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ABSTRACT 

The design and implementation of a 1-Dimensional median filter in VLSI is presented. The device 
is designed to operate on 8-bit sample sequences with a window size of 5 samples. Extensive 
pipelining and employment of systolic concepts at the bit level enable the chip to filler at rates up to 
10 Mega-samples per second The chip is designed to be implemented with a X = 2.5ji NMOS 
technology and is 6.2 mm by 5.0 mm in size. A circuit configuration for using the chip in 
approximate 2-D median filtering is also presented 
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1. Introduction 
Median filtering is a nonlinear signal smoothing operation in which the median of a window of size 

w = 2n + 1 replaces the sample at the middle of the window. Medians computed in this way tend to follow 

the polynomial trends in the original sequence while sharp discontinuities of short duration are filtered o u t 

Further properties of median filtering have been described in [1] while [2] describes its application to speech 

processing. Recently, an algorithm for real-time median filtering has been presented in [3]. Systolic 

algorithms for one- and multi-dimensional median-filtering operations and the more general case of 

computing running-order statistics have been recently proposed by Fisher [4]. 

This work presents the design and implementation of a VLSI chip for the 1-dimensional median-filtering 

operation. The device is designed to operate on 8-bit sample sequences with a window size of 5 samples. 

Extensive pipelining and employment of systolic concepts at the bit level enable the chip to have a very high 

throughput, i.e. the chip can be clocked at rates up to 10 Mhz and produce one median every clock cycle after 

an initial delay to fill the pipeline. The chip is designed to operate as a shift register in a system environment, 

filtering data coming from the source before going into the actual computing system. 

2. Systolic Algorithms and Structures 
Rapidly advancing VLSI technology offers system designers a very high potential for parallel operations. 

However, in order to exploit this potential, algorithms to be implemented with VLSI computing structures 

should have regular and simple communication schemes. This is mainly due to the fact that communication, 

especially irregular communication, is costly in VLSI in terms of the chip area that communication channels 

(i.e. wires) occupy. Furthermore, to reduce the design time, these algorithms should employ a rather small 

number of basic building blocks (or cells) from which larger systems can be buil t 

A class of parallel algorithms that exhibit such regular structures are systolic algorithms. Systolic algorithms 

for various computational problems have been described in [4, 5 ,6 ,7 ,8] . Systolic data structures for priority 

queue operations and connectivity problems have been proposed in [9] and in [10] respectively. The general 

architectural principles of systolic computation systems have been discussed by Kung in [11]. In general, 

systolic algorithms and the underlying hardware structures implementing them have very regular neighbor-to-

neighbor communication schemes. They utilize their inputs many times through pipelining and 

multi-directional data flow and hence do not make heavy bandwidth demands on system memories. 

Employment of systolic concepts at the low-level implementation of logic circuits for various simple 

functions (like addition and comparison) also leads to regular structures that have small propagation delays 

(independent of the size of the circuit) and require no broadcasting. Such circuits are suitable as building 
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blocks in higher-level pipelined structures. A previous chip employing such concepts is the pattern matching 

chip described in [12]. 

In the last few years various special purpose chips employing systolic algorithms have been designed at 

Carnegie-Mellon University. These include a pattern matching chip [12], an image processing chip [13], and a 

tree processor for database applications [14], 

3. The 1-Dimensional Median-Filtering Algorithm 
The 1-D median-filtering algorithm implemented is differs from the one described in [4] in the sense that it 

uses the odd/even-transposition sort [15,16,6] as the high-level algorithm and exploits systolic data flow 

concepts at the bit level to achieve a very high throughput After an initial delay to fill the pipeline, the chip 

can produce one median over a sliding 5-wide window at every clock period. The logic design enables the use 

of a clock period that is long enough to cover the propagation delays of five NMOS gates. However, due to 

technological limitations, the method employed is suitable only for small window sizes (3 to 7) because the 

network implementing the pipelined odd/even-transposition sort requires area proportional to the square of 

the window size. The systolic algorithms presented in [4] require area linear in window size but they need 

more complex circuits. 

3 . 1 . H igh-Levei S t r u c t u r e of the A lgor i thm 

At the high level, the algorithm, and hence the underlying hardware that implements it, consists of an input 

stage which generates the successive window elements from the incoming sample stream, and a pipelined sort 

stage which performs the odd/even-transposition sort on the elements of successive windows (see Fig. 3-1). 

Shamos, in [17], has proposed similar circuits for median finding; in fact, a circuit proposed there for a 

window of size 5 uses fewer of comparators than the circuit presented here, but Shamos' circuit structure is 

not regular. 

The input stage is basically a shift register. At every clock, it reads one sample value from the input and 

discards the sample value read five clocks earlier. This effectively slides the window of the filter over the 

incoming sample stream. Hence, a new window is presented to the odd/even-transposition sort network at 

every clock. 

The odd/even-transposition sort network is a pipelined structure consisting of compare-and-swap stages 

that operate on even and odd pairs of window elements 1 alternately. Five such alternating stages implement 

Even pairs have indices of the form ( n , n + 1 ) where n is even, while for odd pairs n is odd. 
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Figure 3-1: High level structure of the algorithm 

the odd/even-transposition sort for five sample values. Since the sample values in a window pass through one 

stage of the odd/even-transposition sort network in one clock, it is possible to pipeline the sorting of 

successive windows through the network. 

Each stage of the odd/even-transposition sort network consists of 2 8-bit compare-and-swap units 

([window size / 2 J units in general) and one delay element to store the window sample value that does not get 

compared at that stage, due to the fact that the window size is odd. 

Each 8-bit compare-and-swap unit compares the pair of 8-bit numbers at its input and interchanges them if 

necessary so that the larger of the numbers is at the "top". At the output of the last stage, the window 

elements will be sorted such that the largest will be at the "top" . 

3 . 2 . H a r d w a r e I m p l e m e n t a t i o n of t h e A lgor i thm 

The structure of the odd/even-transposition sort network described above has certain undesirable 

characteristics if directly mapped into hardware. In the compare-and-swap units, the swapping of the inputs 

can only be done after the result of the entire 8-bit comparison has been computed. However, this requires 

waiting for a long propagation delay through 8 stages of bitwise comparators. 
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It is possible to get rid of this propagation delay by employing systolic concepts at the bit level. This 

involves breaking up the compare-and-swap operation into steps and then distributing them over time by 

skewing the bits of the numbers being compared with delay elements so that each pair of bits arrives at their 

bitwise comparator at the same time the subresult of the comparison of their more significant counterparts 

arrives. 

The basic element to implement the compare-and-swap operation is the bitwise compare-and-swap un i t 

The functional description of this unit is given in Fig. 3-2. It is a bit comparator followed by two multiplexers 

which pass the larger of the inputs to the A output and the smaller to the B output if E.m is asserted. 

Otherwise it unconditionally swaps or passes the inputs depending on whether L*m is asserted or n o t It also 

passes "downward" the cumulative subresult of the comparison to the less significant stages. 

L i n E i n 

out 

out 

Lout Eout 

L • L . + E . (A . < B .) out in in 1 in in 
E • E . (A . = B . ) 
out in* in inr 

A = if L Athen B . else A . out out in in 
B « if L then A else B 
out out in in 

Figure 3-2: The basic compare-and-swap unit 

The 8-bit wide compare-and-swap units implemented with the units described above also distribute the 

swap operation over time along with the comparisons. So at the end each bitwise compare-and-swap 

operation, the outputs of the bit compare-and-swap units will be same as they would be if all the bitwise 

swaps were done simultaneously after waiting for the final comparison result This is easy to see if we note 

that if a less significant compare-and-swap unit decides that all the input bits should be swapped, then the 

inputs to more significant stages should have been equal hence passing them without swapping would not 

matter. 

The implementation of the odd/evcn-transposition sort network exploits the observations presented above. 

Furthermore, the comparisons of the next stage of the odd/even-transposition sort network can be started 
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immediately once the comparisons and swaps of the first bits of the preceding stage are done. This 

observation leads to an internal block structure of the odd/even-transposition sort network given in Fig 3.3. It 

should also be noted that in the resulting structure, the first bits of the sorted outputs are available even 

before the comparisons of the first stage of the odd/even-transposition sort network are completed. 

4. The Chip 
The chip employing the method described in the preceding section has been designed to be implemented 

with an NMOS process with A of 2.5 microns. The basic methodology and the design rules presented in [18] 

have been used throughout the design and layout process. The outline of the floor plan of the resulting chip is 

given in Fig. 4-l.The dimensions of the chip are approximately 6.2 mm by 5.0 m m . 

It uses 21 pins : 8 for input, 8 for output, 2 for the two phases of the clock, 1 for V d d , 1 for Ground and 1 

for the substrate bias; hence it can be packaged in a 24 pin package. 

As of this writing, the chip has been laid out completely and design-rule checks have been made. Circuit 

level simulations of the circuits making up the sort network have been done. Currently the chip is being 

fabricated by the ARPA facility coordinated by USC-ISI. 

5. Application to 2-Dimensional Image Processing 
Although the design is not directly applicable to 2-Dimensional median filtering operation, a cascade 

configuration using these chips can be used for approximate median filtering of 2-D images as suggested by 

Shamos [17]. The basic idea is to find the medians of the rows of an nx n window and then compute the 

median of the medians. It is shown in [17] that Aw the median of the medians of such a window, has the 

property that 

rank{AJ> ( /I 2 + 2/I + 1 ) / 4 

and 

rank{A^< ( 3 a 2 - 2 / 1 + 3 ) / 4 

This result indicates that such a configuration is guaranteed to filter out the upper and lower quartiles of 

the samples in the window. Simulation results obtained by Shamos also indicate that for n = 5 

Prob (rank(A5) = 13) » 0.2900 and Prob ( 12 < rank(A5) < 14) > 0.7200. 

The 1-D median-filter chip can be used in the configuration given in Fig. 5-1 to implement the 

approximate 2-D median filtering. This configuration operates in the following way: the 1-D median-filters 



6 

Input* to MSB CS elements are 
set to ''equal'9 

D : Delay Element 
CS: Compare and Swap element 

Contents of the current input window 

Data to be added to the window at the next step to replace X 4 

Other window elements at different stages of sorting 

Sorted elements of a previous window (y is the median) 
2 
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Figure 5-1: Hardware structure to implement the approximate 2-D median 
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on the left filter the rows of the 5 x 5 window sliding over the rows and output the medians of the rows 

skewed in time. The multiplexers serialize the parallel incoming medians into the 1-D median filters on the 
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right and also pass the select code coming from the upper multiplexers or the counter to the next multiplexer 

below. The median filters on the right operate on skewed window outputs in parallel, computing the medians 

of the medians of the rows. However they generate one result every 5 time steps. Finally, the last multiplexer 

selects and outputs the approximate medians (A5) coming out of the median-filters. It can be noted that this 

configuration can filter at at rate of 50 Mega-samples per second. 

6. Evaluation and Conclusions 
The design and implementation of a VLSI chip for performing the 1-D median-filtering operation has been 

presented. The major motivation for this work has been to apply systolic concepts at the bit level in the 

implementation of logic circuits to construct a digital system with a very high throughput Also, application of 

the developed chip to 2-D image processing has been investigated and a configuration for employing it in 

approximate 2-D median filtering has been proposed. 

Although the design developed in this work has a very high throughput, the response time is k + w where 

k is the number of bits in each sample and w is the window size (so the response time for this specific 

implementation is 13 clock periods). Furthermore, the design is not practical for larger window sizes because 

the silicon area for implementing the odd/even-transposition sort network grows as the square of the window 

size. 
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