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ABSTRACT 

In building systems that acquire knowledge from tutorial instruction, progress depends on 

determining certain functional requirements and ways for them to be met. The Instructable 

Production System (IPS) Project has explored learning by building a series of experimental systems. 

These systems can be viewed as being designed to explore the satisfaction of some of the 

requirements, both by basic production system mechanisms and by features explicitly programmed 

as rules. The explorations have brought out the importance of considering in advance (as part of the 

kernel design) certain functional components rather than having them be filled in by instruction. The 

need for the following functional components has been recognized: 

• interaction language; 

• organization of procedural elements; 

• explanation of system behavior; 

• accommodation to new knowledge; 

• connection of goals with system capabilities; 

• reformulation (mapping) of knowledge; 

• evaluation of behavior; 

• and compilation to achieve efficiency and automaticity. 

Since the experimental systems have varied in their effectiveness, some general conclusions can be 

drawn about relative merits of various approaches. Seven such approaches are discussed here, with 

particular attention to the three whose behavior can be most effectively compared, and which reflect 

the temporal development of the project.1 

1 This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551. The views and conclusions contained in 
this document are those of the author and should not be interpreted as representing the official policies, either expressed or 
implied, of the Defense Advanced Research Projects Agency or the US Government. 
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1 The instructable Product ion System Project 2 

1 . The Instructable Production System Project 
The Instructable Product ion System (IPS) project [22] started out in the fall of 1975 to study the 

construct ion and behavior of large-scale systems of product ion rules. Our hypothesis, extrapolated 

from work in cognitive psychology [17], was that intelligence would result as a system grew in size, 

from an ability to deal with more situations and to apply more knowledge to solve problems. The 

motivation to use production systems had the same source [17]. To increase the scientific interest of 

building such systems, and ultimately to improve the chances of continuing growth and viability, it 

was stipulated from the start that the system was to be built by gradual "instruction" rather than by 

deliberate programming. 2 The research evolved into a series of explorations of the design of a 

starting system (Kernel), from which the much larger system would be grown. The explorations 

spanned a four-year time period, until mid-1979, and involved the efforts of over a half dozen people 3 . 

The setting in which instructional experiments took place was chosen to be one of "learning by 

doing". In this paradigm, the instructor of the system watches and advises the system while it is 

solving problems in its chosen domain of expertise (cf. the work of Anzai and Simon [3]). This is a 

good way to study learning because it combines attributes of both learning by being told and learning 

by independent exploration, while avoiding some of their drawbacks. That is, the instructor still 

instructs by telling, but the fact that the system is doing something at the same time allows the 

instructor to verify (partially) that new knowledge is appropriate to the system's current knowledge. In 

addition, the system is in a sense exploring in an environment that has new situations for it, under the 

guidance of the instructor and in the framework of problems posed by the instructor. When new 

knowledge interacts in some way with the system's existing knowledge, that interaction has the 

¿ Actually, production systems are quite difficult to program, so an instruction mode has the potential of bringing a large 
system into the realm of feasibility. What is desired is that the production system itself be able to manage its knowledge, find 
interactions of new knowledge with old [19J, check consistency, formulate and select answers for questions that arise when 
new and old knowledge statements are compared, and do assorted other tasks that can't even be predicted at this time. To do 
this knowledge management task would require a great deal of knowledge itself, and the IPS project has only begun to realize 
what might be required for this much larger research goal. 

2 

See the Acknowledgments section near the end of the paper. 
3 



1 The Instructabie Production System Project 3 

greatest chance of being understood in the context of a situation where that knowledge is being 

applied. The system is forced to deal with new situations in its own way, using its own conceptual 

system, with the extra help of the instructor's advice. But advice to the system is often limited, in that 

the system's knowledge may not be stored so as to be brought to bear in all appropriate situations, 

and in that the instructor can often see only the effects of the knowledge, rather than the knowledge 

itself, depending on how well the system can describe itself. 

More precisely, the dialog between instructor and system is ruled by a number of constraints: 

• The instructor of the system gains all information about IPS by observing its interactions 
with its environment (including the instructor). 

• The dialog takes place in (restricted) natural language. 

• The dialog is mixed initiative, with both participants free to try to influence the direction. 

• Instruction may be about any topic or phenomenon in the system's external or internal 
environment (subject to the other restrictions). 

• Knowledge accumulates over the lifetime of the system. 

These constraints are intended to embody the essence of instruction as it occurs in a number of 

natural situations. At the same time, they tend to rule out explicit "programming" by the instructor, 

and thus place a larger burden on the system's learning abilities, and indeed on its general 

intelligence. 

Throughout the IPS experiments, the underlying knowledge organization was Production 

Systems (PSs) [6, 2 6 , 1 , 20,17] , a form of rule-based system in which learning is formulated as the 

addition to, and modification of, an unstructured collection of production rules. As mentioned above, 

this assumption of architecture has some support from psychological theory [17]. Behavior is 

obtained through a simple recognize-act cycle with a sophisticated set of principles for resolving 

conflicts among rules [13, 21]. The dynamic short-term memory of the system is the Working 

Memory (WM), whose contents are matched each cycle to the conditions of rules in the long-term 

3 
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memory, Production Memory. As will be explained in a later section, information transfer from the 

environment (including instructor) to the system takes place by depositing conventionalized symbol 

structures into the WM. Those structures then become subject to manipulation by the system's 

procedural methods expressed as rules (to be defined and illustrated after the next subsection). The 

IPS project developed several dialects of the OPS language [6 ,8 , 24] to support its experiments. 

1 . 1 . Relation to Other Learning Research 

In terms of a model recently proposed for learning systems by Buchanan, ef a/. [4], the IPS work 

focused on certain aspects of the learning problem while neglecting others. Their model consists of: 

• A performance module that actually performs tasks. 

• A critic that evaluates performace, locates errors, and recommends corrective actions. 

• A learning module that responds to the critic by modifying performance. 

• An instance selector that poses training problems. 

• A blackboard [12] for globally modifiable data and inter-module communication. 

• A world model for domain-specific knowledge and assumptions. 

In all of the IPS explorations, both performance and learning modules were embodied in the 

Production Memory, and were thus intermixed. This paper is concerned principally with elaborating 

and refining the subcomponents of these two modules. This emphasis is inherent to the instructional 

situation, where the instructor plays the role of critic and instance selector. WM functioned as the 

blackboard, and world-model knowledge (usually minimal) was represented as rules whose actions 

placed facts into WM and otherwise maintained consistency with the domain's assumptions. 

To further the comparison of the IPS project with other artificial intelligence and psychology 

research, it is useful to discuss briefly our position with respect to a number of current issues. The 

topic of instruction for an IPS can be characterized as 

• self-contained procedures for specific tasks, 
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4 T h i s is not to say that they are second-order in all knowledge domains and studies, but just in our narrow focus. It is a 

matter of relative importance. 

5 

• problem-solving operations within such procedures, 

• and domain-specific heuristics, in the same context, 

rather than such things as 

• rules or heuristics that work only within the computational context of a special-purpose 
control structure or mechanism different from the recognize-<ict paradigm of PSs (as in 
various "expert" systems, e.g., those for medical diagnosis), 

• causal models for explanation and prediction (as in attempts to model physical devices, 
Socratic tutoring approaches, etc.), 

• concepts (as in various pattern-classification and concept-formation studies), 

• language grammars, 

• and numerical functions and relationships. 

Thus, the IPS work was not concerned primarily with such mechanisms as generalization, 

specialization, discrimination, property-intersection, rule induction, and pattern induction. These 

mechanisms were considered to be second-order refinements 4 on what we gave an IPS by 

instruction, so in fact we expected them to become more relevant as the basic problems with IPS 

were solved and the system began to exhibit coherent and interesting task behavior. Also, they are 

mechanisms that are best applied when much larger quantities of empirical data or knowledge are 

involved. In other words, the emphasis was on the gradual transfer of knowledge from instructor to 

system, and our focus remained the structure and contents of a body of knowledge, and its effective 

use to obtain behavior. This is in contrast to having the system develop the knowledge from general 

axioms, from knowledge primitives, or from large bodies of unstructured facts, which would involve 

abstract manipulations, inductions, and searches. These would reduce the amount of interaction, 

and would require more searching and intelligence on the part of the system. They would take place 

in large spaces that would be distant from instructional and interactive situations, and thus hard to 

formulate heuristics for. Similarly, because of our limited understanding, we neglected such issues as 

credit and blame assignment, convergence of learning over time, speed of convergence, and 



1.1 Relation to Other Learning Research 

searching as an alternative to direct instruction. In fact, PSs as an architecture are amenable to a 

number of interesting operations with regard to the above-mentioned topics, leaving open many 

research avenues. 5 

To state the matter more positively, learning in an IPS was by accumulation of fairly specific rules 

and methods. In many cases, the rules acquired could be viewed within some well-known 

organization such as means-ends analysis or schemas, but usually this organization was not obtained 

from an act of specializing or instantiating an existing general knowledge structure. Rather, as 

discussed in later sections of this paper, either the instructor or the system was oriented towards 

maintaining a particular organization on the specific knowledge that it received. The IPS work has a 

closer kinship to studies in intelligent computer-aided instruction and perhaps in educational 

psychology (particularly programmed learning) than to other attempts at learning systems. (This 

kinship will be discussed further in the concluding section.) There is also a strong relation to the 

construction of "expert" systems, involving accumulation of a body of specific domain knowledge. 

More relationships are disussed at the end of the next subsection. 

1.2. Basic Definit ions and Discussion 

There are a few key concepts whose definitions will clarify some issues with respect to the IPS 

project's approach to encoding knowledge. These also reveal a position on planning and other 

control structure topics. 

A goal is a data structure that represents an external command, an internal need to achieve some 

state or a need to execute successfully some sequence of actions. An example, taken from a 

simulated manufacturing domain, is: 

Make a c a r f o r a c u s t o m e r ' s o r d e r 

where the customer's order is another data structure describing details of the item to be made. In the 

'Anderson's 1982 paper, in this collection, addresses such topics. 

6 



1.2 Basic Definitions and Discussion 7 

OPS3 [24] dialect of OPS, this might be represented as 

w s O l l : (make c a r goal ( o r d e r w s 0 1 4 ) ) 
ws014: (customer o r d e r d a t a ( t y p e c a r ) (body sedan) ( c o l o r b l u e ) 

( e n g i n e - s i z e medium) 
( a c c e s s o r i e s ( r a d i o a / c ) ) ) 

These structures consist of an internal name, a three-element header, and then a set of attribute-

value pairs, where the value may be a set of items. Details of this and other representations used 

within various versions of IPS are beyond the scope of this paper. For the remainder of the 

introductory examples that follow, a liberal English translation is used for readability. 

A rule (i.e., a production) in OPS consists of a number of conditions and a number of actions. 

Each condition is a pattern that matches some element of WM, such as a goal (in various states of 

activation: active, suspended, succeeded, failed), a structure describing something perceived in the 

environment, or a data structure describing some internal state. The actions of a rule typically assert 

new data structures or goals, and can also modify or delete existing structures. 

A method in IPS is a set of rules that work together to satisfy a goal. It is typically very specialized 

to a certain goal class, and usually consists of a number of steps, with various intermediate data 

generated to indicate the progress towards completion. The following is a method for satisfying the 

above sample goal. It is not meant to reflect accurately all of the details of actual IPS methods, but 

just the general flavor of the approach. 

M l : I f t h e r e i s a goal t o make a c a r f o r a c u s t o m e r ' s o r d e r 
and the o r d e r s p e c i f i e s the c a r ' s body as some t y p e , 

then have the goal t o make a body of t h a t t ype f o r t h e c a r . 

M2: I f t h e r e i s a goal t o make a car f o r a c u s t o m e r ' s o r d e r 
and the o r d e r s p e c i f i e s an eng ine of some s i z e f o r t h e car 
and the c a r ' s body has been made, 

then have the goal t o i n s t a l l an eng ine of t h a t s i z e i n t h e c a r . 

M3: I f t h e r e i s a goal t o make a car f o r a c u s t o m e r ' s o r d e r 
and t h e o r d e r s p e c i f i e s a c c e s s o r i e s 
and the c a r ' s eng ine has been i n s t a l l e d , 

then know t h a t t h e car i s ready f o r a c c e s s o r i e s . 

M4: I f t h e r e i s a goal t o make a car f o r a c u s t o m e r ' s o r d e r 

7 
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and the o r d e r s p e c i f i e s a r a d i o 
and i t i s known t h a t t h e car i s ready f o r a c c e s s o r i e s , 

then have the goal t o i n s t a l l a r a d i o in the c a r . 

M5: I f t h e r e i s a goal t o make a car f o r a c u s t o m e r ' s o r d e r 
and the car has a body as s p e c i f i e d in the o r d e r 
and t h e c a r has an eng ine as s p e c i f i e d in t h e o r d e r 
and the c a r has a l l of i t s a c c e s s o r i e s i n s t a l l e d , 

then know t h a t t h e goal t o make a c a r has been s a t i s f i e d . 

The first two rules, M1 and M2, generate subgoals for doing specific subtasks of the main goal. The 

completion of one subgoal, in this method, triggers the rule that generates the next. The rule M3 

recognizes some conditions signifying a certain stage in the method's progress, and summarizes that 

in a new data structure, so that later rules in the method don't need to make tests that are overly 

specific or detailed or that would multiply the number of combinations of conditions needed. M4 is an 

example of a rule that takes advantage of M3's summarization, and M5 is a rule that recognizes the 

completion of the main goal, by testing each of the required aspects of the finished product. (An 

alternative, but less reliable, test would involve simply knowing that each step in a process was 

performed successfully.) 

The total set of rules to perform the making of the car would of course be much larger than is 

shown above, in order to specify the details of the various subgoals of the above method. (Subgoals 

ultimately reduce to primitives such as those described in a later section.) One rule from a method for 

one of the subgoals is the following: 

S I : I f t h e r e i s a goal t o i n s t a l l a r a d i o in a c a r , 
then have the goal t o move the car t o the accessory assembler 

and have the goal t o g e t a r a d i o to the accessory assembler 
and have the goal t o put the r a d i o in the car us ing the a s s e m b l e r . 

As shown, rule S1 asserts a number of subgoals. Though they are given in a particular order, the first 

two apparently could be done without regard to their order, and the last would probably make use of 

the results of the first two in order to ensure that the "assembler" machine has been provided with all 

the necessary inputs. The actual, detailed representations may include goal-subgoal pointers (e.g., 

expressed as attribute-value pairs). All of the sequencing implied by this discussion, though, would 

8 



1.2 Basic Definitions and Discussion 9 

be readily implemented as the presence (or absence) of conditions that would be recognized by rules. 

The generality of the recognize-act computational paradigm, with its global WM holding goals and 

data, relieves the rule encoder of some of the burden of specifying control information. This 

facilitates both initial instruction and later elaboration of the knowledge. As will be brought out 

further below, this ability to represent procedural knowledge as collections of rules, such as the ones 

just given, is one of the principal reasons for using PSs as a medium for instructable systems that are 

to grow by gradually adding details. 

It can now be pointed out that the work with IPS takes a peculiar position on the central artificial 

intelligence topic of planning, differing from a number of past approaches. The essence of the 

approach here is for the system to "muddle through" 6 tasks that are problematic, rather than doing a 

lot of planning, preparation, and anticipation of difficulties. A deliberate plan is never formulated and 

stored in a data structure for analysis, but behavior simply unfolds in response to changing 

conditions. Flaws or other interruptions in the flow of behavior are treated as new subproblems, and 

resolved by calling forth applicable methods or further instruction. It is not excluded that later on the 

system might be instructed to plan ahead in some fashion, or to add a reflective capability that would 

allow recognition of general classes of problems with known solutions and treat them accordingly 

[3] . 7 The main aim here is to understand the basic goal structures and knowledge in a domain where 

many specific facts, brought to bear appropriately, are sufficient to produce effective behavior. 

Current general methods are unable to cope with such problems due to inability to control the search 

in such a large space. 

6 A system muddles through a problem when it engages in trial and error, without carefully considering consequences of il 

actions, relying instead on taking corrective actions after mistakes occur. 

7CarboneU's 1982 paper, in this collection, also bears on this topic. 

9 



1.3 Overview 10 

1.3. Overview 

Through analysis of seven major attempts to build instructable PSs with various orientations, there 

were gradually formulated eight main functional components. Defining the eight components 

sharpened our understanding of the problems of the performance and learning modules, making 

them amenable to further research and design efforts. Beyond the narrow focus of the IPS project, 

this clarification can perhaps contribute to research on learning systems in general. After the eight 

components are listed in the next section, a broad overview of the IPS project is undertaken. The 

seven attempts, forming an evolutionary sequence, are cast into the functional component 

framework. In the process of doing this, lessons are extracted that apply to the whole enterprise as 

well as to individual explorations. 

Members of the IPS project are no longer working together intensively to build an instructable PS, 

but individual studies that will add to our knowledge about one or more of these components are 

continuing. Progress in developing efficient PSs has been important to the IPS project [7], but will not 

be discussed further here. 

2. Essential Functional Components of Instructable Systems 
The components listed in this section are to be interpreted loosely as dimensions along which 

learning systems might vary. 8 In constructing a particular system, a point in a design space is located 

and developed. It is assumed that the mechanisms of a particular design embody approaches to 

several, or perhaps all, of these dimensions 9. Almost all of the systems discussed in the next section, 

in fact, do not represent complete designs with respect to all functional components, but rely to some 

extent on further instruction to fill them in (usually this optimism was not justified). Also, as is the case 

in many design.areas, a single mechanism can serve to fulfill the demands of several components at 

This approach owes a lot to Moore and NewelPs dimensions for understanding systems [15]. 

9 l t is thus not considered fruitful to design systems that do each of these functions separately, or to talk about the structure 
of one without considering the overall system structure and orientation. 

10 



2 Essential Functional Components of Instructable Systems 11 

once. Observation of a system's behavior allows the formulation of the kinds of modifications, with 

respect to the design space of components, that could lead to improvement in the overall ability to 

build IPSs. To the extent that the functions of these components are expressed by explicit goals in an 

IPS, there is opportunity to exercise the overall system in the improvement of particular components. 

2 . 1 . Interact ion 

The content and form of communications between an instructor and an IPS can have a lot to do 

with ease and effectiveness of instruction. In particular, it is important to know how' closely 

communications correspond to internal IPS structures. Inputs from the instructor can be in the form 

of entire methods or individual rules, in the form of more elementary WM units (whose composition 

into rules is thus less prominent in the external interactions), or in some other fragments even further 

removed from actual construction of rules. For example, consider the following rule (which is taken 

from the example of the preceding section): 

M2: I f t h e r e i s a goal t o make a car f o r a c u s t o m e r ' s o r d e r 
and the o r d e r s p e c i f i e s an eng ine of some s i z e f o r the c a r 
and the c a r ' s body has been made, 

then have the goal t o i n s t a l l an eng ine of t h a t s i z e i n the c a r . 

One approach might be to give the rule in its entirety. Alternatives that make the interaction more 

fine-grained would have the instructor saying things like: 

Note t h a t the o r d e r s p e c i f i e s an eng ine of medium s i z e f o r the c a r . 
What s i z e of eng ine does t h e o r d e r s p e c i f y ? 
T e s t the p r e v i o u s r e s u l t . 
T ry i n s t a l l i n g i t . 

With respect to the system-output direction of interaction, we must ask how well the manifest 

behavior of an IPS indicates its progress on a task. This issue is subject to considerations similar to 

those for input. 

An IPS can have various orientations towards interactions, ranging from passive acceptance to 

active scrutiny. For instance, it can attempt, with varying degrees of effort, to maintain consistency 

and to assimilate new structures into existing ones. An IPS will be most effective when its orientation 

11 



2.1 Interaction 12 

is expressed as goals and thus subject to refinement by instruction. 

2 . 2 . Organizat ion 

Each version of IPS approaches the issue of obtaining correct and coherent behavior by attempting 

to organize its "procedural" knowledge. The need for such an attempt arises from two sources: one 

is to move the instructor away from having to specify control constructs, ie away from programming 

(which is difficult and violates the idea of instruction); another is that some form of systematic 

approach to control is needed, due to the inherent weakness 1 0 of production systems in this area. 

This may involve such techniques as collecting sets of rules into methods and using signal 

conventions for sequencing within methods. Whether IPS can explain its static organization and 

whether the instructor can see the details of procedural control are important subissues. 

To illustrate some alternative organization approaches, recall the following rule: 

M2: I f t h e r e i s a goal t o make a ca r f o r a c u s t o m e r ' s o r d e r 
and the o r d e r s p e c i f i e s an eng ine of some s i z e f o r the car 
and t h e c a r ' s body has been made, 

then have the goal to i n s t a l l an eng ine of t h a t s i z e i n the c a r . 

In this rule, control is maintained by the third condition, which ensures that the rule will not become 

true until the preceding step of making the car's body is finished. One imaginable alternative is simply 

to remove that condition, and have the subgoal asserted potentially before it can be properly worked 

on. In this case, of course, the method for the subgoal would be likely to stop, blocked by the lack of 

a car body in which to install the engine. This shortened version of M2 is probably easier to modify 

and more modular, but it may make it more difficult for the instructor (for instance) to explain or 

coordinate the extra unfinished goals in WM. Another alternative makes the local sequencing of M2 

more explicit by a step "counter" that is common to all rules in a method - knowing the current step is 

a way of knowing or summarizing the method's progress: 
M2s: I f i t i s s tep 2 o f a goal to make a ca r f o r a c u s t o m e r ' s o r d e r 

and the o r d e r s p e c i f i e s an eng ine of some s i z e f o r the c a r 
then have the goal to i n s t a l l an eng ine of t h a t s i z e in the c a r . 

1 0 " W e a k n e s s " refers to a lack of a definite theoretical position built into the language itself. 

12 
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M2t : I f i t i s s tep 2 of a goal t o make a car f o r a c u s t o m e r ' s o r d e r 
and the c a r ' s engine has been i n s t a l l e d , 

then mark the step of the goal t o be 3 . 

These examples bring out an important trade-off in control conventions: explicit steps reduce the 

number and complexity of contextual conditions that a rule must test, and thus simplify it, but they 

reduce the flexibility of control by locking the system into some particular order of execution. 

A key question facing the builders of IPS, and even of PSs more generally, is whether a procedural 

organization can exploit the full flexibility that seems inherent in PS architectures. Flexibility derives 

from having the control be open, on each PS cycle, to global recognitions that can: change the 

direction of processing by noting new facts; eliminate unnecessary steps by recognizing the 

satisfaction of the current goal or some higher one; and in general maintain the ability to switch to 

more efficient means for satisfying a goal. Flexibility enhances adaptability: to changes in the 

situation, to new knowledge or techniques (acquired, perhaps, without regard for actual application 

situations), to recognizable errors, and to new orderings of sequences of actions that might be 

appropriate to different situations. Certainly PSs can be programmed like conventional algorithmic 

languages, but there is potential for much more flexible, "intelligent" procedures. 

2 . 3 . Explanation 

A key operation in an instructable system is that of explaining how the system has arrived at some 

behavior, whether correct or not. In the case of wrong behavior, IPS must reveal enough of its 

processing to allow the more intelligent instructor to determine what knowledge is missing, incorrect, 

or improperly represented. In the case of correct behavior, the instructor may wish clarification or 

elaboration on how it resulted. Ideally the explanation can occur at a point where it is also possible to 

make necessary corrections and additions before IPS gets too far off the track. 

For example, the state of WM in the middle of executing the "make a car" method might look like 

a goal t o make a car f o r a c u s t o m e r ' s o r d e r , 
the c a r ' s body has been made, 
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t h e c a r ' s eng ine has been i n s t a l l e d , 
a goal t o make a r a d i o , 
t h e c a r ' s l o c a t i o n i s L24 , 
t h e r e i s junk a t l o c a t i o n L25 . 

The explanation component would have to be able to detect unfinished goals, partially finished 

methods, unusual objects in the environment, and so on. This would be facilitated, for instance, if 

goals and subgoals had pointers to each other, if operators left some record of attempts, and so on -

but too much of this sort of information can degrade the system's performance. Another problem is 

posed for the explanation component in selecting a small enough subset of critical items so that their 

communication is tolerable to the instructor. 

2 . 4 . Accommodat ion 

When corrections to IPS's knowledge have been formulated by the instructor, the next step 

involves getting IPS to accommodate itself to new knowledge, i.e., to augment or modify itself, in 

response to the usual form of interactions with the. instructor. In the IPS framework, these 

modifications are taken to be changes to the rules of the system, rather than changes to the less 

permanent WM. As with interaction, IPS can assume a passive or active orientation toward this 

process. A key problem in the process of accommodation is to properly modify behavior in one 

situation while maintaining other correct behavior from past instruction. One aspect of this is to find 

the location in the knowledge structure of the system where the modification is to occur, so that 

related, interacting knowledge can be taken into account. 

Suppose, in the preceding (explanation) example, that a problem is caused by a failure to satisfy 

the prerequisites for making a radio. Then a rule like the following might suffice to fix the problem: 

I f t h e r e i s a goal t o make a r a d i o 
and t h e r e i s a goal t o s t a r t the r a d i o machine 
and t h e r e is not a power supply a t L14 

then have the goal t o g e t a power supply a t L14. 

Note that this patch rule has to have enough conditions in it so that it can win the conflict resolution 1 1 

1 1 The relevant conflict resolution principle here is specificity: a rule that matches more data, or more specific (detailed) 
data, will be preferred; see [13, 2 1 , 6] for details. 
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over another (incomplete) rule, especially the rule that causes the starting of the radio machine 

without having ail its requirements filled. Presumably there would be a rule in the system to set up 

subgoals to fulfill the prerequisites of making a radio, so that an alternative to the above patch rule 

might be to find and edit that rule by adding another subgoal. The deeper cause of why the rule was 

incorrect, e.g., in analyzing.the inputs to the radio machine, is more difficult to deal with, but might be 

worth the extra accommodation effort, as it might avoid future errors. One approach might be to set 

up a rule as a monitor to watch for similar errors (i.e. those that omit some item of data) in the fulfilling 

of prerequisites. 

2 . 5 . Connect ion 

This functional component and the ones that follow are considered "advanced" as opposed to the 

preceding "basic" componenets: they are much more difficult to formulate and implement. 

Manifest errors are not the only way a system indicates a need for instruction: inability to connect a 

current problem with existing knowledge that might help in solving it is perhaps a more fundamental 

and frequent failing. An IPS needs ways both to assimilate problems into an existing knowledge 

framework and to recognize the applicability of, and discriminate among, existing methods. This 

concept of connection might also be termed "near contact", in that a close (but not exact) match to 

existing methods is involved, with differences resolvable by a few simple operations on the goal. An 

interesting issue revolves around how actively IPS processes new problems both for present and 

future connection. Connection abilities, particularly recognizing close or partial matches and 

transforming goals [16], are important due to the desirability of having IPS know when it needs 

instruction versus when it can make use of existing knowledge. The other side of this coin is the 

problem of discriminating among several methods that appear to be appropriate to a given new 

problem. 

As a simple example, suppose the familiar "make a car" goal had been stated, 

Make a sedan f o r a c u s t o m e r ' s o r d e r . 
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Carbonell's 1982 paper, in this collection, does this using means-ends analysis. 
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This can be readily transformed into the known form, if the possibility of mapping it is recognized. It 

might require noticing that sedan is a value of the "body" attribute in "make car" goals. A definition 

of "sedan" might also provide sufficient clues. 

2 . 6 . Reformulat ion 

Another way that IPS can substitute for instruction is for it to reformulate existing knowledge to 

apply in new circumstances. This can also be termed mapping, analogy, transfer, serendipity, or "far 

contact". There are two aspects to this function: finding knowledge that is potentially suitable for 

mapping, and performing the actual mapping. 1 2 In contrast to connection, this component involves 

permanent transformation of knowledge in rules, either directly or by altering rules' effects at each 

firing, dynamically. 

For example, suppose the goal, 

Make a t r u c k f o r a c u s t o m e r ' s o r d e r 

were to come along and a method specifically for making trucks did not exist. Then some kind of 

analogical process might be appropriate, given the existing method for making a car. Namely, the 

goal might be transformed to "make a car", with the proviso that when "make a car" ran into 

problems, control would revert to an analogy method that would try to bridge the gap and fill in the 

missing step so that the "car" method could be resumed. This might be the case for making the 

truck's body, which would require special action, but we can suppose that adding an engine and 

accessories might be nearly identical in cases of truck and car. 

2 .7 . Evaluation 

Since the instructor has limited access to what IPS is doing, it is important for IPS to be able to 

evaluate its own progress, recognizing deficiencies and errors as they occur so that instruction can 

take place as closely as possible to the dynamic point of error. Defining what progress is and 
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formulating relevant questions to ask in order to fill gaps in knowledge are two key issues. The 

assignment of blame for an error is the responsibility of the instructor in this IPS framework, with the 

explanation component assisting in diagnosis. It can also be helpful to include in evaluation some 

capabilities for having IPS produce additional external behavior, as in a "monitoring" or "careful 

execution" mode of operation. 

The following rules illustrate the recognition of some possible error conditions: 

E l : I f an o b j e c t w i t h t y p e j u n k i s produced by a mach ine , 
then have the goal of warn ing the i n s t r u c t o r t h a t 

the machine has produced t h a t o b j e c t . 

E2: I f t h e r e i s a goal t o make a ca r f o r a c u s t o m e r ' s o r d e r 
and more than 20 minutes have e l a p s e d s i n c e t h e . o r d e r a r r i v e d 
and t h e r e i s not t h e r e s u l t t h a t t h e c a r ' s body has been made, 

then have t h e goal of warn ing t h e i n s t r u c t o r t h a t 
p rogress i s slow on the o r d e r . 

2 . 8 . Compilat ion 

Rules initially formed as a result of the instructor's input may be amenable to refinements that 

improve IPS's efficiency. This follows from several factors: during instruction, IPS may be engaged in 

search or other "interpretive" execution (including a richer goal structure); instruction may provide 

IPS with fragments that can only be assembled into efficient form later; and IPS may form rules that 

are either too general or too specific. Improvement with practice is the psychological analog of this 

capability. Anderson et al [2] have formulated several approaches to compilation, such as 

condensing, into a single rule, rules that typically occur in a fixed sequence. 

The improvement that can be obtained from compilation is illustrated by the following rule, whose 

actions consist of direct environmental commands rather than goals and subgoals: 

C I : I f t h e r e i s a goal t o make a car f o r a c u s t o m e r ' s o r d e r 
and the o r d e r s p e c i f i e s a sedan body and a medium eng ine 

then s t a r t t h e sedan machine 
and s t a r t the eng ine4 machine 
and move an o b j e c t f rom L22 t o L 2 3 . 
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2 . 9 . Discussion of Components 

It is evident that realizing the components described in this section is made difficult by the myriad 

combinations of knowledge that can occur. Because an IPS is potentially working in various 

environments of different complexity, it is difficult to take advantage of stereotypes in procedural 

forms. Others have in fact made progress by assuming fixed-format rules (e.g., transformational 

grammars) or simplified execution schemes (e.g., backward chaining). Our approach contrasts with 

those in avoiding any assumptions on the form of the environment and in leaving the system 

architecture open for general procedures. 

3. Survey of Approaches 
Each attempt to build an IPS has started with a hand-coded kernel system, with enough structure 

in it to support all further growth by instruction. The kernels established the internal representations 

and the overall approach to instruction. At the very least, such kernels require the ability to interact 

with the instructor and to construct new rules. Three properties are desired in such a kernel system: 

• It is to be hand-coded, and as modular as possible. 

• Everything in it is to be potentially modifiable by instruction. Usually it is constructed as if 
it were acquired by instruction, i.e., with rules of similar form to those resulting from 
instruction. 

• It is to be open to expansion in any of a number of directions, depending on which 
problems the instructor wishes to explore. 

Seven kernels or kernel approaches were studied during the history of the IPS project, and they are 

presented below in roughly chronological order. Kernell, ANA, Kernel2 and IPMSL were fully 

implemented. The remainder either were suspended at various early stages of development (with 

their best features incorporated into newer proposals) or are still being elaborated and developed in 

the context of other research. There is a table near the end of the section that summarizes a number 

of attributes of the kernels. 

18 
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3 . 1 . The Abst ract Job Shop Task Environment 

The task domain for the IPS project was the manipulation of objects in a symbolic task 

environment (TE), a simulated, simplified "factory", in which an IPS system has a limited set of 

"sensory" and "motor" operators. A typical job shop is shown in the accompanying figure. Each 

object in this toy environment is represented as a LISP property list. The TE itself is an object with a 

particular set of components, termed locations, arranged in an array and represented as rectangles 

in the figure. 

ABSTRACT JOB SHOP 

1 -
Moneyl |Coupe 
0 r d e r 4 | 

I 

(Manual Red j Rad i o 1A/C 

1 , , 
Eng in4 | I I I I 
Eng in6 | I I I I 

i 1 ! ! 
• 1 1 _ _ _ — 1 — — — — —— 1 — — — — — — 1 

Scrap 1 Sedan 
Clock 1 

1 

j Auto | B l u e j Power jAsmblr 

— — I " 1 i i i • 

The entire ensemble, in the spirit of keeping it as an "external environment", is separate from the 

processes and memories of the PS architecture, except for the interface provided by the following 

operators: 

• View. A representation of its argument, an object, is placed in WM (as if obtained through 

an "eye"). 

• Scan. An object is sought in the TE containing a given attribute-value pair. It is Viewed, if 

found. 

• Trans. The top object at one location is transported to another location. 

• Start. A machine (an object with a special set of properties) is started. It goes through 
one cycle of its operation, which is all within the action cycle of the rule containing the 
invocation. 

• Compare. The values of a specified attribute of two objects are compared, producing a 

19 
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difference according to the values' type. 

20 

Note that the above operators are invoked as actions in rules, making modifications in the TE and 

reporting changes in the TE by asserting data into WM. All of this occurs within a single recognize-

act cycle of the PS. The most important and complex operator is Start, which activates machines. A 

machine is a special-format object that takes some objects as inputs (in some cases consuming them) 

and produces other objects as outputs. Usually constraints on the machine's operation make 

problems in the domain more challenging. 

Some sample problems, of varying difficulty, are the following: 

• Examine the object at the top position of some location. 

• Compare two objects. 

• Find an object with a given set of properties. 

• Transport an object with a given set of properties to a given location. 

• Manufacture an object with a given set of properties, within some budgetary and time 
limits. 

The "find" class of task involves searching through the TE, viewing objects and comparing them 

with the desired description. It is thus a prototypical task of interest in instructional situations. 

"Transport" problems are complicated by a feature of objects stored at a location: they are stacked 

on top of each other such that to move one, it has to be at the top of a stack. Getting an object to the 

top can involve moving objects elsewhere, with the potential for creating conflicts with other subgoals 

in a larger plan. While details of the pictured TE need not be given, it can be described as an 

assembly-line layout for making automobiles. While this TE is straightforward, the language for 

defining TEs can express great complexity. 

20 
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3 . 2 . Kernel Version 1 

The starting point for IPS was the adoption of a pure means-ends strategy: given explicit goals, 

rules are the means to reducing or solving them. Four classes of rules are distinguished: 

• means rules; 

• recognizers of success; 

• recognizers of failure; 

• and evocation of goals from goal-free data. 

The Kernell [22] approach goes further than this in its organization component, which consists of 

ways for grouping rules into methods (as defined and illustrated in the first section above). The main 

mechanism of grouping is to have rules of the above types share a common goal pattern. The 

interaction component consists of a straightforward processor for language strings that correspond 

to methods and to system goals (among which are queries). Keywords in the language are used to 

signal that the Kernel is to insert method sequencing tags. There are also keywords that delimit rule 

boundaries within methods. The explanation component is unspecified at the start, leaving it to the 

instructor to develop (and instruct) methods that could generate helpful information by piecing 

together various goals and data in WM. This reliance on instruction turned out to be a serious 

weakness, though a lot of the right kind of information was available in WM. 

Although Kernell was used as a basis for instruction, its effectiveness was severely hampered by 

its weak or non-existent components for explanation, accommodation, connection and reformulation. 

Only small progress was made in the areas of evaluation 1 3 and compilation 1 4 . Much of the flavor of 

the means-ends approach was retained in later Kernels. 

KerneM is illustrated in the protocol below, whose objective is to ins'truct IPS to perform the simple 

1 3 Descr ibed briefly in an unpublished appendix to this paper, available from the author. 

1 4 T h i s consisted of recognizing the applicability of techniques such as those in [2]. to our means-ends rules 
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task of examining the top object at some location in the TE. The method to be instructed can be 

summarized as follows: To examine the top object at some location, first View the location, then test if 

any objects are there; if so, find the first and use it as the result; otherwise, "nothing" is the result. 

Note that the "test if any objects" part of this method is a subgoal, to be instructed separately. The 

first clause of this method is given to KerneM as follows: 1 5 

To examine t h e o b j e c t a t t h e top p o s i t i o n 
of some l o c a t i o n , 

want v iew l o c a t i o n that l o c a t i o n in t h e TE 
then want t e s t t h e s t a t u s o f t h e v a l u e of t h e 

c o m p o s i t i o n of that l o c a t i o n , 

The marginal notations in the above indicate that the instruction gives rise to a rule with a condition 

element 'A', the main goal of the method, and two action elements ('8' and 'C'), which are subgoals of 

the main goal. In addition, there is a modification (indicated by the subscript T ) to the goal element 

to achieve sequencing to the next step of the method (not shown). The complete input for this 

method involves four clauses of similar length and form to the one given, all given without a break for 

system responses. KerneM adds some sequencing control to other rules in the method by inserting 

the main goal as a condition, suitably modified with step counters. These additions are one 

advantage of using KemeU over programming directly in OPS rules, although the distance between 

the two forms of coding is not conceptually large - they are both forms of programming, as distinct 

from tutorial instruction. 

While a large fraction of the rules of KerneM are devoted to processing the (admittedly clumsy) 

input language illustrated above, the main design objective and achievement was to embed simple 

means-ends connections, as expressed by instruction text, in an organization that would ensure 

production of the desired behavior - i.e., organization rather than interaction was the main focus. 

1 5 A n unpublished appendix (available from the author) to this paper contains the full instruction text, along with a more 
detailed explanation. 

( A ) 

(»> B) 
( C , ( A j ) ) 

22 
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1 6 T h e s e ideas were introduced by A. Newell in October, 1977. 
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Unfortunately, two properties of the above style of interaction are very detrimental to effectiveness. 

First, KerneH accepts the input passively, with no interaction (e.g., questioning) involved. Second, 

the instructor receives no feedback on the correctness of the many parts until the entire method is 

tried. Kernelt failed to provide an adequate basis for interaction, explanation, and performance due 

to a number of practical considerations: difficulty in knowing the side conditions of rules (those other 

than the main goal), lack of a mechanism for constructing tests of proper goal satisfaction, lack of 

having goal-subgoal links created.automatically, and goal representation deficiencies, particularly 

failure to distinguish different occurrences of the same goal (as in recursion) and to allow goals to be 

augmented with new information as processing developed. The instructor was relied on to provide 

too much programming detail, in a situation where a programming approach is considered harmful. 

In spite of its shortcomings, Kernell accomplished a few important tasks, as far as overall IPS 

project goals were concerned. It established the basic means-ends form for the organization 

component. It clarified the need for more PS efficiency, and for improvement in the explanation, 

accommodation, and other functional components. In short, it gave us a better appreciation for the 

difficulty of the instruction task. 

3 . 3 . Addit ive Successive Approximat ions (ASA) 

Some of the drawbacks of Kernell, especially those surrounding interaction, can be remedied 1 6 by 

orienting instruction towards fragments of methods that can be more readily refined at later times. 

Interaction consists of having the instructor designate items in IPS's environment (especially WM) in 

four ways: condition (for data or configurations that are important context to be taken, into account 

while working on a goal), action (for operators appropriate to solving a goal), entity (to create a 

symbol and some associated knowledge about the entity), and relevant (to associate one of the other 

three designated items with a particular goal). The system is to respond to a 'relevant' designation by 

building rules with the given conditions or actions, or by building rules that create or augment 
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knowledge expressions. These designations result in methods that are very loose collections of rules, 

each of which contributes some small amount towards achieving the goal. Accommodation is done 

as post-modification of an existing method in its dynamic execution context, through ten method-

modification methods. Some of these are: delay an action, advance an action, remove an action, 

conditionalize an action, and put two actions into a strict sequence. 

Though the ASA ideas were never implemented, some aspects of the approach were used in the 

Kernel2 system, described in detail below. Probably ASA would suffer from the same difficulties 

described in connection with Kernel2. 

3 .4 . Analogy (ANA) 

A concerted attempt to deal with issues of connection and reformulation is represented by 

McDermott's ANA program [14]. Starting out with the ability to solve a few very specific problems, it 

attacked subsequent similar problems by analogizing from its known methods. Initial methods to 

solve TE problems were hand-coded, a deviation from the kernel constraints given above. In ANA, 

connection is achieved by coding special method description rules, which recognize the class of 

goals that appear possible for a method to deal with by analogy. The possibility that an analogy may 

work is discovered by following taxonomic links originating at a given goal's actions and object 

arguments. When a link is traversed, revealing the object (class) or action (class) at the end of it, a 

method description rule may become satisfied, thus making a connection on which ari analogy can be 

based. A preliminary analogy is set up using the discovered correspondence of objects or actions, 

the goal is modified by substitution, and the method is started. As it executes, rules recognize points 

where the analogy breaks down. General analogy methods are able either to patch the method 

directly with specific substitutions or to query the instructor for new means-ends rules. 

In either case, reformulation occurs because rules record the patches for use in later similar 

problems. Compilation occurs, with visible improvement in performance, as fewer and fewer of the 
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error-recognition rules are brought into play. Thus, ANA combines connection, reformulation, 

evaluation and compilation components 
17 

3 .5 . Kernel Version 2 

With basic ideas similar to ASA and to Waterman's Exemplary Programming [25], the Kernel2 

approach [23] focused on the process of IPS interacting with the instructor to build rules in a dynamic 

execution context. The instructor essentially steps through the process of achieving a goal, with IPS 

noting what is done and marking elements for inclusion in the rules to be built when the goal is 

achieved. The organization of methods in Kernel2 is less adventurous than proposed in ASA, keeping 

more to the traditional control and means-ends concepts of Kernell. Similarly, it provides few 

innovations with respect to accommodation, explanation, and the other IPS components. Kernel2 

includes a semantic network of information about its methods, for use as a "help" facility. It is the 

basis from which the IPMSL system, below, is built. 

Based on the preceding description, Kernel2 would seem to offer little advance over Kernell. 

However, the following protocol illustrates the large difference that occurs with the shift towards 

interaction that is more frequent and in a dynamic method-execution context. The protocol below is 

not an actual interaction between instructor and Kernel, due to a shift in the domain of IPS away from 

the TE used for Kernell. Kernel2 was actually implemented, though, and the following is 

representative of the style of instruction achieved. The actual interaction language has been 

smoothed out somewhat in this protocol. " I : " precedes inputs from the instructor, and "K:", the 

outputs of Kernel2. 

I: Examine the object at the top position of L23 

K: UnabTe to do WS003: 
Examine object at top position of L23 

I: Goal of rule: WS003 (A) 

1 7 F o r another approach to learning by analogy, see Carbonell, 1982, in this collection. 

25 
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K: OK, work ing on new r u l e P39 

I : Add: want v iew l o c a t i o n L23 in t h e TE (=> B , ) 

K: View l o c a t i o n r e s u l t i s L23 in t h e TE (Note 1.) 

K: L23 has member TE, c o m p o s i t i o n ( M l M2 C 5 ) , 
t y p e s t a c k 

I : Add: want t e s t t h e s t a t u s of t h e v a l u e of t h e (C ) 
c o m p o s i t i o n of L23 

K: Unable t o do WS009: T e s t s t a t u s o f - v a l u e of 
c o m p o s i t i o n of L23 

I : L23 i s a v a r i a b l e in P39 

K: OK 

I : B u i l d P39 , ( r u l e : A =*> B, C) 

K: OK 

I : Goal o f r u l e : WS009 

K: OK, work ing on new r u l e P40 

Expressions are given at the right margin to mark places in the text where certain rule elements 

have been specified, in a way similar to the protocol for Kerned. The rule that is constructed as a 

result of this dialog is, in fact, almost identical to the one built by Kernel*!. Of interest is what is 

happening at the point where "Note 1," occurs: here is an example of the utility of dynamic context. 

At this point, Kernel2 actually executes an operator on the TE, and displays the result, so that the 

instructor can easily formulate what he wants done with that result in the succeeding steps of the 

method being instructed. 

To summarize the key aspects of Kernel2, interaction happens in the context of a concrete attempt 

at solving a goal. The effect of this immediate feedback is that the instructor can have a much better 

idea of how much the system knows about the present context. Interactions are far removed from the 

constructed rules, corresponding both to small pieces of those rules and to interactive commands 
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that might be given to the system to have it do something. The dynamic context provides stimuli to 

the instructor, helping to avoid errors and omissions, and placing less burden on the instructor's 

memory. When a piece of a rule given by the instructor is a recognizable goal to the system, it 

automatically tries to achieve the goal, and the instructor can watch this activity and observe its 

results. Kernel2 is much simpler in structure than KerneH (fewer rules, and more easily coded), due 

to radical simplification of its input language. Instructions to Kernel2 are much shorter, and feedback 

to the instructor is immediate. 

3 . 6 . Conclusions on Direct Approaches 

The above approaches are all direct in the sense that the orientation is towards rules and pieces of 

rules rather than towards knowledge that is structured in some other more natural form. One 

conclusion from the direct approaches is that instruction must be organized in units other than rules -

rules are too large and tend not to be a natural form for instruction, especially when various PS 

control and supporting structures are taken into account. Also, rules tend to require a belabored, 

repetitious style of instruction, where the natural tendency is to make assumptions about the 

capabilities of the receiver of instruction, and to use various forms of ellipsis. The instructor should 

not be allowed to perceive instruction as programming, as this is an unnatural mode of instruction. 

In the higher-level approaches that follow, more is attempted in terms of functional components 

for explanation, accommodation, and the advanced components. Another common theme is the 

need for a more active, "agenda" orientation, including system goals that are pursued along with 

those of the instructor. 

3 . 7 . Problem Spaces 

Problem spaces [ 1 8 ] 1 8 were proposed as a higher-level organization for IPS, in which all behavior 

and interactions were to be embedded in search- A problem space consists of a collection of 

1 8 This approach was formulated by A. Newell and J. Laird in October of 1978. 
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knowledge elements that compose states, plus a collection of operators that produce new states 

from known ones. A problem consists of an initial state, a goal state, and possibly path constraints. 

Control in a problem space organization is achieved through an executive routine that maintains and 

directs the global state of ongoing searches. Neweirs Problem Space Hypothesis {ibid.) claims that 

all goal-oriented cognitive activity occurs in problem spaces, not just activity that is problematical. 

According to the proposal, interaction would consist of giving IPS problems (presumably WM 

structures) and search control knowledge (hints as to how to search specific spaces, presumably 

expressed as rules). Every Kernel component would be a problem space too, and thus subject to the 

same modification processes. The concrete proposal as it now stands concentrates on interaction, 

explanation (which involves sources of knowledge about the present state of the search), and 

organization. 

3 . 8 . Semant ic Network ( IPMSL) 

The IPMSL (Instructable PMS Language, where PMS is a computer description formalism) system 

[23] viewed accumulation of knowledge as additions to a semantic network. In this view, interaction 

consists of definition and modification of nodes in a net, where such nodes are PS rules. The network 

stores four classes of attributes: taxonomic (classifying methods and objects), functional (input-

output relations for methods), structural (component parts of methods and objects), and descriptive 

(various characteristics). Display and net search facilities are provided as aids to explanation and 

accommodation, though the instructor is responsible for storing the required information in the 

network in the first place. The availability of traditional semantic network inferences makes it possible 

for IPMSL to develop a more uniform approach to connection and reformulation, since they provide a 

set of tools for relating and mapping knowledge into more tractable expressions. Because IPMSL is a 

digression into a task domain different from the Abstract Job Shop, emphasis was placed on 

descriptive capabilities rather than on mechanisms for procedural organization. Thus the semantic 

network orientation was not integrated with Kernel2 approaches to the acquisition and description of 
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procedural knowledge. The remaining step towards integration would be to have Kernel2 record 

information in the network, as methods are built up using its interaction primitives. 

3 . 9 . Schemas 

The use of schemas as a basis for an IPS kernel 1 9 made slof-filling the primary information-

gathering operation. A slot would be implemented as a set of rules. The slots are: executable 

method; test of completion; assimilation (connects present WM with the schema for a goal); 

initialization (gathers operands for a method); model (records the instruction episode for later 

reference); accommodation (records patches to the method); status (records gaps in the knowledge); 

monitoring (allows careful execution); and organization (records method structure). Orientation 

towards instruction would be active, as in ASA. Explanation would consist of interpreting the model 

slot, and accommodation, of fitting additions into the model. Connection would use a discrimination 

network composed of the aggregated assimilation slots of all schemas. Compilation would be needed 

here, to map model to method. 

The following protocol illustrates the flavor of the proposed schema approach. A system based on 

this approach, but outside the IPS framework, is currently under development, but for expository 

reasons, the protocol here is a simulated one. There are notations similar to those for the Kernel2 

protocol above. Notes in the right margin in some cases give the names of slots being filled by the 

adjacent interactions. Other notes refer to explanations in the next paragraph. 

I : Examine t h e o b j e c t a t t h e top p o s i t i o n o f L23 

K: Unknown goal WS003: ( A ) 
Examine o b j e c t a t top p o s i t i o n of L23 

K: What i s the goal WS003 a t t e m p t i n g t o ach ieve? 

I : The name of some o b j e c t , (TEST) 
the p o s i t i o n of t h a t o b j e c t i s 1 , 
t h e member of t h a t o b j e c t i s L23 

1 9 S c h e m a s were first proposed for IPS by Rychener, May, 1978 
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K: Does this result differ from-a view object in the TE, 
because of "at the top position"? 

I: Yes (ASSIMILATION) 

K: Part o f the desired information of the goal can be 
o b t a i n e d from a view operation 

K: To view requires an object or location to work on, (INIT) 
which L23 seems to satisfy 

(•> B) 
K: L23 has member TE, composition (Ml M2 C5), (Noie 1.) 

type stack 

K: Viewing L23 did not produce the desired attributes 

I: You need to view the object at the top position of L23 

K: I lack objects with position 1 with member L23 

I: Test the status of the composition of L23 (C) 
K: Unknown goal WS009: (rule: A => B, C) 

test status of composition of L23 (Note2.) 

K: What is goal WS009 attempting to achieve? 

I: Whether the composition of L23 is empty or nonempty (TEST) 

K: I have nothing that produces that result 

I: The composition of L23 is (Ml something), 
so its status is nonempty 

The most striking feature of this protocol is that IPS is taking much more initiative in determining 

the direction of the dialog. It is questioning the relation of new information to what already exists, and 

is actively trying to fill in missing slots in its new schemas. At "Note 1" IPS tries an experiment with a 

TE operator, to get at least a partial result that might aid in solving the goal. At "Note 2", IPS is 

entering into the context of a new schema. Presumably, the former schema will be reactivated at a 

later time when the subgoal's schema is satisfactorily filled in. 

The schemas approach as sketched here makes a few significant additions to Kernel2. The 

orientation towards filling slots is the primary source of the improved, natural style of interaction. 
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Schémas implemented as PSs are self-activating and procedural; the slots can contain more than just 

stereotyped values, namely arbitrary methods and structures of rules; and goals for filling slots will 

reside in the global WM, and thus can be filled flexibly, and in a data-dependent way (i.e., as data 

become available that are recognized as relevant). 

3 .1 Ô. Conclusions on Higher-Level Approaches 

The approaches discussed above illustrate the advantages of using higher-level organizations for 

the overall instructional process. The importance of carefully attending to the style of instruction 

should be evident. Adopting these approaches has the two-fold benefit of providing a more natural 

communication medium for the instructor of the system, and of providing goals and methods for the 

system itself to mold new knowledge into well-organized, flexible, complete, and reliable methods. 

The system can also be more free than before to experiment for itself, given its agendas and search 

mechanisms. Higher-level approaches aid in developing effective versions of the more advanced 

functional components, in that such components are natural consequences of adopting any of the 

above specific approaches. The accompanying figures summarize the seven approaches. 

4. Discussion 
The IPS project has invented and explored the consequences of a number of plausible learning 

system components in the "learning by being told" paradigm. One is the means-ends organization of 

KerneH, along with its approach to debugging using a dynamic goal tree context and to compiling by 

eliminating temporary goal structures. Means-ends also holds the promise of expanding a system's 

abilities in directions where explicit goals can be formulated. The use of explicit tests and failure 

recognizers can add reliability and robustness to means-ends execution. A second contribution has 

been the study of knowledge acquisition in a dynamic execution context (illustrated by the Kernel2 

dialog above). Other contributions include the development of the problem space idea, the 

orientation of a learning system towards active assimilation and accommodation (as in schémas), the 

ability to dynamically use analogies, the use of rules to implement semantic networks, and the 

organization of rules into schémas. This paper has tried to motivate the need for more study of 
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IPS: 
Component 
Interaction 

Organization 

Explanation 

Accommodation 

Connection 

Reformulation 

Evaluation 

Kernel 1 

whole method 
query 
goal 

sequenced 
methods 

(WM data) 

whole rules 
- blindly 

(ad hoc means-
ends rules) 

monitor of 
goals 

ASA 

four desig. 
forms 

loose means-
ends links 

? 

method-modif• 
methods 

? 

ANA 

patch 
goal 

hand-coded 
for analogy 

(Kernell) 
(see Reform.) 

patch rules map 
actions & 
objects 

recog. of 
break-down 
of analogy 

Kernel2 

many desig. 
query 
goal 

sequenced 
methods 

help net of 
functional 
info 

(Kernell) 

(Kernell) 

? 

instructor, 
in dynamic 
context 

method descr. (Kernell) 
rules 

taxonomy search 

Compilation 

Implemented? 
Reference 

Failings 

(compose out 
goal 
structures) 

yes 
[22] 

(needed even 
more than 
in Kernell) 

no 
(see Kernel2) 

would control 
work? 

too much like 
programming 

poor goal repr. 
overemph. language 
instructions too long 
weak explanation 
no method-modif. methods 
orientation too passive 

patch rules 
analogize 
faster 

yes 
[14] 

no approach to 
instruction 

(Kernell) 

yes 
[23] 

too slow 
task was 

shifted 

Starting size 

Instruction 

Final size 

325 rules, incl. 
50 in monitor, 
added later 

9 elementary tasks 
= 160 rules 

485 rules 

295 rules, 
incl. 55 in 
TE methods 

4 tasks 
= 140 rules 

435 rules 

45 rules 

Kernel grew 
= 55 rules 
100 rules 
(see IPMSL) 

Key: Potential or theoretical capabilities ("left to instruction") are in 
()s; numbers of rules are rounded. 
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IPS: 
Component 
Interaction 

Organization 

Problem Spaces 

probi ems 
search control 

problem spaces 
for all compon, 
& methods 

Explanation knowledge about 
state of search 

Accommodation (problem space) 

Connection 

Reformulation 

Evaluation 

Compi1 ation 

Implemented? 

Reference 

Failings 

Instruction/ 
Testing 

Start size 

Final size 

(problem space) 

(problem space) 

executive 

specific, ad hoc 
search control 

no 

[18] 

Key: Potential or theoretical capabil 
()s; in unimplemented proposals, 
possibilities; numbers of rules 

Semantic Net 
(IPMSL) 

Kernel2 + 
net defining, 

updating 

Kernel2 + • 
network: 

function, 
taxonomy, 
structure, 
description 

supported by 
network info 

supported by 
network info 

(net inferences 
& searching) 

(network info) 

. ? 

? 

yes 

[23] 

too big & slow 

160 rules in net 

450 rules = 
100 Kernel2 + 
120 basic net + 
230 advanced net 

610 rules 

ities ("left to instruction") are in 
()s are reserved for very vague 

are rounded. 

Schemas 

actively 
fill slots 

+ Kernel2 

schemas with 
9 types of 
slots; 

esp. method, 
model , 
init, test 

(model slot 
interp.) 

(edit model) 
(status sit) 

discrim. net 

monitor slot 

(transform 
model slot) 

no 
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approaches to instruction and of ways of achieving the functional components, by exhibiting an 

evolutionary sequence and by pointing out the deficiencies of various partial designs. Our studies to 

date into these issues have been greatly facilitated by the use of a flexible, expressive medium, the 

OPS PS architecture. 

Two key problems remain unsolved and open for further research: achieving the kind of procedural 

flexibility and robustness that would seem to be inherent in the PS architecture; and devising ways for 

a system to effectively manage 'its knowledge (however organized), i.e., techniques for 

accommodation as defined above. Procedural flexibility has been discussed above in association 

with the organization component. The ideal flexibility ought to derive from the global recognize-act 

cycle, where heuristics and optimizations could be applied at each step to guide and complete goal 

processing. For a system to manage its knowledge, much more needs to be known about the 

structure of methods and how they are modified and augmented. The IPS project has failed to get 

beyond the most basic of method manipulations, partly due to its emphasis on other aspects of the 

overall problem and partly due to the inherent difficulty of the problem area. 

Explorations within our particular framework can profit from and stimulate research in information-

processing psychology. Of particular interest would be a protocol analysis of instructional dialogs in 

an environment similar to our TE, after the fashion of Newell and Simon [17]. Additional information 

would be provided by querying the subject to determine what rules have been learned, after a session 

with an unknown problem environment. The structuring of the instructional session by a human tutor 

with a human subject is important, as it may give some indication of the underlying knowledge 

representations involved. The best attempts by psychologists at studying instructional learning at this 

level of detail seem to be found in work such as Klahr's collection [9]. On the Al side, the work of 

Collins [5] seems to be the closest in spirit. It may be in general that people do not require the 

painstaking explanations that seem to be needed by PSs. At least, this holds for PSs with very little 

knowledge, as discussed here. That is, humans are better learners because they know more and can 
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} The author would appreciate references to current work along the lines discussed in this paragraph. 

35 

fill in gaps in the instructional interaction. Thus it may be that our PS work must develop new 

techniques that haven't been necessary with human education. On the other hand, humans' learning 

might improve if we knew better how to organize instruction to suit their internal knowledge 

structures, or if we could train them to use a more efficient knowledge organization. 2 0 

Acknowledgments . Much of the work sketched above has been done jointly over the course of 

several years. Other project members are (in approximate order of duration of commitment to it): 

Allen Newell, John McDermott, Charles L. Forgy, Kamesh Ramakrishna, Pat Langley [10,11], Paul 

Rosenbloom, and John Laird. The present author's perspective, emphasis, and statement of 

conclusions may differ considerably from those of other project members - the broad scope of the IPS 

Project fostered and encouraged a divefsity of approaches. But much credit goes to the group as a 

whole for the overall contributions of the research. Helpful comments on this paper were made by 

Allen Newell, Jaime Carbonell, David Neves, Robert Akscyn and Kamesh Ramakrishna. The editors 

and reviewers of this book have also been very helpful. 

References 

1 . Anderson, J. R.. Language, Memory, and Thought Lawrence Erlbaum Associates, Hillsdale, NJ, 
1976. 

2 . Anderson, J. R., Kline, P. J., and Beasley, C. M. Jr. A Theory of the Acquisition of Cognitive Skills. 
Tech. Rept. 77-1, Yale University, Dept. of Psychology, January, 1978. 

3 . Anzai, Y. and Simon, H. A. "The theory of learning by doing." Psychological Review 86, 2 (1979), 
124-140. 

4 . Buchanan, B. G., Mitchell, T. M., Smith, R. G., Johnson, C. R. Jr. Models of Learning Systems. 
Tech. Rept. STAN-CS-79-692, Stanford University, Computer Science Dept., January, 1979. 

5. Collins, A. Explicating the Tacit Knowledge in Teaching and Learning. Tech. Rept. 3889, Bolt, 
Beranek, and Newman, Inc., March, 1978. 



4 Discussion 36 

6. Forgy, C. and McDermott, J. OPS, a domain-independent production system language. Proc. 
Fifth International Joint Conference on Artificial Intelligence, 1977, pp. 933-939. 

7 . Forgy, C. L. On the Efficient Implementation of Production Systems. Ph.D. Th., Carnegie-Mellon 
University, Dept. of Computer Science, February 1979. 

8 . Forgy, C. L. OPS4 User's Manual. Tech. Rept. CMU-CS-79-132, Carnegie-Mellon University, Dept. 
of Computer Science, July, 1979. 

9 . Klahr, D.. Cognition and Instruction. Lawrence Erlbaum Associates, Hillsdale, NJ, 1976. 

1 0 . Langley, P. W. Descriptive Discovery Processes: Experiments in Baconian Science. Ph.D. Th., 
Carnegie-Mellon University, Dept. of Psychology, May 1980. 

1 1 . Langley, P., Bradshaw, G. and Simon, H. A. Rediscovering chemistry with BACON.4. In This 
Volume, Tioga, 1981. 

1 2 . Lesser, V. R. and Erman, L. D. A retrospective view of the HEARSAY-II architecture. Proc. Fifth 
International Joint Conference on Artificial Intelligence, 1977, pp. 790-800. 

1 3 . McDermott, J. and Forgy, C. Production system conflict resolution strategies. In Pattern-
Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F., Eds., Academic, New York, NY, 
1978, pp. 177-199. 

1 4 . McDermott, J. ANA: An Assimilating and Accommodating Production System. Tech. Rept. CMU-
CS-78-156, Carnegie-Mellon University, Dept. of Computer Science, December, 1978. Also appeared 
in IJCAI-79, pp. 568-576 

1 5 . Moore, J. and Newell, A. How can MERLIN understand? In Knowledge and Cognition, Gregg, L., 
Ed.,Lawrence Erlbaum Associates, Potomac, MD, 1973, pp. 201-252. 

1 6 . Mostow, David J. Mechanical transformation of task heuristics into operational procedures. 
Ph.D. Th., Carnegie-Mellon University, Dept. of Computer Science, April 1981. 

1 7 . Newell, A. and Simon, H. A.. Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ, 1972. 

1 8 . Newell, A. Reasoning, problem solving and decision processes: the problem space as a 
fundamental category. In Attention and Performance VIII, Nickerson, R., Ed.,Lawrence Erlbaum 
Associates, Hillsdale, NJ, 1980. 

1 9 . Rychener, M. D. The S T U D N T production system: a study of encoding knowledge in production 
systems. Carnegie-Mellon University, Dept. of Computer Science, October, 1975. 

2 0 . Rychener, M. D. Production systems as a programming language for artificial intelligence 
applications. Ph.D. Th., Carnegie-Mellon University, Dept. of Computer Science, December 1976. 

2 1 . Rychener, M. D. "Control requirements for the design of production system architectures." 
SIGART Newsletter 64 (August 1977), 37-44. ACM 

2 2 . Rychener, M. D. and Newell, A. An instructable production system: basic design issues. In 
Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F., Eds., Academic, New York, 
NY, 1978, pp. 135-153. 

36 



4 Discussion 37 

2 3 . Rychener, M. D. A Semantic Network of Production Rules in a System for Describing Computer 
Structures. Tech. Rept. CMU-CS-79-130, Carnegie-Mellon University, Dept. of Computer Science, 
June, 1979. Also appeared in IJCAI-79, pp. 738-743 

2 4 . Rychener, M. D. OPS3 Production System Language Tutorial and Reference Manual. Carnegie-
Mellon University, Dept. of Computer Science, March, 1980. Internal Working Paper 

2 5 . Waterman, D. A. Rule-Directed Interactive Transaction Agents: An Approach to Knowledge 
Acquisition. Tech. Rept. R-2171-ARPA, The Rand Corp., February, 1978. 

2 6 . Young, R. M. Production systems for modelling human cognition. In Expert Systems in the 
Micro Electronic Age, Michie, D., Ed.,Edinburgh University Press, Edinburgh, 1979, pp. 35-45. 

37 



4 Discussion 38 

Appendices: Details Omitted from Survey 

I. Details on KerneM 
As a first approximation to an evaluation component, Kernell has a goal-monitoring facility, 

expressed fully as rules, which exploits the clean structure of the means-ends approach. This 

monitor is enabled by a monitoring goal, and the monitoring rules contain general enough patterns to 

allow the matching of arbitrary goals, so that points in IPS's behavior that involve new goals can be 

interrupted and examined (cf. "talking aloud" protocols of human problem solving behavior). Thus 

what is monitored includes only new goals, but this allows the instructor to follow the system's 

progress in greater detail than is possible by simply watching its behavior in the TE or by noting its 

utterances. There is a potential for more advanced monitoring, in that ad hoc rules could be 

constructed to recognize particular error situations, degree of progress towards achieving certain 

goals, and others referred to in the definition of evaluation, above. 

Another feature of a pure means-ends approach is the opportunity for compilation: usually the 

instructor formulates a rich goal tree during instruction, but the tree can usually be considerably 

trimmed down, with intermediate, temporary goals being replaced by direct concatenation of existing 

rules (Anderson, et al. [2]). 

The following is the full instructional text given to Kernell, for the method described in the text. 

To examine the object at the top position (A) 
of some location , 

want view location that location in the TE (=> B) 
then want test the status of the value of the (C, (A x)) 

composition of that location , 

Next if the test status result is non-empty is ((A 1), C R) 
the value of the composition of 
that location , , 

want find the element first of the value of the (=> D, (A 2)) 
composition of that location , 

Else if the test status result is empty is the value (( Ai)' ^ R) 
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of the composition of that location , , 
the examine object result is nothing at the top (A R) 

position of that location , 

Next if the find element result is some object is first ((A 2), D R) 
of the value of the composition of 
that location , , 

want view object that object in the TE (E) 
and the examine object result is that object is at (A R) 

the top position of that location . 

Several notational conventions in the above need to be explained. Italics are used to indicate 

words in the input language that are known to KerneM, namely words that delimit boundaries of 

various phrases and clauses, and also words that indicate variablization ("some" and "that" mark 

pattern variables). The remaining ones become the contents of goal expressions, and are essentially 

unparsed. At the right margin are placed a number of indicators in parentheses that label the various 

phrases involved. There are also indications of boundaries between condition and action of the 

corresponding rule (' = >') and between rules (blank lines). For example, the first five lines give three 

rule elements (labelled A, B, and C), and the first is a condition while the rest are actions in the 

resultant rule. If a label is parenthesized further, this is an indication that it is implicit, i.e., KerneM 

adds that extra condition or action to the rule. Subscripts indicate certain special modifiers of the 

corresponding phrases: the numeric ones are "step" indicators (the method given above has two 

steps in addition to the beginning, indicated by the main goal phrase being A, A r and A 2 ) ; an "R" 

indicates a "result" marker, i.e., the result of satisfying a goal. Note that some variant of "A" occurs 

in each of the rules formed, and that the whole method ends with the A R result. 

The major part of KerneM consists of a set of rules for processing (but not parsing or semantically 

understanding) language like that given above, and forming the resulting rule fragments into methods 

that can be executed with the desired results. The language itself is quite clumsy due to the emphasis 

placed on getting the output of the processing into a form that could reliably execute (within the PS 

architecture). That is, the emphasis was placed on the organization component as defined above. 
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Not only is the language clumsy, but it was realized after some work with Kernell that a couple of 

other properties of the above style of interaction are very detrimental to effectiveness. First, Kernell 

accepts the input passively, with no interaction (e.g., questioning) involved. Second, the instructor 

receives no feedback on the correctness of the many parts until the entire method is tried. 

Kernell embodied a hypothesis that simple means-ends rules could provide an adequate basis for 

interaction, explanation, and performance. A number of practical considerations prevented 

satisfactory realization of our goals in this respect. First, it is hard for instructor to know side 

conditions - certainly the main goals are easily picked out from W M (via queries that are not 

illustrated), but it is considerably more difficult to know which other items of data are the relevant 

conditions that are tested in a rule along with the goal. Knowing such conditions is crucial if a 

method is to.be corrected by adding rules that contain further discriminating conditions, discovered 

to be necessary for proper behavior subsequent to the initial instruction. Second, tests of proper 

satisfaction of a goal upon completion of a method are not utilized enough - such tests match a 

"result" with other data conditions in W M to verify that all has gone according to expectations. Tests 

are not constructed automatically by Kernell , but rather the instructor must remember to go through 

the extra effort of instructing them. Third, goal-subgoal links among goals are not established by 

Kernell - if the instructor understands that such conventions are useful in reconstructing goal trees 

as an attempt at explanation, for instance, he or she must go through the extra steps involved in 

specifying those links and keeping them up to date with extra rule actions. Fourth, having a goal 

expressed as a string of words doesn't suffice to distinguish separate instantiations of the same goal 

(as in recursion), nor does it provide a flexible way to augment a goal with new information during 

processing. To summarize, much too much of the burden of programming detail is placed on the 

instructor, and instruction remains too much like programming. Furthermore, the KerneM language 

fails to provide the capabilities to support such programming. 
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