated higher-level patterns. The initial performance

model iterates through the lights by repeatedly selecting the first 0/Hight to the right of the focal point and

then shifting the focal point to the right of the selected light When there are higher-level patterns, this

algorithm must be modified to select the largest pattern that starts with the first Oiz-light to the right of the

focal point while shifting the focal point to the right of the pattern's bounding box. Accomplishing this

involves simply changing the selection production so that it does not care about the SPATIAL-PATTERN of the

object that it selects. It then selects the most highly activated stimulus object consisting of only On-lights,

with no other such object between it and the INITIAL-LOCATION. The largest pattern is selected because a

higher-level pattern containing n components will be more highly activated than its components. If a

production has n equally activated conditions, call the activation a, then its actions will be asserted with an

activation level of (\Tn)-a (derived from n a / Vn~).

Originally, it was intended that this selection be based solely on the match activation of the competing

instantiations. The effect of size was added (via the combination of activation) to the effect of nearness to the

INITIAL-LOCATION (via a real-number match). This often worked, but it did lead lead to omission errors in

which a large pattern was preferred to a near pattern, skipping over intermediate On-lights without processing

them. To avoid these errors, the more explicit location comparison process described in Section 6.2.4 is

currently employed

LEARNING BY CHUNKING 45

Selection now works correctly, that is, if the encoding process has completed by the time the selection is

made. Since encoding is an asynchronous, logarithmic process, determining the time of its completion is

problematic. This problem is partly solved by the data-driven nature of the encoding productions. Encoding

starts as soon as the stimuli become available, not just after the OneStimulusPattern goal has started. This

head start allows encoding usually to finish in time.

For the cases when this is insufficient, a pseudo-clock is implemented by the combination of an Always

production and a Decay production. Encoding takes an amount of time dependent on the height of the

chunk hierarchy, so waiting a fixed amount of time does not work. Instead, the clock keeps track of the time

between successive assertions of new stimulus patterns by encoding productions. If it has been too long since

the last new one, encoding is assumed to be done. The clock is based on the relative activation levels of two

particular values of an attribute. One value remains at a moderate level; the other value is reset to a high level

on cycles in which a new pattern is perceived, and decays during the remainder. When the activation of this

value decays below the other value, because no new encoding productions have fired, encoding is considered

to be done. This mechanism is clumsy but adequate.

•
7.1.1.3. The encoding productions

Encoding productions all have the same structure, consisting of three conditions and one action. The three

conditions look for the two stimulus patterns that make up the new pattern, and the absence of other On
patterns between the two desired ones. The action creates a new object in working memory representing the

appropriate higher-level pattern.

At first glance, only the first two conditions would seem to be necessary, but absence of the third condition

can lead to errors of omission. Suppose that an encoding production is created for a pattern consisting of a

pair of On-lights separated by an Oj^light If the middle light is Off the next time the two lights are On, there

is no problem. The problem occurs when all three lights are On. Without the third condition, the production

would match and the higher-level pattern would be recognized. If that pattern is then used by the

performance system, it would press the buttons corresponding to the two outer lights, and then move the focal

point past the right edge of the pattern's bounding box. The middle On-light would never be processed,

resulting in a missing key press. By adding the third condition, the pattern is not recognized unless there is no

On-light embedded between the two subpatterns. These errors are therefore ruled out

Let's look at a couple of concrete examples. In this first example we encode two primitive patterns
(On-lights) separated by an Oj^light The relevant portion of working memory is:

46 LEARNING BY CHUNKING

(External-Stimulus 0b jec t0141 [COMPONENT-PATTERN On]
[SPATIAL-PATTERN One]
[MINIMUM-X 0.21] [MAXIMUM-X 0.36]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.30])

(External-Stimulus 0b jec t0142 [COMPONENT-PATTERN Off]
[SPATIAL-PATTERN One]
[MINIMUM-X 0.42] [MAXIMUM-X 0.57]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.30])

(External-Stimulus 0b jec t0143 [COMPONENT-PATTERN On]
[SPATIAL-PATTERN One]
[MINIMUM-X 0.63] [MAXIMUM-X 0.75]
[MINIMUM-Y 0.34] [MAXIMUM-Y 0.64])

Encoding the two On-lights yields a new higher-level stimulus pattern with a bounding box just big enough to

contain the two <9/z-lights; the Oj^light is simply ignored. The COMPONENT-PATTERN remains On, and a new

symbol is created to represent the SPATIAL-PATTERN. The object representing the pattern looks like:

(External-Stimulus 0b jec t0144 [COMPONENT-PATTERN On]
[SPATIAL-PATTERN Spatial-Pattern-0145]
[MINIMUM-X 0.21] [MAXIMUM-X 0.78]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.64])

The production that performs this encoding operation has the form:

Production Encodel:

If there is an External-Stimulus object
consisting of just one On-light
whose left edge is 0.21 (within 0.15), right edge is 0.36 (within 0.15),

top edge is 0.00 (within 0.30), bottom edge is 0.30 (within 0.30)
and there is an External-Stimulus object

consisting of just one Ow-Light
whose left edge is 0.63 (within 0.15), right edge is 0.78 (within 0.15),

top edge is 0.34 (within 0.30), bottom edge is 0.64 (within 0.30)
and there is No External-Stimulus object

consisting of Ow-lights in any spatial pattern
whose left edge is left of 0.63 (within 0.27)

then create a new External-Stimulus object
consisting of On-lights in configuration Spatial'Pattern-0145
whose left edge is 0.21, right edge is 0.78

top edge is 0.0, bottom edge is 0.64.
The first condition looks for an 0/z-light bounded by [0.21,0.36] horizontally, and [0.00, 0.30] vertically. The

bounding box is matched by four two-sided real-number condition patterns. The lights may not always be

positioned exactly as they were when the production was created, so the match is set up to succeed over a

range of values (the interval of the real-number match). The sizes of the intervals are based on the notion that

the accuracy required is proportional to the size of the pattern. The horizontal intervals are therefore set to

LEARNING BY CHUNKING 47

the width of the pattern (0.36-0.21 = 0.15), and the vertical intervals are set to the height of the pattern
(0.30-0.00 = 0.30).

The second condition works identically to the first, with only the location of the light changed. The third

condition insures that there are no intervening On-lights. This last condition is actually testing that no On

pattern starts between the right edge of the first sub-pattern and the left edge of the second sub-pattern. That

this works depends on the fact that the lights are being processed horizontally, and that there is no horizontal

overlap between adjacent lights. Currently, this knowledge is built directly into the chunking mechanism; a

situation which is tolerable when only one task is being explored, but intolerable in a more general

mechanism.

The above example chunked two primitive patterns together to yield a higher-level pattern, but the same

technique works if the subpatterns are higher-level patterns themselves, or even if there is a mixture. In the

following example, a higher-level pattern is combined with a primitive pattern. Suppose the situation is the

same as in the previous example, plus there is an additional On-light to the right After the encoding

production fires, working memory consists of the four objects mentioned above (three primitive ones, and one

higher-level one), plus the following object for the extra light

(External-Stimulus 0bject0146 [COMPONENT-PATTERN On]
[SPATIAL-PATTERN One]
[MINIMUM-X 0.84] [MAXIMUM-X 0.99]
[MINIMUM-Y 0.68] [MAXIMUM-Y 0.98])

A higher-level pattern can be generated from this pattern and Ob j ec t0144 . The new pattern covers the
entire bounding box for the four lights. The encoding production for this is:

Production Encode2:

If there is an External-Stimulus object
consisting of On-lights in configuration Spatial-Pattern-0145
whose left edge is 0.21 (within 0.57), right edge is 0.78 (within 0.57),

top edge is 0.00 (within 0.64), bottom edge is 0.64 (within 0.64)
and there is an External-Stimulus object

consisting of just one On-Light
whose left edge is 0.84 (within 0.15), right edge is 0.99 (within 0.15),

top edge is 0.68 (within 0.30), bottom edge is 0.98 (within 0.30)
and there is No External-Stimulus object

consisting of On-lights in any spatial pattern
whose left edge is left of 0.84 (within 0.06)

then create a new External-Stimulus object
consisting of On-lights in configuration Spatial-Pattern-0147
whose left edge is 0.21, right edge is 0.99

top edge is 0.0, bottom edge is 0.98.

48 LEARNING BY CHUNKING

As should be clear, this production is basically the same as production Encodel. The bounding boxes are

appropriately changed, and the SPATIAL-PATTERN of one of the subpatterns is Spatial-Pattern-0145, the name

for the higher-level pattern generated by production Encodel. and not One (signified in the productions by

the phrase "consisting of just one 0/z-light"). When production Encode2 fires, it creates a stimulus object of

the following form.
(External-Stimulus 0bjec t0148 [COMPONENT-PATTERN On]

[SPATIAL-PATTERN Spatial-Pattern-0147]
[MINIMUM-X 0.27] [MAXIMUM-X 0.99]
[MINIMUM-Y 0.00] [MAXIMUM-Y 0.98])

7.1.2. The decoding component
Decoding productions perform the inverse operation of encoding productions. When one matches to a

higher-level pattern, it generates that pattern's two subpatterns. Because decoding must occur after the start

of the OneResponsePattern Goal (after the bottleneck), it is defined on response patterns, rather than

stimulus patterns. We assume that decoding occurs because the motor system only responds to primitive

External-Response objects. When the response is specified by a higher-level pattern, it must be decoded

down to its component primitives before the response can occur.

The entire set of decoding productions acts as a hierarchical decoding network for higher-level response

patterns. Unlike encoding, decoding is initiated under goal-directed control. The OneResponsePattern goal's

parameters describe a response pattern that is to be executed. From this description, the goal builds the

appropriate External-Response object, and decoding begins. Decoding can't begin until the goal has built this

object, but once it has begun, it continues to completion without further need of direction from the goal.

Integrating the decoding component into the performance model is thus trivial; whenever an object

representing a higher-level response pattern is generated, the appropriate decoding productions will fire. The

one complication is that, as with encoding, decoding requires a variable number of cycles to complete. The

problem of determining when decoding is done, is solved by the use of a second pseudo-clock (Section

7.1.1.2). In fact, this mechanism is inadequate for this purpose, but the problem does not affect the execution

of the remainder of the model, so the current scheme is being employed until a better alternative is devised.

The following decoding production is the analogue of production Encode2 in Section 7.1.1.3. It has one

condition that matches the higher-level response pattern corresponding to the stimulus pattern generated by

production Encode2. and it has two actions which generate response patterns corresponding to the two

stimulus subpatterns of production Encode2. One of the subpatterns is primitive, while the other one is a

higher-level pattern that must be decoded further by another production.

LEARNING BY CHUNKING 49

Production Decode2:

If there is an External-Response object
consisting of Press-keys in configuration Spatial-Pattern-0151
whose left edge is 0.21 (within 0.78), right edge is 0.99 (within 0.78)

top edge is 0.0 (within 0.98), bottom edge is 0.98 (within 0.98)
then create a new External-Response object

consisting of Press-keys in configuration Spatial-Pat tern-0150
whose left edge is 0.21, right edge is 0.78,

top edge is 0.00, bottom edge is 0.64
and create a new External-Response object

consisting of just one Press-key
whose left edge is 0.84, right edge is 0.99,

top edge is 0.68, bottom edge is 0.98.

7.1.3. The connection component

A connection production links a higher-level stimulus pattern with its appropriate higher-level response

pattern. The entire set of connection productions defines the stimulus-response mapping for the task. This

mapping must occur under goal direction so that the type of mapping can vary according to the task being

performed. It would not be a very adaptive model if it were locked into always responding the same way to

the same stimulus.

The connection productions need to be located before the encoding component and after the decoding

component — between the end of the OneStimulusPattern goal and the start of the OneResponsePattera

goal. They are situated in, and under the control of, the OnePattern goal. This goal already contains a

general mechanism for mapping the description of a primitive stimulus pattern to the description of the

appropriate primitive response pattern. These descriptions are local to the OnePattern goal, and are stored as

attributes of the object representing the goal (Section 6.2.3).

The connection productions extend this existing mechanism so that higher-level patterns can also be

mapped. Whether a connection production fires, or the initial mechanism executes, is completely determined

by the SPATIAL-PATTERN of the stimulus pattern. If it is One, the initial mechanism is used, otherwise a

connection production is required. Integration of the connection productions into the performance model is

therefore straightforward. The following production connects a higher-level stimulus pattern with

SPATIAL-PATTERN Spatial-Pattern-0147 (Section 7.1.1.3), to the corresponding higher-level response pattern

(Section 7.1.2).

50 LEARNING BY CHUNKING

Production Map-Spatial-Pattern-0147:

If there is a OnePattern goal whose STATUS is MapOnePattern
containing the description of a stimulus pattern

of On-lights in configuration Spatial-Pattern-Q147
whose left edge is 0.21 (within 0.78), right edge is 0.99 (within 0.78)

top edge is 0.0 (within 0.98), bottom edge is 0.98 (within 0.98)
then add the description of a response pattern

consisting of Press-keys in configuration Spatial-Pattern-0151
whose left edge is 0.21, right edge is 0.99,

top edge is 0.00, bottom edge is 0.98

The key to making the proper connection is that the production matches to the unique SPATIAL-PATTERN

specified by the stimulus pattern (Spatial-Pattern-0147), and generates the unique SPATIAL-PATTERN for the

response pattern (Spatial-Pattern-Q151). As an example, suppose working memory contains an object of the

form:
(OnePattern 0 b j e c t l 3 1 [STATUS MapOnePattern']

[STIMULUS-COMPONENT-PATTERN On]
[STIMULUS-SPATIAL-PATTERN Spatial-PatternrO 147]
[STIMULUS-MINIMUM-X 0.21] [STIMULUS-MAXIMUM-X 0.99]
[STIMULUS-MINIMUM-Y 0.00] [STIMULUS-MAXIMUM-Y 0.98])

The connection production would modify this element by adding the description of the corresponding

response pattern. The object would then have the form:
(OnePattern 0 b j e c t l 3 1 [STATUS MapOnePattern]

[STIMULUS-COMPONENT-PATTERN On]
[STIMULUS-SPATTAL-PATTERN Spatial-Pattern-147]
[STIMULUS-MINIMUM-X 0.21] [STIMULUS-MAXIMUM-X 0.99]
[STIMULUS-MINIMUM-Y 0.00] [STIMULUS-MAXIMUM-Y 0.98])
[RESPONSE-COMPONENT-PATTERN Press]
[RESPONSE-SPATIAL-PATTERN Spatial-Pattern-151]
[RESPONSE-MINIMUM-X 0.21] [RESPONSE-MAXIMUM-X 0.99]
[RESPONSE-MINIMUM-Y 0.00] [RESPONSE-MAXIMUM-Y 0.98])

7.2. The acquisition of chunks
Chunk acquisition is a task-independent, primitive capability of the architecture. The acquisition

mechanism is therefore implemented as Lisp code, rather than as a set of productions within the architecture.

The mechanism continually monitors the execution of the performance model, and acquires new chunks from

the objects appearing in working memory. It accomplishes this by building productions for the three

components of the chunk. There are two principal structural alternatives for this mechanism: (1) the

components can be created all at once; or (2) they can be created independently. There are clear trade-offs

involved.

With the all-at-once alternative, the components of a chunk are all created at the same time. The primary

LEARNING BY CHUNKING 51

advantage of this approach is simplicity in creating the connection component In order to create a correct

connection production, the corresponding stimulus and response SPATIAL-PATTERNS must be known. With

the all-at-once alternative, the SPATIAL-PATTERNS are directly available because the connection production is

created concurrently with the encoding and decoding productions. With the independent alternative, making

this connection is more difficult The connection production must determine the appropriate

SPATIAL-PATTERNS, even though they are denoted by distinct symbols, and may not be in working memory at

the time. This is difficult but if possible, it does lead to two advantages over the all-at-once approach. First

it places only a small demand on the capacity of working memory. When the stimulus information is around,

the encoding component can be created, and likewise with the decoding component All of the information

does not have to be active at once. Second, transfer of training is possible at a smaller grain size. With the

all-at-once alternative, transfer of training occurs only when the entire chunk is usable in another task. With

the independent alternative, individual encoding and decoding components can be shared, because a new

connection production can be created during the transfer task that makes use of stimulus and response

patterns from the training task.

Implementing the independent alternative looked hard enough that the all-at-once alternative was chosen

for this initial attempt at building a chunking mechanism. Creating all of the components at once eliminates

the problems of the independent alternative by forcing all of the information to be in working memory at the

same time. This information exists within the instances of the OnePattern goal (Section 6.2.3). Each instance

describes a stimulus pattern and its associated response pattern. Given two of these instances, we have all of

the information required to create a chunk. Built into the current chunking mechanism is the knowledge that

chunks are based on the data in these goal instances, and how patterns are encoded as attributes of the

OnePattern objects.

Basing the acquisition of chunks on the information in OnePattern goal instances, rather than on the raw

stimuli and responses, has the consequence of limiting chunk acquisition to only those patterns that are

actually employed by the model during performance of the task. The potentially explosive number of

possibilities for chunking is thus constrained to the relatively small set of patterns to which the subject actually

attends. Many incidental patterns may be perceived in the process, but practice only improves performance

on those components of the task actually performed.

Chunks are built out of the two most highly activated instances of the OnePattern goal in working memory,
assuming that there are at least two present These instances represent the two most recently processed
patterns. Two of the architectural choices made in Xaps2 were motivated by the need to have two instances of
this goal simultaneously active.

52 LEARNING BY CHUNKING

• Competition among objects is limited to within types so that pursuance of other goals would not
cause old instances of the OnePattern goal to disappear from working memory.

• The working-memory threshold is set at .0001 so that competition from the current instance of the
OnePattern goal does not wipe out the previous instance before there is a chance to chunk them
together. This is adequate for the current model, but will not be for cases where the patterns take
longer to process. This limitation amounts to a reasonable restriction on the length of time over
which the chunking process can combine two patterns.

In order to assure that the two most highly activated OnePattern instances are both from the same trial — we

don't want cross-trial chunks — working memory is flushed between trials. This is a kludge intended to

simulate the effects of inter-trial activity.

Once a chunk has been created, we want the model to use it when appropriate, but not to recreate it If the

model were continually recreating the same chunks, production memory would quickly fill up with useless

information. This problem breaks down into two subproblems: within-trial duplications, and across-trial

duplications. First, consider the problem of within-trial duplication. Suppose a chunk was just created from

the two most highly activated OnePattern objects; what is to stop the system from continually recreating the

same chunk as long as those two objects are the most activated? To avoid this, the chunking mechanism keeps

track of the identifiers of the last two instances that it chunked together. It only creates a new chunk if the

identifiers of the two most highly activated instances differ from the stored identifiers. This also is an ad hoc

solution necessary until we understand better what the true constraint should be.

Across-trial duplications occur when a chunk is created during one trial, and then recreated when similar

circumstances arise on a later trial. As currently constructed the model will never produce a duplicate of this

type. If a chunk already exists that combines two patterns into a higher-level pattern, then the encoding

component of the chunk assures that whenever those two patterns are perceived, the higher-level pattern will

also be perceived. The higher-level pattern will be selected for processing instead of the two smaller ones, so

there is no possibility of them ever again being the two most recently used (most highly activated) patterns.

This does assume error free performance by the model, a condition that we have taken pains to assure holds.

LEARNING BY CHUNKING 53

8. The Results
In this section we present and analyze results from simulations of the complete model, consisting of the

production system architecture, the performance model, and the chunking mechanism. These simulations

demonstrate that the model works; the chunking theory can form the basis of a practice mechanism for

production system architectures. In addition, these simulations provide a detailed look at the acquisition and

use of chunks, and verify that the model does produce power-law practice curves. In Section 2.3.1 we showed

that the chunking equation — an approximation of the full model — produces curves that are well matched

by a power law. Now we can demonstrate it directly, though not analytically, for the exact model of one task.

8.1. The results of a simulation
The complete model has been run successfully on a specially selected sequence of nine trials for the left

hand (five lights only). This sequence was devised especially to illustrate important aspects of the model. For

each trial in this sequence, Table 8-1 shows the task to be performed, the chunks used, the chunks acquired,

and the reaction time in number of production system cycles. Figure 8-1 presents an alternative organization

of the chunks acquired during this sequence of trials — the chunk hierarchy. Each node in this hierarchy

represents one chunk that was acquired. The node's children represent the two subchunks from which that

chunk was created

Trial Type Chunks Used Chunks Acquired Cycles

1 OMOI —•— • — —*o« 106
2 •o#o« • —•<)• 75
3 ••ooo • —- 72
4 •••o# —mom •••o# 74
5 •o«o* •o#o# 44
6 •oo#« • #

•oo#- 105
7 moo** •oo«- —•—• •oo#« 74
8 •00*4* •oo«# 44
9 ••OM 75

Table 8-1: The nine trial sequence simulated by the model.
• is On, o is Off, and - is don't care.

At the most global level, these results demonstrate directly that the task was performed successfully, chunks

were acquired, and they did improve the model's performance. Looking in more detail, first examine the

relationship between the last column of Table 8-1, the number of cycles per trial, and the third column, the

chunks used. We can see that the time to perform a trial is approximately given by:

54 LEARNING BY CHUNKING

Figure 8-1: The tree of chunks created during the nine trial simulation.

NumberOJCycles = 13 + (31 x NumberOfPatternsProcessed) (9)

A three-pattern trial takes about 106 cycles (105-106 in the data), a two-pattern trial takes about 75 cycles

(72-75 in the data), and a one-pattern trial takes 44 cycles (44 in the data).

A chunk is acquired for the first and second patterns used, the second and third patterns used, and so forth

up to the number of patterns in the trial. The number of chunks acquired on a trial is therefore given by:

NumberOJChunks Acquired = NumberOJPatternsProcessed — 1 (10)

The rate of acquisition of chunks is one every 31 cycles, once the constant overhead of 44 cycles per trial (13

plus the time to process the first pattern on the trial) has been removed, satisfying the learning assumption

(Section 2.3).

This learning is demonstrably too fast For the ten-light task environment, the entire task environment can

be learned within log2(10), between three and four, iterations through the task environment (at 1023 trials

per iteration). This could be remedied in one of two ways. The first possibility is to propose that there are in

fact more chunks to be learned than we have described. For example, the level at which primitive patterns

are defined could be too high, or there may be other features of the environment that we are not capturing.

The second alternative is that chunks are not learned at every opportunity. Gilmartin (1974) computed a rate

of chunk acquisition of about one every eight to nine seconds — less than one chunk per trial in this task.

Without speculating as to the cause of this slow down, we could model it by adding a parameter for the

probability (< 1) that a chunk is learned when the opportunity exists. We do not know which alternative is

correct, but would not be surprised to find both of them implicated in the final solution.

One point clearly illustrated by this sequence of trials is that chunking is hierarchical, without having a

strong notion of level Chunks can be based on primitive patterns, higher-level patterns, or a mixture. The

LEARNING BY CHUNKING 55

sequence illustrates the following combinations: (1) the creation of chunks from primitive patterns (trials 1, 3,
and 6); (2) the creation of chunks from higher-level patterns (trials 4 and 9); (3) the creation of chunks from
one primitive pattern and one higher-level pattern (trials 2 and 7); and (4) the creation of no chunks (trials 5
and 8). The Oj^lights in the chunks represent the regions in which no O/Hight should appear (Section
7.1.1.3).

Also illustrated is how the chunks created on one trial can be used on later trials. As one example, look at

trials 6 through 8 in Table 8-1. All three trials employ the identical task, containing three O/i-lights. On trial

6, the three On-lights are processed serially (105 cycles), and two chunks are acquired for the two

combinations of two successive On-lights. Notice that the two chunks share the middle On-light as a

subpattern. On the following trial, trial 7, the first chunk created on trial 6 is used, taking care of the first two

On-lights. All that is left is the third On-light, which is a primitive pattern. The time for trial 7 is 74 cycles, a

savings of 31 over trial 6. During trial 7, a chunk is created that covers all three On-lights by combining the

two patterns employed during the trial. On trial 8, only one pattern is required, and the trial takes only 44

cycles.

Chunks not only improve performance on trials that are exact repetitions of earlier trials, but they can also
be transferred to trials that merely share a subpattern. Thorndike first described transfer along these lines: "A
change in one function alters any other only in so far as the two functions have as factors identical
elements." (Thorndike, 1913). Trials 1 and 2 illustrate this variety of transfer of training. Both trials have the
third and fifth lights On and the fourth light Off, but differ in the first two lights. Nonetheless, the chunk
created in the first trial is used to speed up the performance of the second trial. The same chunk is also reused
in trial 4.

The complete model has also been run successfully on a sequence of twenty ten-light trials, with results
comparable to those for the five-light sequence.

8.2. Simulated practice curves
The model is too costly computationally to run the long trial sequences required for the generation of

practice curves. The execution time varies with the number of productions in the system — slowing down as

chunks are added — but in the middle of the twenty trial sequence, the model took an average of 22 CPU

minutes to process each pattern (approximately 31 production system cycles) on a DecSystem 2060. This

deficiency is overcome through the use of a meta-simulation — a more abstract simulation of the simulation.

The meta-simulation is faster than the simulation because it ignores the details of the performance system. It

merely keeps track of the chunks that would be created by the model and the patterns that would be used

56
LEARNING BY CHUNKING

during performance. From this information, and Equation 9, it estimates the number of cycles that the

production-system model would execute.

Via this meta-simulation, extensive practice curves have been generated. As a start, Figure 8-2 shows the

practice curve generated by the meta-simulation for the 408 trial sequence used for subject 3 (Section 3).

Comparing this curve with the curve for the human subject (Figure 3-3), we see a basic similarity, though the

human's curve is steeper and has more variability.

U
o
CM

t

9>

10QOr

t o o

1&

125AT . 1 1

10 100
• I I I I I

1000
Trial number

Figure 8-2: Practice curve predicted by the meta-simulation (log-log coordinates).
The 408 trial sequence performed by Subject 3 (aggregated by five trials).

Seibel ran his subjects for 75 blocks of 1023 trials each (Seibel, 1963). To compare the model with this

extensive data, the meta-simulator was run for the same number of trials. A single random permutation of the

1023 trials was processed 75 times by the meta-simulation. Figure 8-3 shows the practice curve generated by

the meta-simulation for this sequence of trials. It is clear from this curve that creating a chunk at every

opportunity leads to perfect performance much too rapidly — by the third block of trials.

A much better curve can be obtained by slowing down the rate of chunk acquisition, per the second

suggestion in Section 8.1. We can make a quick, back-of-the-envelope calculation to find a reasonable value

for the probability of acquiring a chunk, given the opportunity. To do this we will make three assumptions.

LEARNING BY CHUNKING 57

co -2 o
o
CM
CO

I
o

10O0,

100[

60AT .03

x X X X x AAAAJUuoeee*

TO ' ' - - . . .
I I I I I

— ' 1 ' '
1°o 1000 100OO lOOOOO

Trial number

Figure 8-3: Practice curve predicted by the meta-simulation (log-log coordinates).
Seventy five data points, each averaged over a block of 1023 trials.

• Assume that the model has the opportunity to acquire a chunk each time a pattern is processed,
and that there is no overhead time.

• Assume that the time to process a pattern is in the range of times for a simple reaction time— 100
to 400 msec (Card, Moran, & Newell, In press).

• Assume that it takes 8-9 seconds to acquire a chunk (Gilmartin, 1974).

The probability (p) of acquiring a chunk is essentially the rate of chunking, as measured in chunks per

pattern. This rate can be computed by dividing the time per pattern (0.1 - 0.4 seconds) by the dme per chunk

(8.0 - 9.0 seconds). Using the extreme values for the two parameters, we find that the probability should be in

the interval [0.01,0.05], We have chosen to use one value in this interval — p = 0.02.

Figure 8-4 shows the results of a meta-simulation in which chunk acquisition is slowed down by this factor.
This curve is linear in log-log coordinates over the entire range of trials (r 2 = 0.993). A slight wave in the
points is still detectable, but the linearity is not significantly improved by resorting to the generalized power
law (r 2 is still 0.993). We currently have no explanation for this phenomenon. We can only comment that the
deviations are indeed small, and that similar waves appear to exist in the general power law fit to Seibel's data
(Figure 2-2), though they are somewhat obscured by noise.

LEARNING BY CHUNKING

(0
woo

too

T = 270AT 15

fOl
t o o fOOO wooo 100000

Trial number

Figure 8-4: Practice curve predicted by the meta-simulation (log-log coordinates).
Seventy five data points, each averaged over a block of 1023 trials.

The probability of creating a chunk when there is an opportunity, is 0.02.

If a low probability of chunk acquisition is required in order to model adequately highly aggregated long

sequences of trials (Figure 8-4), and a high probability is required for an adequate fit to less aggregated, short

trial sequences (Figure 8-2), then there would be a major problem with the model. Fortunately, the one value

of 0.02 is sufficient for both cases. Figure 8-5 shows the same 408 trial sequence as Figure 8-2, with the only

difference being the reduced probability of chunk acquisition. Thus, given a reasonable value for /?, the

chunking model produces good power-law curves over both small and large trial ranges.

The most important way in which Figure 8-4 differs from the human data (Figure 2-1), is that the power

(a) of the power-law fit is lower for the meta-simulation — 0.15 for the meta-simulation versus 0.32 for the

central linear portion of the subject's curve. One approach to resolving this discrepancy is to examine the

meta-simulation for parameters that can be modified to produce larger powers. Modification of p9 the one

parameter mentioned so far, can cause small perturbations in a, but is incapable of causing the large increase

required. When p was varied over [0.001,1.0]12, a only varied over the range [0.03,0.15].

^ T h e range was sampled at 0.001,0.01.0.02,0.1, and L0.

o
O
CM (0 Q.
S
0)
«w O
'•5 o
v.
a.

LEARNING BY CHUNKING
59

(o WOO

o

CM
CO I
2

0. 100

10

T = 239AT 1 2

' * •

io
1 * •

100 ' I I I I 1 I
1000

Trial number

Figure 8-5: Practice curve predicted by the meta-simulation (log-log coordinates).
The 408 trial sequence performed by Subject 3 (aggregated by five trials).
The probability of creating a chunk when there is an opportunity, is 0.02.

One parameter that can effect a, is the number of lights (and buttons) in the task environment Increasing
this number can significantly raise a. With twenty lights and buttons1 3, the meta-simulation produced a
practice curve with an a of 0.26. For the shorter 408 trial sequence, an a of 0.16 was generated, compared
with 0.17 for Subject 3 (Figure 3-3). While this manipulation yields good results, it is still true that those ten
extra lights and buttons don't actually exist in the task environment An alternative interpretation is required
in which these ten virtual lights and buttons are thought of as modelling unspecified other features of the task
environment (see Section 8.1).

Given the simulation results in this section, a rough estimate of the cycle time of the Xaps2 production-

system architecture can be computed. One method is to compute the mean response time for the human

data; remove some portion of it, say half, as an estimate of the task time outside the scope of the model; and

divide the remainder by the mean number of cycles per trial. The value varies with the number of lights used

in the simulation (10 or 20) and whether a long simulation is being compared with the Seibel data (Figure

60
LEARNING BY CHUNKING

2-1), or a short simulation is being compared to Subject 3 (Figure 3-3), but all four computations yield a value

between 3 and 6 msec. The average value is 4 msec.

One cycle every 4 msecs is a very fast rate. The accepted value for production-system architectures is

generally thought to be on the order of the cognitive cycle time— between 25 and 170 msec (Card, Moran, &

Newell, In press). Note, however, that the model simulates the cognitive system at a smaller grain size than is

normally done. The cognitive cycle is more appropriately identified with the complete processing of one

pattern (one iteration through the OnePattern goal). If we ignore the implementation of the model's goal

structure as productions, and just look at this level of goal-directed processing, the architecture looks

remarkably like a conventional serial production system. During each cycle of this higher-level "production

system" (a OnePattern goal), we recognize a single pattern (a OneStimulusPattern goal) and act accordingly (a

OneResponsePattern goal) — approximately 31 cycles. The Xaps2 cycle time of 3 to 6 msec per cycle yields a

time estimate for this higher-level cycle of between 93 and 186 msec, with a mean of 124 msec. These times

are well within the accepted range for the cognitive cycle time.

LEARNING BY CHUNKING
61

9. Conclusion
This paper has reported on an investigation into the implementation of the chunking theory of learning as a

model of practice within a production-system architecture. Starting from the outlines of a theory, a working

model capable of producing power-law practice curves has been produced. This model has been successfully

simulated for one task — a 1023-choice reaction-time task.

During this research we have developed a novel highly-parallel production system architecture — Xaps2—
combining both symbolic and activation notions of processing. The design of this architecture was driven by

the needs of this work, but the resulting system is a fully general production-system architecture. Most

importantly, it meets a set of constraints derived from an analysis of the chunking theory. These constraints

must be met by any other architecture in which the chunking theory is embedded.

A performance model for the reaction-time task has been implemented as a set of productions within this

architecture. Though the architecture provides parallel execution of productions, the control structure of the

model is a serially-processed goal hierarchy — yielding a blend of serial and parallel processing. The goal

hierarchy controls a loop through three tasks: (1) select a stimulus pattern to process; (2) map the stimulus

pattern into an appropriate response pattern; and (3) execute the response pattern. Two of these tasks, 1 and

3, require the model to communicate with the outside world. The required stimulus and response interfaces

are modelled as two-dimensional euclidean spaces of patterns. The model perceives patterns in the stimulus

space and produces patterns in the response space. As with the production system architecture, the designs of

the control structure and interfaces have been driven by the needs of this work. A second look shows that

there is very little actual task dependence in these designs. The control structure, or a slightly more general

variant, works for a large class of reaction-time tasks.

To this model is added the chunking mechanism. Chunks are acquired from pairs of patterns dealt with by

the performance model. Each chunk is composed of a triple of productions: (1) an encoding production that

combines a pair of stimulus patterns into a more complex pattern; (2) a decoding production which

decomposes a complex response pattern into its simpler components; and (3) a connection production which

links the complex stimulus pattern with the complex response pattern. Chunks improve the model's

performance by reducing the number of times the system must execute the control loop. Both simulations

and meta-simulations (simulations of the simulations) of the model have been run. The result is that

chunking can improve performance, and it does so according to a power-law function of the number of trials.

The results of this investigation have been promising, but there is much work still to be done. One open

question is whether these results will hold up for other tasks. As long as the task can be modelled within the

control structure described in this article, power-law learning by chunking is to be expected. For radically

62
LEARNING BY CHUNKING

different tasks, the answer is less certain. To investigate this, the scope of the model needs to be extended to a

wider class of tasks.

A number of aspects of the model need improvement as well. The production system architecture needs to

be better understood, especially in relation to the chunking theory and the task models. Oversimplifications

in the implementation of the chunking theory — such as allowing only pairwise chunking — need to be

replaced by more general assumptions. In addition, a number of ad hoc decisions and mechanisms need to be

replaced by more well reasoned and supported alternatives.

LEARNING BY CHUNKING
63

References

Anderson, J. R. Language, Memory, and thought. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1976.

Anderson, J. A. Neural models with cognitive implications. In D. LaBerge & S. J. Samuels (Ed.), Basic
Processes in Reading. Hillsdale, NJ: Lawrence Erlbaum Associates, 1977.

Anderson, J. R. Acquisition of cognitive skill. Psychological Review, 1982,89,369-406.

Anderson, J. A., & Hinton, G. E. Models of information processing in the brain. In G. E. Hinton & J. A.
Anderson (Ed.), Parallel Models of Associative Memory. Hillsdale, NJ: Lawrence Erlbaum Associates,
1981.

Bower, G. H. & Winzenz, D. Group structure, coding, and memory for digit series. Experimental Psychology
Mongraph, 1969, 80,1-17. (May, PL 2).

Card, S. K., Moran, T.P, & Newell, A. The Psychology of Human-Computer Interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates, In press.

Chase, W. G. & Simon, H. A. Perception in chess. Cognitive Psychology, 1973, 4,55-81.

DeGroot, A. D. Thought and Choice in Chess. The Hague: Mouton, 1965.

Evans, T. G. A program for the solution of geometric-analogy intelligence test questions. In M. Minsky (Ed.),
Semantic Information Processing. Cambridge, Mass.: MIT Press, 1968.

Forgy, C. & McDermott, J. The Ops2 Reference Manual Pittsburgh, Pa.: Department of Computer Science,
Carnegie-Mellon University, 1977. IPS Note #77-50.

Gilmartin, K. J. An Information Processing Model of Short-Term Memory. Doctoral dissertation, Carnegie-
Mellon University, 1974.

Johnson, N. F. Organization and the concept of a memory code. In Melton, A. W. & Martin, E (Eds.), Coding
Processes in Human Memory. Washington, D.C.: Winston, 1972.

Joshi, A. K. Some extensions of a system for inference on partial information. In D. A. Waterman &
F. Hayes-Roth (Ed.), Pattern-Directed Inference Systems. New York: Academic Press, 1978.

McClelland, J. L., & Rumelhart, D. E. An interactive activation model of context effects in letter perception:
Part 1. An account of basic findings. Psychological Review, 1981,88(5), 375-407.

Miller, G. A. The magic number seven plus or minus two: Some limits on our capacity for processing
information. Psychological Review, 1956,63, 81-97.

Mitchell, T. M., Utgofff, P. E., Nudel, B., & Banerji, R. Learning problem-solving heuristics through practice.
In Proceedings of the Seventh IJCAI., 1981.

Moran, T. P. Compiling cognitive skill (Al? Memo 150). Xerox PARC, 1980.

Neisser, U., Novick, R., Lazar, R. Searching for ten targets simultaneously. Perceptual and Motor Skills, 1963,
77,427-432.

64 LEARNING BY CHUNKING

1981.

Neves, D. M. & Anderson, J. R. Knowledge compilation: Mechanisms for the automatization of cognitive
skills. In Anderson, J. R. (Ed.), Cognitive Skills and their Acquisition. Hillsdale, NJ: Erlbaum, 1981.

Newell, A. Production systems: Models of control structures. In Chase, W. G. (Ed.), Visual Information
Processing. New York: Academic Press, 1973.

Newell, A. Harpy, production systems and human cognition. In Cole, R. (Ed.), Perception and Production of
Fluent Speech. Hillsdale, NJ: Erlbaum, 1980. (Also available as CMU CSD Technical Report, Sep
1978).

Newell, A. & Rosenbloom, P. S. Mechanisms of skill acquisition and the law of practice. In J. R. Anderson
(Ed.), Cognitive Skills and Their Acquisition. Hillsdale, NJ: Erlbaum, 1981.

Newell, A. & Simon, H. A. Human Problem Solving. Englewood Cliffs: Prentice-Hall, 1971

Norman, D. A. Categorization of action slips. Psychological Review, 1981,88,1-15.

Rosenbloom, P. S. The XAPS Reference Manual. 1979.

Rosenbloom, P. S., & Newell, A. Learning by chunking: Summary of a task and a model. In Proceedings of
AAAI-82, National Conference on Artificial Intelligence. American Association for Artificial
Intelligence, 1981

Rumelhart, D. E., & McClelland, J. L. An interactive activation model of context effects in letter perception:
Part 2. The contextual enhancement effect and some tests and extensions of the model. Psychological
Review, 1982, 89,60-94.

Rumelhart, D. E., & Norman, D. A. Simulating a skilled typist: A study of skilled cognitive-motor

performance. Cognitive Science, 1982,6,1-36.

Seibel, R. Discrimination reaction time for a 1,023-alternative task. Journal of Experimental Psychology, 1963,
66(3),215-226.

Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. Perceptual
learning, automatic attending, and a general theory. Psychological Review, 1977, 84,127-190.

Snoddy, G. S. Learning and stability. Journal of Applied Psychology, 1926,1091-36.

Thacker, C. P., McCreight, E. M., Lampson, B. W., Sproull, R. F„ & Boggs, D. R. Alto: a personal computer.
In D. P. Sieworek, C. G. Bell, & A. Newell (Ed), Computer Structures: Principles and Examples New
York: McGraw Hill, 1982.

Thibadeau, R., Just, M. A., & Carpenter, P. A. A model of the time course and content of reading. Cognitive
Science, mi, 6,157-203.

Thorndike, E. L. Educational Psychology. II: The Psychology of Learning. New York: Bureau of

Publications, Teachers College, Columbia University, 1913.

Uhr, L., & Vossler, C. A pattern-recognition program that generates, evaluates, and adjusts its own operators.
In E. Feigenbaum & J. Feldman (Ed.), Computers and Thought. New York: McGraw-Hill, 1963.

VanLehn, K. On the representation of procedures in repair theory (Tech. Rep. CIS-16). Xerox PARC, October

LEARNING BY CHUNKING 65

Welford, A. T. Learning curves for sensory-motor performance. In Proceedings of the Human Factors Society
25th Annual Meeting., 1981.

