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Abs t rac t 

The prob lem addressed in this paper is heur ist ical ly-guided learning of f inite automata 
f rom examples. Given posit ive sample str ings and negative sample str ings, a finite 
automaton is generated and incremental ly ref ined to accept all posit ive samples but no 
negative samples. This paper descr ibes some exper iments in apply ing h i l l -c l imbing to 
modify finite automata to accept a desired regular language. We show that many problems 
can be solved by this s imple method. We then descr ibe the method hew to " re -cons t ruc t " 
a f inite au tomaton if the posit ive a n d / o r negative samples are sl ightly a l tered, wi thout 
star t ing f rom the beg inn ing. Finally, we have an actual system, RR: Regular set 
Recognizer , that learns to recognize a regular set f rom the samples that are given by a 
human teacher one by one. 
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INTRODUCTION 

1 . I n t r o d u c t i o n 

Consider the fo l lowing problem: 

Describe the property that all strings in the right-list have but no string in the wrong-list has. Does a 
string (1 1 0 1) have this property? You may answer the question by using any of the following: 
English, a regular expression, or a finite automaton.1 

right-list wrong-list 

0 (10 ) 
(1) ( 1 0 1 ) 
(0) (0 1 0) 
(01 ) ( 1 0 1 0 ) 
(1 1) ( 1 1 1 0) 
(00 ) ( 1 0 1 1 ) 
(1 0 0 ) (1 0 0 0 1 ) 
( 1 1 0 ) ( 1 1 1 0 1 0 ) 
(1 1 1) ( 1 0 0 1 0 0 0 ) 
( 0 0 0 ) (1 1 1 1 1 0 0 0 ) 
(1 0 0 1 0 0 ) ( 0 1 1 1 0 0 1 1 0 1 ) 
(1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 ) (1 1 0 1 1 1 0 0 1 1 0 ) 
(1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 ) 

It might be possible to construct the finite automaton by a "typical" schema-filling method (i.e., 
finding rough property in the samples first, comparing these strings carefully). However, in this paper, 
we try to construct the finite automaton directly by searching in the problem space (i.e., the set of all 
finite automata) using hill-climbing, rather than by analyzing the samples carefully. One of the biggest 
advantages of hill-climbing is its simplicity, that is, we do not have to know our problem space well, 
while a "typical" schema-filling method requires us to provide all possible schemas, and therefore to 
know everything about our problem space. W e shall see that hill-climbing works much better than 
expected in our problem space, and in fact solved most of the problems. 

1 . 1 The finite automata used in this paper 

W e restrict our problem domain to be only over {1 ,0}* . Furthermore, since every non-deterministic 
finite automaton has an equivalent deterministic finite automaton (see [Hopcroft 79]) , we deal only 
with deterministic finite automata, that is, there is at most one 1-arrow and one 0-arrow from each 
state. Thus, in this paper, the terms "finite automaton", "automaton" or "machine" all mean 
"deterministic finite automaton". Given a string s, if there is a transition from the initial state to any of 
the final states, then s is accepted by the machine, otherwise s is rejected. For example, the machine 
of the sample problem is shown in figure 1-1. 

1_. 
The answer is stnngs over (1 + 0) without an odd number of consecutive 0's AFTER an odd number of consecutive fs 

Therefore (1 1 0 1) has the property. 
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INTRODUCTION 

Figu re 1 - 1 : The machine of the sample problem 

Each machine with n states is denoted by the following form: 

( ( A v B v F,) (A 2 , B 2 , F 2 ) . . . . (A n , B n , F n ) ) . 

Each (A., B., F.) corresponds to the state i, and A. and B. indicate the destination states of the 0-arrow 
and the 1-arrow from the state i, respectively. If A. or B. is zero, then there is no 0-arrow or 1-arrow 
from the state i, respectively. F. indicates whether state i is one of the final states or not. If F. is equal 
to 1, the state i is one of the final states. The initial state is always state 1. For instance, figure 1 -1 is 
represented as follows: 

((1 2 1 ) ( 3 1 1 ) ( 4 0 0 ) ( 3 4 1 ) ) . 

1.2 The problem 

W e now are ready to describe the problem precisely. Given a right-list (a set of positive sample 
strings) and a wrong-list (a set of negative sample strings), we can think of the following three tasks: 

1 . To find a machine that accepts all strings in the right-list but none in the wrong-list. 

2. To find a machine with n states that accepts all strings in the right-list but none in the 
wrong-list. 

3. To find the machine with fewest states {simplest machine) that accepts all strings in the 
right-list but none in the wrong-list 

The first task is trivial because one can easily construct a trivial machine that accepts exactly all 
strings in the right-list but nothing else. 2 The second task and the third task are shown to be IMP-
complete problems by [Gold 74] . W e call the second task construction of finite automata, and the 
third task simplification of finite automata. 

1.3 Past Work 
Feldman, Gips, Horning and Reder [Feldman 67] [Feldman 69] built a system that constructs a 

grammar in BNF from given examples. It takes only positive examples, and its problem domain is 
context-free languages. We quote a couple of sample runs of this system from [Feldman 6 9 ] , to make 
clear how their system worked. 

An example of the trivial machine will be found in section 3-4-2. 
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INTRODUCTION 

F i g u r e 1 - 2 : Sample Str ings and BNF grammar produced by Feldman's system 

(b) 
(a m b) 
(a m a m b) 
(a m a m a m b) 

S < - b | StmS 
S x < - a 

(c d) 
(a b d) 
(a c b d) 
(a a b b d) 
(a a c b b d) 
(a a a b b b d) 
( a a a c b b b d) 

S < - Std 

S 2 < - St5 | b 

( a m a ) 
( 1 a t a r i a ) 
( a m i a i» a r ) 
( 1 a m a r ra 1 a m a r ) 
( 1 a nr 1 a id a r r i a ) 
( 1 1 a m a r m a r m a ) 
( a m i a n 1 a i a r r ) 
( a i l 1 a m a r at a r ) 

S < - S 1 mS 1 

Their system first constructs a "trivial" grammar, and then simplifies it. As we can see, their system 
requires us to provide nicely-chosen examples, and it cannot solve from poorly organized examples 
such as the problem we introduced at the beginning. 

Bierman and Feldman then built a system that constructs a finite automaton from given examples. 
Although it takes only positive examples, they showed an application to the case where both positive 
and negative examples are given. Their algorithm also requires nicely-chosen examples, and they 
showed the method to choose the examples from a regular set "nicely", so that it always turns out the 
simplest machine. However if the examples are not nicely-chosen, as in the problem we introduced at 
the beginning, their system hardly turns out the simplest machine. 

Apart from the grammatical inference, there has been a good deal of work on discovery of a 
regularity or a common pattern in the given examples that are not necessarily nicely-chosen 
([Langley 81a] [Langley 81b] [Buchanan 76] [Hayes-roth 77] [Michalski 73] [Vere 75] [Winston 70]). 
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INTRODUCTION 

1 . 4 O v e r v i e w o f t h e P a p e r 

In the rest of this chapter, we present the 7 sample problems, that we will consider th roughout this 
paper (7 sample problems and their inverses). 

In chapter 2, we present the result of an experiment j n constructing f inite automata wi th n states 
using hill-climbing, in particular, we let n = 8. We shall see that all 14 sample problems can be solved 
by this method. 

In chapter 3, we present the result of an experiment in simplifying the f inite automata wh ich we 
have found in chapter 2, also using hill-climbing. We shall see that we can f ind the simplest machine 
for most of the problems by this method. 

In chapter 4, we discuss re-construction of finite automata, that is, how to re-construct a finite 
automaton if the right-list and the wrong-list are slightly altered. We might not want to construct it 
from the beginning. Rather, we want to construct the new machine by modifying the previous 
machine. 

Finally, we have an actual system called Regular set Recognizer [RR], using the techniques above. 
RR learns to recognize a regular set, given examples by a human "teacher". We present several 
sample runs as well as a user's manual, in chapter 5. 

t .5 Sample Problems 

1.5. t Sample Problems 

Throughout this paper, w e consider the following 7 sample problems. 
Problem 1 

right-list wrong-list 
0 (0) 
(D ( 1 0 ) 
(11 ) ( 01 ) 
( 1 1 1 ) ( 00 ) 
d m ) ( 0 1 1 ) 
( 1 1 1 1 1 ) ( 1 1 0 ) 
( 1 1 1 1 1 1 ) ( 1 1 1 1 1 1 1 0 ) 
( 1 1 1 1 1 . 1 1 ) ( 1 0 1 1 1 1 1 1 ) 
( 1 1 1 1 1 1 1 1 ) 
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INTRODUCTION 

Problem 2 

r ight- l ist 
0 
(1 0) 
( 1 0 1 0 ) 
( 1 0 1 0 1 0 ) 
( 1 0 1 0 1 0 1 0 ) 
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ) 

Problem a 3 

right-list 
0 
(D 
(0) 
( 01 ) 
d D 
( 0 0 ) 
( 1 0 0 ) 
( 1 1 0 ) 
( 1 1 1 ) 
( 0 0 0 ) 
(1 0 0 1 0 0 ) 
(1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 ) 
( 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 ) 

Problem 4-

right-list 
0 
(D 
(0) 
( 1 0 ) 
( 01 ) 
( 00 ) 
(1 0 0 1 0 0 ) 
( 0 0 1 1 1 1 1 1 0 1 0 0 ) 
( 0 1 0 0 1 0 0 1 0 0 ) 
( 1 1 1 0 0 ) 
( 0 1 0 ) 

wrong- l is t 
(D 
(0) 
(11 ) 
(0 0) 
(01 ) 
( 1 0 1 ) 
( 1 0 0 ) 
( 1 0 0 1 0 1 0 ) 
( 1 0 1 1 0 ) 
( 1 1 0 1 0 1 0 1 0 ) 

wrong-list 
( 10 ) 
( 1 0 1 ) 
( 0 1 0 ) 
( 1 0 1 0 ) 
( 1 1 1 0 ) 
( 1 0 1 1 ) 
(1 0 0 0 1 ) 
( 1 1 1 0 1 0 ) 
(1 0 0 1 0 0 0 ) 
(1 1 1 1 1 0 0 0 ) 
( 0 1 1 1 0 0 1 1 0 1 ) 
(1 1 0 1 1 1 0 0 1 1 0) 

wrong-list 
( 0 0 0 ) 
(1 1 0 0 0 ) 
( 0 0 0 1 ) 
( 0 0 0 0 0 0 0 0 0 ) 
(1 1 1 1 1 0 0 0 0 1 1) 
(1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1) 
(1 0 1 0 0 1 0 0 0 1 ) 
( 0 0 0 0 ) 
(0 0 0 0 0 ) 

^ i s problem was introduced at the very beginning. 
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INTRODUCTION 

Problem 5 

r ight- l ist 

0 
(11) 
(00) 
(10 01) 
(0101) 
(1010) 
(1 0001 1 1101) 
(1 o o i 100001111010) 
(111111) 
(0000) 

Problem 6 

right-list 
0 
(10) 
(01) 
(11 00) 
(101010) 
(111) 
(000000) 
(10111) 
(0111101111) 
(100100100) 

Problem 7 

right-list 

0 
( D 
(0) 
(1 0) 
(01) 
(11111) 
(000) 
(001 1 001 1) 
(0101) 
(00001 00001 1 1 1) 
(001 00) 
(011111011111) 
(00) 

wrong-list 
( D 
(0) 
(111) 
(010) 
(000000000) 
(1 000) 
(01) 
(10) 
(1 1 100101 00) 
(010111111110) 
(0001) 
(011) 

wrong-list 
( D 
(0) 
(11) 
(00) 
(101) 
(011) 
(1 1001) 
(1 1 1 1) 
(00000000) 
(010111) 
(10111101111) 
(1 001 001001) 

wrong-list 
(1010) 
(001 1 001 1000) 
(0101010101) 
(1011010) 
(10101) 
(01 01 00) 
(101001) 
(1001001 10101) 

7 



INTRODUCTION 

1.5 .2 Solut ion of Sample P r o b l e m s 

The solution of these problems are: 

1.1 

2 . ( 1 0 ) * 

3. any string without an odd number of consecutive O's AFTER an odd number of 
consecutive 1 's. 

4. any string without more than 2 consecutive O's. 

5. any string of even length which, making pairs, has an odd number of (0 1) or (1 0)'s. 

6. any string such that the difference between the numbers of 1 's and O's is 3n. 

7 . 0 * 1 * 0 * 1 * . 

1 .5 .3 Fini te A u t o m a t a of Solut ions 

The machines corresponding to these solutions are as follows. 
Solution of Problem 1 

Solution nfPrnhlfttpg 

Solution of Prnfrlftp g 

Solution of Problem 4 
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INTRODUCTION 

1.5 .4 I n v e r s e P r o b l e m s 

We also cons ider the inverse problems of these sample problems. The inverse problems are 
created by exchang ing the right-l ist and wrong-l ist . We use these 14 problems in our exper iments 
and refer to the inverse problem of problem 1 as problem 1 - , the inverse problem of problem 2 as 
prob lem 2-, and so on. 

Solut ion of Problem 1 -

Solution of Problem 2-

Solution of Prnhlam fr 

o — ^ 

Solution of P r o b l e m s 
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CONSTRUCTION OF FINITE AUTOMATA 

2. C o n s t r u c t i o n of F i n i t e A u t o m a t a 

In this chapter, we describe an experiment in constructing a finite automaton with n states from a 
given right-list and a wrong-list using hill-climbing. In particular, we let n equal 8. W e shall see that 
each of the 14 problems can be solved in at most a few thousands steps. 

2.1 Algorithm 

The hill-climbing algorithm of this experiment is shown in figure 2 - 1 . 

Figure 2 - 1 : Flowchart of the Hill-Climbing 

M : = random 

M ' : • mutate(M) 

yes 

We first construct a random machine with 8 states. W e next make a copy of this machine, where the 
copy is slightly altered from the original by an operator mutate. W e compare the new machine with 
the original by an evaluation function E. The better machine is called current generation and we 
make a copy of this machine, and so forth. The worse machine is simply discarded. The operator 
mutate and the evaluation function E are defined more precisely in the following. 

O p e r a t o r mutate: Taking a machine ((A^ Bv F 1 ) . . . (A Q , B 8 , F Q)) as its argument, the operator 
mutate chooses one digit randomly, and replaces it by another digit. 4 That is, the mutation in our 
algorithm is randomly one of the following: delete an arrow, insert an arrow, change the destination 

= < A. = < 8 ; 0 =< B. =<8;and0 = <F. =< 1. 
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CONSTRUCTION OF FINITE AUTOMATA 

of an arrow to another destination, make a non-final state into a final state, and make a final state into 
a non-final state. 

Evaluat ion Funct ion E : The evaluation function E takes a machine as its argument and returns r 
- w, where r is the number of strings in the right-list accepted by the machine, and w is the number of 
strings in the wrong-list accepted by the machine. If r - w < 0 then it returns 0. 

2.2 Results 
We show in this chapter the result of our experiments. We first show in figure 2-2 the trace of the 

experiment of problem 3, to see how bur algorithm gradually refines a random machine into the 
desired machine. Each line corresponds to the current generation M. The column E indicates E(M), 
and G indicates the cumulative number of generation. The final machine of this trace accepts all 
strings in the right-list but none in the wrong-list of problem 3 (figure 2-3). 

We show the results for the other 13 problems in figure 2-4. 

Figure 2 - 2 : Sample Trace of Problem 3 
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CONSTRUCTION OF FINITE AUTOMATA 

Figure 2 - 3 : The final machine of problem 3 

( ( 0 1 1 ) ( 2 8 1 ) (7 4 1 ) (8 0 0 ) ( 7 2 1 ) ( 1 6 0 ) (7 7 0 ) ( 8 8 0 ) ) 98 
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Final Machine of Problem 2 

• i , < * 

( ( 0 5 1 ) ( 4 0 0 ) ( 2 8 0 ) (8 0 8 0 ) ( 2 2 0 ) ( 1 4 1 ) (6 8 1 ) ) 134 
Final Machine of Problem 4 

( ( 4 1 1 ) (3 3 1 ) ( 1 2 0 ) ( 7 1 1 ) (6 0 1 ) (4 0 0 ) (0 3 1 ) ( 1 2 1 ) ) 442 
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CONSTRUCTION OF FINITE AUTOMATA 

Final Machine of Problem 5 

( ( 6 3 1 ) (5 4 I 0 ) ( 1 6 0 ) ( 0 1 0 ) ( i 7 0 ) ( 5 7 0 ) ( 3 6 0 ) ) 1768 
Final Machine of Problem 6 

( ( 5 3 1 ) (6 8 1 ) ( 1 8 0 ) (7 8 0 ) (4 7 0 ) (5 7 1 ) (8 3 1 ) (4 1 0 ) ) 277 

16 
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( ( 1 6 I ) ( 0 0 1 ) ( 2 4 1 ) ( 3 7 0 ) ( 0 5 1 ) ( 7 6 1 ) ( 7 5 1 ) ( 4 2 1 ) ) 206 
Final Machine of Problem 1-

( ( 3 6 0 ) ( a 3 0 ) ( 3 7 1 ) ( 3 • 1 ) ( 0 3 1 ) ( 7 1 0 ) ( t t 4 1 ) ( 0 0 0 ) ) 300 

Final Machine of Problem 7 



COf .'STR'JCTIGN OF FINITE AUTOMATA 

Final Machine of Problem 2-

( ( 8 6 0 ) ( 2 3 1 ) ( 2 0 0 ) ( 2 8 1 ) ( 1 5 1 ) ( 1 4 1 ) (0 4 0 ) (4 2 1 ) ) 89 
Final Machine of Probtem a . 

O 
( ( 3 6 0 ) ( 4 5 1 ) ( 1 4 0 ) ( 2 * 0 ) (5 7 1 ) ( 2 3 0 ) (0 6 1 ) (0 0 0 ) ) 1939 
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Final Machine of Problem 4-

( ( 4 7 0 ) ( 2 2 1 ) ( 2 6 0 ) (8 1 0 ) ( 7 5 0 ) (7 4 3 0 ) (2 0 0 ) ) 248 
Final Machine of Problem 5-

( ( 8 3 0 ) (8 6 0 ) (6 2 1 ) ( 1 7 1 ) (3 1 1) (6 8 1 ) (5 4 0 ) ( 1 5 1 ) ) 1844 
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CONSTRUCTION OF FINITE AUTOMATA 

Final Machine of Problem 6-

( ( 2 7 0 ) ( 7 1 1 ) (3 2 0 ) ( 5 1 1 ) (0 3 0 ) ( 3 7 0 ) ( 1 8 1 ) (3 1 1 ) ) 886 
Final Machine of Problem 7-

( ( 7 6 0 ) (4 2 0 ) ( 4 2 1 ) (4 3 1 ) (5 2 0 ) (2 0 0 ) (7 5 0 ) (6 0 1 ) ) 3726 

20 



CONSTRUCTION OF FINITE AUTOMATA 

2 .3 .1 Hi l l -Cl imbing vs. Exhaust ive S e a r c h 

To see how effectively our hill-climbing algorithm has performed, we compare our method with an 
exhaustive search. There are (9 x 9 x 2 ) 8 » about 5 x 1 0 1 7 machines in our problem space. We now 
want to know the number of the desired machines in our problem space, so that we can calculate the 
expected number of steps until the exhaustive algorithm finds the first desired machine. This can be 
done by the following "sampling" method: take one machine in the problem space randomly, and test 
if this machine is the desired machine; repeat this procedure 100,000 times. 

We show the expected number of steps using the exhaustive search calculated by this procedure in 
figure 2-5. Although the exhaustive search works better on "easy" problems, it is obvious in general 
that our hill-climbing works much better than the exhaustive search. 

Figure 2-5: The number of Steps to get the desired machine 

Problem Hm-CHmb-tng Exhaustive-Search 

P I 98 33 
P2 134 316 
P3 2062 > 60000 
P* 442 12600 
PS 1768 > 60000 
P6 277 60000 
P7 206 60000 
P I - 300 167 
P2r 89- 1862 
P3 - 1939- > 60000 
P4- 246 > 60000 
P6- 1844 > 60000 
P6- 886 > 60000 
P7- 3726 > 50000 

2.3.2 Result with Different Numbers of States 

So far, we fixed the number of states to b e 8. In this section, we shall try the same experiment with 
different numbers of states (4 - 1 0 ) . Figure 2-6 shows the result of this experiment In the table, 
indicates "it could not solve within the given time". This can happen when the hill-climbing algorithm 
climbs a "local hill". This table implies that the number of states n should be reasonably large to 
avoid climbing a local hill, and we can hardly get the simplest machine by this method. We shall, 
however, see that we can simplify the machine with 8 states that we have gotten in this chapter, so 
that it becomes the simplest machine. 
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Figure 2 - 6 : The Number of States and Runtime [sec] 

NUMBER OF STATES 
PROBLEM 4 5 6 7 8 9 10 

1 0.4 
z 
3 33a. 1 
4 12.3 
5 
6 3 . 1 
7 49. S 
1 - 2 .4 
2 - 15.3 
3 -
4 -
5 - 162.0 
9 - 2.8 
7 - -—-

0.4 1.9 5.3 
0.4 6.4 2.2 

3.3 - 39 .6 
4.8 18.1 9.4 

164.7 7.9 
12.5 6.2 20.5 
10.9 23.2 2.8 

0.8 1.3 4.3 
1.9 13.9 7 .4 

76.5 
23.9 12.6 20.7 

28.8 
3 .9 53.4 13.6 

263.5 

2.2 1.9 0.6 
3.0 4 .1 3.6 

129.0 16.2 158.3 
13.1 1.4 11.7 
56.6 220.4 ' 96.8 

7.9 26.3 137.8 
7 .1 5.6 18.6 
8 .1 1.8 2.5 
2.4 19.2 17.9 

78.4 243.6 
7.7 14.8 17.5 

66.5 52.1 68.4 
29.0 5.5 7.5 

138.7 54.6 33.3 
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3. S i m p l i f i c a t i o n o f F i n i t e A u t o m a t a 

In the previous chapter, we saw that our hill-climbing method successful ly produced a machine 
that accepts all str ings in the right-list but no string in the wrong-list. However, the final machine of 
the result of problem Z, for example, does not accept our desired regular set (1 0)* . For instance, it 
does accept a string ( 1 1 0 0), which is not in (1 0)* . W e therefore want the machine to be 
"generalized" so that it accepts exactly (1 0)* . In fact, the final machines of all problems except 
problem 1, 3 and 7, need to be generalized. 

We define the generality of a machine in terms of its simplicity. The simplicity of a machine is 
determined by the number of states the machine has, and if two machines have the same number of 
states, a machine with fewer arrows and final states is simpler. 

Our task is to simplify the machines we have obtained in the previous chapter, so that the machines 
become the simplest or the most general . W e call this task simplification of finite automata, and it 
can be also done by using a hill-climbing method. 

3.1 Minimization 
Before we simplify the final machine of the previous experiment, we first remove any useless arroi 

and states, using a Minimization Algorithm (see, for example, [Hopcroft 79]). We show the result 
the minimization in figure 3 - 1 . Note that even after minimization, all problems except 1, 3 and 7 s 
need to be generalized. 

F igure 3 - 1 : Minimized Final Machine 

Problem Minimized Machine 

PI ( ( 0 1 1 ) ) 
PZ ( (0 4 1 ) (3 0 0 ) ( 6 0 1 ) ( 1 5 0 ) ( 2 2 0 ) (5 6 1 ) ) 
P3 ( ( 1 2 1 ) (3 1 1 ) ( 4 0 0 ) ( 3 4 1 ) ) 
P4 ( ( 4 1 1 ) (3 3 1 ) ( 1 2 0 ) (5 1 1 ) (0 3 1 ) ) 
P6 ( (6 3 1 ) (3 6 0 ) ( 2 1 0 ) (5 4 Q)(0 1 0 ) ( 1 4 0 ) ) 
P6 ( ( 5 3 1 ) (6 3 6 0 ) ( 2 6 0 ) (4 2 0 ) ( 4 1 0 ) ) 
P7 ( ( 1 2 1 ) (3 2 1 ) (3 4 1 ) (0 4 1 ) ) 
P I - ( ( 3 2 0 ) (5 1 0 ) (3 5 1 ) ( 3 4 1 ) (0 4 1 ) ) 
P2- ( (5 6 0 ) ( 2 3 1 ) ( 2 0 0 ) ( 2 5 1 ) (4 2 1 ) ( 1 4 1 ) ) 
P i - 3 6 0 4 6 1 1 4 0 ) (2 4 0 ) (5 7 1 ) (2 3 0 0 6 1 
p i - 4 7 0 (2 2 1 2 6 0 ) (5 1 0 ) (2 0 0 ) (7 4 1 1 3 0 ) ) 
P5- 4 3 0 ) (6 6 0 ) (6 2 1 ) ( 1 5 1 ) (3 1 1 ) (5 4 1 ) ) 
P6- ( ( 2 4 0 ) (4 1 1 ) (3 2 0 ) ( 1 5 1) (3 1 1 ) ) 
P7- ( ( 7 6 0 ) ( 4 2 0 ) ( 4 2 1 ) ( 4 3 1 ) (5 2 0 ) ( 2 0 0 ) ( 7 ^ 0 ) ) 

3.2 Simplification Algorithm 
The algorithm for simplification is similar to the algorithm described in the previous chapter. The 

maioT differences are as follows: (1) the evaluation function E(M) returns a h.gher value .f the 
machine IM * ^ p . e r ; (2) if M does not accept some strings in the right-.ist, or does accept some 
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str ings in the wrong-l ist , E(M) returns minus infinity; (3) the algor i thm starts with the minimized final 
mach ine of the previous exper iment instead of a random machine; (4) whenever a "useless s ta te" (i e 
a non-f inal state with neither 0-arrow nor 1 -arrow) is found, delete it. 

3.3 Results 

A sample trace of problem 2- is shown in figure 3-2. Each line corresponds to current generation 
M, and the right-most number is the cumulative number of steps. The final machine of this trace is the 
desired simplest machine. 

The final machines of all 14 problems are shown in figure 3-3. We see that some problems could 
not be simplified completely within the given time, probably because the search was climbing a local 
hill. 

3.4 Discussion 

3 .4 .1 H i l l -C l imbing v s . Exhaust ive Search 

W e compare our method with an exhaustive search. The exhaustive search enumerates ail 
machines in the order of simplicity, and the first machine that accepts all strings in the right-list but 
none in the wrong-list is considered the simplest machine. Thus we can calculate the expected 
number of steps until the exhaustive search finds the desired mach ine 5 . The result is shown in figure 
3-4. 6 

5Let n be the number of states of the simplest machine. Then the expected number of steps S is: 

S n = I 2 i = 1 t o n . 1 U i l + t U n / ( 2 x < n - 1 ) | ) l ' 
where tf. is the number of ail possible machines with j states, that is, 

U. = a + 1 ) 2 n x 2 n 

^The number of steps using hill-climbing in this figure is the sum of the number of steps to construct the 8 state machine and 
the number of steps to simplify it into the simplest machine. 
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Figure 3 - 2 : Sample Trace of Problem 2-

D) 2 3 ) 
1 ) ) 4 1 ) 
1 ) ) 5 9 ) 
1 ) ) 7 5 ) 
1 ) ) 8 2 ) 

Figure 3-3: The Result of Simplification 

[P21 ( ( 0 2 1 ) ( 1 0 0 ) ) 7 
[P4] ( ( 2 1 1) (3 1 1 ) (0 1 1 ) ) 88 
[P5] 4 3 1) (3 4 0 ) (2 1 0 ) ( 1 2 0 ) ) 42 
[P6] ( ( 3 2 1 ) ( 1 3 0 ) (2 1 0 ) ) 174 
[ P 1 - ] ( ( 2 1 0 ) (2 2 1) ) 146 

( ( 0 Z 
( ( 2 1 1) (3 
( ( 4 3 1) (3 
( ( 3 Z CM 1 0) (Z 
( ( 2 3 0 ) (2 
( ( 1 5 0 ) (3 
( ( 3 5 0 ) (2 
( ( 4 3 0) (6 
( ( 2 3 0 ) (3 
( ( 1 6 0 ) (4 

[ P Z - ] ( (Z 3 0 ) (2 Z 1)U 2 1 ) ) 971 
[ P 3 - ] ( ( 1 5 0 ) (3 4 1) (Z 3 0) (Z 4 1 ) ( 2 1 0 ) ) 363 
[ P 4 - ] ( ( 3 5 0) (Z Z 1 ) (4 1 0 ) ( 2 0 0 ) ( 1 1 0 ) ) <NOT-SIMPLEST> 
[ P 5 - ] ( ( 4 3 0) (6 6 0 ) (6 Z 1 ) ( 1 5 1 ) (3 1 1) (5 4 1) ) <NOT-SIMPLEST> 
[ P 8 - ] ( (Z 3 0 ) (3 1 1 ) ( 1 Z 1 ) ) 44 
[ P 7 - ] ( ( 1 5 0 ) (4 6 0 ) (4 Z 1 ) (4 3 1 ) (6 2 0 ) (4 0 0 ) ) <NOT-SIMPLEST> 
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F i g u r e 3 - 4 : The Number of Steps to obtain the simplest machine 

Problem Hi 11-C1imbing Exhaustive-Search 
PI 98 4 
P2 141 170 
P3 2052 553933 
P4 510 8524 
P5 1810 553933 
P6 451 8524 
P7 206 553933 
PI- 445 170 
P2- 1060 8524 
P3- 2302 46593884 
P4- --- 553933 
P5- —- 553933 
P6- 930 8524 
P7- 46593884 

3 . 4 . 2 S impl i f ica t ion f rom Tr iv ia l M a c h i n e 

We have seen that our hi l l -c l imbing works rather successful ly, a l though some problems cou ld not 
be simpl i f ied completely. Our method consists of 2 parts, the const ruct ion process (chapter 2) and 
the s impl i f icat ion process (chapter 3). That is, we first const ruct a mach ine wi th 8 states and then 
simpli fy it. One might suppose that w e cou ld get the simplest mach ine using only the const ruc t ion 
process, by choos ing the number of states suff ic ient ly smal l . Unfortunately, in the previous chapter, 
w e showed that the number of states shou ld be reasonably large, and we cannot do that. One might 
also not ice that we wou ld not need any const ruc t ion process, because we can easily cons t ruc t a 
trivial machine, wh ich accepts exact ly all s t r ings in the right-l ist but noth ing else. Figure 3-6 is an 
example of the trivial machine. In this sect ion, we descr ibe some exper iments to try to simpli fy f rom 
the tr ivial machine. We shall see that to simpl i fy f rom the trivial mach ine is much less effective than 
our construct ion-s impl i f icat ion method. The result of the exper iments is shown in f igure 3-7. When 
we compare f igure 3-3 and f igure 3-7, it is obv ious that our construct ion-s impl i f icat ion method is more 
effect ive than the second method. 
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F i g u r e 3 - 6 : Trivial Machine of Problem 5 

Figure 3 - 7 : Result of Simplification from Trivial Machine 

[ P I ] 
[ P 2 ] 
[ P 3 ] 

[ P 4 ] 
[ P 5 ] 
[ P 6 ] 
[ P 7 ] 
[ P 1 - ] 
[ P 2 - ] 
[ P 3 - ] 
[ P 4 - ] 
[ P 5 - ] 

[ P 6 - ] 
[ P 7 - ] 

1 ) ( 3 0 1 ) ( 0 9 1 ) ( 1 0 0 0 ) 
24 <NOT-SIMPLEST> 

<NOT-SIMPLEST> 

0 1 1 ) ) 2 107 
0 2 1 ) ( 1 0 0 ) ) 3 132 
1 2 1 ) ( 5 4 1 ) ( 3 6 0 ) ( 7 8 1 ) ( 6 0 0 ) ( 0 2 
0 11 0 ) ( 0 12 0 ) ( 1 3 0 ' 0 ) ( 1 4 0 0 ) ( 2 0 0 ) ) 
3 2 1 ) ( 1 5 1 ) ( 4 2 1 ) ( 0 5 1 ) ( 0 2 0 ) ) 12 
3 2 1 ) ( 4 1 0 ) ( 1 4 0 ) ( 2 3 0 ) ) 9 1879 
3 2 1 ) ( 1 3 0 ) ( 2 1 0 ) ) 7 1 8 0 1 
3 2 1 ) ( 4 6 1 ) ( 6 5 1 ) ( 0 0 1 ) ( 1 2 1 ) ( 3 3 0 ) ) 15 <NOT-SIMPLEST> 
2 1 0 ) ( 2 2 1 ) ) 5 446 
3 2 0 ) ( 1 3 1 ) ( 3 3 1 ) ) 8 1249 
1 2 0 ) ( 3 1 0 ) ( 5 4 1 ) ( 4 3 1 ) ( 3 5 0 ) ) 12 
3 1 0 ) ( 2 2 1 ) ( 4 1 0 ) ( 2 1 0 ) ) 9 3692 
3 2 0 ) ( 2 4 1 ) ( 1 6 1 ) ( 0 5 0 ) ( 8 0 1 ) ( 7 0 
0 11 0 ) ( 0 12 0 ) ( 0 13 0 ) ( 0 14 0 ) ( 0 9 0 ) ) 
3 2 0 ) ( 5 3 1 ) ( 4 1 1 ) ( 1 0 1 ) ( 1 2 0 ) ) 12 
3 7 0 ) ( 2 2 1 ) ( 4 7 0 ) ( 0 5 0 ) ( 0 6 0 ) ( 7 0 

<NOT-SIMPLEST> 

<NOT-SIMPLEST> 

1 ) ( 0 10 1 ) ( 9 0 0 ) ( 0 3 0 ) 
22 <NOT-SIMPLEST> 

<NOT-SIMPLEST> 
0 ) ( 8 0 0 ) ( 2 8 0 ) ) 13 
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4. R 3 - c o n c t r u c t i o n of F i n i t o A u t o m a t a 

So far, we have descr ibed a method for const ruc t ing the simplest Finite Automaton f rom given 
examples. Suppose we have solved one prob lem, and are given another problem whose examples 
are very c lose to the previous one. To solve this new problem start ing f rom the beg inn ing is rather 
tedious because we already have some informat ion about the solut ion. In this chapter, we descr ibe 
how to re-construct a f inite automaton if the right-l ist a n d / o r wrong-l ist is sl ightly a l tered. 

After the sample l ists are al tered, if the mach ine still accepts all str ings in the right-l ist but no str ings 
in the wrong- l ist , the previous so lut ion is the new solut ion. If the machine does not accept some 
str ings in the right-l ist, a n d / o r does accept some str ings in the wrong- l is t , we refer to such st r ings as 
inconsistent strings. Whenever we f ind an inconsistent str ing in the right-l ist, we cal l a procedure, 
add-trivially, wh ich revises the machine, so that it accepts all str ings in the right-l ist. On the other 
hand, whenever w e f ind an inconsistent str ing in the wrong- l is t , we cal l a procedure, 
cut-wrong-arrow, wh ich revises the mach ine , so that it accepts no str ing in the wrong- l ist . A l though 
after cal l ing add-tr ivial ly there is no inconsis tent str ing in the right-l ist, there may now be another 
inconsistent str ing(s) in the wrong- l is t . In th is case, we cal l cu t -wrong-ar row. Similarly, a l though after 
cal l ing cu t -wrong-ar row there is no inconsis tent str ing in the wrong- l is t , there may now be another 
inconsistent str ing(s) in the right-l ist. In th is case, we cal l add-tr ivial ly. Thus, we cal l add-tr iv ial ly and 
cut -wrong-ar row again and again. 

We first def ine add-tr ivial ly and cut -wrong-ar row, and then we show that our process always 
terminates, p roduc ing the des i red mach ine that accepts all s t r ings in the right-l ist but no str ing in the 
wrong-l ist , a l though the mach ine is not the simplest. 

4.1 Add-trivially 

The purpose of th is add-tr ivial ly rout ine is to accept an inconsistent str ing in the right-l ist, no matter 
how many str ings in the wrong- l is t the mach ine comes to accept . W e first def ine trivial state and 
trivial path, then finally we def ine add-tr iv ial ly. 

D e f i n i t i o n : In each machine, we cons ider that there is a special ar row named starting arrow, wh ich 
always points to the init ial state q r 

D e f i n i t i o n : If more than one ar row ( inc luding the star t ing arrow and the one f rom q itself) po in t to 
a state q, then q is cal led a non-trivial state. If only one arrow points to q, then q is cal led a trivial 
state. 

D e f i n i t i o n : A sequence of states q i ( 1 ) i q i ( 2 ) , q j ( k ) is cal led a path of a str ing aya2 a k V where 
each a. is in {1 ,0 } , iff for all j such that 1 < j < k - 1 , if a. = 0 then A. ( j ) = i(j + 1) else B. ( j ) = i(j + 1). 

D e f i n i t i o n : A sequence of states q i ( 1 ) »q j ( 2 ) . % k )

 i s cal led a trivial path, iff this sequence is a path, 
and for all j such that 2 < j < k, q j ( j ) is a trivial state, and for all j such that 2 < j < k -1 , q i f ) is a 
non-f inal state, and q j ( k ) is a final state. This path accepts only one st r ing. 1 

That the machine M does not accept a st r ing crra2, a R means either of the fo l lowings: 

1. There is a path of a r a 2 , . . . . , a k , but the last state is a non-f inal state. 

2. There exists an integer j such that there is a path of a r . . . , a . ^ , but the last state of this 
path does not have an a.-arrow. 

where each a. is in {1 ,0 } . 
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For each inconsistent string in the right-list, add-trivially works as follows: in case 1. let the last 
non-final state be the final state; in case 2. create a trivial path from the last state so that the machine 
accepts the whole string. 

It is easy to show that after calling add-trivially the machine accepts all strings in the right-list. 
However, it also may come to accept some strings in the wrong-list, as we mentioned before. In this 
case, we call cut-wrong-arrow defined below. 

4.2 Cut-wrong-arrow 
If there are some inconsistent str ings in the wrong-l ist (i.e. the machine does accept the str ings), we 

call cut -wrong-arrow so that the machine comes to accept none of these str ings, no matter how many 
str ings in the right-l ist the machine comes to reject. 

For each inconsistent str ing in the wrong-l ist , cut -wrong-arrow works as fol lows: Let 
q j ( 1 ) , q j ( 2 ) , . . . . , q j ( k ) be a path of the str ing w that should not be accepted. To reject w, one of the arrows 
of the path must be cut. Let q j ( n ) be one of the non-trivial states in the pa th . 7 Cut the arrow from 
qKn 1 ) t 0 qi(n)' l f q i ( i n i t i a l s t a t e ) i s t h e o n ' y non-trivial state, then let the machine M be ( ( 0 0 0 ) ) , 
wnicn does not accept anyth ing. 

It is easy to show that after cal l ing cut -wrong-arrow all str ings in the wrong-l ist are rejected, 
a l though the machine may come to reject some str ings in the right-list. In this case, we call add-
trivially. 

4.3 Termination 

In this sect ion, w e show that the a lgor i thm above always terminates. 

T h e o r e m : The algor i thm above always terminates. 

Proof: Consider the fo l lowing partial order ing: 

non-triviality of state: the number of ar rows which point to the state. 

non-triviality of machine: total of non-triviality of all non-tr ivial states. 
We denote this by Jl£(M), where M is a machine. Note that nt(M) = 0, iff M is a trivial machine. 

Let M' be the result of adding-tr ivial ly to M, then n t ( M ' ) = nt(M), because add-trivial ly adds only a 
trivial path. Next, let M' be a result of cut -wrong-arrow over M, then / i t ( M ' ) < n t ( M ) , because we 
always cut the arrow that points to a non-trivial state q, and non-triviality of the state q decreases, and 
therefore non-triviality of machine also decreases. Thus, we cannot have an infinite loop, add-
trivially, cut-wrong-arrow, add-trivially, cut -wrong-arrow, add-trivially, , because nt(M) always 

decreases but nt(M) > 0. <end of proof> 

7Such a non-trival state always exists if the original machine has been simplified, and throughout this paper, we deal only 
with the re-construction of a simplified machine. 
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Final, v , we describe an actual system. RR, that learns to construct finite automata. RR is running in 
MACLISP eitner on CMU-2GC or CMU-10A. 

RR has a machine (finite automaton) and each time RR is given a str ing in (1 + 0)" as its input, RR 
runs the machine with the str ing given. If the machine accepts the str ing, RR answers ACCEPT, 
otherwise it answers REJECT. At the very beginning, RR has a null machine, which accepts noth ing, 
and therefore RR does not accept any str ing at all. Now, consider some regular set R that we want to 
teach to RR. When we input a string s to RR, it should accept s if and only if s is in R. If s in not in R, 
RR should, reject it. Whenever RR answers incorrect ly, we scold it. When RR answers correct ly and 
we think this example is impor tan t 8 , we encourage it. When RR is scolded or encouraged, it 
memorizes the fact that the str ing must be accepted or rejected, that is, if it is the case that the str ing 
must be accepted. RR puts it into right-l ist, wh ich is a set of str ings that must be accepted, and 
similarly, if the str ing must be rejected, RR puts it into wrong-l ist . After memor iz ing, RR re-cons t ruc ts 9 

the machine in the way descr ibed in chapter 4, so that it accepts all str ings in the right-l ist and none 
in the wrong-l ist . After each re-construct ion, RR simpli f ies the machine in the way descr ibed in 
chapter 3. 

Figure 5-1 shows a flow chart of the RR system. 

'We do not need to encourage it every time it answers correctly. 

*Only when it has been scolded. 
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RR: REGULAR SETT RECOGNIZER 
Figure 5-1: Top Level of RR System 

accepted rejected 

Print " A C C E P T 1 Print "REJECT ' 

nothing S X scolded 
^ c o m m e n 

encouraged 

Put S into 
right-l ist 

Put S into 
wrong- l is t 

scolded X V nothing 
c o m m e n A  

encouraged 

Put S into 
right-l ist 

Put S into 
wrong- l is t 
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5.1 How to execute the RR system 

In this section, we describe hew to execute the RR system, and in the following section, we show 
several sample runs. 

5 . 1 . 1 G e t t i n g S t a r t e d 

RR runs in MACLISP either on CMUC or CMUA. In MACLISP, type 

( s l u r p <tommy> r r ) (CMUC) 

or 

( s l u r p c 4 1 0 m t 8 0 r r ) (CMUA). 

And cal l funct ion: 

( m a i n ) (both CMUA and CMUC). 

Then you get prompt " » > " and are in the RR system. 

5 . 1 . 2 How to t e a c h 

• Giving example: The format for giv ing an example to RR is the fo l lowing: 

( O-or-1 <space> O-or-1 <space> <space> O-or - f ) 

Typical input is: 

» > ( 1 0 1 0 1 0 1 0 ) 

RR then outputs the answer, either ACCEPTED or REJECTED. 

• Sco ld ing: To sco ld for a wrong answer, input n r ight after the wrong answer. 

» > n 

• Encourag ing: To encourage RR, input y r ight after the answer. 

» > y 

• Anyway-accept : If the example str ing starts wi th +, this means : if this string is accepted 
then encourage; otherwise scold. Typical input is: 

» > ( + 1 0 1 0 0 1 ) 

• Anyway-reject: If the example str ing starts with this means: if this string is rejected 
then encourage; otherwise scold. A typical input is: 

» > ( - 0 0 0 1 0 0 1 0 ) 

To give the null s t r ing, use ( ) o r ( + ) o r ( - ) . 

5 . 1 . 3 O t h e r C o m m a n d s 

• r: show present right-l ist. 

• w: show present wrong-l ist . 



RR: REGULAR SET RECOGNIZER 

• m: show present machine. 

• 1; show last input. 

• o: show order of memorized str ings. 

• t : show runt ime of each step and total runt ime. 

• ?: show every thing above. 

• new: initialize. 

• tG : quit. 

5.2 Sample Runs 

5 .2 .1 Sample Run 1 : 

As the simplest example, let us teach the regular set 1 * to RR. The desired machine is: 

The underl ined str ings are user's inputs, and the Italic str ings are comments . 

[PHOTO: R e c o r d i n g I n i t i a t e d Thu 4 - M a r - 8 2 2 :38PM] 
TOPS-20 Command p r o c e s s o r 4 ( 7 2 3 ) - 7 

Q l i s p 
[ K e e p i n g ] 
MacLisp f o r TOMMY 

( ( 0 1 1 ) ) . 

( s l u r p <tommy> r r ) 
(<T0MMY> RR FASL) 
( m a i n ) 
>>> new 

»> i l 
REJECTED 
» > n 
MODIFYING • 
»> ill 
REJECTED 
» > n 
MODIFYING 
» > ( 1 1 1 ) 
ACCEPTED 
» > ( 0 ) 
REJECTED 
» > (1 0 1 1 1) 
REJECTED 
» > ( 1 1 1 1 1 1 1 1 1 1 1 1 1 11 
ACCEPTED 
»> 2 
RIGHT-L IST 

Initialization. 
Input null string as an example. 
The null string was rejected. 
Since null should be accepted, scold it. 
It is trying to modify. 
Next, input (1). 
(1) was rejected. 
Since (1) should be accepted, scold it. 
It is modifying itself. 
Next try (1 1 1). 
This was accepted, all right, no scolding. 
Next try (0). which should not be accepted. 
This was rejected, all right, no scolding. 
Next try (1 0 1 1 1), which should not be accepted. 
Rejected, all right, no scolding. 
Next try this. 
Accepted, all right, it should be accepted. 
Maybe we've got 7 , let us look inside the machine. 
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( f i l L ( 1 ) ) 
WRONG-LIST 
N I L 
PRESENT-MACHINE 
( ( 0 1 1 ) ) 
LAST-INPUT 
( + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 
ORDER 

( ( + ) ( + 1 ) ) 
TIME 
( 0 . 0 1 9 0 . 0 4 8 ) 
TOTALTIME 
( 0 . 0 6 7 ) 

Right-list contents null string and (1). 

Wrong-list contents nothing. 

Present machine, is, yes, 7*. 

We taught it in this order. + means "in right-list". 

Time spent to teach (+) and ( + 1). 

Total time in seconds to learn l'. 

5 . 2 . 2 Sample Run 2 : 

Let us try to teach a harder automaton, problem 4. This regular set is: 

The d i f f e r e n c e between t h e number o f O 's and t h e number o f l ' s 1s 
d i v i s i b l e by 3 . 

For instance, the string ( 1 0 1 1 1 ) should be accepted because 4-1 = 3 is divisible by 3. The 
desired machine is as follows: 

( ( 3 2 1 ) ( 1 3 0 ) ( 2 1 0 ) ) . 

» > nejj 

»> il 
REJECTED 
»> n 
MODIFYING • 
» > m 
( ( 0 0 1 ) ) 
» > ( 1 1 1 ) 
REJECTED 
»> n 
MODIFYING • * 
»> m 
( ( 0 1 1 ) ) 
»> i l l 
ACCEPTED 
» > n 
MODIFYING 
» > m 
( ( 0 2 1 ) ( 0 3 0 ) ( 0 1 0 ) ) 
» > f l 1 1 1 1 1 ) 
ACCEPTED 
» > f Q ) 
REJECTED 
> » y. 
REJECTED 

First, let us try null, which should be accepted. 

No, null should be accepted. 

Show the present machine. 

This machine accepts nothing but a null string. 

No, this should be accepted. 

This machine is 7 *. 

No, this should be rejected. 

This machine is (1 1 1)'. 

All right, it should be accepted. 

Yes, it should be rejected. Particularly, encourage it. 
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RR: REGULAR SET RECOGNIZER 

»> (o o 01 
REJECTED 
>>> H No. this should be accepted. 
MODIFYING 
»> fO 0 Q 0 0 01 
ACCEPTED All right. 
»> (0 01 
REJECTED Ail right. 
>» m 
((4 2 1) (0 3 0) (0 1 0) (5 0 0) (1 0 0)) (777 + OOO)'. >» d 01 REJECTED 
>» n No, this should be accepted. 
MODIFYING *** 
»> m 
((4 2 1) (1 3 0) (0 1 0) (2 0 0)) 
» > (0 1) REJECTED 
»> n No, this should be accepted. 
MODIFYING **• 
»> m 
((3 2 1) (1 3 0) (2 1 0)) Now, we get the desired machine. 

»> (i looooiooiooioooo cn 
REJECTED Ok. 
»> (1 100001001001000001 11 
ACCEPTED Ok. 
»> 1 
RIGHT-LIST 
(NIL (1 1 1) (0 0 0) (1 0) (0 1)) 
WRONG-LIST 
((1) (0)) 
PRESENT-MACHINE 
((3 2 1) (1 3 0) (2 1 0)) 
LAST-INPUT 
(+11000010010010000011) 
ORDER 
((+) (+111) (- 1) (- 0) (+ 0 0 0) (+ 1 0) (+ 0 1)) 
TIME 
(0.014 0.087 0.117 -0.01 0.364 0.564 1.413) 
TOTALTIME 
(2.549) 
5 . 2 . 3 Sample Run 3 : 

The total run t ime to learn the desired machine depends very much on the order of input examples. 
We now try the previous sample again but w i th a di f ferent order. 

»> new 
»> U 
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RR: REGULAR SET RECOGNIZER 

REJECTED 
>>> n 
MODIFYING • 
»> m 
( ( 0 0 1)) 
>» (i Q) 
REJECTED 
»> n 
MODIFYING »> (0 11 REJECTED »> n 
MODIFYING ** 
»> ffl 
((3 2 1) (1 0 0) (0 1 0)) Present machine is (10 + 01)'. »> (1 1 11 REJECTED »> n MODIFYING ••• 
» > m 

((3 2 1) (1 3 0) (0 1 0)) (10 + 01 + 111)' 
»> {% \) 

REJECTED 
»> ri i i i i ii 
ACCEPTED 
» > (0 0 01 
REJECTED 
»> n 
MODIFYING ••• 
» > m 
((3 2 1) (1 3 0) (2 1 0)) This is the desired machine. »> (0 101010100000011111111 11 ACCEPTED 
»> a o i o i o i o o o o o o o i i i i o i i i i 11 
REJECTED »> ? RIGHT-LIST (NIL (1 0) (0 1) (1 1 1) (0 0 0)) WRONG-LIST NIL 
PRESENT-MACHINE 
((3 2 1) (1 3 0) (2 1 0)) 
LAST-INPUT 
(-101010100000001111011111) ORDER ((+) (+ 1 0) (+ 0 1) (+ 1 1 1) (+ 0 0 0)) TIME (0.014 0.085 0.068 0.21 0.875) TOTALTIME 
(1.262) The total time is much shorter. 36 



RR: REGULAR SET HECCG'-'iZER 

5 . 2 . 4 S a m p l e Run 4 : 

We next try problem 3, which is very hard. This reguiar set is: 

Any s t r i n g s w i t h o u t odd number o f c o n s e c u t i v e O's AFTER odd number 
of c o n s e c u t i v e l ' s . 

>>> new 
» > ( + ) ( + 1 U + O U - 1 0 U + 0 1 U + 1 1 U + 0 O U - 1 0 1 U - 0 1 0 U + 1 0 0 )  
(+ 1 1 0 U + 1 1 1H + 0 0 O U - 1 0 1 O U - 1 1 1 O U - 1 0 1 1 U - 1 0 0 0 11  
f - 1 1 1 0 1 O U - 1 0 0 1 0 0 Q ) ( - 1 1 1 1 1 0 0 0 )  
( - 0 1 1 1 0 0 1 1 0 1 U - 1 1 0 1 1 1 0 0 1 1 0 ) 
( + 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 H + 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 ) 
MODIFYING * 
»> 
MODIFYING •• 
»> 
MODIFYING ** 
»> 
MODIFYING *• 
» > 
ACCEPTED 
>» 
MODIFYING • • 
»> 
ACCEPTED 
»> 
REJECTED 
»> 
REJECTED 
»> 
MODIFYING *• 
»> 
ACCEPTED 
»> 
ACCEPTED 
»> 
ACCEPTED 

»> 
REJECTED 
>» 
REJECTED 
»> 
REJECTED 
»> 
MODIFYING • • • • • • • • 
»> 
REJECTED 
»> 
MODIFYING • • • • • • • • • • • • 

»> 
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REJECTED 
>>> 
REJECTED 
>>> 
REJECTED 
»> 
MODIFYING *• 

»> 
MODIFYING ***** 
»> 2 
RIGHT-LIST 
( N I L ( 1 ) ( 0 ) ( 0 1 ) ( 1 1)(0 0 ) ( 1 0 0 ) ( 1 1 0 ) ( 1 1 1) (0 0 0 ) ( 1 1 0 0 0 0 0 1 
1 1 0 0 0 0 1 ) ( 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 ) ) 
WRONG-LIST 
( ( 1 0 ) ( 1 0 1) (0 1 0 ) ( 1 0 1 0 ) ( 1 1 1 0 ) ( 1 0 1 1 ) ( 1 0 0 0 1 ) ( 1 1 1 0 1 0) ( 
1 0 0 1 0 0 0 ) ( 1 1 1 1 1 0 0 0 ) (0 1 1 1 0 0 1 1 0 1 ) ( 1 1 0 1 1 1 0 0 1 1 0 ) ) 
PRESENT-MACHINE 
( ( 1 2 1) (3 1 1 ) (4 0 0 ) (3 4 1 ) ) This is the desired machine. 
LAST-INPUT 
NIL 
ORDER 
( ( + ) ( + 1 ) ( + 0 ) ( - 1 0 ) ( + 0 1 ) ( + 1 1 ) (+ 0 0 ) ( - 1 0 1 ) ( - 0 1 0 ) ( + 1 0 0 ) ( 
+ 1 1 0 ) ( + 1 1 1 ) ( + 0 0 0 ) ( - 1 0 1 0 ) ( - 1 1 1 0 ) ( - 1 0 1 1 ) ( - 1 0 0 0 1 ) ( 
- 1 1 1 0 1 0 ) ( - 1 0 0 1 0 0 0 ) ( - 1 1 1 1 1 0 0 0 ) ( - 0 1 1 1 0 0 1 1 0 1 ) ( -
1 1 0 1 1 1 0 0 1 1 0 ) ( + 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 ) ( + 1 1 1 1 0 1 1 0 0 
0 1 0 0 1 1 1 0 0 ) ) 
TIME 
(0.014 0.042 0.08 0.078 8.0E-3 0.116 8.0E-3 0.013 0.011 0.357 0.011 0.012 
8.0E-3 9.0E-3 0.01 0.011 2.066 0.012 3.686 0.014 0.018 0.02 0.283 3.735) 

TOTALTIME 
(10.282) 

5 . 2 . 5 S a m p l e Run 5: 

We now try the previous run again with a more effective ordering. 

» > new 
> » ( - 1 0 U - 1 0 0 1 0 U - 1 0 0 0 U - 1 0 0 1 1 0 U + )m(+ 01m(+ 0 Dm 

(+ 0 1 1 0)m(+ 1 0 0)m(+ 1 l)m(+ 1 0 0 Um(+ 1 0 0 0 OJ 
REJECTED 
»> 
REJECTED 
» > 
REJECTED 
»> 
REJECTED 
»> 
MODIFYING • 
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>>> 

( ( 0 0 1 ) ) 
>» 
MODIFYING 
» > 
( ( 1 0 1 ) ) 
» > 
MODIFYING • 
> » 
( ( 1 2 1) (0 0 1 ) ) 
> » 
MODIFYING 
» > 
( ( 1 2 1) (0 1 1 ) ) 
» > 
MODIFYING • 
>» 
( ( 1 2 1) (3 1 1) (4 0 0) (0 0 1 ) ) 
>» 
ACCEPTED 
> » 
( ( 1 2 1) (3 1 1) (4 0 0) (0 0 1 ) ) 
» > 
MODIFYING *• 
»> 
( ( 1 2 1) (3 1 1) (4 0 0) (0 4 1 ) ) 
»> 
MODIFYING • • • 
» > in 
( ( 1 2 1) (3 1 1) (4 0 0) (3 4 1 ) ) 
»> 2 
RIGHT-LIST 
( N I L (0) (0 1) (0 1 1 0) (1 0 0) (1 1) (1 0 0 1) ( 1 0 0 0 0 ) ) 
WRONG-LIST 
( ( 1 0) (1 0 0 1 0) ( 1 0 0 0) (1 0 0 1 1 0 ) ) 
PRESENT-MACHINE 
( ( 1 2 1) (3 1 1) (4 0 0) (3 4 1 ) ) This is the desired machine. 
LAST-INPUT 
NIL 
ORDER 
( ( - 1 0 ) ( - 1 0 0 1 0 ) ( - 1 0 0 0 ) ( - 1 0 0 1 1 0 ) ( + ) ( + 0 ) ( + 0 1 ) (+ 0 1 1 0 ) 
( + 1 0 0 ) (+ 1 1 ) ( + 1 0 0 1 ) (+ 1 0 0 0 0 ) ) 
TIME 

( 9.0E-3 9.0E-3 0.017 9.0E-3 0.016 0.047 0.029 0.091 0.042 0.013 0.38 0.342) 

TOTALTIME 
(0 .89) This is much faster than the previous run. 
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5.3 Discussion 

We saw in the previous section that the run-time of sample run 3 is much shorter than the run-t ime 
of sample run 2, and also sample run 5 is much faster than sample run 4. Thus, RR is very sensit ive to 
what is given as examples, and how these are ordered. In this sect ion, we are interested in how to 
teach RR effectively. 

First, we consider the worst case and the best case of re-construct ion. In the worst case, RR calls 
add-trivially and cut-wrong-arrow again and again, and eventually its machine becomes the trivial 
m a c h i n e . 1 0 We know that a trivial machine can be const ructed easily wi thout such a special 
technique as re-construct ion. 

On the other hand, the best case is that RR calls add-tr ivial ly once but no further cut -wrong-arrow. 
Thus, in order to " t e a c h " the RR system effectively, we have to choose the examples nicely so that 
RR can re-construct its machine only by add-tr ivial ly. For instance, the example inputs of sample run 
3 and sample run 5 are so chosen, and their run-t ime is in fact very short. Also, to avoid cal l ing 
cut-wrong-arrow, we had better give the negative examples earlier. 

1 0 A trivial machine is a machine that accepts exactly all strings in the right list and nothing else. See chapter 3. 
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CONCLUDING KEMARK 

1 1 The cross-over operator acts on a pair of strings by breaking each string at some point and rejoining the subsegments 
from different strings. The inversion operator makes two breaks, inverts the inner segment and then reioin the string. 
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5. Concluding Remark 
Our new approach to construct ion of finite automata from given examples has been shown to work 

very nicely, despite the fact that its algor i thm is quite simple. In chapter 2, we saw that const ruct ion of 
finite automata with n states can be nicely done using hi l l-cl imbing if n is a reasonable number. In 
chapter 3, we saw that we could often simplify the result ing machine of chapter 2 also using hill-
c l imbing, a l though some problems could not be solved. In chapter 4, we discussed how to util ize past 
work, if a given problem is very close to the past problem. The RR system, which uses these 
techniques, was in t roduced and descr ibed in chapter 5. Finally, we enumerate several extensions of 
this work. 

• Our hi l l -cl imbing algor i thm somet imes c l imbs a local hill, and therefore fails to f ind a 
correct solut ion. There are several ways to avoid cl imbing a local hill, and one of them is 
adaptive search [Cavicchio 70], [Hol land 75] . Adapt ive search can be considered as a 
powerful version of hi l l -c l imbing. There are not only one "cur rent genera t ion" , but 
usually a populat ion of 20-30 . The best f ive or so are chosen as winners (the others are 
discarded) and 15-25 sl ightly-altered copies of them are made as the new populat ion. 
Altering way is not only mutat ion, but also cross-over (mix two and produce one), inverse 
(inverse a certain part of one) , 1 1 and so on . This approach becomes really powerfu l if 
parallel computat ion is available. 

• Our finite automata have been determinist ic, that is, arrows either exist or do not exist. 
The operator create-arrow or delete-arrow often makes too much di f ference to c l imb hill 
smoothly. The idea is to let our f inite automata be probabilistic, that is, an arrow exists 
partially wi th a real number between 0.0 and 1.0, wh ich indicates a probabi l i ty of 
existence of the arrow. (See [Rabin 63].) In this case, we increase or decrease the real 
numbers, rather than create or delete an arrow. This method might help to c l imb hills 
smoothly. 

• Our mutat ion funct ion might be modi f ied so that the mutat ion does not take place 
completely randomly,, but somewhat "c lever ly" . For instance, if the machine accepts a 
str ing in the wrong-l ist , then delete-arrow or decrease-prob-of-arrow should take place 
more often on this wrong path than on others. Our idea becomes more concrete if we 
deal wi th the probabi l ist ic automata descr ibed in the previous paragraph. If the machine 
somehow accepts a str ing in the wrong-l ist , then we should decrease all probabi l i t ies of 
the arrows on this path. If the machine accepts a str ing in the right-list, we increase the 
probabil i t ies on this path, etc. 

• Our problem domain in this paper has been regular sets. It might be possible to extend it 
to context- free sets by const ruct ing Push-Down Automata (f inite automata with stack, see 
[Hopcroft 79]). Since construct ion of Push-Down Automata must be much harder than 

finite automata, we would definitely need techniques just l isted. 

• A finite automaton can be viewed as a program that takes a str ing as its argument and 
outputs TRUE or FALSE. Therefore we might be able somehow to apply our method to 
automatic programming f rom speci f icat ion by examples. 
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