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Learning by Analogy: 
Formulating and Generalizing Plans 

from Past Experience 

Ja ime G . C a r b o n e l l 

Abstract 

Analogical reasoning is a powerful mechanism for exploiting past experience in planning and 
problem solving. This paper outlines a theory of analogical problem solving based on an extension to 
means-ends analysis. An analogical transformation process is developed to extract knowledge from 
past successful problem solving situations that bear strong similarity to the current problem. Then, 
the investigation focuses on exploiting and extending the analogical reasoning model to generate 
useful exemplary solutions to related problems from which more general plans can be induced and 
refined. Starting with a general analogical inference engine, problem solving experience is, in 
essence, compiled incrementally into effective procedures that solve various classes of problems in 
an increasingly reliable and direct manner. 

1. Introduction 
Analogical reasoning has been a sparsely-investigated phenomenon in Artificial Intelligence 

[11,20,13, 31]. Nonetheless, analogy promises to be a central inference method in human cognition 

as well as a powerful computational mechanism. This paper discusses a computational model of 

problem solving by analogy based on an extension of means-ends analysis (MEA). My central 

hypothesis (based in part on Schank's theory of memory organization [28, 27]) is the following: When 

encountering a new problem situation, a person is reminded of past situations that bear strong 

similarity to the present problem (at different levels of abstraction). This type of reminding experience 

serves to retrieve behaviors that were appropriate in earlier problem solving episodes, whereupon 

past behavior is adapted to meet the demands of the current situation. 

Commonalities among previous and current situations, as well as successful applications of 

modified- plans can serve as the basis for generalization. Similarly, performing an inappropriate 

action in a new situation can provide information useful in reorganizing episodic memory. If the 

inappropriate action resulted from the application of a recently acquired general plan, an analysis of 

the type of error may trigger a discrimination process that constrains the range of applicability for that 

plan. In either case, a reactive environment that informs the problem solver of success, failure, or 

partial success is an absolute requirement for any generalization or discrimination process to apply. 

Whereas humans exhibit a universal ability to learn from experience no matter what the task [22], Al 
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systems are seldom designed to model this adaptive quality. Concept acquisition, i.e., inducing 

structural or attribute descriptions of non-procedural objects from examples, has received substantial 

attention in the Al literature [10,8,18, 29, 30], but with few exceptions, the techniques developed 

therein have not been transferred to learning in problem-solving scenarios. 2 Since the process of 

acquiring and refining problem solving and planning skills is indisputably a central component in 

human cognition, its investigation from an Al perspective is clearly justified. 

This paper presents an analogical inference engine and investigates two fundamental hypotheses: 

Hypothes is : Problem solving and learning are inalienable aspects of a unified cognitive 
mechanism. 

In other words, one cannot acquire the requisite cognitive skills without solving problems — and, the 

very process of solving problems provides the information necessary to acquire and tune problem 

solving skills. The second hypothesis postulates a unified learning mechanism. 

Hypothes is : The same learning mechanisms that account for concept formation in 
declarative domains, operate in acquiring problem-solving skills and formulating 
generalized plans. 

One method of verifying the second hypothesis is to develop a problem solving mechanism into which 

one can integrate the techniques developed in concept formation — with a resultant system that 

learns from problem solving experience. The analogical problem solving method discussed below 

provides a framework for automated example generation that enables one to apply learning-from-

examples techniques in order to acquire generalized plans. In essence, the objective is akin to Anzai 

and Simon's learning-by-doing method [2]. First, the basic analogical problem-solving method is 

discussed, and subsequently an experiential learning component is incorporated as an integral part 

of the general analogical inference process. 

2. Problem Solving by Analogy 
Traditional Al models of problem solving (e.g., GPS [21], STRIPS [9], and NOAH [24]) approach 

every problem almost without benefit of prior experience in solving other problems in the same or 

similar problem spaces. 3 Consider, for instance, two related problems: 

2 
Exceptions include Anzai and Simon's Learning-by-Doing Paradigm [2], Mitchell's LEX system [19], STRIPS with 

MACROPS [9], and indirectly Lenat's AM [15]. 
3 

A problem space encodes the information necessary to solve a problem, including goals, initial state, and legal actions that 
may be taken in solution attempts. Means-Ends Analysis is a problem solving method that consists of selecting actions that 
reduce known differences between the current situation and a desired state. Both of these concepts are elaborated in the 
course of the present discussion. However, the reader not familiar with Means Ends Analysis is encouraged to review the 
technique in any standard Al text, such as Winston's Artificial Intelligence [32] or Nilsson's Principles of Artificial Intelligence 
[23], or read the much more thorough treatment in [21]. 
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T h e monkey -and -bananas p rob lem: A (hungry) monkey is placed in a room with 
bananas suspended from the ceiling beyond its reach. A wooden box of sufficient size to 
serve as a platform from which the monkey can reach up to the bananas is placed 
elsewhere in the room. 

T h e exper imente r - and -bananas p rob lem: An experimenter wishes to set up the 
monkey-and-bananas problem. He has some bananas, a hook in the ceiling just beyond 
his reach, and a wooden box elsewhere in the experimental room, and, of course, a 
monkey. 

A means-ends-analysis problem solver, such as GPS, will solve either problem, given sufficient time 

and a reasonable encoding of the permissible actions and their consequences. However, solving one 

problem does not provide any information useful in solving the other. One would think that practice 

solving a given type of problem should help in solving similar future problems. For instance, an 

intelligent monkey observing the experimenter move the box beneath the hook, hang the bananas, 

and return the box to its original location, may infer which parts of the experimenter's behavior it 

should replicate in order to reach the bananas. Similarly, if the experimenter tires of watching an 

unenlightened monkey repeatedly fail in its attempts to solve the problem, he should know how to 

take down the bananas by modifying parts of his earlien plan, rather than replanning from ground 

zero. In general, transfer of experience among related problems appears to be a theoretically 

significant phenomenon, as well as a practical necessity in acquiring task-dependent expertise I 

necessary to solve more complex real-world problems. Indeed, the premise that humans transfer; 

problem-solving expertise among closely related situations is inextricably woven into the pedagogical 

practices of our educational institutions. 

The bulk of human problem solving takes place in problem spaces that are either well known or 

vary only slightly from familiar situations. It is rare for a person to encounter-a problem that bears no 

relation to similar problems solved or observed in past experience. New abstract puzzles (such as 

Rubik's magic cube) are such exceptional problems, where initially the only tractable solution 

procedure is the application of standard weak methods [21] without benefit of (non-existent) past 

experience. Therefore, my investigations center on simplified versions of real-world problems, rather 

than more abstract, self-contained puzzles. 

Now, let us turn to problem solving in familiar problem spaces. What makes a problem space 

"familiar"? Clearly, a major aspect consists of memory of past problems and their corresponding 

solutions that bear strong similarity to the new problem. Such knowledge, once acquired, can be 

exploited in the problem solving process. There is no other way to account for the fact that humans 

solve problems in familiar situations much faster, and with more self-assurance than in unfamiliar 

abstract situations. A computer model should exhibit the same skill-acquisition process; i.e., it should 
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2.1. T h e P lan -Transformat ion Problem Space 

Consider a traditional Means-Ends Analysis (MEA) problem space [21], consisting of: 

• A set of possible problem states. 

• One state designated as the Initial State 

• One or more state(s) designated as goal states - for simplicity, assume there is only one 
goal state. 

• A set of operators with known preconditions that transform one state into another state in 
the space. 

• A difference function that computes differences between two states (typically applied to 
compute the difference between the current state and the goal state). 

• A method for indexing operators as a function of the difference(s) they reduce (e.g., the 
table of differences in GPS). 

• A set of global path constraints that must be satisfied in order for a solution to be viable. 4 

A path constraint is essentially a predicate on a partial solution sequence, rather than on 
a single state or operator. The introduction of path constraints in this manner constitutes 
a slight modification of the standard MEA problem space. 

Problem solving in this space consists of standard MEA: 

1. Compare the current state to the goal state 

2. Choose an operator that reduces the difference 

3. Apply the operator if possible - if not, save the current state and apply MEA to the 
subproblem of establishing the unsatisfied precondition(s) of that operator. 

4. When a subproblem is solved, restore the saved state and resume work on the original 
problem. 

4 F o r instance, a path constraint may disallow particular subsequences of operators, or prevent an operator that consumes K 
amount of a resource from applying more than N times, if there is only NxK amount of the resource available to the problem 
solver. 

learn to adapt its problem-solving behavior by relying on past experience when available - falling 

back on the application of standard weak methods when more direct recall-and-modification of 

existing solutions fails to provide an answer. How might a problem solver be augmented to exhibit 

such adaptive behavior? First, let us review the standard MEA process; then we see how the 

analogical transformation process augments MEA to exploit prior experience. 
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How can one exploit knowledge of solutions to previous problems in this type of problem space? 

First, consider the simplest case; knowfedge consists only of solutions to previous problems. Each 

solution consists of a sequence of operators and intermediate states, including the initial and final 

states, together with the path constraints that the solution was designed to satisfy. One rather simple 

idea is to create "macro-operators" from sequences and sub-sequences of atomic operators that 

have proven useful as solutions to earlier problems. For instance, STRIPS with MACROPS exploited 

this idea [9] using its "triangle table" to store all partial sequences of operators encountered in a 

solution to a previous problem. However, the simple creation of macro-operators suffers three serious 

shortcomings. First, the combinatorics involved in storing and searching all possible subsequences of 

all solutions ever encountered becomes rapidly unmanageable. Searching for applicable macro-

operators can become a more costly process than applying MEA to the original problem. Second, 

path constraints are ignored in this process. If the new problem must satisfy a different set of path 

constraints, most previous macro-operators may prove invalid. Third, no provision is made for 

substituting, deleting, or inserting additional operators into recalled solution sequences. These 

operations prove crucial in the analogical transform process described below. Therefore, let us think 

not in terms of creating more and more powerful operators that apply to fewer and fewer situations, 

but rather think in terms of gradually transforming an existing solution into one that satisfies the 

requirements of the new problem. 

Consider a reminding process (a search for solutions to problems similar to the one at hand) that 

compares differences among the following: 

1. The initial state of the new problem and the initial state of previously-solved problems 

2. The final state of the new problem and the final state of previously-solved problems 

3. The path constraints under which the new problem must be solved and path constraints 
present when previous similar problems were solved. 

4. The proportion of operator preconditions of the retrieved operator sequence satisfied in 
the new problem situation. This measure is called the applicability of a candidate 
solution. 

The difference function used in comparing initial and final states may be the very same function 

used for difference reduction in standard MEA. Here, I advocate using the difference function as a 

similarity metric to retrieve the solution of a previously-solved problem closely resembling the present 

problem. The difference function applied to path constraints is an augmented version of the problem-

state difference function, as it must address operator-sequence differences in addition to state 

information. Hence, reminding in our problem-solving context consists of recalling a previously 
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solved problem whose solution may transfer to the new problem under consideration. A more 

sophisticated method of computing similarities among episodic memory structures is based on a 

relative-invariance hierarchy among different components of recalled problem solutions, as 

discussed in [5]. 

Reminding is only the first phase in analogical problem solving. The second phase consists of 

transforming the old solution sequence into one satisfying the criteria for the new problem. How does 

this transformation process proceed? I submit that it is equivalent to problem solving in the space of 

solutions. 5 

Original Space T-Space 
(Retrieved Solution) 

Figure 2-1: A solution path in the original problem space 
becomes a state in the analogy transform problem space. 

Finding an appropriate analogical transformation is itself a problem solving process, but in a 

different problem space. The states of the transform problem spacebars solutions to problems in the 

original problem space. Thus, the initial state in the solution to a 

similar problem, and the goal state is a solution satisfying the criteria for the new problem. The 

operators in the transform problem space are the atomic components of all solution transformations 

(e.g., substitute an operator in the solution sequence for another operator that reduces the same 

difference, but requires a different set of preconditions or entails different side effects, etc. - see 

5 Here I apply my previous definition of a solution to be a sequence of operators and intermediate states together with the set 
of path constraints that sequence is known to satisfy. Thus, I advocate applying MEA to the space of potential solution 
sequences rather than the original problem space. However, the reminding process should generate an initial solution 
sequence close to the goal solution sequence, where closeness is determined by the difference metric above. 
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below). The differences that the problem solver attempts to reduce in the new problem space are 

precisely those computed by thd similarity metric in the reminding process. In other words, progress 

towards a goal is determined by transitions in the solution space towards "solution sequences" 

corresponding to problems increasingly similar to the new problem. Intermediate states in the 

transform space need not correspond to viable solutions in the original (object) space, in that 

intermediate solution sequences may not be executable due to unsatisfied operator preconditions. 

The diagram in figure 2-1 gives an intuitive flavor of this problem-solving process. More precisely, the 

analogy transform problem space (T-space) is defined as follows: 

• States in the transform space are potential solutions to problems in the original problem 
space (i.e., sequences of states and operators including the initial and final states, plus 
the path constraints under which those solutions were computed.) 

• The initial state in the transform space is the solution to a similar problem retrieved by the 
reminding process. 

• A goal state in the transform space is the specification of a solution that solves the new 
problem, satisfying its path constraints. 

• An operator in the transform space (labeled a "T-operator" to avoid confusion) maps an 
entire solution sequence into another potential solution sequence. The following is a list 
of the most useful T-operators: 

o General Insertion. Insert a new operator into the solution sequence. 

o General deletion. Delete an operator from the solution sequence. 

o Subsequence Splicing. Splice a solution to a new subproblem into the larger 
established solution sequence. This T-operator is useful in the following situation: If 
an operator in the original problem sequence cannot be applied under the new 
problem specification because one of its preconditions is not satisfied, solve the 
subproblem of establishing that precondition. This subproblem may be solved 
either in T-space or in the original (object) space. If successful, splice the 
precondition-fulfilling subsequence into the original solution sequence. 

o Subgoal-preserving substitution. Substitute an operator in the original solution 
sequence by another operator (or sequence of operators) that reduces the same 
difference. This T-operator is particularly useful if either a precondition of an 
operator in the original sequence cannot be satisfied, or if the presence of a 
particular operator in the solution sequence violates a path constraint. 6 

o Final-segment concatenation. Treat the solution sequence as a macro-operator 

Note that a subgoal-preserving substitution is much more restrictive than a general delete T-operator followed by a general 
insert T-operator. Therefore, this T-operator is more apt to yield useful transformations, a fact reflected in the. ordering of 
operators under each appropriate entry in the difference table. 
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in the original problem space and apply MEA to reduce the difference between the 
old final state and the new final state. If successful, concatenate the solution to this 
subproblem at the end of the original solution sequence. 

o Initial-segment concatenation. Apply the process above to find a path in the 
original problem space from the new initial state to the old initial state. If successful, 
concatenate the solution to this subproblem at the beginning of the original 
solution. [Note that in this case we start with the initial state for the new problem 
and seek a path to the initial state for the retrieved solution, whereas in the final 
segment-concatenation operator the inverse process applies.] 

o Sequence meshing. Merge the operator sequences of two complementary 
solutions retrieved in the reminding process. The resultant solution sequence 
should differ from a complete solution to the new problem by the intersection of the 
differences between each retrieved solution and the new problem specification. 7 If 
the differences between the two retrieved solutions and the new problem 
specification form disjoint sets, sequence meshing yields a complete solution. 

o Operator reordering. Reorder the operators in a solution sequence. Often a path 
constraint in the new proble/n specification can be satisfied by simple reordering of 
operators (when allowed by their preconditions) in the retrieved solution. 

o Parameter substitution. Substitute the objects to which operators were applied 
in the retrieved solution by the corresponding objects in the new problem 
specification. 

o Solution-sequence truncation. Eliminate unnecessary operators. Two 
significant special cases of this T-operator are initial-segment truncation and 
final-segment truncation. For instance, if the final state of an operator 
subsequence of the retrieved solution exhibits a smaller difference to a goal state 
of the new problem, use this subsequence as the new basis for mapping into the 
desired solution sequence. 

o Sequence inversion* Reverse the operator sequence, inverting each individual 
operator, if a problem formulation is such that its goal state matches the initial state 
of a solved problem, and its initial state matches the goal state of that same 
previously solved problem. Inverting a process is not always possible, and seldom 
directly achievable. In the present case, the inverse of each operator must be 
found, and its preconditions satisfied, in order to apply global inversion. However, 
the general notion is attractive -- consider solving the problem of driving between 
two points in an unknown city. Once this problem is solved, the subsequent 
problem of returning to the departure site is easily solved by operator sequence 
inversion. 

7 Merging two partial operator sequences is an interesting and potentially complex problem in itself. Procedural networks, 
developed in the NOAH system [24], facilitate computations of operator interactions when meshing two plans. It is not always 
the case that two partial solution sequences can be merged effectively (e.g., each subsequence may violate necessary 
preconditions for the other subsequence). Non-algorithmic T-operators, such as sequence meshing, define their own 
internal problem space. 
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• The difference metric in the transform space (D T ) is a combination of the difference 
measures between initial states (of the retrieved and desired solution sequences), final 
states, path constraints, and degree of applicability of the retrieved solution in the new 
problem scenario. Hence, the values of D T are 4-vectors, with the interpretation that all 
four component differences must be reduced (independently or jointly) in the transform 
space (T-space) problem-solving process. 

D T ? < V S l i 1 ' S l , 2 ) » D 0 ( S F f 1 ' S F i 2 ) -
D p f P C ^ P C ^ , D A ( S O L 1 , S O L 2 ) > 

D Q is the difference function between states in the original space. 

Dp computes differences between path constraints (PC's). 

D A measures the applicability of the old solution in the new scenario by 
determining the fraction of operators in the initial solution sequence ( S O L ^ 
whose preconditions are not satisfied under the new problem specification. 

S, denotes an initial state. 

S p denotes a final (goal) state. 

The subscript 1 indexes the retrieved solution. 

The subscript 2 indexes the specifications on the desired solution to the new 
problem. 

D y is reduced when any of its four components is independently reduced. The problem-
solving process in T-space succeeds when D T = <NIL, NIL, NIL, NIL>. Interesting search 
problems occur when, in order to reduce one component in the difference vector, one or 
more of the other components must be increased. For example, the insertion of new 
operators into the solution sequence may have the unfortunate side-effect of violating an 
established precondition of an operator in the original sequence. In this case reducing 
D Q ( I ) or D Q ( F ) results in increasing D A . Our first-pass solution is to define a (linear) 
combination of the four components and choose the operator that maximally reduces this 
value, backtracking when necessary. Fortunately, it is often the case that differences in 
the 4-vector can be reduced in a componentwise-independent manner. Moreover, a 
modified version of the A-MIN method [4] may apply, focusing the backtracking process 
when backtracking proves necessary. 

• A difference table for indexing the T-operators is needed. Entries in the difference table 
take the form "To reduce <DIFFERENCE>, a p p l y a member o f 
<T-OPERATOR-SET>". The operators in the applicable set are usually ordered as a 
function of the heuristic measure of their utility in reducing the given difference. A sample 
difference table entry would be: 

o If the preconditions to an operator in S O L 1 are not satisfied (i.e., D A is non-null), try 
subgoal-preserving substitution on the inapplicable operator, or try 
solution-sequence splicing to satisfy the violated preconditions. 

• There are no path constraints in the transform space. Since we are mapping from one 
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solution sequence to another, the intermediate states and T-operators do not necessarily 
correspond to actual operations performed on an external world, and therefore are not 
subject to its restrictions. This simplification is offset by the more complex difference 
metric in T-space. 

2.2. Some examples 

Consider a simple problem where analogical problem solving may prove quite appropriate: 

John is located in Pittsburgh and must travel to New York City. However, when he called 
the airlines, he discovered that all the flights were booked. John never took the intercity 
train (Amtrak) before, but knows it is a possible means of long-distance travel. 

John's plan might be the following: Call Amtrak to make a reservation. Make sure he has sufficient 

money for the ticket. Find out where to buy the ticket; buy it; and later go to the station and board the 

train. Why is this a reasonable pJan? How could John have synthesized his plan? We cannot really 

say that John had a "scr ipt" 8 for taking trains, as he had not previously traveled by train, nor had he 

acquired the requisite, detailed information enabling him to do so. 

A reasonable way of formulating the plan is by analogy with taking an airplane (or perhaps an 

intercity bus). The first step is for John to be reminded of taking an airplane (thus recalling: making 

reservations, tickets being costly, often purchasing the tickets in advance, later traveling to the 

airport, etc.) Note that it is crucial for John to be reminded of an experience (or a general procedure) 

where he was fulfilling a similar goal (intercity travel) and not one where superficial similarities 

abound (e.g., taking a subway, where both means of conveyance are called "trains", they travel on 

tracks, have many stops, etc.). Subway travel would not suggest the potential necessity of making a 

reservation, nor would it suggest the requirement for a reasonable sum of money to purchase the 

ticket. Hence, a comparison of goal states, as suggested in our general method, is indeed a crucial 

component in the similarity judgements necessary for modeling a reasonable reminding process. 

The solution transformation process proceeds by applying the subgoal-preserving substitution 

T-operator, substituting TRAIN-TRAVEL for AIR-TRAVEL, as both operators reduce the same 

difference. Then, the parameter-substitution T-operator replaces "airport" by "train station", 

"airline ticket" by "train ticket", etc. John must rely on his knowledge of how to satisfy the 

preconditions of AIR-TRAVEL, and hope that the same methods apply to TRAIN-TRAVEL. If this were 

not the case, further problem solving would be necessary. 

8 B y "script" I mean a slight variation of Schank and Abelson's terminology [26,7], i.e., a frozen plan: one or more normative 
sequences of planned actions whose purpose is to satisfy the preconditions of (and carry out) a high-level operator. 
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Now, let us reconsider the monkey-and-bananas and experimenter-and-bananas problems, in light 

of the analogical problem-solving model. 

A monkey watches a behavioral psychologist (i.e., the experimenter) pick up a wooden box 
and place it under a hook in the ceiling. Next, the experimenter climbs on the box, places 
some bananas on the hook, climbs off the box, and returns it to its original location. Then, 
the experimenter releases the (hungry) monkey and leaves the room. How does the 
monkey plan to reach the bananas? Can he benefit from having observed the 
experimenter? 

As we mentioned earlier, a "smart monkey" ought to learn from his observations of the 

experimenter. Let us see how analogical problem solving applies here. For simplicity, assume the 

monkey does not have prior experience solving similar problems beyond his recent observation of the 

experimenter. The monkey's problem is: initial state = monkey on the floor, bananas on the ceiling, 

box in the room; f inal state = monkey in possession of the bananas; path const ra ints = physical 

abilities of the monkey. However, the solution to the experimenter's problem cannot be applied 

directly. (His problem was initial state = possession of the bananas, box in the room, experimenter 

on the floor; f inal state = Bananas on the ceiling, box not under the bananas; path const ra ints = 

physical abilities of the experimenter.) 

Assuming the path constraints match, the differences between the initial states (and the differences 

between the final states) are so large as to preclude any reasonable attempt at direct analogical 

transformation. Therefore, the monkey must resort to standard MEA (in the original problem space). 

He selects the operator G E T - O B J E C T (applied to bananas). This operator suffers an unsatisfied 

precondition: The monkey cannot reach the bananas. Therefore, the active subgoal becomes: Reach 

the ceiling where the bananas are located. How may the monkey proceed at this juncture? 

The entire problem can, of course, be solved by recursively applying standard MEA. However, 

there is a more direct solution method. If the monkey recalls his observation of the experimenter, he 

may realize that the problem of reaching the ceiling has already been solved (by the experimenter, as 

a subgoal to placing the bananas there - although the monkey need not understand the 

experimenter's higher-level goals). The monkey can apply the parameter-substitution T-operator 

(substituting "monkey" for "experimenter"), and optionally the solution-sequence truncation T -

operator (eliminating the need to return the box to its original location after having used it). This 

problem-solving process in T-space results in a plan that the monkey can apply directly to reach the 

bananas, and thus achieve his original*goal of having the bananas. 

The significant aspect of the experimenter-monkey-and-bananas example is that standard MEA 
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and T-space MEA were combined into a uniform problem-solving process where standard MEA calls 

on analogical problem solving to solve a subproblem more directly. The converse process is also 

possible, and potentially significant. For instance, in the Amtrak example, if John could not have 

satisfied one of the preconditions for taking the train by analogy with the corresponding AIR-TRAVEL 

precondition, he could have resorted to standard MEA to solve this subproblem. Hence, Analogical 

reasoning adds a powerful dimension to standard problem solving when prior experience can be 

brought to bear, but remains largely unobstrusive when no relevant prior knowledge suggests itself. 

It would be useful for the problem solver to remember his new problem-solving experiences to use 

as a basis for future analogical reasoning. These could be remembered directly or abstracted into 

episodic traces, much like Schank and Abelson's scripts [26,7], and hierarchically organized as a 

function of the goals they fulfill. 

An interesting observation concerns the recursive closure of analogical MEA. 9 If the t-operator 

sequence of an analogical problem solving transformation is remembered, the analogical MEA 

process can be applied to these transformations themselves. That is, one can construct an 

analogical mapping between two solution sequences by recyling a past analogical mapping among 

similar solutions -- or by transforming a past, almost useable mapping by recursive application of 

analogical MEA to the analogical mapping itself. A significant point is that no infinite regress requiring 

new "hyper-analogical" methods occurs. The same analogical transformation process that applies to 

object-level solution sequences applies directly to transforming analogical mappings. 

3. Evaluating the Analogical Reasoning Process 
In an informal experiment, not meant to withstand statistical significance tests, I gave the following 

problem to five undergraduate history-and-art students: 

Prove that the product of two even numbers is even. 

Somewhat to my surprise and dismay, none of the five was able to solve this simple algebraic 

problem, although all five made serious attempts. I had intended to give the subjects similar but more 

difficult problems in subsequent stages of the experiment, measuring whether they improved in speed 

or accuracy from their recently-acquired experience solving analogically-related problems. 

Nevertheless, the experiment proved useful in demonstrating the reliance of human problems solvers 

on analogical mechanisms, as discussed below. Continuing with the experiment, I explained the 

proof process carefully enough to insure that all five subjects understood it: 

Vhis observation is due in part to Mitchell, personal communication. 
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First, recall the definition of an even number: a number that is divisible by 2. 

Second, write down an expression that represents an even number: You may write "2N" 
where N is any integer, to represents number divisible by 2. 

Next, multiply two even numbers, writing: 2N x 2M, where M is also any integer. Multiplying 
weget4NM. 

Now, recall the representation of an even number: 2 x any integer. Therefore you can 
write 4NM = 2 x 2NM, which by closure of integers under multiplication matches the 
representation of an even number. Hence, the product of two even numbers is even. 

At this point, all five subjects claimed they understood the proof, and moreover expressed some 

feeling of embarrassment for not having derived such an "obvious" proof themselves. Then, I 

suggested they try the following problem: 

Prove that the product of two odd numbers is odd. 

With grim determination to redeem their previous poor performance all five attempted the problem 

and three of them succeeded. Briefly: 

Odd numbers can be represented as "even + 1" = 2N +1 for any integer N. 

The product is: (2N + 1) x (2M + 1) = 4NM + 2N + 2M + 1 = 2(2NM + N + M) + 1, 
which is the representation of an odd number. 1 0 

This informal experiment strongly indicates that the second problem was solved by analogy from the 

solution to the first problem. The scratch papers collected from the subjects suggest direct attempts 

at transferring and modifying steps of the first solution. The insertion of an extra algebraic step 1 1 

illustrates an application of the subsequence splicing T-operator. The global substitution of a 

representation for odd numbers in place of a representation for even numbers strongly suggests 

parameter substitution. Moreover, the mere fact that three of five subjects were able to solve a 

problem more complex than the one where all five failed previously, argues very convincingly for an 

analogical process exploiting the previous solution (or some abstraction thereof). However, it should 

be noted that this type of experiment does not in itself demonstrate dominance of analogical 

reasoning in human problem solving, but rather it provides strong evidence for the existence of 

Interestingly, one subject chose to represent odd numbers as 2N + 3, which is correct but requires a bit of additional 
algebraic manipulation. When asked why she chose such a representation, her reply was "4 is a nice even number, and 7 is a 
nice odd number. The difference between them is 3. The next even number is 6; the next odd is 9; and the difference is always 
3. So, I took 2N and added 3." What a graphic illustration of means-ends-analysis to solve the subproblem of mapping from a 
representation of even numbers to a representation of odd numbers! Of the two subjects who did not present an adequate 
proof, one erred in an algebraic manipulation step, the other erroneously chose 3N as his representation for odd numbers. 

1 1 I.e., distributing the product of the two odd numbers is required to fulfill a precondition for factoring the constant "2" from 
three of the four terms in: 4NM + 2N + 2M + 1. 
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4. Learning Generalized Plans 
The analogical transformation process provides a method of exploiting prior experience in a 

flexible manner. That is, it requires only that the new problem be structurally similar, rather than 

identical, to one or more previously solved problems. 1 3 Hence, simply storing solutions to new 

problems constitutes a form of learning — as these can serve as a basis from which solutions to yet 

newer problems may be analogized. However, there are other aspects to learning that present more 

interesting challenges. To wit, if a type of problem recurs with sufficient frequency, a human planner 

is apt to formulate a generalized plan for dealing with future instances of that problem, rather than 

reasoning analogically from a particular member of that cluster of similar experiences. A generalized 

^plan is, in essence, similar to Schank's notion ^of a script [26,28cull77], i.e., a parameterized 

The program used 2N-1 to represent an odd number, since the SUB1 operator was inadvertently listed before ADD1 in the 
object-space difference table, and therefore the program had to splice in an additional algebraic step in the solution: 
(2N-1)(2M-1) = 2(2NM - N - M) + 1, which does not correspond to the 2N-1 representation for odd numbers, and therefore had 
to apply subsequence splicing to add two algebraic operators that transformed the expression into 2(2NM - N - M + 1) -1 . In 
fact most of the computational effort was spent finding those two operators (adding and subtracting the same quantity, and 
refactoring the expression). This allocation of effort roughly corresponds to the substantial time spent by the subject who 
chose 2N + 3 as a representation with the resuftant product being 2(2NM + 3N + 3M) + 9, which did not exactly match the 
original representation, and was eventually refactored into 2(2NM + 3N + 3M + 3) + 3. 

The MACROPS facility in STRIPS required corresponding initial states and goal states to be identical modulo 
parameterization of operators in order to reuse portions of past solution sequences [9], 

analogical processes in cognitive activities. Demonstrating the conjecture that analogy is the central 

inference mechanism for human problem solving would require a much more thorough (and perhaps 

more controlled) set of psychological observations. 

As a test of the computational feasibility of the analogical problem solving process, a simple version 

of MEA was programmed to operate on the transform space, and given a subset of the T-operators 

with a corresponding difference table. It solved the product-of-two-odds problem starting from the 

solution for two even numbers. 1 2 The initial computer implementation of analogical MEA is not of 

particular interest - it demonstrates that the analogical problem solving process actually works, but 

does little else. The truly interesting issues will arise when: 

• a much fuller implementation is available allowing comparisons among different problem 
solving methods over a representative corpus of problems, 

• the learning from experience process discussed in the following section is fully integrated 
with the analogical transform process, 

• and the analogical problem solver is integrated with a dynamically-changing long term 
memory model. 
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y branching sequence of events with expected goals and default actions. 

4.1. Acqui r ing Genera l i zed Solut ions Procedures 

How is a generalized plan acquired from past problem solving experience? Consider an inductive 

engine, such as those developed to formulate generalized concepts from sequences of positive and 

negative exemplars of the target concept, as discussed in [10,29, 30,8,18]. Instead of acquiring 

disembodied concepts from an external teacher providing training sequences of exemplars labeled 

"positive" or "negative", in experiential learning the exemplars consist of past problems and their 

respective solutions. These solutions are grouped together as exemplars of a generalized plan by 

virtue of being derived from a common ancestor in the analogical transform process. Thus, as in 

learning from observation, the concepts to be acquired are not known a priori by an external teacher, 

but correspond to clusters of experientially related solutions to a common type of problem. The 

"type" is not artificially defined, but depends on the actual experience of the individual problem 

solver. More specifically, generalized plans are acquired by the following process: 

• Whenever the analogical problem solver generates a solution to a new problem, that 
solution is tested in the external world. If it works, it becomes a member of the positive 
exemplar set, together with the prior solution from which it was analogized and other 
successful solutions to problems from the same analogical root. 

• If the analogized solution fails to work when applied in the external world, the cause of 
the failure is stored and this solution becomes a member of the corresponding negative 
exemplar set. 

• The positive and negative exemplar sets are given to an induction engine that generates 
a plan encompassing all the positive solutions and none of the negative exemplars. Thus, 
the training sequence is provided by past experience solving similar problems, rather 
than by an external teacher. And, the concept acquired is a generalized solution 
procedure rather than the description of a static object* as is typically the case in the 
concept acquisition literature. If the description language for the object-space operators 
is extended, additional generalization can occur (e.g., in selecting more general 
operators that cover disjunctive subsequences in the generalized solution plan). 

• Moreover, negative exemplars are near-misses, 1 4 since the analogical process generated 
them by making a small number of changes to known positive instances (i.e., 
transformations to past solutions of the same general problem type, retaining the bulk of 
the solution structure invariant). Hence, near-miss analysis can point out the relevant 
discriminant features between positive and negative exemplars of the general planning 
structure under construction. In other words, the problem solver serves as an automated 

Winston [30] defines a near-miss as a negative exemplar that differs from positive exemplars in a small number of 
significant features. Near misses are crucial in isolating defining characteristics of a concept in the learning-from-examples 
paradigm. 
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example generator, producing near-misses as a side effect when failing to generate an 
effective plan. 

• Finally, in cases where the analogical problem solver fails to generate a solution for the 
new problem (as opposed to generating an erroneous solution that becomes a negative 
exemplar for the generalized plan formation process), different information can be 
acquired. The situations where a solution was recalled and a plan was formed 
analogically (independent of whether the plan worked) serve as positive exemplars to 
reinforce and perhaps generalize the similarity metric used to search memory. The cases 
where a recalled solution could not be analogized into a candidate plan for the new 
problem suggest that the old and new problems differed in some crucial aspect not 
adequately taken into account in the similarity metric, and thus serve as negative 
reinforcement to refine and constrain the similarity criterion. 

Graphically, the information flow in the learning process is illustrated in figure 4-1. The formula 

Analogy : S ./C . - -> P./C. 

should be interpreted as , r The analogical transform process maps plan P. applicable under conditions 

C.into plan P. applicable under conditions C.." And, the formula 

Envi ronment : P ./C. - > + (or -) 

should read as "Plan P. succeeded (or failed) when executed in the external environment under 

conditions C.." 

Figure 4-1 summarizes the process of acquiring generalized plans and updating the similarity 

criterion from experience. The analogized plans along with their conditions of applicability, form the 

input to a learning-from-examples engine. Successful solutions are classified as positive exemplars; 

unsuccessful ones are classified as near-miss negative exemplars. Moreover, the cases where the 

analogy transform process failed to yield a candidate plan become negative reinforcement instances 

to a parameter-tuning process, which is positively reinforced by those cases where a (successful or 

unsuccessful) plan was formulated. Updating the similarity criterion should make future memory 

searches for solutions to similar problems more responsive to the features that enable the analogical 

transform system to map a recalled solution into a potential solution for the new problem. Thus, we 

see that analogical problem solving interfaces naturally with a learning-from-examples method in that 

it provides an internal example generator requiring no external teacher. 

Presently, I am extending the problem solving engine to extract and use information from the 

planning process itself (not just problem descriptions and corresponding solutions), such as viable 

alternatives not chosen, causes of failure to be wary of in similar situations, etc. The objective of this 

endeavor is to enable the learning-from-examples component to learn, or at least refine, the problem 

solving strategies themselves, in addition to forming generalized plans. Thus, general patterns of 
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T h e analogical p rob lem solv ing p r o c e s s 

Analogy: S / C , 
Analogy: S 2 / C 2 

" > P 2 / C 2 

" > P 3 / C 3 
Analogy: S / C 1 --> P ,/C. 

-> Analogy: S 3 / C 3 

4' " 4 
P 5 / C 5 

Analogy: S 3 / C 3 --> <no-plan>/C 6 

Analogy: S 1 / C 1 •-> <no-plan>/C ? 

Environment: P 2 / C 2 » > + 
Environment: P 3 / C 3 - > + 
Environment: P 4 / C 4 ~> -
Environment: P 5 / C 5 --> -

Acqui r ing genera l i zed plans 
from solut ions attempts to similar p rob lems 

Input to a learning-from-examples process 
Positive exemplars: P / C r P 2 / C 2 , P 3 / C 3 

Negative exemplars: P 4 /Q 4 , P 5 / C 5 (near misses) 

Output from the learning-from-examples process 
Generalized plan: P G / C Q 

Updat ing the similarity c r i ter ion 
used to recall relevant pr ior exper ience 

Input to a parameter-tuning process 
Present similarity metric 
Positive reinforcement trials: C r C 2 , C 3 , C 4 , C 5 

Negative reinforcement trials: C Q , C ? 

Output from the parameter-tuning process 
Updated similarity metric 

Figu re 4-1 : Acquiring generalized plans and updating the similarity metric 

inference may be acquired from experience [6]. 

Parts of the plan generalization process are currently being implemented to test the viability of the 

proposed knowledge acquisition method, and preliminary results are encouraging. Although, much 

of the theoretical and experimental work in acquiring problem solving skills is still ahead of us, there is 

sufficient evidence to support the two original hypotheses: the integration of learning and problem 

solving methods into a unified cognitive mechanism, and the utility of the learning-from-examples 

technique for acquiring planning skills as well as more static concepts. 

As our discussion has demonstrated, learning can occur in both phases of analogical problem 
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solving: 1) the reminding process that organizes and searches past experience, and 2) the analogical 

transformation process itself. Additional issues in the experiential adaptation of the reminding 

process are discussed below. 1 5 

4 .2 . Episodic Memory Organizat ion 

Memory of solutions to previous problems, whether observed or directly experienced, must be 

organized by similarities in goal states, initial states, and means available (or path constraints 

present). Otherwise, there can be no reasonable reminding process when solving future problems of 

a similar nature. Hence, a hierarchical indexing structure on an episodic memory must be 

dynamically constructed and extended as the system gradually accumulates new experience.. Given 

an effective memory model, the process of continuously expanding and structuring past experience 

becomes a relatively simple, but absolutely essential, aspect of learning that proceeds concurrent 

with analogical reasoning. Moreover, the memory model should retrieve general plans when these 

have been proven reliable to the exclusion of the original episodic memory traces, which then 

effectively "fade" from memory. "Fading" means that the memory indexing structure is altered so 

they are no longer easily recalled in the reminding process. (This notion is akin to Schank's 

"mushing" process [27] and Anderson's masking by declining relative activation [1].) 

4.3. Episodic Memory Rest ructur ing 

It is conceivable that in the lifetime of an adaptive problem solver, the nature of the problems it is 

called upon to solve may change gradually. The change may manifest itself as decreased reliability of 

the difference function comparing new and old problem specifications, causing the reminding 

process to retrieve inappropriate solutions, or to miss relevant past experiences. Hence, a means of 

tuning the difference metric in a failure-driven manner is a requisite process for long-term adaptive 

behavior. 

More specifically, the heuristic combining the four values in the D T 4-vector may be tuned to yield 

appropriate values for certain classes of problems most commonly encountered. For instance, 

differences in path constraints are less meaningful to a problem-solver who has ample resources than 

to a more spartanly-endowed problem solver. If a graduate student later becomes a millionaire, the 

fact that he now commands more substantial resources should lessen the impact of resource-based 

path constraints in his problem solving. Consequently, the similarity metric will cease to consider past 

1 6 T h e reader is referred to Schank [27, 28], Lebowitz [14] and Kolodner [12] for various discussions on the type of basic 
episodic memory model implicit in this paper. The memory organization scheme must be structured according to similarity 
criteria instrumental to the task indexing and recalling past problem solving experience [5]. 
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solutions of otherwise similar problems that were solved when operating under more severe resource 

constraints. This is not a particularly desirable state of affairs, as resource-limited solutions are 

certainly viable, if not always desirable, to a problem solver commanding more resources. Therefore, 

the reminding heuristic should no longer weigh path-constraint differences as heavily. (Note that 

reminding is a constrained search process, whereas analogical mapping or instantiating a general 

solution pattern are generative processes. Hence, the reminding process need only retrieve 

approximate, plausible solutions.) Returning to our example, if that same millionaire later files for 

bankruptcy, the relevance of resource-based path constraints assumes significant proportions once 

again. A pauper will not be able to solve most problems by emulating a millionaire. Thus, the path-

constraint component of the similarity/difference metric should reestablish its central role in the 

reminding heuristic. In this manner, the relevance of each component in the similarity measure is 

subject to long-term fluctuation. 1 6 

JHow can the relative weights in the similarity heuristic be tuned? When the reminding process fails 

to retrieve a viable initial state to the T-space problem solver, but the problem is later solved in the 

original problem space, the solution can be compared to episodic memory. If a solution to a previous 

problem is found to be very similar, then the problem descriptions should also have been found 

similar by the reminding heuristic. The component contributing the largest difference is then reduced 

in importance. The converse process also applies. If a solution retrieved as similar does not lead to a 

solution in T-space, the difference(s) that could not be reduced by the T-space problem solver are 

made more important in the difference heuristic. These complementary processes regulating the 

difference metric are designed to make all changes very gradually to insure against potentially 

unstable behavior. This form of experiential parameter tuning is a new application of a technique 

dating back to Samuel [25]. 

4.4. T - O p e r a t o r Ref inement 

If episodic memory is extended to contain T-space problem-solving traces, in addition to 

experienced events and solutions to past problems, then learning can occur in the T-operator 

domain. For instance, consider a T-operator present with high frequency in unsuccessful T-space 

solution attempts. It is conceivable that the entry (or entries) in the difference table indexing that 

T-operator are insufficiently constrained, suggesting the need for a discrimination process such as 

This process is analogous to Berliner's application coefficients in SNAC [3], whose values change gradually over the 
course of a game. Here change occurs more gradually over the lifetime of the problem solver, but I am proposing an adaptive 
rather than a pre-programmed contextual-weighting process. Note that whereas individual path constraints differ from problem 
to problem, I am discussing gradual changes in the relative significance of path constraints vis a vis other criteria in the 
similarity metric on average over many individual problem solving episodes. 
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the following: ~ 

1. Compare T-space solution attempts where the T-operator in question was present only in 
failure paths, with solution attempts where it was present in successful solution paths. 

2. If there are multiple entries in the difference table for that T-operator, and some entries 
correspond only to failure instances of the operator, delete these entries, as the operator 
is being applied to reduce a difference it proved incapable of reducing. 

3. If a single entry corresponds to many more failures than successes, the description of the 
difference being reduced may be too general and ought to be factored into a disjunctive 
set of more specific differences. Later experience can help isolate which of these sub-
differences the T-operator is actually capable of reducing. Then, the more specific 
differences (those that the T-operator in question proved capable of reducing) replace 
the previous more general entry in the difference table. Other differences in the factored 
disjunctive set that (as experience shows) cannot be reduced by the T-operator are 
discarded. It should be noted that the operation of factoring an arbitrary concept into a 
disjunctive set of sub-concepts is, in general, not a tractable process. However, given a 
hierarchical memory model and a non-monotonic inference capability, 1 7 approximately 
correct factorings can be achieved. 

4.5. T h e Acqu is i t ion of New T - O p e r a t o r s 

If the reminding process retrieved one or more solutions, but the analogy transform process failed 

to map these into a solution satisfying the specifications of the new problem, and the original-

problem-space problem solver found a solution, then we have a clear indicator that the T-space 

problem solver is missing some essential T-operators. One approach to remedy this situation is the 

following process: 

1. Compare the solution computed by the problem solver in the untransformed space with 
the various attempted transformations in T-space. 

2. Find the intermediate state in the failed T-space solution attempt that minimizes the 
difference metric (D T ) to the solution computed by standard MEA. 

3. Hypothesize a T-operator instance to be the transformation from the closest state 
(reached in the T-space solution attempts) to the actual solution. Save this T-operator 
instance. 

4. If later problem-solving impasses cause failure-driven creation of more T-operator 
instances, then the application of a learning-from-observations technique, such as the 
conceptual clustering method [17] may prove fruitful. If the exemplars are sufficiently 
similar, or form clusters of closely similar exemplars, new T-operators can be 
hypothesized according to the characteristic description of each conceptual cluster. 

1 7 Non-monotonic inference is a plausible inference technique based on tentative deductions and assumptions that may 

prove invalid as additional knowledge is acquired [16]. 
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"Sufficiently similar" in this context means that the common structure shared by the 
cluster of T-operator instances is not present in other active T-operators. Hence, the new 
operator will perform transformations different from those of any previously existing T-
operator -- i.e., the new operator may prove generatively useful. 

5. The newly-created T-operator may then be added to the set of active T-operators (subject 
to the refinement process above if the new operator proves unreliable). 

6. The entry in the difference table indexing the new T-operator is a bounded generalization 
of the differences that each T-operator instance reduced at the time it was created. If 
these differences do not share a common component not present in other entries, more 
than one (disjunctive) entry must be made in the difference table. 

Thus, new T-operators can be acquired if the problem solver is given a set of problems for which 

the same (previously unknown), general T-space transformation was required. Moreover, the 

operator acquisition and discrimination processes are equally applicable to refining and extending 

sets of operators in the original untransformed problem space (if the problem solver can tap an 

external source of knowledge upon failure, or relax processing constraints upon resource-limited 

failure). Acquiring T-operators, however, requires learning from observation, rather than the better 

understood and generally simpler process of learning-from-examples used to acquire generalized 

plans. 

The learning mechanisms discussed in this section can prove effective if and only if the reasoning 

system is capable of remembering, indexing and retrieving past experience, including aspects of its 

internal processing in previous problem-solving attempts (e.g., hypothesized T-operator instances). 

Therefore, the necessity for both dynamic memory organization processes and a problem solving 

mechanism capable of exploiting episodic memory is clearly manifest. 

5. Concluding Remark 
The primary objective of this paper has been to lay a uniform framework for analogical problem 

solving capable of integrating skill refinement and plan acquisition processes. Most work in machine 

learning has not addressed the issue of integrating learning and problem solving into a unified 

process. (However, Mitchell [19] and Lenat[15] are partial counter-examples.) Past and present 

investigations of analogical reasoning have focused on disjoint aspects of the problem. For instance 

Winston [31], investigated analogy as a powerful mechanism for classifying and structuring episodic 

descriptions. Kling [11] studied analogy as a means of reducing the set of axioms and formulae that a 

theorem prover must consider when deriving new proofs to theorems similar to those encountered 

previously. In his own words, his system "...derives the analogical relationship between two [given] 
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problems and outputs the kind of information that can be usefully employed by a problem-solving 

system to expedite its search." However, analogy takes no direct part in the problem-solving process 

itself. Hence, the extension of means-ends analysis to an analogy transform space is, in itself, a new, 

potentially-significant problem-solving method, in addition to supporting various learning 

mechanisms in an integrated manner. 
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Analogical reasoning is a powerful mechanism for exploiting past experience in planning and 
problem solving. This paper outlines a theory of analogical problem solving based on an extension to 
means-ends analysis. An analogical transformation process is developed to extract knowledge from 
past successful problem solving situations that bear strong similarity to the current problem. Then, 
the investigation focuses on exploiting and extending the analogical reasoning model to generate 
useful exemplary solutions to related problems from which more general plans can be induced and 
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refined Starting with a general analogical inference engine, problem solving experience is. in 
essence, compiled incrementally into effective procedures that solve various classes of problems in 
an increasingly reliable and direct manner. 
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