
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-82-115

DESIGN AND IMPLEMENTATION OF A
SINGLE-CHIP 1-D MEDIAN FILTER

Kemal Oflazer

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA, 15213

April 1982

ABSTRACT

The design and implementation of a 1-Dimensional median filter in VLSI is presented. The device
is designed to operate on 8-bit sample sequences with a window size of 5 samples. Extensive
pipelining and employment of systolic concepts at the bit level enable the chip to filler at rates up to
10 Mega-samples per second The chip is designed to be implemented with a X = 2.5ji NMOS
technology and is 6.2 mm by 5.0 mm in size. A circuit configuration for using the chip in
approximate 2-D median filtering is also presented

Copyright © 1982 Kemal Oflazer

This research is supported in part by the Office of Naval Research under Contracts
N00014-76-C-0370,NR 044-0422 and N00014-80-C-0236,NR 048-659, in part by the National Science
Foundation under Grant MCS 78-236-76 , and in part by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-81-K-1539.

i

Table of Contents
1. Introduction
2. Systolic Algorithms and Structures
3. The 1-Dimensional Median-Filtering Algorithm

3.1. High-Level Structure of the Algorithm
3.2. Hardware Implementation of the Algorithm

4 .TheCh ip
5. Application to 2-Dimensional Image Processing
6. Evaluation and Conclusions
7. Acknowledgements

r 1

ii

List of Figures
Figure 3-1: High level structure of the algorithm 3
Figure 3-2: The basic compare-and-swap unit 4
Figure 3-3: Internal structure of the odd/even-transposition sort network 6
Figure 4-1: The floor plan of the chip 7
Figure 5-1: Hardware structure to implement the approximate 2-D median filtering 7

1

1. Introduction
Median filtering is a nonlinear signal smoothing operation in which the median of a window of size

w = 2n + 1 replaces the sample at the middle of the window. Medians computed in this way tend to follow

the polynomial trends in the original sequence while sharp discontinuities of short duration are filtered o u t

Further properties of median filtering have been described in [1] while [2] describes its application to speech

processing. Recently, an algorithm for real-time median filtering has been presented in [3]. Systolic

algorithms for one- and multi-dimensional median-filtering operations and the more general case of

computing running-order statistics have been recently proposed by Fisher [4].

This work presents the design and implementation of a VLSI chip for the 1-dimensional median-filtering

operation. The device is designed to operate on 8-bit sample sequences with a window size of 5 samples.

Extensive pipelining and employment of systolic concepts at the bit level enable the chip to have a very high

throughput, i.e. the chip can be clocked at rates up to 10 Mhz and produce one median every clock cycle after

an initial delay to fill the pipeline. The chip is designed to operate as a shift register in a system environment,

filtering data coming from the source before going into the actual computing system.

2. Systolic Algorithms and Structures
Rapidly advancing VLSI technology offers system designers a very high potential for parallel operations.

However, in order to exploit this potential, algorithms to be implemented with VLSI computing structures

should have regular and simple communication schemes. This is mainly due to the fact that communication,

especially irregular communication, is costly in VLSI in terms of the chip area that communication channels

(i.e. wires) occupy. Furthermore, to reduce the design time, these algorithms should employ a rather small

number of basic building blocks (or cells) from which larger systems can be buil t

A class of parallel algorithms that exhibit such regular structures are systolic algorithms. Systolic algorithms

for various computational problems have been described in [4, 5 ,6 ,7 ,8] . Systolic data structures for priority

queue operations and connectivity problems have been proposed in [9] and in [10] respectively. The general

architectural principles of systolic computation systems have been discussed by Kung in [11]. In general,

systolic algorithms and the underlying hardware structures implementing them have very regular neighbor-to-

neighbor communication schemes. They utilize their inputs many times through pipelining and

multi-directional data flow and hence do not make heavy bandwidth demands on system memories.

Employment of systolic concepts at the low-level implementation of logic circuits for various simple

functions (like addition and comparison) also leads to regular structures that have small propagation delays

(independent of the size of the circuit) and require no broadcasting. Such circuits are suitable as building

2

blocks in higher-level pipelined structures. A previous chip employing such concepts is the pattern matching

chip described in [12].

In the last few years various special purpose chips employing systolic algorithms have been designed at

Carnegie-Mellon University. These include a pattern matching chip [12], an image processing chip [13], and a

tree processor for database applications [14],

3. The 1-Dimensional Median-Filtering Algorithm
The 1-D median-filtering algorithm implemented is differs from the one described in [4] in the sense that it

uses the odd/even-transposition sort [15,16,6] as the high-level algorithm and exploits systolic data flow

concepts at the bit level to achieve a very high throughput After an initial delay to fill the pipeline, the chip

can produce one median over a sliding 5-wide window at every clock period. The logic design enables the use

of a clock period that is long enough to cover the propagation delays of five NMOS gates. However, due to

technological limitations, the method employed is suitable only for small window sizes (3 to 7) because the

network implementing the pipelined odd/even-transposition sort requires area proportional to the square of

the window size. The systolic algorithms presented in [4] require area linear in window size but they need

more complex circuits.

3 . 1 . H igh-Levei S t r u c t u r e of the A lgor i thm

At the high level, the algorithm, and hence the underlying hardware that implements it, consists of an input

stage which generates the successive window elements from the incoming sample stream, and a pipelined sort

stage which performs the odd/even-transposition sort on the elements of successive windows (see Fig. 3-1).

Shamos, in [17], has proposed similar circuits for median finding; in fact, a circuit proposed there for a

window of size 5 uses fewer of comparators than the circuit presented here, but Shamos' circuit structure is

not regular.

The input stage is basically a shift register. At every clock, it reads one sample value from the input and

discards the sample value read five clocks earlier. This effectively slides the window of the filter over the

incoming sample stream. Hence, a new window is presented to the odd/even-transposition sort network at

every clock.

The odd/even-transposition sort network is a pipelined structure consisting of compare-and-swap stages

that operate on even and odd pairs of window elements 1 alternately. Five such alternating stages implement

Even pairs have indices of the form (n , n + 1) where n is even, while for odd pairs n is odd.

3

Input
Sample
Stream

Input
Stage

CS : Compare and Swap Element
D : Delay Element

CS

CS

CS

CS

CS

CS

CS

CS

CS

CS

Odd / Even Transposition Sort Network

Output
Stream

(medians)

Figure 3-1: High level structure of the algorithm

the odd/even-transposition sort for five sample values. Since the sample values in a window pass through one

stage of the odd/even-transposition sort network in one clock, it is possible to pipeline the sorting of

successive windows through the network.

Each stage of the odd/even-transposition sort network consists of 2 8-bit compare-and-swap units

([window size / 2 J units in general) and one delay element to store the window sample value that does not get

compared at that stage, due to the fact that the window size is odd.

Each 8-bit compare-and-swap unit compares the pair of 8-bit numbers at its input and interchanges them if

necessary so that the larger of the numbers is at the "top". At the output of the last stage, the window

elements will be sorted such that the largest will be at the "top" .

3 . 2 . H a r d w a r e I m p l e m e n t a t i o n of t h e A lgor i thm

The structure of the odd/even-transposition sort network described above has certain undesirable

characteristics if directly mapped into hardware. In the compare-and-swap units, the swapping of the inputs

can only be done after the result of the entire 8-bit comparison has been computed. However, this requires

waiting for a long propagation delay through 8 stages of bitwise comparators.

4

It is possible to get rid of this propagation delay by employing systolic concepts at the bit level. This

involves breaking up the compare-and-swap operation into steps and then distributing them over time by

skewing the bits of the numbers being compared with delay elements so that each pair of bits arrives at their

bitwise comparator at the same time the subresult of the comparison of their more significant counterparts

arrives.

The basic element to implement the compare-and-swap operation is the bitwise compare-and-swap un i t

The functional description of this unit is given in Fig. 3-2. It is a bit comparator followed by two multiplexers

which pass the larger of the inputs to the A output and the smaller to the B output if E.m is asserted.

Otherwise it unconditionally swaps or passes the inputs depending on whether L*m is asserted or n o t It also

passes "downward" the cumulative subresult of the comparison to the less significant stages.

L i n E i n

out

out

Lout Eout

L • L . + E . (A . < B .) out in in 1 in in
E • E . (A . = B .)
out in* in inr

A = if L Athen B . else A . out out in in
B « if L then A else B
out out in in

Figure 3-2: The basic compare-and-swap unit

The 8-bit wide compare-and-swap units implemented with the units described above also distribute the

swap operation over time along with the comparisons. So at the end each bitwise compare-and-swap

operation, the outputs of the bit compare-and-swap units will be same as they would be if all the bitwise

swaps were done simultaneously after waiting for the final comparison result This is easy to see if we note

that if a less significant compare-and-swap unit decides that all the input bits should be swapped, then the

inputs to more significant stages should have been equal hence passing them without swapping would not

matter.

The implementation of the odd/evcn-transposition sort network exploits the observations presented above.

Furthermore, the comparisons of the next stage of the odd/even-transposition sort network can be started

5

immediately once the comparisons and swaps of the first bits of the preceding stage are done. This

observation leads to an internal block structure of the odd/even-transposition sort network given in Fig 3.3. It

should also be noted that in the resulting structure, the first bits of the sorted outputs are available even

before the comparisons of the first stage of the odd/even-transposition sort network are completed.

4. The Chip
The chip employing the method described in the preceding section has been designed to be implemented

with an NMOS process with A of 2.5 microns. The basic methodology and the design rules presented in [18]

have been used throughout the design and layout process. The outline of the floor plan of the resulting chip is

given in Fig. 4-l.The dimensions of the chip are approximately 6.2 mm by 5.0 m m .

It uses 21 pins : 8 for input, 8 for output, 2 for the two phases of the clock, 1 for V d d , 1 for Ground and 1

for the substrate bias; hence it can be packaged in a 24 pin package.

As of this writing, the chip has been laid out completely and design-rule checks have been made. Circuit

level simulations of the circuits making up the sort network have been done. Currently the chip is being

fabricated by the ARPA facility coordinated by USC-ISI.

5. Application to 2-Dimensional Image Processing
Although the design is not directly applicable to 2-Dimensional median filtering operation, a cascade

configuration using these chips can be used for approximate median filtering of 2-D images as suggested by

Shamos [17]. The basic idea is to find the medians of the rows of an nx n window and then compute the

median of the medians. It is shown in [17] that Aw the median of the medians of such a window, has the

property that

rank{AJ> (/I 2 + 2/I + 1) / 4

and

rank{A^< (3 a 2 - 2 / 1 + 3) / 4

This result indicates that such a configuration is guaranteed to filter out the upper and lower quartiles of

the samples in the window. Simulation results obtained by Shamos also indicate that for n = 5

Prob (rank(A5) = 13) » 0.2900 and Prob (12 < rank(A5) < 14) > 0.7200.

The 1-D median-filter chip can be used in the configuration given in Fig. 5-1 to implement the

approximate 2-D median filtering. This configuration operates in the following way: the 1-D median-filters

6

Input* to MSB CS elements are
set to ''equal'9

D : Delay Element
CS: Compare and Swap element

Contents of the current input window

Data to be added to the window at the next step to replace X 4

Other window elements at different stages of sorting

Sorted elements of a previous window (y is the median)
2

Figure 3-3: Internal structure of the odd/even-transposition sort network

7

, Tnput -Pads Output Pads .
| Input Shift and Delay Registers
1 Output Delay Registers 1

ODD / EVEN

TRANSPOSITION SORT

NETWORK 6.2

5.0 nan

Figure 4-1: The floor plan of the chip

CNT

OUTPUT

M-F : 1-D Median Filter MUX : 5 to 1 Multiplexer
CNT : Mod-5 Counter D : Delay Element

Figure 5-1: Hardware structure to implement the approximate 2-D median
filtering

on the left filter the rows of the 5 x 5 window sliding over the rows and output the medians of the rows

skewed in time. The multiplexers serialize the parallel incoming medians into the 1-D median filters on the

8

right and also pass the select code coming from the upper multiplexers or the counter to the next multiplexer

below. The median filters on the right operate on skewed window outputs in parallel, computing the medians

of the medians of the rows. However they generate one result every 5 time steps. Finally, the last multiplexer

selects and outputs the approximate medians (A5) coming out of the median-filters. It can be noted that this

configuration can filter at at rate of 50 Mega-samples per second.

6. Evaluation and Conclusions
The design and implementation of a VLSI chip for performing the 1-D median-filtering operation has been

presented. The major motivation for this work has been to apply systolic concepts at the bit level in the

implementation of logic circuits to construct a digital system with a very high throughput Also, application of

the developed chip to 2-D image processing has been investigated and a configuration for employing it in

approximate 2-D median filtering has been proposed.

Although the design developed in this work has a very high throughput, the response time is k + w where

k is the number of bits in each sample and w is the window size (so the response time for this specific

implementation is 13 clock periods). Furthermore, the design is not practical for larger window sizes because

the silicon area for implementing the odd/even-transposition sort network grows as the square of the window

size.

7. Acknowledgements
I would like to thank Prof. H. T. Kung for suggesting the chip design and for providing valuable comments

and to Allan Fisher, Richard Korf, and Michael Horowitz for providing constructive comments.

REFERENCES

1. Gallagher, N . C , Jr . , Wise, G. L., "A Theoretical Analysis of the Properties of Median Filters," IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-29, No. 6, Dec. 1981, pp.
1136-1141.

2. Rabiner, L. R . , Sambur, M. R . , Schmidt, C. E . , "Applications of a Nonlinear Smoothing Algorithm
to Speech Processing," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-23,
No. 6, Dec. 1975, pp. 552-557.

3. Ataman, E . , Aatre, V. K. , Wong, K. M., "A Fast Method for Real-Time Median Filtering," IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-28, No. 4, Aug. 1980, pp. 415-421.

4. Fisher, A. L., "Systolic Algorithms for Running Order Statistics in Signal and Image Processing,"
Proceedings of CMU Conference on VLSI Systems and Computations, Kung, H. T. ,Sproull, R. F.
,Steele, G. L. Jr., cds., Computer Science Press, Carnegie-Mellon University, October 1981, pp.
265-272, To appear also in Journal Of Digital Systems

9

5. Kung, H.T., "The Structure of Parallel Algorithms," Advances in Computers, Volume 19, Yovits, M.C.,
ed., Academic Press, New York, 1980, pp. 65-112, Also available as CMU Computer Science
Department technical report, August 1979

6. Kung H. T., "Let's Design Algorithms For VLSI Systems,'* Proceedings of the Conference on Very
Large Scale Integration;Architecture, Design,Fabrication, Seitz, C. L., ed., California Institute of
Technology, January 1979, pp. 65-90.

7. Kung, H. T. and Leiserson, C. E., "Systolic Arrays (for VLSI)," Sparse Matrix Proceedings, Duff, I. S.
and Stewart, G. W., eds., Society for Industrial and Applied Mathematics, 1978, pp. 256-282, Also
appears as Section 8.3 in Introduction to VLSI Systems by Mead and Conway [10]

8. Kung, H . T . and Lehman, P. L , "Systolic (VLSI) Arrays for Relational Database Operations,"
Proceedings of ACM-SIGMOD 1980 International Conference on Management of Data, Santa Monica,
California, May 1980, pp. 105-116.

9. Leiserson, C. E., "Systolic Priority Queues," Proceedings of Conference on Very Large Scale
Integration: Architecture, Design, Fabrication, Seitz, C. L., ed., California Institute of Technology,
January 1979, pp. 199-214.

10. Savage, C , "A Systolic Data Structure Chip for Connectivity Problems," Proceedings of CMU
Conference on VLSI Systems and Computations, Kung, H. T. ,Sproull, R. F . ,Steele, G. L. Jr., eds.,
Computer Science Press, Carnegie Mellon University, October 1981, pp. 296-300.

11. Kung, H. T., "Why Systolic Architectures?," IEEE Computer, January 1982, pp. 37-46.

12. Foster, M. J. and Kung, H. T., "The Design of Special Purpose Chips," IEEE Computer, Vol. 13,
January 1980, pp. 26-40.

13. Kung, H . T . and Song, S.W., "A Systolic Array Chip for the Convolution Operator in Image
Processing," VLSI Memo V046, Carnegie Mellon University, Department of Computer Science,
February 1980.

14. Song, S. W., "A Database Machine with Novel Space Allocation Algorithms," VLSI Memo V042,
Carnegie Mellon University, Department of Computer Science, February 1980.

15. Habermann, N., "Parallel Neighbor-Sort (Or the Glory of the Induction Principle)," Tech. report,
Computer Science Department-Carnegie Mellon University, August 1972.

16. Knuth, D. E., The Art of Computer Programming-Searching and Sorting, Addison-Wesley, , Vol. 3,
1973.

17. Shamos, M.I . , "Robust picture processing operators and their implementation as circuits,"
Proceedings of the ARPA Image Understanding Workshop, Science Applications, Inc., November 1978,
pp. 127-129.

18. Mead, C. and Conway, L., Introduction to VLSI Systems, Addison Wesley, 1980.

SE*~ ~ ' ~L A3.., H C UP v : . i . «r« £ n f + r * r f)

REPORT DOCUMENTATION PAGE READ-INSTRUCTIONS
B E F O R E COMPLETING FORM

I. REPORT NUMBER
•

CMU-CS-82-115

2. GOVT ACCESSION NO.

ONR
3. RECIP IENT 'S CATALOG NUMBER

4. T I T L E (bnd SubtiUm)

Design and Implementation of a Single-Chip

S. T Y P E OF REPORT 4 PERIOD COVERED

Interim

1-D Median Filter 4 . PERFORMING ORG. REPORT NUMBER

7. A U T H O R ^

Kemal Oflazer

4. CONTRACT OR GRANT N U M B E R S

NOOO14-76-C-0370, NR 044-0422
NOO14-80-C-0236, NR 048-659

S. PERFORMING ORGANIZATION NAME ANO AOORESS
Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA # 15213

10. PROGRAM ELEMENT. PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

I I . CONTROLLING O F F I C E NAME ANO AOORESS 12. REPORT OATE
April 1982

I S . NUMBER OF PAGES

13
14. MONITORING AGENCY NAME 4 AOORESSfJI diiimront irom Controlling Oiiico} IS. SECURITY CLASS, (oi Mm report)

UNCLASSIFIED
ISO. DECLASSIFICATION/OOWNGRAOING

SCNEOULE

14. AM ST Rl BU Tl ON STATEMENT (oi Mm Report)

• 7 . DISTRIBUTION STATEMENT (oi tho obmtroct entered In Stock 30 , it ditioront irom Report)

Approved for public release; distribution unlimited

14. SUPPLEMENTARY NOTES

I t . KEY WORDS (Continue on rower mo mi dm ii nocomomry mn d idonttty by block number)

•

24. ABSTRACT (Continuo on re woe mo mi do li nmcmmmory mm t idontlty by block number}

OD , 1473 " ' T ' ° * or t N o v • > is o B s o u t r e UNCLASSIFIED
S / M O I 0 2 - O l « - « * 0 » I flCCtlNITY C L A S S I F I C A T I O N O f T H I S » * « f . T t w i O . I . K n f l l)

