
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-82-121

The Power of Triangulation: Applications to
Problems of Visibility and Internal Distance.

Bernard Chazelle

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

March 1982

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order

No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539.

The views and conclusions contained in this document arc those of the authors and should not be

interpreted as representing the official policies, cither expressed or implied, of the Defense Advanced

Research Projects Agency or the US Government

Abstract

It is well-known that the complexity of performing operations on a set depends heavily on the structure which

we are allowed to put into its representation. For example, searching through a sequence of numbers can be

performed more efficiently if the numbers appear in sorted order. In this paper, we take, as a case-study, the

class of problems involving a simple N-gon P and, making the assumption that in addition to the usual

description of the boundary of />, an arbitrary triangulation is also available, we investigate the computational

power gained from having this additional information. Among other results, we give a very simple, optimal

algorithm for computing the area visible from an arbitrary point in P. We also present several optimal

algorithms for computing the internal distance between two points in P. Recall that the internal distance

between A and B is defined as the length of the shortest path inside P between A and B.

2

1 . Introduction
The complexity of problems that operate on fixed objects is highly dependent on the amount of

preprocessing allowed in the objects* representation. As illustrated in the well known paradigm

searching .vs. sorting, the mere availability of an order among keys cuts down the complexity of searching

from linear to logarithmic. In numerical analysis, preconditioning a sparse matrix is standard procedure in

order to facilitate the computation of its inverse. In general, the crucial issue is to balance costs and gains of

preprocessing so as to optimize the overall performance. Few areas of computer science are free of this type of

trade-offs and, in particular, this concern is recurrent in computational geometry, operations research, and in

the study of data structures or data bases.

The first area mentioned, computational geometry, provides a good example of a structure, i.e., the Voronoi

diagram, easy to construct efficiently, while one of the most powerful tools at our disposal for solving closest-

point problems [SH77]. Unrelated, .yet equally effective results have shown that convex figures lend

themselves to speedier algorithms than arbitrarily-shaped objects [CH8G\CD80,DK81]. Consequently, an

attractive approach to handle non-convex figures is to decompose them into their convex parts, then apply to

these the efficient methods known for convex objects [CH80\FS81,GJ78,SC78,SV8G\TO80]. We pursue this

endeavor in this paper, and investigate the existence of efficient algorithms for various problems, assuming

that in addition to the usual boundary description of a polygon, an arbitrary triangulation is also available. It

is standard to define a triangulation of a polygon as a convex decomposition which does not introduce new

vertices 1 [GJ78]. For our purposes, however, we can relax this definition and allow the vertices of the

triangulation to lie anywhere on the boundary of the polygon. The only provision to make is that the total

number of points used in the triangulation is linear in the number of vertices of the polygon. Note that this is

always true with the standard, more restrictive definition. We also observe that it is easy, given a convex

decomposition of a polygon, to derive a triangulation in linear time. It is then apparent that it is only for

simplicity that we choose to be supplied with a triangulation rather than a more general convex

decomposition of the polygon.

With this additional information in hand, we are able to describe a very simple, yet optimal algorithm for

computing the area visible from any point inside a polygon. We also present several optimal algorithms for

computing the internal distance between two points inside a polygon. Recall that the internal distance is

defined as the shortest distance a person might travel from one point to the other, while remaining within the

boundary of the polygon.

i.e.. where ail the vertices in the decomposition arc vertices of the polygon.

3

Next we introduce our notation, before proceeding with the description of the algorithms. Let P be a

simple1 polygon with vertices vx v N in clockwise order. We assume the existence of a triangulation Tof Pt

defined as a set of non-overlapping triangles whose union is exactly P, and whose summits arc taken in the set

{vx v N } . The edges of the triangulation which are not edges of P are called interior edges. As mentioned

above, we may choose to allow the summits to lie anywhere on the boundary of P, provided that the total

number of vertices in the triangulation does not exceed the number of vertices of P, up to within a constant

factor. In this case, we may, for simplicity, rename the vertices of P so that the list vx,...,vN gives a clockwise

description of all the vertices appearing on the boundary of the triangulation.

Observing that a triangulation forms the embedding of a planar graph, we choose a DC EL representation

of this graph as our basic working structure [MP78]. Recall that a DCEL is simply a handy data structure,

obtainable in linear time from any standard adjacency representation, which in particular, allows one to

traverse the boundary of each face in clockwise order and list the faces encountered on the left-hand side

during the traversal. Roughly, to each edge e of the graph is assigned a 6-field node containing the names of

the two endpoints in some specified order, as well as the two adjacent faces and die names of each of the

edges first encountered in traversing these faces in clockwise order, starting at the endpoints of e.

Note that several algorithms are available in the literature for computing an arbitrary triangulation of an

N-gon. The best performance achieved so far is 0 (Mog N) time [GJ78.CH82], but is yet unknown to be

optimal or n o t

2. Visibility problems
A problem which arises frequently in graphics concerns the elimination of hidden lines from a two- or

three-dimensional scene [NS79]. In two dimensions, the problem reduces to computing the sets of points that

are visible from a given point inside a polygon P. Linear algorithms for this problem already exist

[CH80.EA81], but they involve complicated stack manipulations which become unnecessary, once a

triangulation is made available. The problem can be formulated as follows:

Given a simple polygon P and a point \t inside P, the locus of points V such that the segment MV
lies entirely in P is a simple polygon V(M). Compute a clockwise description of the boundary of
V(M)(M5).

We can regard the triangles of 7 as forming the nodes of a graph (7, whose edges join the pairs of triangles

with a common edge (i.e., an interior edge) (fig.l). As shown in Lemma 1, the absence of interior faces

ensures that the graph G is actually a tree.

"A polygon is said to be simple iff only adjacent edges intersect

4

[FIGURE 1]

Figure 1: The triangulation T and the dual graph G.

Lemma 1: G is a tree.

Proof: It suffices to show that for any pair of triangles in the triangulation, there exists a
unique path between / 1 and t^ in G. The triangle / x partitions P into 4 parts. One is the triangle ^
itself, the others being polygons adjacent to the edges of tl (note that some of these polygons may
be reduced to a single edge). At any rate, exacdy one of the three polygons contains the triangle t2.
Call U this polygon, letting u denote its edge adjacent to ^ and / be the triangle of T adjacent to u
and lying in U (fig.2). Since the triangulation of P also provides a triangulation of £/, and its
associated graph Gu is a subgraph of G, we can see that if there is a unique path in Gu from / to ^ ,
there is also a unique path in G from / x to t r Therefore we can prove the lemma by induction on
the number of vertices. •

[F I G U R E 2]

Figure 2: Proving that Gisa tree.

Let e be any interior edge of the triangulation, and let M be any point inside P. Letting t denote the triangle

of T which contains A/, we can define G(A/,e) as the unique subtree of G emanating from e, which does not

contain / (fig.3).

[F IGURE 3]

Figure 3: The subtree G(M,e)

We are now in a position to give an algorithm for computing the visibility polygon V(A/). To facilitate our

task, we introduce the function VISIB, defined as follows: let e be any segment lying entirely on the edge e.

Remove from 7* all the triangles which do not belong to G(A/,£), and call Q the resulting polygon. We define

VISIB (A/ , /) as the part of Q which is visible from M through the window e\ More precisely, VISIB (A/ , /)

is the set of points u in Q such that the only intersection of Mu with the boundary of Q takes place at / (fig.4).

Let a,bx be the vertices of the triangle in Q adjacent to e with e-ab and e =a*b*. We define A (resp. B) as

the intersection of the polygonal line {bcxa} with the infinite line passing through Ma* (resp. Mb*). It is now

straightforward to compute the function VISIB recursively.

5

VISIB (A / /)

if / lies on the boundary of P
then

return ({e })
else

Determine the points c,A,B.
if c lies between A and B

then
K<— VISIB (A/,5c)
K<— V u VISIB (Af,cA)

else
V <— VISIB (M,AB)

return (*0-(fig.4)

[F IGURE 4]

Figure 4: Computing the area VISIB (M,e).

To complete the computation of V(A/), it suffices to determine the triangle of T where A/ lies - which can

be done in O(N) urne - then apply the previous procedure with respect to its three edges.

VISIBILITY </>,A/)

Let eyeve^ be the edges in clockwise order of the
triangle of T which contains M. Initially V(A/) = 0 .
for i = 1,2,3

begin
V(A/) 4 - V(A/) U VISIB (A/,*.)
end

Sec an illustration in fig.5. Note that, as described, the procedure reports the boundary of V(A/) in

clockwise order, except for the ray edges of V(A/), i.e., the segments collincar with A/, which are omitted. A

single pass through the list V(A/), however, will be sufficient to add the missing segments, and we need not

elaborate. Using a DCEL representation of the triangulation ensures that each recursive step can be executed

in constant time, from which we can conclude:

Theorem 2: Given a simple Af-gon P along with an arbitrary triangulation of /*, it is possible to
compute the visibility polygon from any point M inside /*, in O(N) time.

The main advantage of this algorithm is that it avoids the complicated stack manipulations of [CH80] and

[HA81J. The reader may convince himself/hcrscif/itself that the algorithm could be rewritten without greater

difficulty in order to deal directly with a more general convex decomposition (i.e.. without first converting it

6

into a triangulation). This may be an interesting alternative if one is willing to exploit the fact that searching

among the edges of a convex polygon can be done in logarithmic time, using a Fibonacci search-based

stratcgy [CH80\CD80]. We would not recommend this approach in practice, however, unless the size of the

problem was particularly gigantic. Once again, we leave substantiating these digressions to the attention of

the reader.

[F I G U R E 5]

Figure 5: The visibility polygon V(M).

3. Applications to internal distance problems

3 . 1 . The car-rac ing problem

What is the shortest trajectory of a racing car on a given circuit? More precisely, the problem which we

address in this section can be expressed as follows:

Given a simple polygon P and two arbitrary points A and B in P, find the shortest path inside P
between A and B (fig.6).

[F I G U R E 6]

Figure 6: The internal path between A and B, IP(A*B).

This shortest path is called the internal path between A and 5, denoted IP(/1,2?), and its length, |IP(/4,5)|, is

called the internal distance between A and B (fig.6). To have a visual representation of IPiA.B), one can

imagine a rubber band inside P tightly stretched between A and B. In [SM77J, Shamos suggests an 0 (N 2)

algorithm for computing IP(^,£). The method consists essentially of computing all pairs of vertices visible

from each other, in 0(A/ 2) time, so as to form the so-called viewability graph of P. We next add weights to the

graph by associating to each edge the Euclidean distance between its endpoints. Computing an internal path '

is now equivalent to finding the shortest path between two vertices of a graph with .V vertices, which can be

done in 0(iV 2) time. Of course, we assume in this case that both A and B arc vertices of P. We will next show

how the use of a triangulation permits us to compute the internal path in 0(N) time, without even having to

restrict the points to be on the boundary of P. Note that since we know how to compute a triangulation of an

N-gon in 0 (A/log AO time, this result constitutes a significant improvement.

For the time being, we will assume that both A and B arc vertices of P. We will sec later on how we can

easily dispense with this requirement. If A and B arc vertices of the same triangle of T it is clear that

IP(A.B) = AB, so wc may assume that this is not the case. In the following, wc will say that an interior edge of

7" is AB-crossing if its endpoints u.v arc such that A.u.B.v appear this order around the boundary of P. Let P*

be the polygon resulting of the removal from 7of all the edges that arc not AB-crossing (fig.7). Wc first prove

7

a few technical lemmas.

[F IGURE 7]

Figure 7: The transformation of P into P*

Lemma 3: The internal path between A and B in P is identical to the internal path between A
and B in P*.

Proof: It suffices to show that IP(A,B) can only intersect AB-crossing edges. To see that,
suppose that it intersects an interior edge e which is not AB-crossing. Since e partitions P into two
polygons, one of them docs not contain therefore IP(A.B) crosses e at least twice (once in each
direction). If A (resp. B*) is the first (resp. second) intersection, going from A to B, replacing the .
pan of \P(A.B) from A* to B* by the segment A*B* will shorten the length of I P (w h i c h leads
to a contradiction. •

Lemma 4: The internal path between A and B intersects every interior edge of P* exactly once,
and intersects no other edge in T.

Proof: The proof of Lemma 3 shows that IP(/U?) cannot intersect any interior edge more than
once. On the other hand, we can easily prove by induction thai since every interior edge of P
partitions this polygon into two parts, neither of which contains both A and £, it must intersect
IP(/1,£) at least once. Putting this result together with Lemma 3 completes the proof. •

It is easy to compute P* in 0(N) time. To do so, consider every interior edge of T in turn, and if it is not

AB-crossing, remove it from T along with the dangling sub-polygon, just created, that does not contain A or

B. Let L = { j 1 6 1 , . . . , j p 6 p } be the interior edges of as they appear from A to B (fig.7), i.e., in the order in

which they intersect IP(/1,2?) (Lemma 4). Note that it is straightforward to obtain L in 0(N) time, once P* has

been computed. From now on, the term IP(JC,>'), with JC,;; vertices of refers to the internal path between x

and y with respect to either P or P*. This is legitimate since the two paths are identical, as a simple

generalization of Lemma 3 readily shows.

[FIGURE 8 J

Figure 8: Computing IP(A,B itcratively.)

Lemma 5: For any i: l<i<p, there exists a vertex v of P* such that IP(/La)= IP(/i,v) u U and
IP(/L6)= IP(/f,v) u W% where U and Ware two convex, non-intersecting polygonal lines turning
their convexity against each other, and running from v to a. and b.. respectively (fig.8).

Proof: Let and C, be two oriented curves originating at the same point. To carry the analogy
with internal paths. wc~may further assume that neither is self-intcrsccting; we say that C{ and C 2

have a proper crossing if. as we follow C} from its starting point, we encounter a point where C 2

intersects C r and actually switches from one side to the other. Kig.9.1 (but not fig.9.2) shows an
example of a proper crossing.

[FIGURE 9]

Figure 9: The notion of proper crossing.

3

We next prove that for any three points A.B.C in the two paths 1PM./?) and IP(/1,C) never
have any proper crossings. Suppose that they did: let a be die first point (starting at A) where
\P(A.B) and IP(/I .O cease to coincide, and let b denote the next intersecting point. Since IP{A.B)
and IP(. i .O take distinct paths from a to 6, we may re-route cither one to the other, since they
must have exactly the same length. Iterating on this process will eventually cause all proper
crossings to disappear, which proves the above fact We can now establish Lemma 5 by induction
on L The initial case being trivial, we may directly assume that the lemma is true for all indices
from 1 to L Since the ambm's are triangulation-cdgcs. we necessarily have a. = a . + 1 or b{=b{+v say,
J i = a i + r w l o S * " ^ u s - considering the path I P (^ , 6 . + 1) , we observe that since it does not have any
proper crossings with cither lP(/l,a.) or IPM,^) ,

1. It must pass through their common point v.

2. Its vertices between v and 1 are vertices of U and W.

From 1.. it results that we may concentrate on the path IP(v,6 . + 1) instead of IP(/ f ,6 i + 1) , since we
obviously have I P (/ i , 6 i + 1) = lPM,v) u IP(v ,6 i + 1) . Next, we strengthen proposition 2. by proving
that the vertices of IP (v ,6 i + 1) are vertices of U or but never of both at the same time. Indeed,
suppose wlog that starting at v, the vertices of IP(v,6. + x) are /r/->,.... with ^ through / lying on U
and / i on W. It follows that the angle (tt^^.jt^ ,) is under 180 degrees, therefore there is

m + i ^ m m+ L m m-l w

an obvious shortcut for lP (v ,6 i +]) , avoiding t (fig. 10). which leads to a contradiction. Thus there
are now two basic cases to consider, depending on whether IP(v,6. +]) takes its vertices in U or W.
In the former case, v will be relocated further ahead on £/, whereas it will stay unchanged in the
latter. The details are straightforward, so we may consider the proof of the lemma as complete. •

[F IGURE 10]

Figure 10: Minimality properties of IPfv.b^ jjL

We are now ready to proceed with the algorithm for computing IP(/1,2?). The method involves computing

\P(A,a{) and IP(/4,&), for i=l , . . . ,p, which we can do iteratively by using the results of Lemma 5. The

procedure being trivial for i = 1, we turn to the general step directly. As already mentioned, we have either

Q\ ~ a \ +1 0 f * i = *i + r a n (* W C C a n 3 8 8 1 1 1 1 1 6 w l ° 8 * a t a\~ a\ + r ^- C l U l U a ^ r c S P ' w l wfi) ^ C ^ C v c r t i c e s Of U
(rcsp. W) from v to j j (resp. fc).

The half-plane delimited by a.b{ on the side where b^l lies is partitioned into a +/? + 1 regions, themselves
delimited by the lines passing through

With this order, the regions appear sorted along the segment a.6. from b to a., so that we can find the

region which contains b. ^ by testing each of them in turn in this order, until we arc successful (fig.ll). This

corresponds to unfolding H 7and possibly folding over U. If& + 1 lies in a pencil of die kind (w

k _ l

w

] c . * v i c

w

k + 1) .

we must simply remove vv̂ from ^ a n d reset to k + 1 and to b^{ (fig.11.1). If b + l lies in the

pencil (u. UMM. ,), however, wc must set W to u.b remove (\>,u. u, ,) from V and finally set v to u.

(fig. 11.2). All the other cases arc similar and call for no further explanation. Since none of the vcrtices

9

removed in these operations will ever be examined again (Lemma 5), both IPM,a p) and IP(/l,6 p), hence

IP(A.B\ will be computed in O(A0 time.

[FIGURE 11]

Figure 11: Updating U and W.

We generalize this result by allowing both A and B to lie anywhere inside P, and not only on the boundary.

Let R (resp. S) be the triangle where A (resp. B) lies. If R = S, the problem is solved since IP(A,B)=AB.

Otherwise, we can compute the chain of triangles P* in exacdy the same way as described above.

Next, let v. v. be the interior edge of R which U\A,B) crosses. We can replace R by the triangle v.v.A without

altering the path IP(A,B). Applying the same treatment to S will make A and B become vertices of P*9 which

allows us to call on the procedure described earlier to compute IP(/i,2?). In conclusion, we can state our main

result:

Theorem 6: Let P be a simple iV-gon, and assume that any triangulation of P is available. For
any pair of points A.B in P% it is possible to compute \P(A,B\ the internal path between A and B,
in O(iV) time, which is optimal in the worst case.

3 . 2 . The al l - internal-paths problem

The problem is to preprocess the polygon P so that a batch of queries of the kind:

What is the internal path between A and B?

can be answered optimally. The method described in the previous section grants an attractive balance

between execution and preprocessing time, when only a few queries have to be handled at any given time. It

is worst-case optimal, but not optimal in the strictest sense of the term, since all the vertices of P must always

be examined for every query. As a result, the precomputation of all possible internal paths between vertices

entails a prohibitive 0 (J V 3) cost The goal which we set forth here is to preprocess P so that the computation of

IP(/!,/?) for any pair of vertices (A.B) requires only time proportional to the size of the output, i.e., the

number of vertices in IP(A,B).

To achieve this goal, we use the concept of visibility introduced earlier. Let V(/f) be the visibility polygon

of A. If IP(/l,/?)= AB< B is a vertex of V(A), otherwise W(A) has a ray-edge (i.e., an edge vw such that v lies on

/l>v), with the property that vw separates A from B by intersecting 1P(/1,/?). More precisely, vw is the unique

edge of V(A) such that cither /l,v,£,w or /1,w,/?,v occur in clockwise order (fig.12). Since V(/f) is star-shaped,

and vw is a ray-edge which is traversed by IP(/!,/?). v must be the first vertex of \P(A.B) after A. Indeed, there

would be a shortcut if \P(A,B) cut vwat any other point. Consequently, we have the relation:

\P(AJ1) = AvU lP(v,Z?)

10

This motivates the introduction of the function F(A,B)=B, if IPM,Z?)=/f£, and F (^ , 5) = v otherwise.

Theorem 2 shows that if a triangulation o f ? is available, the visibility polygon V(A) of each vertex A of ? c a n

be obtained in O(N) time. The knowledge of V(A) permits us to set up the array

D U) = { F U v .) ; i = l , . . . , i V }

in O(N) time, with O(N) storage, from which we conclude:

Theorem 7: Let P be a simple polygon with iV vertices. It is possible to preprocess P in 0(N2)
time, using 0(N2) space, so that for any pair of vertices A,B9 the path IP(/1,J3) can be computed
optimally, i.e.. in time proportional to the size of the output.

Proof: Compute the N arrays D(v}),.^D(vN), forming an NxN matrix {FCv^v.}, so that IP{A,B)
can be computed by retrieving F(A,B) in constant time, and computing
IP(F{A,B\B) recursively. •

[F I G U R E 12]

Figure 12: The all-internal-paths problem.

3 . 3 . The internal- length problem

Imagine that an island with only inland communications is to be serviced by some utility (water tank,

power station, fire house, police station, hospital, etc...). An interesting piece of information which may be

needed is an upper bound on the internal path length between any pair of points.

Let A*,B* be the two vertices of P which form the longest path IP(/f, 5*). We call |IP(/4*,£*)| the internal

length of P. It is easy to determine A* and B* by trying out all possible pairs of vertices and using the matrix F

of the previous section, given that the longest path can always be assumed to be found between two vertices of

the polygon. This leads to an 0(N3) running time, which we can cut down to 0(N2) by proceeding as follows:

Let DM,20 = |IP(/I.2?)|. We will compute D(A,B) itcrativcly by summing up partial distances obtained

from F. In order to avoid duplicating computations, as soon as TXA.B) is available, we backtrack along the

path just followed in F to record the partial results. This ensures that, on average, one value D(/i,2?) will be

computed at every other step, which leads to an 0 (J V 2) algorithm.

11

INTDIST

- Initially, each D(A,B) is set to -1 for A+B. and to 0 for A= B.

for alii (l<i<N)
for allj(l<j<iV)

begin

while D(jt,v.) = -1
begin

end
if Q has more than one element

then
Let Q = {* r...,x }
L - D (j c p , v)
for k = p-I,...,l

begin
I — L + I - V ^ l

end
end

D(A*.B*) = Max (EKv^v.) | all pairs of vertices v., v.)

Since we can compute a triangulation of Pin 0 (Mog N) time, we may conclude:

Theorem 8: It is possible to determine the internal length of a simple Af-gon as well as the
corresponding internal path in 0(iV 2) time.

4. Conclusions
This paper has shown on the following examples how to use an arbitrary triangulation advantageously:

1. Computing the visibility polygon at any point inside an N-gon in O(N) time.

2. Computing the internal path between any pair of points in an N-gon in O(N) time.

3. Allowing 0(N2) preprocessing, being able to compute any internal path with optimal
performance.

4. Computing the internal distance of an N-gon and the associated internal path in 0(/V 2) time.

12

All of these algorithms achieve significant improvements over previously known methods, since a

triangulation of an N-gon can be computed in 0 (M o g N) time. The improvements are to be measured either

in terms of better performance (Problems 2,3,4) or in terms of added simplicity (Problem 1). We should also

observe that it is yet unknown whether the triangulation algorithms available in the literature are optimal

Since, on the other hand, half of the algorithms which we have described in this paper are linear after

triangulation, overall speed-ups would automatically result from the discovery of faster triangulating

procedures.

This work was meant as a case-study and, of course, the list of possible improvements brought about by the

use of a triangulation is not closed. Further research should attempt to enlarge the list given here, and carry

the same approach with other preprocessing structures, whether geometrical or n o t

13

[NS79] Newman. W.M., Sproull, R.F.

Principles of interactive computer graphics. McGraw-Hill, 2nd cd., 1979.

REFERENCES

[CH80] Chazelle, B.M.

Computational geometry and convexity, PhD thesis, Yale University, 1980. Also available as
CMU Tech. Rept CMU-CS-80-150, July 1980.

[CH82] Chazelle, B.M.

How to divide a polygon fairly, CMU- Tech. Report, Carnegie-Mellon Univ., April 1981

[CD79] Chazelle, B.M., Dobkin, D.P.

Decomposing a polygon into its convex parts, Proc. 11th SIGACT Symp., Atlanta, 1979, pp.
38-48.

[CD80] Chazelle, B.M., Dobkin, DJ>.

Detection is easier than computation, Proc. 12th SIGACT Symp., Los Angeles, 1980.

[DK81] Dobkin, D.P., Kirkpatrick, D.G.

Fast detection of polyhedral intersections. Unpublished manuscript

[EA81J El Gindy, H., Avis, D.

A linear algorithm for computing the visibility polygon from a point, Journal of Algorithms, 2,
186-197 (1981).

[FS81] Ferrari, L., Sankar, P.V., and Sklansky, J.

Minimal rectangular partitions òf digitized blobs, Proc. 5th International Conference on Pattern
Recognition, Miami Beach, Dec. 1981, pp. 1040-1043.

[GJ78] Garey, M.R.. Johnson, D.S., Preparata, F.P., and Tarjan, R.E.

Triangulating a simple polygon. Info. Proc. Lett, Vol. 7(4), June 1978, pp. 175-179.

[MP78] Muller, D.E., Preparata, F.P.

Finding the intersection of two convex polyhedra, Thcorct. CompuL Sci.. 7 (1978), pp. 217-236.

14

[SC78] Schachter, B.

Decomposition of polygons into convex sets, IEEE Trans, on Computers, Vol. C-27, 1978, pp.
1078-1082.

[SV80] Schoone, A.A., van Leeuwcn, J.

Triangulating a star-shaped polygon. Tech. Rep t RUV-CS-80-3, University of Utrecht, April,
1980.

[SH77] Shamos, M.I.

Computational geometry, PhD thesis. Yale University, 1977.

[SH75] Shamos, M.I., Hoey, D J .

Closest-point problems, 16th IEEE FOCS Symp. (1975), pp. 151-162.

[SM77] Shamos, M.I.

Problems in computational geometry, Carnegie-Mellon University, 1977.

UO80] Toussaint, G.T.

Decomposing a simple polygon with the relative neighborhood graph. Proceedings of the Allerton
Conference, Urbana, Illinois, October, 1980.

F i g u r e l_

F i g u r e 2_

I S

F i g u r e 4

1 ?

F i g u r e 5_

13

F i g u r e 7

13

F i g u r e 8

F i g u r e 9

b .

Zo

F i g u r e 10

2 1

