NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-C5-82-127

Learning of
Construction of Finite Automata
From Examples Using Hill-Climbing

RR: Regular set Recognizer

Masaru Tomita

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

May 1882

This research was sponsored by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under
Contract F33615-81-K-1538.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.

Abstract

The problem addressed in this paper is heuristically-guidzad learning of fimite automata
from examples. Given positive sample strings and nsgative sampie strings. a finite
automaton is generated and incrementally refined to accept ail positive samples but no
negative samples. This paper describes some experiments in applying hill-climbing to
modify finite automata to accept a desired regular language. We show that many probiems
can be solved by this simple method. We then describe the method hcw to "re-construct”
a finite automaton if the positive and/or negative samples are shightly altered. without
starting from the beginning. Finally, we have an actual system. RR: Regular set
Recognizer. that learns to recognize a reguiar set from the samples that are given by a
human teacher one by one.

Acknowledgements

| wouid like to thank Herbert A. Simon and Jaime Carbonell, who are my thesis advisers,
tor supervising my work; Masakazu Nakanishi, who was my previous adviser when | was at
“Keio University; Yuichiro Anzai, Takeo Kanade and Pat Langley. for thoughtfui comments
on an earlier version of this work; and Cynthia Hibbard for helping to produce this
document.

1. Introduction

1.1 The finite automata used in this paper
1.2 The problem
1.3 Past Work
1.4 Qverview of the Paper
1.5 Sampie Problems
1.5.1 Sample Problems
1.5.2 Solution of Sample Problems
1.5.3 Finite Automata of Solutions
1.5.4 Inverse Problems

2. Construction of Finite Automata

2.1 Algorithm

2.2 Results

2.3 Discussion
2.3.1 Hill-Climbing vs. Exhaustive Search
2.3.2 Resuit with Different Numbers of States

3. Simptification of Finite Automata

3.1 Minimization

3.2 Simplification Algerithm

3.3 Results

3.4 Discussion
3.4.1 Hiil-Climbing vs. Exhaustive Search
3.4.2 Simplification from Trivial Machine

4. Re-construction of Finite Auto_mata

4.1 Add-trivially
4.2 Cut-wrong-arrow
4.3 Termination

5. RR: Regular set Recognizer

5.1 How to execute the RR system
5.1.1 Getting Started)
5.1.2 How to teach
5.1.3 Other Commands

5.2 Sample Runs
5.2.1 Sampie Run 1:

5.2.2 Sample Bun 2:

5.2.3 Sample Run 3:

5.2.4 Sample Run 4:

5.2.5 Sample Run 5:
5.3 Discussion

6. Concluding Remark

References and Bibliography

INTRODUCTION

1. Introduction

Consider the following problem:

Describe the property that all strings in the right-list have but no string in the wrong-list has. Does a
string (1 1 0 1) have this property? You may answer the question by using any of the following:
English, a reguiar expression, or a finite automaton.'

right-list wrong-list

0 (10)

(1) (101)

(0) (010

@1) (1010)

(11) (1110

(00) (1Q11)
(100 (10001)
(110) {111019)
(111) (1001000)
(000) (11111000)
(100100) (0111001101)

(110000011100001) (11011100110)
(111101100010011100) .

It might be possible to construct the finite automaton by a "typicai” schema-filling methed (i.e.,
finding rough property in the samples first, comparing these strings carefully). However, in this paper,
we try to construct the finite automaton directly by searching in the problem space (i.e., the set of all
finite automata) using hill-climbing, rather than by analyzing the samples carefully. One of the higgest
advantages of hill-climbing is its simpiicity, that is, we do not have to know our problem space well,
while a "typical” schema-filling method requires us to provide all possible schemas, and therefore to
know everything about our problem space. We shall see that hill-climbing works much better than
expected in our probiem space, and in fact solved most of the problems.

1.1 The finite automata used in this paper

We restrict our problem domain to be only over {1,0}'. Furthermore, since every non-deterministic
finite automaton has an equivalent deterministic finite automaton (see[Hopcroft 79]), we deal oniy
with deterministic finite automata, that is, there is at most one 1-arrow and ane Q-arrow from each
state. Thus, in this paper, the terms "finite automaton”, "automaton" or "machine” ail mean
"deterministic finite automaton”. Given a string s, if there is a transition from the initial state to any of
the final states, then s is accepted by the machine, otherwise s is rejected. For example, the machine
of the sample problem is shown in figure 1-1.

1 . R R .
The answer is strings over (1 + 0) without an odd number of consecutive 0's AFTER an odd number of consecutive 1's.
Therefore (1 10 1) has the property.

INTRCDUCTION

Figure 1-1: The machine of the sample problem

(@ 's are final states.)

Each machine with n states is denoted by the following form:
(A, By F) (Ay By) oo (AL B F).
Each (A, B, Fi) corresponds to the state i, and Ai and Bi indicate the destination states of the 0-arrow
and the 1-arrow from the state i, respectively. If Ai or B, is zero, then there is no 0-arrow or 1-arrow
from the state i, respectively. F, indicates whether state i is one of the final states or not. If F, is equal

to 1, the state i is one of the final states. The initial state is aiways state 1. For instance, figure 1-1 is
represented as foilows: :

((121)@311)(400)(341)).

1.2 The problem

We now are ready to describe the problem precisely. Given a right-iist (a set of positive sampie
strings) and a wrong-list (a set of negative sample strings), we can think of the following three tasks:

1. To find a machine that accepts all strings in the right-list but none in the wrong-list.

2. To find a machine with n states that accepts all strings in the right-list but none in the
wrang-list.

3. To find the machine with fewest states (simplest machine) that accepts all strings in the
right-list but none in the wrong-list.

The first task is trivial because one can easily construct a trivial machine that accepts exactly all
strings in the right-list but nothing glse.? The second task and the third task are shown to be NP-
complete problems by [Gold 74]. We call the second task construction of finite automata, and the
third task simplification of finite automata.

1.3 Past Work

Feldman, Gips, Homing and Reder [Feldman 67] [Feldman 69] built a system that constructs a
grammar in BNF from given examples. It takes only positive examples, and its problem domain is
context-free languages. We quote a couple of sampie runs of this system from [Feldman 69] , to make
clear how their system worked.

2An example of the trivial machine will be found in section 3-4-2.

INTRODUCTION

Figure 1-2: Sample Strings and BNF grammar produced by Feldman’s system

L A L L L R

(b}

(a mb)

(amamb)
(amamamb)

S<-b | Sms

3, <- a

(c d)

(a b d)

(a c b d)

(a abdbd)
(aacbbd)
(aaabbbd)

(s aachbbhbhd

S <- s,d

S, <- a8 c

s;<-s6 b .
(a m a)

(Tamarma)
(am1amar)
(Tamarmlamar)
(TamlTamarrmsa)
(TlTamarmarma)
(amlamlamarr)
(amll1amarmar)
S <- §,mS

s, <- 15,1 o

S2 <~ Sr

Their system first constructs a "trivial” grammar, and then simpiifies it. As we can see, their system
requires us to provide nicely-chosen examples, and it cannot solve from poorly organlzed examples
such as the problem we introduced at the beginning.

Bierman and Feldman then built a system that constructs a finite automaton from given examples.
Although it takes only positive exampies, they showed an application to the case where both positive
and negative examples are given. Their algorithm also requires nicely-chosen examples, and they
showed the method to choose the examples from a regular set "nicely”, so that it always turns out the
simpiest machine. However it the examples are not niceiy-chosen, as in the problem we introduced at
the beginning, their system hardly turns out the simpiest machine.

Apart from the grammatical inference, there has been a good deal of work on discovery of a
regularity or a common pattern in the given examples that are not necessarily nicely-chosen
([Langley 81a] [Langley 81b] {Buchanan 76] [Hayes-roth 77] [Michalski 73] [Vere 75] [Winston 70]).

INTRCDUCTION

1.4 Overview of the Paper

In the rest of this chapter, we present the 7 sample problems, that we will consider throughout this
paper (7 sample problems and their inverses).

In chapter 2, we present the result of an experiment jn constructing finite automata with n states
using hill-climbing, in particular, we let n = 8. We shall see that all 14 sampie problems can be solved
by this method.

In chapter 3, we present the result of an experihent in simplifying the finite automata which we
have found in chapter 2, also using hill-climbing. We shalt see that we can find the simpiest machine
for most of the problems by this method.

In chapter 4, we discuss re-construction of finite automata, that is, how to re-construct a finite
automaton if the right-list and the wrong-list are slightly aitered. We might not want to construct it
from the beginning. Rather, we want to construct the new machine by madifying the previous
machine.

Finally, we have an actual system called Regu/ar set Recognizer [RR}, using the techniques above.
RR leams to recognize a regular set, given examples by a human "teacher". We present several
sample runs as well as a user's manual, in chapter 5.

1.5 Sample Problems

1.5.1 Sample Probiems

Throughout this paper, we consider the following 7 sampie problems.

Problem 1
right-list wrong-list
0 @
(1) (10)
(ny on
(111) (00)
(1111) ©11)
(t1111) (110)
d11111) (11111110
1111111) (10111111)

11111111)

right-list

0

(10)

{1010)

(101C10)
(10101010
(1010101010101 0)

right-tist
0

(1)

(0)

(01}
(1)
(00
(100)
(110)
(111)
(000)
(100100)

(110000011100001)

INTRODUCTION

Problem 2

Probi

(T11101100010011100)

wrong-list
(1)

(Q)

(11)

(00)

(1)

{(101)
(100}
{(1001010)
(10110
(110101010)

wrong-list
(10)

(1o1)

©10)
(1010)
(1110)
(1a11)
(10001)
(111010)
(1001000)
(11111000
@11100110Q7)

(11011100110

Eroblem 4
right-list wrong-list
0 (000)
(1) (11000)
() (000 1)
{10 (000000000)
(01) (t1111000011)
(00) (1101010000010111)
(100100) (1010010001)
(001111110100) (0000)
(0100100100) (00000)
(11100
(010)

3‘l'his». problem was introduced at the very beginning.

right-tist

0

1

(00)

(1001)

(0101)

(1010)
(1000111101)
(1001100001111010)
111111) '
(0000)

right-list

0

(10)

(01)

(1100)
(101010)
(111)
(000000)
(10111)
©111101t111)
(100100100)

right-list

O

(1)

@

(10)

(o1)

(11111)

(000)
(00110011)
@101)
(0000100001111)
(00100)
©11111011111)
(0

INTRODUCTION

Problem §

wrang-list

(M

()

(111)

{010)
(000000000
(1000)

(01)

(10
(1110010100
©10111111110)
{0001)

(011)

wrong-list

M

0)

amn

(V)

{(101)

{at1)
(11001).
(1t111)
(00003000Q)
(01Q9111)
(10111101111)
(1001001001)

wrong-list

(1010)
(00110011000) .
(0101010101)
(1011010)
(10101)
(010100)
(101001)
(10010011010171)

INTRODUCTION

1.5.2 Solution of Sampie Problems

The solution of these problems are:

1.1
210"

3.any string without an odd number of consecutive O0's AFTER an odd number of
consecutive 1's,

4. any string without more than 2 consecutive 0's.
5. any string of even length which, making pairs, has an odd number of O1)or(d 0)"3.
6. any string such that the difference between the numbers of 1's and O's is 3n.

7.01°0°1".

1.5.3 Finite Automata of Solutions

The machines corresponding to these solutions are as follows.

Solution of Proplem 1

INTRODUCTION

Solution of Problem 5

INTRODUCTION

1.5.4 Inverse Probiems

We also consider the inverse problems of these sample problems. The inverse problems are
created by exchanging the right-list and wrong-list. We use these 14 problems in our experiments
and refer to the inverse problem of problem 1 as problem 1-, the inverse problem of problem 2 as

problem 2-, and so on.
Solutign of Problem 1-
1 0

0

{ution of Problem 2-

INTRODUCTION

Solution cf Probtem S-

1

CONSTRUCTION OF FINITE AUTOMATA

2. Construction of Finite Automata

in this chapter, we describe -an experiment in constructing a finite automaton with n states from a
given right-list and a wrong-list, using hiil-climbing. In particular, we let n equal 8. We shall see that
each of the 14 problems can be solved in at most a few thousands steps. -

2.1 Algorithm
The hiil-climbing algorithm of this experiment is shown in figure 2-1.

Figure 2-1: Flowchart of the Hill-Climbing

M:= random

M’ : = mutate(M)

We first construct a random machine with 8 states. We next make a copy of this machine, where the
copy is slightly altered from the criginal by an operator mutate. We compare the new machine with
the originai by an evaluation function E. The better machine is called current generation and we
make a copy of this machine, and so forth. The worse machine is simply discarded. The operator
mutate and the evaluation function E are defined more precisely in the following. '

Operator mutate: Taking a machine ((A1, B1, F1) e (Aa' Bs' F3)) as its argument, the operator
mutate chooses one digit randomly, and replaces it by another digit.* That is, the mutation in our
algorithm is randomiy one of the following: delete an arrow, insert an arrow, change the destination

40 =< A =<8;0 =CB, =(8and0 =<F, =<1,

12

CONSTRUCTION OF FINITE AUTOMATA

of an arrow to another destination. make a non-final state into a final state, and make a final state into

a non-final state.

Evaluation Function E: The evaluation function E takes a machine as its argument and returns r
- w, where r is the number of strings in the right-list accepted by the machine, and wis the number of

strings in the wrong-list accepted by the machine. If r - w<Q then it returns 0.

2.2 Results

We show in this chapter the result of our experiments. We first show in figure 2-2 the trace of the

. to see how our algorithm gradually refines a random machine into the

experiment of problem 3

lumn E indicates E(M),

and G indicates the cumulative number of generation. The final machine of this trace accepts ail

desired machine. Each line correspands to the current generation M. The co
strings in the right-list but none in the wrong-list of problem 3 (figure 2-3).

We show the resuits for the other 13 problems in figure 2-4.

Sample Trace of Problem 3

Figure 2-2

Ll
L

1
i
§ . D A NGO GROHM YOO~ ORD
HANMF D OO Mt NN NN NG
COMOCOOCDODNMNNNNYTIETRYS AT+ OO

-

et et ol el v v et e e e e e et et e ek
NN NN NMNNNNAUNNANNNN NN NN
5OV 03 3 () ()) 00 €75 0 O 00 O3 40 0 () 1D 3 1Y €1 PR 00) 03 0 B9 N I

S ot e e e e S e Yt e "Vt e N W gt o Yot et

e e SO0 O DWW B 0D WD DWW
B e B i e T e e i e e S it e
e e et —r

R bt

pt .
OO0 DOOG080000000R000D0

1 vt et et o vl el vt el ot ot ot ot e ettt e e
DOV DRVONOCOOOHHFH et ODEDRDO0
AT A A OO0 OOOOOOOOCAODOOOS

e o e et S g g e ¥ o o e s B Sl et i ! Vg e et et Nt Tt

— —~
iy PP) arp e e T T S Y
OO0 QOO00oO0Co00O00MMMODVLBND

OO CDOOEO000C00DLOOO0D0D00D
Dt D — e st e

oo DODOO0OROOCOPRLOOSCaDDDa
O0ODo0OAD00000E00SA00DDOODNN
HEHmrHA MM MarrrrodOo0 00000000
—

s - s

e e e L Lk b L R K T R o e Rt ok ko Rl

333333333334l.“GSSSBSBBBBBS

“33‘44‘.“‘4‘4400000000000009
ot Y

L) A— — -~
T L L L R R e o R R Rk kel ok el

] . .
TNANNNMNMEMMSOMPEOMMHaoaammeondcn

1
] ‘sauaaaﬂassssssusoouolll11!&1.
[—r o —

) .- e, e e,

Y L e L ol

H 1

"“4““‘4“‘.“““““.44“

n1111111113111111111111111111
-

)(B

)(5

114

}(5
(15 1)(7 0 0)(4

L) St e S e gt
.(]l (o

totsl runtime 129.035000 sec

13

CONSTRUCTION OF FINITE AUTOMATA

Figure 2-3: The final machine of problem 3

figure 2-4: The resuits of the other 13 problems
Final Machi

((011)(28 1)(7 41)(800)(721)(160)(770)(88 0)) 98

14

CONSTRUCTION OF FINITE AUTOMATA

Final Machine of Probleam 2

((0 6 1)(400)(280)(801)(2 6 0)(2 2 0)(1 4 1)(6 8 1)). 134
Fin hirne of Problem 4

——
(O, @ ©
_ - ‘

S 0
oo e

Q_
((4 1 1)(3 3 1)(120)(711)(601)(400)(03 1)(121)) 442

CONSTRUCTION OF FINITE AUTQMATA

Final Machine of Problem 5
1
\
e'@' wo
1 \
- 1

((6 3 1)(68 1)(280)(780)(470)(67 1)(83 1)(41 0)) 277

16

CONSTRUCTION OF FINITE AUTOMATA

Final Machine of Prohlem 7

((1 6 2)(001)(241)(370)(061)(761)(7561)(421)) 208
inal Machin Probiem 1-

((3 6 0)(0 3 0)(3 7 1)(3 4 1)(0 3 1)(7 1 0)(0 4 1)(0 6 0)) 300

CCHSTRUCTION OF FINITE AUTOMATA

”
Final Machine of Probtem 2-

((8810)(23 1)20 0)(2 8 1)(15 1)(1 4 1)(0 4 0)(4 2 1)) 89
Final Machine of Problem 3

L F——o o

((380)(45 1)(140)(240)(571)(230)(06 1)(0 0 0)) 1939

18

COMSTRUCTION OF FINITE AUTOMATA

Final Machine of Problem 4-

0
1

.. . ’ p

> ‘ 0
“'...l;; 1
' (ﬂ o
0

((470)(221)(280)(810)(760)(741)(130)(200)) 246
Final Machine of Problem 5-)

1

o

1

((8 3 0)(8 6 0)(621)(17 1)(3 1 1)(5 8 1)(540)(161)) 1844

19

CONSTRUCTION QF FINITE AUTOMATA

Final Machine of Problem 8-

N
"o',//’

C

0
1
((270)(7121)(320)(511)(030)(370)(181)(311)) 886
: Final Machine of Problem 7. .
~
1 »
o

1 0——/©

((780)(420)(421)(431)(620)(200)(760)(60 1)) 3726

20

CONSTRUCTION OF FINITE AUTOMATA

2.3 Discussion

2.3.1 Hill-Climbing vs. Exhaustive Search

To see how effectively our hill-climbing algorithm has performed, we compare our method with an
aexhaustive search. Thereare (9 x 9 x 2)8 = about 5 x 10'7 machines in our probiem space. We now
want to know the number of the desired machines in our problem space, so that we can calculate the
expected number of steps until the exhaustive algerithm finds the first desired machine. This can be
done by the following "sampling" method: take one machine in the problem space randomly, and test
if this machine is the desired machine; repeat this procedure 100,000 times.

We show the expected number of steps using the exhaustive search caiculated by this procedure in
figure 2-5. Although the exhaustive search works better on “easy" problems, it is obvious in general
that our hill-climbing works much better than the exhaustive search.

Figure 2-5: The number of Steps to get the desired machine

Problem HiTT-CTimbing Exhaustive-Search

P1 28 33

P2 134 316

P3 2052 > 50000

Pa 442 125800

PS5 1768 > 50000

P 277 50000

P7 208 50000

P1- 300 187

P2~ 89 1862

P3- 1939 > 60000 T
P4~ 248 > 50000

PG~ 1844 > 50000

P8- ass > 50000

P77~ 3726 > 50000

2.3.2 Result with Differant Numbers of States

So far, we fixed the number of states to be 8. In this section, we shail try the same experiment with
different numbers of states (4 - 10). Figure 2-6 shows the result of this experiment. In the table, "---"
indicates "it could not solve within the given time". This can happen when the hill-climbing algorithm
climbs a "local hill”. This table implies that the number of states n should be reasonably large to
avoid climbing a local hill, and we can hardly get the simplest machine by this method. We shall,
however, see that we can simplify the machine with 8 states that we have gotten in this chapter, so
that it becomes the simplest machine.

21

10

8

65376365965453
03815732737873
51931 1“15
912443582

145108519
-t 22 ™

54.5

81.
42
-t w

20016911447507
23935773287698
215 ~ GZH

CONSTRUCTION OF FINITE AUTOMATA

Figure 2.6: The Number of States and Runtime fsec.}

7

6

NUMBER OF STATES

PROBLEM.

'
T DD - -

3264958345786

5299702476083

M~ ool
n
943172239“5"45
153545313.2_33
-l 0o
1. o
44“8“5989“9“0“
[] - - - -
00.4.2001.3.3.
et o
1
4513“1543“ “08““
-) - - - L]
0032.3925- 1L NN
(v Ra o
™ -

L O
SN OO ENOYE DD

22

SIMPLIFICATICON OF FINITE AUTCHIATA
3 11"y~ ~$) 4 Tt 1 L
3. Simplification of Finite Auiomaia

In the previous chapter, we saw that our hil-climbing method successfully produced a machine
that accepts all strings in the right-list but no string in the wrong-list. However, the final machine of
the resuit of problem 2, for example, does not accept our desired regular set (1 0)'. For instance, it
does accept a string (1 1 0 0), which is not in (1 0)'. We therefore want the machine to be
“generalized" so that it accepts exactly (1 0)". In fact, the final machines of all problems except
problem 1, 3 and 7, need to be generalized.

We define the generality of a machine in terms of its simplicity. The simpiicity of a machine is
determined by the number of states the machine has, and if two machines have the same number of
states, a machine with fewer arrows and final states is simpler.

Our task is to simplify the machines we have obtained in the previous chapter, so that the machines
become the simplest or the most general . We call this task simpiification of finite automata, and it
can be also done by using a hill-climbing method.

3.1 Minimization

Before we simplify the final machine of the previous experiment, we first remove any useless arrows
and states, using a Minimization Algorithm {see, for example, [Hopcroft 79]). We show the result of
the minimization in figure 3-1. Note that even after minimization, all problems except 1, 3 and 7 still
need to be generalized. .
Figure 3-1: Minimized Final Machine

Problom Minimized Machine
Pt ((0 t 1))
Pz ((0 4 1)(300)(8 0 1)(150)(220)(66 1))
P3 ((1 2 1)(311)(4 0 0)(3 4 1))
P4 ((411)(331)(12 0)(56 1 1)(0 3 1))
P65 ((6 3 1)(3 8 0)(2 1 0)(5 4 0)(0 1 0)(1 4 a))
P6 ((5 3 1)(8 3 1)(1 8 0)(2 & 0)(4 2 0)(410))
P7 ((1 2 1)(3 2 1)(3 4 1)(0 4 1))
P1~ ({3 2 0)(56 1 0)(3 6 1)(3 4 1)(0 4 1))
p2- ((5 8 0)(2 3 1)(2 0 0)(2 6 1)(4 2 1)(1 41))
P3- ((3 6 0)(4 56 1)(1 4 0)(2 40)(67 1)(2 3 0)(0 6 1))
P4&- ((4 7 0)(2 2 1)(2 8 0)(6 1 0)(2 0 0)(7 4 1)(1 3 0))
pP5- ((4 3 0)(6 6 0)(6 2 1)(1 6 1)(3 1 1)(b 4 1))
P6- ((2 4 0)(4 2 1}(3 20)(16 1)(3 1 1))
P7- ((7 6 0)(4 2 0)(4 2 1)(4 3 1)(8 2 0)(2 0 0)(7 6 0))

A e e - - - — A . A . ek S - - - .-

3.2 Simplification Algorithm

The algorithm for simplification is similar to the algorithm described in the previous chapter. The
major differences are as follows: (1) the evaluation function E(M} returns a higher value if the
machine M is simpler; (2) if M does not accept some strings in the right-list, or does accept some

23

SIMPLIFICATION GF FIHITE AUTOMATA

strings in the wrong-list, E{(M) returns minus infinity; (3) the algorithm starts with the minimized final
machine of the previous experiment instead of a random machine; (4) whenever a "useless state" (i.e.
a non-final state with neither 0-arrow nor 1-arrow) is found, delete it.

3.3 Results

A sampie trace of problem 2- is shown in figure 3-2. Each line corresponds to current generation
M, and the right-most number is the cumulative number of steps. The final machine of this trace is the

desired simplest machine.

The final machines of all 14 problems are shown in figure 3-3. We see that some problems could
not be simplified compietely within the given time, probably because the search was climbing a iocal
hill,

3.4 Discussion

3.4.1 Hill-Climbing vs. Exhaustive Search

We compare our method with an exhaustive search. The exhaustive search enumerates ail
machines in the order of simplicity, and the first machine that accepts all strings in the right-list but
none in the wrong-list is considered the simplest machine. Thus we can caiculate the expected
nun;ber of steps until the exhaustive search finds the desired machine®. The result is shown in figure
34,

5Let n be the number of states of the simpiest machine. Then the expected number of steps S A -4
So = [T i0n Y1+ 1Y,/ @x0n- 1),
where Uj is the number of all pessible machines with j states, that is,
U =g+ 122"

6'r'he number of steps using hilt-climbing in this figure is the sum of the number of steps to construct the 8 state machine ang
the number of steps to simplify it into the simplest machine.

24

SIMPLIFICATION OF FINITE AUTOMATA
Figure 3-2: Sample Trace of Problem 2-

OT-SIMPLEST>
-SIMPLEST>

555556655555“4“!444““4“‘..4“4““.“““‘4“4.““.‘.‘“““‘3
5555555‘“‘.‘333”\

e e e et e e et St e e et e ekt i s’ gt o Lt et

-HEBOrHNNMNO M
Nt Soma? et vt et et " e Vet St Semat”
. A g~ P~ S~ I N T P
MO0 OOCOO

St & MDD) M
NI MO

((((({(((((
({((((((({(

o o e e e v et Yt S St e s el et P i el Yol Sl sl ! ot R e et At it St vt St
T T e i et e et e e gl b et S e et e Mt S e it e i e

]
]
]
1
]
]
]
'
] £
1 w)
.] w =
. I -l (o]

" | 38 2
H 1] N
H] [

H t [R ~—

1] L] [—
! = [] - o
! o 1 "o
\ e =] oS o
| e e R D O ! [} L
| oo WD H

i H m] w -+
R sy ! o [] — I Nt S’
"111.1111. _— b 1 o~ g gt —
) N 0D O OO a] oo™ o
' DPONMO
1 et e e 0D e m H
e it o]] od -l e o

e —— e o o w] -t

P At e C I N M w

' —————

-222?_222222225-‘931353458035‘ Pt L EL L T I -1 3 dad 2o Lad ANYD=NYD T L L i o — g N’ e L —

_‘4555551131111122222223333334‘ -3~ 3 e v g A e e e WRDB OO =1 [] o I P, _—

P et e e et H o - - -

|—— Ryymymy] d -l

.1.111110111.l.l!....1l1111...111...1....1.1.11111111111111!111111111111111111111 H @ o e @S m

' -~

_5000000222222222222222222222Z?.Z22332222322332333222333321.‘3233333“. R t o -l .) -+

' 1

' 2222222455221111!11-1.1.111...-1.19 3) ' -l o o = L

| e Sl B L L L L o e vt atanr e AR et et st ettt ot bttt

' = = 1 P S S Nt S gt SN gt

§ o m——— e e s s s 2 e e i . e R R e, . e T, ~ —~———

.00000000000011111111‘.1111111111.11111111111111111111111111111111111" - [] S P \ll\ll\lr)\ll”

'

_0000000D00002233327.22331“ .. “ - 0061 oo

'

N D ~ - L) 03 0

: O NN NI NI ONNONOY T TNONNTTEIIAYIIIICANTLITCRIDIID monooanon) 0) e ¥ o o ey

] H 1 M-

o —_ e -~ —— —~— ' (v
_1111111..1.111111.11-ll..-.....l....1111111.111.111....11111]11111111111111.1.11111.11...01.] SN 124614
333333333334333300000000D00000000000000009000000000000000000000002 m " e et S N e S ! S St St

P o~ P o g, — o~ P~ S
~§rae ~ ~ - ™ mEmooN
(((HH((WWUHH(UUU((UUQUWUUHQH‘““UUUU“U mmmmeYTTIIOOsILTIRLIONRZICCS a OFrMOO0OrNrm—ntOorO
i o —~ — - I
DBOU.U00000U000 F | O Mmoo O D

|

!

1

]

]

|

t

1

]

1

|

] i
' aen Lum Lo L DL DR R L. 1
NSO MT I 0D~
(- - W - . Ty - Wy . By - [Wy . Wy - Sy -
t e e e e e e e I

25

Figure 3-4: The Number of Staps to obtain the simoiast machine

Problem Hi11-Climbing Exhaustivs-Search
P1 98 4
p2 141 170
P3 2062 553933
P4 510 : 8624
P5 1810 553933
P8 4561 8624
P7 206 653933
P1- 445 170
p2- 1060 8624
P3- 2302 4656938384
P4- - 6563933
PG~ - 653933
Pé- 930 8624
P7~ --- 46593884

——---------ﬁ---—-------—-------—---.—-————--—-———--—--——---—--—-

3.4.2 Simplification from Trivial Machine

We have seen that our hill-climbing works rather successfully, although some problems could not
be simplified completely. Our method consists of 2 parts, the construction process (chapter 2) and
the simplification process (chapter 3). That is, we first construct a machine with 8 states and then
simplify it. One might suppose that we could get the simplest machine using only the construction
process, by choosing the number of states sutficiently small. Unfortunately, in the previous chapter,
we showed that the number of states should be reasonably large, and we cannot do that. One might
also natice that we would not need any construction process, because we can easily construct a
trivial machine, which accepts exactly all strings in the right-list but nothing else. Figure 3-6 is an
example of the trivial machine. In this section, we describe some experiments to try to simplify from
the triviai machine. We shall see that to simplify from the trivial machine is much less effective than
our construction-simplification method. The resuit of the experiments is shown in figure 3-7. When
we compare figure 3-3 and figure 3-7, it is obvious that our construction-simplification method is more
effective than the second method.

26

Figure 3-7: Result of Simplification from Trivial Machine

[P1] ((0 1 1)) 2 107

[P2] ((0 2 1)(1 06 0)) 3 132

[P3] ((1 2 1)(5 4 1)(3 6 0)(7 8 1)(6 0 0)(0 2 1)(3 0 1)(0 9 1)(10 0 0)
(0 11 0)(0 12°0)(13 0 0)(14 0 0)(2 0 0)) 24 <NOT-SIMPLEST>

[P4] ({3 2 1){(1 6 1)(4 2 1)(0' 5 1)(0 2 0)) 12 <NOT-SIMPLEST>

[P5] ({3 2 1)(4 1 0)(1 4 0)(2 3 0)) 9 1879

[P6] ((3 2 1)(1 3 0)(2 1 0)) 7 1801

[P7] ((3 2 1)(4 6 1){6 6 1)(0 0 1)(1 2 1)(3 3 0)) 16 <NOT-SIMPLEST>.

[P1-] ({2 1 0)(2 2 1)) b 448

[P2-] ({3 2 0)(1 3 1)(3 3 1)) 8 1249

[P3-] ((1 2 0)(3 10)(6 4 1)(4 3 1)(3 6 0)) 12 <NOT-SIMPLEST>

[P4-] ((3 1 0)(2 2 1)(4 1 0)(2 1 0)) 9 3692

[P6-7 ((3 2 0)(2 4 1)(1 6 1)(0 6 0)(8 0 1)(7 0 1)(0 10 1)(8 0 0)(0 3 0)
(0 11 0)(0 12 0)(0 13 0)(0 14 0)(0 9 0)) 22 <NOT-SIMPLEST>

[P6-1 ({3 2 0)(5 3 1)(4 1 1)(1 0 1)(1 2 0)) 12 <NOT-SIMPLEST>

[P7-] ((3 7 0)(2 2 1){4 7 0)(0 & 0)(0 6 0)(7 0 0)(8 0 0)(2 8 0)) 13
KNOT-SIMPLESTY

-_---_—_-..---—...-__—--__----—--—.---—----_--.,--——_-_-—-——_..—--—_--..-.--——__.-

27

PECOLSTRUCTICN GF FUITE AUTO ATA

J

4

omatia

£

FUcticn of Finito Ay

~ie

3~ als i
".'C\Jiiv

-
-

So far, we have described a method for constructing the simplest Finite Automaton from given
examples. Suppose we have solved one problem, and are given another problem whose examples
are very close to the previous one. To solve this new problem starting from the beginning is rather
tedious because we already have some information about the solution. In this chapter, we describe
how te re-construct a finite automaton if the right-list and/or wrong-list is slightly altered.

After the sample lists are altered, if the machine still accepts all strings in the right-list but no strings
. in the wrong-list. the previous solution is the new solution. |f the machine does not accept some
strings in the right-list, and/or does accept some strings in the wrong-list, we refer to such strings as
inconsistent strings. Whenever we find an inconsistent string in the right-list, we call a procedure,
add-trivially, which revises the machine, so that it accepts ail strings in the right-list. On the other
hand, whenever we find an inconsistent string in the wrong-list, we cail a procedure,
cut-wrong-arrow, which revises the machine, so that it accepts no string in the wrong-list. Although
after calling add-trivially there is no inconsistent string in the right-list, there may now be another
inconsistent string(s) in the wrang-list. in this case, we call cut-wrong-arrow. Similarly, although after
calling cut-wrong-arrow there is no inconsistent string in the wrong-list, there may now be another
inconsistent string(s) in the right-list. In this case, we call add-trivially. Thus, we call add-trivialty and
cut-wrong-arrow again and again.

We first define add-trivially and cut-wrong-arrow, and then we show that our process always
terminates, producing the desired machine that accepts all strings in the right-list but no string in the
wrong-list, although the machine is not the simplest.

4.1 Add-triviaily

The purpose of this add-trivially routine is to accept an inconsistent string in the right-list, no matter
how many strings in the wrong-list the machine comes to accept. We first define trivial state and
trivial path, then finally we define add-triviaily.

Definition: In each machine, we consider that there is a special arrow named starting arrow, which
always points to the initial state g,.

Definition: If more than one arrow (including the starting arrow and the one from q itself) point to
a state q, then q is called a non-trivial state. if only one arrow points tc q, then q is cailed a trivial
state.

Definition: A sequence of states qim.qi(z),.....qi(k) is called a path of a string ay ..., ., where
each a is in {1,0}, iff for all j such that 1 <)< k-1,if a = 0 then Aim = i(j+ 1) else Bi(i) =i(j+1).

Definition: A sequence of states qim.qi(z),....,qi‘k} is called a trivial path, iff this sequence is a path,

and for all j such that 2 < j < k, Qi) 'S A trivial state, and for all j such that 2 < j<Kk-1, %) isa
non-final state, and Qick) is a final state. This path accepts onfy one string.

That the machine M does not accept a string a,,a,,.....a, means either of the followings:

1. There is a path of oy 0, but the last state is a non-final state.

2. There exists an integer j such that there is a path of o Py but the last state of this
path does not have an a-arrow.

where each a;isin {1,0}.

28

LELCOMITRUCTICH QF FURTE AUTOATA

For each inconsistent string in the right-list. add-triviaily works 2s follows: in cace 1. let the last
non-final state be the final state: in case 2. create a tnvial path from the 1ust siate so that the machine
accepts the whole string.

It is easy to show that after calling add-trivially the machine accepts all strings in the right-list.
However. it also may come to accept some strings in the wrong-list, as we mentioned before. In this
case, we call cut-wrong-arrow defined below.

4.2 Cut-wrong-arrow

if there are some inconsistent strings in the wrong-list (i.e. the machine does accept the strings), we
call cut-wrong-arrow so that the machine comes to accept none of these strings, no matter how many
strings in the right-list the machine comes to reject.

For each inconsistent string in the wrong-list, cut-wrong-arrow works as follows: Let
qim,qi(e),.....qi(k) be a path of the string w that shouid not be accepted. To reject w, one of the arrows
of the path must be cut. Let q, be one of the non-trivial states in the path.7 Cut the arrow from
Q.1 10 Giny- if g, (initiai state) is the only non-trivial state, then let the machine M be ((0 0 0}),
wfwicg\ does not accept anything.

It is easy to show that after calling cut-wrong-arrow all strings in the wrong-list are rejected,
although the machine may come to reject some strings in the right-list. In this case, we call add-
trivially.

4.3 Termination

in this section, we show that the algorithm above always terminates.
Theorem: The algorithm above always terminates.

Proof: Consider the following partial ordering:
non-triviality of state: the number of arrows which point to the state.

non-triviality of machine: total of non-triviality of all non-trivial states.
We denote this by nt(M), where M is a machine. Note that nt(M) = 0, iff M is a trivial machine.

Let M’ be the resuit of adding-trivially to M, then nt(M) = nt(M), because add-trivially adds only a
trivial path. Next, let M’ be a result of cut-wrong-arrow over M, then RE(M') < nt(M), because we
always cut the arrow that points to a non-triviai state g, and non-triviality of the state g decreases, and
therefore non-triviality of machine also decreases. Thus, we cannot have an infinite loop, add-
trivially, cut-wrong-arrow. add-trivially, cut-wrong-arrow, add-trivially,..... , because ni{M) always
decreases but RL{M) => 0. <end of proof>

?Such a non-trivial siate always exists it the original machine has been simplified. and throughout this paper, we deal only
with the re-construction of a simplified machine.

29

O S S s LY e e =Y
S, nlcularest iceognizer
Finaii, we describe an actual system. RR. that learns to construct finite automata. RR is running in
MACLISP iter on CMU-20C or CMU-10A.

RR has a machine {finite automaton) and each time RR is given a string in (1 + 0} as its input, RR
runs the machineg with the string aiven. If the machine accepts the string, RR answers ACCEPT,
otherwise it answers REJECT. At the very beginning, RR has a null machine. which accepts nothing,
and therefore RR does not accept any string at all. Now, consider some regular set R that we want to
teach to RR. When we input a string s to RR. it should accept sit and only if sisin R. ifsin notin R,
RR shouid reject it. Whenever RR answers incorrectly, we scold it. When RR answers correctly and
we think this example is smportant , we encourage it. When RR is scoided or encouraged, it
memorizes the fact that the string must be accepted or rejected. that is, if it is the case that the string
must be accepted. RR puts it into right-list, which is a set of strings that must be accepted, and
similarly. if the string must be rejected, RR puts it into wrong-list. After memorizing, RR re-constructs®
the machine in the way described in chapter 4, so that it accepts all strings in the right-list and none
in the wrong-list. After each re-construction, RR simplifies the machine in the way described in
chapter 3.

Figure 5-1 shows a flow chart of the RR system.

8 . o
We do nol need to encourage it every ime it answers correctly.

QOnly when it has been scoided.

30

RR: REGULADN 85T PECDOSINZES

Figure 5-1: Top Levsl of RR System

N/

Take input S

Run

accepted

Print "TACCEPT™

nothing

Put S into
right-list

Put S into
wrong-list

machine
v

rejected

Print "REJECT™

scolded

encourage

nothing

Put S into
right-list

Put S into
wrong-list

"Re-construct”

machine

"Re-construct”

machine

N

.

"Simplify"
machine

31

SNOFLOOLAA GET RICOGHLIIER

5.1 How 1o ciecule the RN sysiem

in this ssction. we Cescribe how to execute the RR system. and in the following section. we show
saveral sample runs.

5.1.1 Getting Started

RR runs in MACLISP either on CMUC or CMUA. In MACLISP, type
(slurp <tommy> rr) {(CMUC)
or
(slurp c410mt80 rr) (CMUA),
And call function:
(main) (both CMUA and CMUC).
Then you get prompt ">>>" and are in the RR system.

5.1.2 How to teach

» Giving example: The format for giving an example to RR is the following:
{ O-or-1 <space) O-or-1 <space>...... (space> O-or-1)
Typical input is:
(1010101 0)
RR then outputs the answer, either ACCEPT ED' or REJECTED.
¢ Scolding: To scold for a wrong answer, input n right after the wrong answer.
>>n
s Encouraging: To encourage RR, input y right after the answer.
Wy

* Anyway-accept. !If the example string starts with +, this means : i this string is accepted
then encourage: otherwise scold. Typical input is:

>(+ 10100 1)

* Anyway-reject. If the example string starts with -, this means: if this string is rejected
then encourage; otherwise scold. A typical input is:

>>>(-00010010)

To give the null string, use () or (+) or (-).

5.1.3 Other Commands

® I': show present right-list.

s w: show present wrong-list.

32

RR: REGULAR SET RPCCOGNICER

e M. show present machine,

s 1. show last input.

* 0 show corder of memerized strings.

» t. show runtime of each step and total runtime.
s 7° show every thing above.

* new: initialize.

e *G: quit.

5.2 Sample Runs

5.2.1 Sampie Run 1:

As the simplest example, let us teach the reguiar set 1° to RR. The desired machine is:

((0 1 1)).

The underlined strings are user’s inputs, and the lalic strings are comments.

[PHOTO: Recording initiated Thu 4-Mar-82 2:38PM]
TOPS-20 Command processor 4(723)-7

@1isp

[Keeping]

MacLisp for TOMMY

{slurp <tommy> rr)
(<TOMMY> RR FASL)

{(main)

>>> negw Initialization.

»> L) , Input null string as an exampie.

REJECTED The null string was refected.

>>>nn Since null should be accepted, scold it.
MODIFYING * . It is trying to modity.

>»> (1) : Next, input (1).

REJECTED . (1) was rejected.

»>>n Since (1) should be accepted, scold it.
MODIFYING ** it is modifying itself.

»> (1.1 1) Next try (1 1 1).

ACCEPTED This was accepted, all right, no scolding.

> (0) Next try (0). which should not be accepted.
REJECTED This was rejected, all right, no scolding.

> (1011 1) Next try (1 0 1 1 1), which should not be accepted.
REJECTED Rejected, all right, no scolding.

5 (1111111113111 1) Next try this.

ACCEPTED Accepted, all right, it should be accepted.

> 17 Maybe we 've got 1, let us look inside the machine.
RIGHT-LIST

33

RR: REGULAR SET RECOGNIZER

(NI (1)) Rignt-list contents nulf string and (1),
WitChG-LIST

NIL Wraong-list contents nothing.
PRESENT-MACHINE

((0 1 1)) Present machine is, yes, 1.
LAST-INPUT

(+11111111111111)

ORDER

{({(+) (+ 1)) We taught it in this order. + means “in right-list".
TIME)
(0.019 0.048) Time spentto teach {+) and (+ 1).
TOTALTIME _
(0.067) Total time in seconds to learn 1.

5.2.2 Sample Run 2:

Let us try to teach a harder automaton, problem 4. This regular set is:

The difference between the number of 0's and the number of 1's is
divisible by 3.

For instance, the string (1 0 1 1 1) should be accepted because 4-1=3 is divisible by 3. The
desired machine is as foliows:)

((3 2 1)(13 0)(2 1 0)).

>>> new

>>> 0 First, fet us try null, which should be accepted.
REJECTED

>>>n No, null should be accepted.

MODIFYING *

>>>m Show the present machine.

((c 0 1)) This machine accepts nothing but a null string.
>»> (1 1 1)

REJECTED

>>> No, this should be accepted.

MODIFYING **

> m

((0 1 1)) This machine is 1.

>>> (1) ' :

ACCEPTED

>>>n No, this should be rejected.

MODIFYING **

> m

((021) (03 0) (010)) This machine is {1 11)"

>>> (11111 1)

ACCEPTED All right, it should be accepted.

>>> (0)

REJECTED

>y Yes, it should be rejected. Particularly, encourage it.
REJECTED

34

RR: RECULAR SET RECQGNIZER

>>> (0 0 0}
REJECTED

>>>n MNo. this should be accepted.
HODIFYING **

>>> (0 0000 0)

ACCEPTED All right.

>>> (0_0)

REJECTED All right.

> m

({(421) (030) (010) (50¢0) (100)) (111 + 000}
>»> {1 0)

REJECTED

>>>n No, this should be accepted.
MODIFYING *e**

> m

((421) (130) (010) (2010))

> (0 1)

REJECTED

>>»>n No, this should be accepted.
MODIFYING ®**

> m _

((321) (130) {(210)) Now, we get the desired machine.
>»> (110000 100100100000) ‘
REJECTED Ck.

»> (1109000 1001001000003 1)

ACCEPTED Ok.

> 2

RIGHT-LIST

(NIL (11 1) (0 0 0) (1 0) (0O 1))

WRONG-LIST

((1) (0))

PRESENT-MACHINE

((321) (130) (210))

LAST-INPUT

(+110000100210010000011)

ORDER

((#+) (+111) (-1) (-0) (+000) (+10) (+01))
TIME

(0.014 0.087 0.117 -0.01 0,364 0.564 1.413)

TOTALTIME

(2.549)

5.2.3 Sample Run 3:

The total run time to learn the desired machine depends very much on the order of input examples.
We now try the previous sampie again but with a different order.

>>> new

> ()

35

FRRIZULARSET RECOGNIZER

REJECTED
>>> 0

MODIFYING *

>0 m

({00 1))

> (1 0)

REJECTED

>

MODIFYING **

>>> (0_1)

REJECTED

>»>n

MODIFYING **

>>> m

((32 1) (100) (010)) Present machine is (10 + 01)",
>3 (1.1 1) -

REJECTED

>>n

MODIFYING *=*

>0 m

((321) (130) (010)) (10 + 01 + 111)°

>> (1.1)
REJECTED

>>»> (11111 1)
ACCEPTED

>>> (0.0 0)

REJECTED

>>>n

MODIFYING *e**

> > m

((321)(130) (210)) This is the desired machine.
>>> (0 1013103101000000111111111)
ACCEPTED '

>>> {1 01010121 00000001111011111)
REJECTED

> 1

RIGHT-LIST

(NIL (1 0) (0 1) (1 11) (0 090))

WRONG-LIST

NIL

PRESENT-MACHINE

((32 1) (130)(210))

LAST-INPUT
(-10101010000000111101111 1)
ORDER

((+) (+10) (+01) (+111) (+000))

TIME

(0.014 0.085 0.068 0.21 0.875)

TOTALTIME

{(1.252) The total time is much shorter.

36

RR: REGULAR ZET RTCCGNZER

5.2.2 Sample Run 4:

We naxt try problem 3. which is very hard. This reguiar set is:

Any strings without odd number of consecutive 0's AFTER odd number
of consecutive 1's,.

>>> new

3> (+V(+ 1)(+ 0}(- 1 0¥(+ O 1)(+ 1 1)(+ 0 0)(-.1 0 1)}(- 0 1 0)(+ 10 0)
{(+ 1 1 0)(+ 11 1)(+000)(-10120)(-1110)(-101 1)(- 10001)
(-1 11010)(-1001000)(-11111000)

(-0 1311001101){-110111001120)

(+ 11 00006011100003)(+111101
MODIFYING *

>

MODIFYING **

>

MODIFYING **

>

MODIFYING **

>

ACCEPTED

>

10001001_.11091

- MODIFYING **

>>>

ACCEPTED

2>

REJECTED

>>>

REJECTED

>
MODIFYING **
>>>

ACCEPTED

>

ACCEPTED

>

ACCEPTED

>

REJECTED

>>>

REJECTED

>

REJECTED

>>>
MODIFYING *®®esnes
>

REJECTED

>>>
MODIFYING [(TEST R LR E R 1]
>>>

37

REJECTED

>>>

REJECTED

>>>

REJECTED

>

MODIFYING **

>

MODIFYING #%nw=e

> 1

RIGHT-LIST

(NIL(1)(0)(0 1)(1 1)(0 0)(21 0 0)(210)(111)(000)(11000001
1100001)(1 1110110001001 11040))
WRONG-LIST
((10)(101)(010)(1010)(1110)(1011)(1000 1)(1
1001000)(11111000)(0111001101)(2101
PRESENT-MACHINE

((121)(311)(400)(341)) This is the desired machine.
LAST-INPUT '

NIL

ORDER

((H)(+ D(+0)(- 1 0)(+ 0 1)(+ 1 1)(+00)(-101)(-010)(+100)
+110)(+111)(+000)(-12010)(-1110)(-1011)(-1000 1)(
)(— 1001000)(-11111000)(-0111001101)(-
0110)(+11000001110000 1)(+ 1111061100
0

))
IME

(0.014 0.042 0.08 0.078 8.0E-3 0.116 8.0E-3 0.013 0.011 0.357 0.011 0.012
8.0E~-3 9.0E-3 0.01 0.011 2.066 0.012 3.686 0.014 0.018 0.02 0.283 3.736)

-

1
0
o

QO = =

1 010
1 110
1 111
M

- S =

TOTALTIME
(10.282)

5.2.5 Sampie Run 5:
We now try the previous run again with a more effective ordering.

>>> new

>>> (- 10)(-10010)(-1000)(-10011 0)(+)m(+ O)m(+ 0 1)m
(+0110)m+ 10 9)m(+ 1 1)m(+ 100 1)m(+ 1 0 0 0_0)
REJECTED

p

REJECTED

>

REJECTED

>

REJECTED

>>>

MODIFYING *

38

>35>

{((001))

>>>

MODIFYING **

>

({1 0 1))

25>

MODIFYING *

>3>

((121) (00 1))

>>>

MODIFYING ®**

>¥>

((121) (011))

>>>

"MCDIFYING *

>

((121) (311) (400) (00 1))

>

ACCEPTED

>

((121) (311) (400) (00 1))

>>>

MODIFYING **

>

({1 21) (311) (400) (041))

>

MODIFYING ***

> m

((1 21y (3 11) (400) (3 41))

»> 2

RIGHT-LIST

(NIL {(0) (0 1) (0 1 10) (1 060) (11)(1001)(10000))
WRONG-LIST

((10)(10010) (1000) (100110))
PRESENT-MACHINE))

((121) (311) (400) (3 41)) This is the desired machine.
LAST-INPUT

NIL

ORDER
((-10)(-10010)(-1000)(-100110)(+)(+0)(+01)(+0110)
(+100)(+11)(+12001)(+10000))

TIME
(9.0E-3 9.0E-3 0.017 9.0E-3 0.016 0.047 0.029 0.091 0.042 0.013 0.38 0.342)

TOTALTIME
(0.88) This is much faster than the previous run.

39

R7: ZLCULAN ZET nZZCOHIZER

5.3 Discussion

We saw in the previcus section that the run-time of sample run 3 is much shorter than the run-time
of sample run 2. and also sample run S is much faster than sample run 4. Thus, RR is very sensitive to
what is given as examples. and how these are ordered. In this section, we are interested in how to
teach RR effectively.

First. we consider the worst case and the best case of re-construction. in the worst case, RR calls
add-trivially and cut-wrong-arrow again and again, and eventuaily its machine becomes the trivial
machine.’® We know that a trivial machine can be constructed easily without such a special
technique as re-construction.

On the other hand, the best case is that RR calls add-trivially once but no further cut-wrong-arrow.
Thus. in order to "teach” the RR system effectively, we have to choose the examples nicely so that
RR can re-construct its machine only by add-trivially. For instance, the example inputs of sampte run
3 and sample run 5 are so chosen, and their run-time is in fact very short. Also, to avoid calling
cut-wrong-arrow, we had better give the negative examples earlier.

10 . _ .
A trivial machine is a machine that actepts exactly all strings in the right-list and nathing else. See chapter 3.

40

CONHCLUDING KRELIARK
5. Concluding Remark

Qur new approach to construction of finite automata from given examples has been shown to work
very nicely, despite the fact that its algorithm is quite simple. In chapter 2, we saw that construction of
finite automata with n states can be nicely done using hiil-climbing if n is a reasonable number. In
chapter 3. we saw that we could often simplify the resulting machine of chapter 2 also using hill-
climbing. although some probliems could not be solved. In chapter 4, we discussed how to utilize past
work. if a given problem is very close to the past problem. The RR system, which uses these
techniques, was introduced and described in chapter 5. Finally. we enumerate several extensions of
this work.

e Our hiil-climbing algorithm sometimes climbs a local hill, and therefore fails to find a
correct solution. There are several ways to avoid climbing a local hill, and one of them is
adaptive search [Cavicchio 70], [Holland 73]. Adaptive search can be considered as a
powerful version of hill-climbing. There are not only one "current generation”, but
usually a population of 20-30 . The best five ar so are chosen as winners (the others are
discarded) and 15-25 slightiy-aitered copies of them are made as the new population.
Altering way is not only mutation, but also cross-over (mix two and produce one), inverse
(inverse a certain part of one) ,'' and so on. This approach becomes reaily powerful if
parallel computation is available.

s Our finite automata have been deterministic, that is, arrows either exist or do not exist.
The operator create-arrow or delete-arrow often makes too much difference to climb hill
smoothly. The idea is to let our finite automata be probabilistic, that is, an arrow exists
partially with a real number between 0.0 and 1.0, which indicates a probability of
existence of the arrow. (See [Rabin 63].} In this case, we increase or decrease the real
numbers, rather than create or delete an arrow. This method might help to climb hilis
smoothly.

o Our mutation function might be modified so that the mutation does not take place
completely randomly, but somewhat "cleverly”. For instance, if the machine accepts a
string in the wrong-list, then delete-arrow or decrease-prob-of-arrow should take place
more often on this wrong path than on others. Our idea becomes more concrete if we
deal with the probabilistic automata described in the previous paragraph. If the machine
somehow accepts a string in the wrong-list, then we should decrease all probabilities of
the arrows on this path. !f the machine accepts a string in the right-list, we increase the
probabilities on this path, etc.

« Our probiem domain in this paper has been regular sets. It might be possible to extend it
to context-free sets by constructing Push-Down Automata (finite automata with stack, see
[Hopcroft 79]). Since construction of Push-Down Automata must be much harder than
finite autormata, we wouid definitely need techniques just listed.

e A finite automaton can be viewed as a program that takes a string as its argument and
outputs TRUE or FALSE. Therefore we might be able somehow to apply our method to
automatic programming from specification by exampies.

11The cross-over operator acts on a pair of strings by breaking each string at some point and rejoining the subsegments
from different sirings. The mnversion operator makes two breaks, inverts the inner segment and then rejoin the string.

41

______ e e e g
REOTI L LS AniD S LID LAARHY

-

. LS
sferences ena Cidlicgrap

[Biermann 70] Biermann, A. W. and Feldman, J. A.
On the Synthesis of Finite-State Acceptors.
Al Memo 114, Stanford University, April, 1970.

[Buchanan 76] Buchanan. B. G.; Smith, D. H.; White, W. C.; Gritter, R. J.; Feigenbaum, E. A_;
Lederberg, J.; and Djerassi, C.
Automatic rule formation in mass spectrometry by means of the Meta-DENDRAL
program.
Journal of the American Chemical Society 98{(6168), 1976,

[Cavicchio 70] Cavicchio, D. J.
Adaptive Search Using Simulated Evolution.
PhD thesis, University of Michigan, 1970.

[Elschiager 79] Elschlager, R. and Phillips, J.
Automatic Programming. :
Report STAN-CS-79-758, Computer Science Department, Stanford University,
August, 1979.

[Feldman 67] Feldman, J. A.
First Thoughts on Grammatical Inference.
Al Memo 85, Stanford Universy, Aug, 1967.

[Feldman 63] Feldman, J. A.; Gips, J.; Horning, J. J.; Reder, S.
Grammatical Complexity and Inference.
Al Memo C3125, Stanford Universy, June, 1969.

[Fogel 66] Fogel, L. J.; Owens, A. J. and Walsh, M. J.
Artificial Imtelligence Through Simuiated Evolution.
Wiley, New York, 1966,

[Gilt 2] Gill, A.
Introduction to the Theory of Finite-State Machines.
Mcgraw-Hill Book Company, Inc., New York, 1962,

[Gold 74] Gold, E. M.
Coimplexity of automaton identification from given data.
1974.

[Hayes-roth 77] Hayes-Roth, F. and McDermott, J.
Knowledge acquisition from structural descriptions.
In Proceeding of IJCAI-5, pages 356-362. 1977.

[Holland 75] Holland, J. H.
Adaptation in Natural and Artificial Systems.
The University of Michigan Press, 1975.

42

[Hopceroft 79]

[Hunt €6]

[Langley 81a]

[Langley 81b]

[Lindsay €8]

[London 64]

[Michalski 73]

[Rabin 63]

[Tomita 82]

[Vere 75}

[Winston 70]

REFERCZIICES AND BIBLIOGRAPHY

Hopcroft, J. E. and Uliman, J. D.
Introduciion to Automata Theory, Languages, and Computation.
Addiscn-Wesley, 1979.

Hunt, E.; Marin, J.; Stone, P.
Experiments in Induction.
Academic Press, New York, 1966.

Langley, P., Bradshaw, G. L., and Simon, H. A.
Rediscovering Chemistry With BACON.4.
CIP Working Paper 423, Carnegie-Mellon University, June, 1881.

Langley, P., Bradshaw, G. L., and Simon, H. A,
The Discovery of Conservation Laws.
CIP Working Paper 430, Carnegie-Melion University, June, 1981.

Lindsay, R. K.
Artificial Evolution of Intelligence.
Contemporary Psychology 13(3), March, 1968.

London, R.

A Computer Program for Discovering and Proving Sequential Recognition Rules for

BNF Grammers.
Technical Report, Carnegie Tech, May, 1964,

Michalski, R. S.
Discovering classification rules using variable-valued logic system VL1.
In Proceeding of IJCAI-3, pages 162-172. 1973.

Rabin, M. O.
Frobabilistic automata.
Inform. Control 6:230-245, 1963.

Tomita, M.

Dynamic Construction of Finite Automata From Examples Using Hiil-Climbing.

In Proceedings of 4-th Annual Conference of the Cognitive Science Society.
Cognitive Science Society, August, 1982,

Vere, S. A,
Induction of concepts in the predicate calculus.
In Proceeding of IJCAI-4, pages 281-287. 1975,

Winston, P, H.

Learning structural descriptions from examples.
PhD thesis, MIT, 1970.

43

