
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



C M U - C S - 8 1 - 1 4 4 

University Librar ies 
C a r n e g i e Meilon University / - i ... > K 

Pittsburgh PA 1 5 2 1 3 - 3 8 9 0 D ! u i / 

On Intensionality 
and 

Referential Transparency 

Joseph Bates 

6 November 1981 

Abstract 

In designing a formalism for reasoning about functions, one must decide just what functions are. This brief 

note suggests that however mathematicians stand on the issue, programmers must take the view.that functions 

are methods of computation, not input/output relations. 

This research was supported in part by the National Science Foundation under grant NSF-80-03349. It was 
performed while the author was visiting CMU-CSD from Cornell University. 



1 

Introduction 
Programmers expend much effort reasoning. This observation has lead to the development of automated 

"reasoning assistants", such as Automath [4], Edinburgh LCF [5], and PL/CV2 [2]. To construct such an 

assistant, one must have an extremely precise description of the valid means of reasoning. Such a description 

is a formal logic 

Functions are one of the main sorts of objects that programmers manipulate. The problem of formalizing 

reasoning about functions has been studied by many people; it is of interest to philosophers, practicing 

mathematicians, programming methodologists, and programmers. Since mathematicians have been reasoning 

about functions for a long time, logics of programming tend to build directly on (mainstream) mathematical 

work. While much of that work is extremely relevant to programming, there are significant differences 

between the two fields. These differences suggest that the treatment of functions in programming logics 

should differ from that developed in mathematics. 

When deciding how to formalize functions, the essential question is "what are functions?". This is an issue 

of how we speak of functions: how do we build them, how can they be used, and in particular, when are two 

functions equal 1 ? This last question is often ignored, for the answer is so obvious: two functions are equal 

just when they produce equal results on equal inputs, i.e., when they are extensionally equal. However, this is 

a decision, even if an unintentional one, so we might discuss why extensionality is so often chosen. 

Why is Extensionality Assumed? 
Mathematicians are seldom concerned with the computational complexity of algorithms. Nor are they 

interested in the problems of building large, structurally complex, algorithms. Therefore, to simplify life, they 

usually ignore details of how algorithms work. Their natural notion of function is one of input/output 

relation, a function is a set of ordered pairs. This view admits very nice formalization - functions are tractable 

mathematical objects with elegant properties. 

Because the mathematicians.view provides such a pleasant foundation, and because most computer 

scientists have been trained with that background, it is natural that extensionality is adopted as the proper 

basis for a formal treatment of programs. Further, notions of referential transparency, modularization, and 

information hiding seem to lead towards extensionality. Thus, extensionality is not only familiar and 

"intuitive", but consideration of real programming issues appears to require it. Nonetheless, let us probe a bit 

further. 

Wc will use this phrasing even though ihc notion of "two objects" seems to imply that the objects arc distinguishable, while equality 
implies that they arc identical. We could be more precise by speaking of two distinct names that denote the same object. 



2 

A Deeper Look at the Assumptions 
First off, arguments that a certain viewpoint is intuitive or natural are usually of dubious value. Such 

claims often mean "I've done it this way for a long time and I'm comfortable with it". The superiority of 

assembly language over FORTRAN and the advantages of unconstrained GOTOs over structured program 

composition, along with a multitude of other untenable positions, have been supported on these grounds. 

Further, one's intuition is fluid, gradually adapting to experience and belief. We thus dismiss the argument 

from familiarity, for it must give way to considerations of substance. 

Programmers do not live in as idyllic a world as mathematicians. Computational reasoning covers a broad 

spectrum of concerns: does a function compute the desired results, is it efficient, is it cleanly structured? 

These questions are dealt with constantly and a theory of programming must admit their expression and 

resolution. Clearly though, they are not all properties of the extensions of functions. Instead they are 

properties of how functions are constructed. Thus, a mature logic of programs must support intensional 

reasoning. 

What about the problem of tractability? As mentioned, the conventional view of functions leads to elegant 

formalizations. Can as intensional approach be feasible? 

At the moment programs are almost laughable as mathematical objects. Though we have several elegant 

ways of explaining their meanings, the relationships between programs are weak and general laws usually 

aren't. A manifestation of this is seen in work on gathering programming knowledge. The Irvine Program 

Transformation Catalog [8] and the Programmer's Apprentice Library [6] each contain hundreds of generally 

useful transformations. This is not a failure of these efforts. The domain of programs they are trying to 

capture is inherently messy. 

Despite (or because of) the current state of affairs, there is hope that we may be able to develop a better 

view of programs. Recent work on. functional programming is explicitly driven by the desire to have a 

tractable mathematical domain of programs [1,7]. For the same reason, combinators have found application 

in the PL/CV3 programming logic [3]. There are serious problems with these approaches, but our response 

certainly should not be to discpunt the entire area. Rather, we should pursue with vigor the construction of a 

beautiful domain of programs. 

The final issue is that of referential transparency. Even if we have a clean formalization of programs, isn't 

there something nasty about cxtcnsionally equal programs that are not intcrchangable? 

No. Intcnsionality is not nasty. Wc should expect intcrchangability of equal functions, and for some 



3 

applications, equality may be taken as extensional. Yet, much of our discipline is founded on the differences 

between extensionally equal functions. If extensionally equal functions were indistinguishable, we would lose 

our ability to discuss code optimization, asymptotic complexity, and elegant programming style, among other 

fascinating and useftil topics. Thus, extensionality is simply inappropriate - it is too coarse an equality for 

much of our work. 

Extensionality may also be too fine. One can argue that good programs are modularized, in that interfaces 

are specified and modules are constructed to satisfy those specifications. The important property is that any 

module be replaceable by another module meeting the relevant specifications. This notion of 

interchangability is far broader than extensional equality, for the specifications characterize whatever 

equivalence is suited to the problem. Thus, extensionality is inappropriate here, as well. -

We really want a logic with two notions. First, when are two functions identical? As argued, this is not an 

absolute concept We choose it as is convenient: probably ignoring comments and spacing, perhaps 

disposing of variables, but retaining as much structure as is mathematically tractable. Second, when does a 

function meet a specification? This entails the presence of specifications, ways for writing them, reasoning 

about them, and using them in building functions. 

Extensionality is a misguided attempt to meet these two needs simultaneously. It is a useful notion, but it is 

not fundamental. Instead, along with other equivalences, it should be defined using the logic and the 

appropriate theorems derived. If the logic has any expressive power, it should at least get us this far. 

Philosophical Considerations 
There is a somewhat deeper issue here. One may grant that a programming logic should allow us to reason 

about programs, but assert that it should be built on extensional foundations. That is, one may believe the 

mathematician's idea of function is primary. This is a subtle matter, but several arguments can be mustered 

for intensional foundations. 

The pragmatic argument is that since we want to reason with intensionality and specification refinement, let 

us attack them directly and formalize the logic wc want to use. If someone feels they can explain the logic in a 

prior extensional framework, fine, but let us leave such explanations to metatheory. 

The second argument is less concrete. If the purpose of the logic is to express our most basic concepts of 

computation, wc must try to understand what is "real". Taking an extensional view requires the notion of 

infinite set. Arc infinite sets real? Do functionate operate on infinite sets? The intensional view requires one 

only to accept symbols and rules for manipulating them. These arc finite things, that wc can speak of, if we 



4 

choose, as representing infinite sets. 

It is not apparent that there is any sense to the notion of infinite objects. The universe doesn't appear to 

admit such things, so we have never experienced them. When we write descriptions, such as 0,l,2,...,co, it is 

the manipulation of the descriptions that we understand. It may appear that the things we imagine 

descriptions denoting are real,, but this is only because we become so fully immersed in our language that it 

disappears from our consciousness. Once this occurs, we seem to be left facing the imagined things 

themselves. This is a convenient fantasy, but a fantasy nonetheless. 

Our choice of descriptions and manipulations certainly is influenced by our attempts to imagine actual 

infinite objects, but as philosophers have found, our intuition about those objects is often faulty. If we are to 

understand and formulate the underlying concepts of computation, we must stand on solid ground. 

Accepting language as the basis is hardly an impoverished view. Individuals can still become sufficiently 

immersed that symbol manipulation becomes subconscious. One can still have a theory in which N->N is not 

denumerable. The advantage is that the theory is built on-concrete and transparent principles, 

This last (vague) discussion is intended to show that the classical foundations of mathematics are subject to 

question. However, this is independent of the pragmatic argument, for it should be apparent that however 

one makes sense of an intensional logic, such a logic is appropriate and necessary to adequately formalize 

computational reasoning. 



51 

References 

Can Programming be Liberated from the Von Neumann Style? A Functional Style and its Algebra of 
Programs. 

C ACM (21,8), August, 1978. 

[2] Constable,R.L., and M.J. O'Donnell. 
A Programming Logic. 
Winthrop Publishers, Inc., Cambridge, Mass., 1978. 

[3] Constable,R.L., and D. Zlatin. 
Lecture Notes in Computer Science: The Type Theory of PL/C V3. 
Springer-Verlag, 1981. 

[4] de Bruijn,N.C. 
A Survey of the AUTOMATH Project. 
In Seldin,J.P., and J.R. Hindley (editors), To H.B. Curry: Essays on Combinatory Logic, Lambda 

Calculus, and Formalism,. Academic Press, 1980. 

[5] Gordon,M., R. Milner, and C. Wadsworth. 
Edinburgh LCF. 
Technical Report CSR-11-77, University of Edinburgh, Edinburgh, Scodand, September, 1977. 

[6] Rich,C. and H. Shrobe. 
Initial Report on a LISP Programmer's Apprentice. 
IEEE Transactions on Software Engineering SE-4,6, November, 1978. 

[7] Sintzoff,M. 
Proof-Oriented and Applicative Valuations in Definitions of Algorithms. 
In Functional Programming Languages and Computer Architecture. ACM, October, 1981. 

[8] Standish,T.A„ D.C. Harriman, D.F. Kibler, and J.M. Neighbors. 
The Irvine Transformation Catalog. 
Technical Report, Dept. of Computer and Information Science, U. of California at Irvine, 1976. 


